201
|
Chang Z, Chen Z, Yan W, Xie G, Lu J, Wang N, Lu Q, Yao N, Yang G, Xia J, Tang X. An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:21-30. [PMID: 27968990 DOI: 10.1016/j.plantsci.2016.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 05/21/2023]
Abstract
Wax, cutin and sporopollenin are essential components for the formation of the anther cuticle and the pollen exine, respectively. Their lipid precursors are synthesized by secretory tapetal cells and transported to the anther and microspore surface for deposition. However, the molecular mechanisms involved in the formation of the anther cuticle and pollen exine are poorly understood in rice. Here, we characterized a rice male sterile mutant osabcg26. Molecular cloning and sequence analysis revealed a point mutation in the gene encoding an ATP binding cassette transporter G26 (OsABCG26). OsABCG26 was specifically expressed in the anther and pistil. Cytological analysis revealed defects in tapetal cells, lipidic Ubisch bodies, pollen exine, and anther cuticle in the osabcg26 mutant. Expression of some key genes involved in lipid metabolism and transport, such as UDT1, WDA1, CYP704B2, OsABCG15, OsC4 and OsC6, was significantly altered in osabcg26 anther, possibly due to a disturbance in the homeostasis of anther lipid metabolism and transport. Additionally, wild-type pollen tubes showed a growth defect in osabcg26 pistils, leading to low seed setting in osabcg26 cross-pollinated with the wild-type pollen. These results indicated that OsABCG26 plays an important role in anther cuticle and pollen exine formation and pollen-pistil interactions in rice.
Collapse
Affiliation(s)
- Zhenyi Chang
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China; Guangdong Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Wei Yan
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Jiawei Lu
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Na Wang
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Qiqing Lu
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Nan Yao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guangzhe Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Jixing Xia
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China.
| | - Xiaoyan Tang
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China; Guangdong Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
202
|
Sidorchuk YV, Kravets EA, Mursalimov SR, Plokhovskaya SG, Goryunova II, Yemets AI, Blume YB, Deineko EV. Efficiency of the induction of cytomixis in the microsporogenesis of dicotyledonous (N. tabacum L.) and monocotyledonous (H. distichum L.) plants by thermal stress. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
203
|
Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci U S A 2016; 113:14145-14150. [PMID: 27864513 DOI: 10.1073/pnas.1613792113] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose-methanol-choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production.
Collapse
|
204
|
Fei Q, Yang L, Liang W, Zhang D, Meyers BC. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6037-6049. [PMID: 27702997 PMCID: PMC5100018 DOI: 10.1093/jxb/erw361] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dissection of the genetic pathways and mechanisms by which anther development occurs in grasses is crucial for both a basic understanding of plant development and for examining traits of agronomic importance such as male sterility. In rice, MULTIPLE SPOROCYTES1 (MSP1), a leucine-rich-repeat receptor kinase, plays an important role in anther development by limiting the number of sporocytes. OsTDL1a (a TPD1-like gene in rice) encodes a small protein that acts as a cofactor of MSP1 in the same regulatory pathway. In this study, we analyzed small RNA and mRNA changes in different stages of spikelets from wild-type rice, and from msp1 and ostdl1a mutants. Analysis of the small RNA data identified miRNAs demonstrating differential abundances. miR2275 was depleted in the two rice mutants; this miRNA is specifically enriched in anthers and functions to trigger the production of 24-nt phased secondary siRNAs (phasiRNAs) from PHAS loci. We observed that the 24-nt phasiRNAs as well as their precursor PHAS mRNAs were also depleted in the two mutants. An analysis of co-expression identified three Argonaute-encoding genes (OsAGO1d, OsAGO2b, and OsAGO18) that accumulate transcripts coordinately with phasiRNAs, suggesting a functional relationship. By mRNA in situ analysis, we demonstrated a strong correlation between the spatiotemporal pattern of these OsAGO transcripts and phasiRNA accumulations.
Collapse
Affiliation(s)
- Qili Fei
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Li Yang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, South Australia 5064, Australia
| | - Blake C Meyers
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- University of Missouri - Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| |
Collapse
|
205
|
Kravets EA, Sidorchuk YV, Horyunova II, Plohovskaya SH, Mursalimov SR, Deineko EV, Yemets AI, Blume YB. Intra- and intertissular cytomictic interactions in the microsporogenesis of mono- and dicotyledonous plants. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716050054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
206
|
Zhang K, Song Q, Wei Q, Wang C, Zhang L, Xu W, Su Z. Down-regulation of OsSPX1 caused semi-male sterility, resulting in reduction of grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1661-72. [PMID: 26806409 PMCID: PMC5066639 DOI: 10.1111/pbi.12527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/06/2015] [Indexed: 05/03/2023]
Abstract
OsSPX1, a rice SPX domain gene, involved in the phosphate (Pi)-sensing mechanism plays an essential role in the Pi-signalling network through interaction with OsPHR2. In this study, we focused on the potential function of OsSPX1 during rice reproductive phase. Based on investigation of OsSPX1 antisense and sense transgenic rice lines in the paddy fields, we discovered that the down-regulation of OsSPX1 caused reduction of seed-setting rate and filled grain number. Through examination of anthers and pollens of the transgenic and wild-type plants by microscopy, we found that the antisense of OsSPX1 gene led to semi-male sterility, with lacking of mature pollen grains and phenotypes with a disordered surface of anthers and pollens. We further conducted rice whole-genome GeneChip analysis to elucidate the possible molecular mechanism underlying why the down-regulation of OsSPX1 caused deficiencies in anthers and pollens and lower seed-setting rate in rice. The down-regulation of OsSPX1 significantly affected expression of genes involved in carbohydrate metabolism and sugar transport, anther development, cell cycle, etc. These genes may be related to pollen fertility and male gametophyte development. Our study demonstrated that down-regulation of OsSPX1 disrupted rice normal anther and pollen development by affecting carbohydrate metabolism and sugar transport, leading to semi-male sterility, and ultimately resulted in low seed-setting rate and grain yield.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qian Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
207
|
Kim YJ, Jang MG, Zhu L, Silva J, Zhu X, Sukweenadhi J, Kwon WS, Yang DC, Zhang D. Cytological characterization of anther development in Panax ginseng Meyer. PROTOPLASMA 2016; 253:1111-1124. [PMID: 26277352 DOI: 10.1007/s00709-015-0869-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Ginseng (Panax ginseng), a valued medicinal herb, is a slow-growing plant that flowers after 3 years of growth with the formation of a solitary terminal umbel inflorescence. However, little is known about cytological events during ginseng reproduction, such as the development of the male organ, the stamen. To better understand the mechanism controlling ginseng male reproductive development, here, we investigated the inflorescence and flower structure of ginseng. Moreover, we performed cytological analysis of anther morphogenesis and showed the common and specialized cytological events including the formation of four concentric cell layers surrounding male reproductive cells followed by subsequent cell differentiation and degeneration of tapetal cells, as well as the formation of mature pollen grains via meiosis and mitosis during ginseng anther development. Particularly, our transverse section and microscopic observations showed that the ginseng tapetal layer exhibits obvious nonsynchronous cell division evidenced by the observation of one or two tapetal layers frequently observed in one anther lobe, suggesting the unique control of cell division. To facilitate the future study on ginseng male reproduction, we grouped the anther development into 10 developmental stages according to the characterized cytological events.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China.
| | - Moon-Gi Jang
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Jeniffer Silva
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Xiaolei Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Johan Sukweenadhi
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Woo-Saeng Kwon
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Deok-Chun Yang
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China
| |
Collapse
|
208
|
Li Z, Zhang P, Lv J, Cheng Y, Cui J, Zhao H, Hu S. Global Dynamic Transcriptome Programming of Rapeseed (Brassica napus L.) Anther at Different Development Stages. PLoS One 2016; 11:e0154039. [PMID: 27139433 PMCID: PMC4854403 DOI: 10.1371/journal.pone.0154039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/07/2016] [Indexed: 11/24/2022] Open
Abstract
Rapeseed (Brassica napus L.) is an important oil crop worldwide and exhibits significant heterosis. Effective pollination control systems, which are closely linked to anther development, are a prerequisite for utilizing heterosis. The anther, which is the male organ in flowering plants, undergoes many metabolic processes during development. Although the gene expression patterns underlying pollen development are well studied in model plant Arabidopsis, the regulatory networks of genome-wide gene expression during rapeseed anther development is poorly understood, especially regarding metabolic regulations. In this study, we systematically analyzed metabolic processes occurring during anther development in rapeseed using ultrastructural observation and global transcriptome analysis. Anther ultrastructure exhibited that numerous cellular organelles abundant with metabolic materials, such as elaioplast, tapetosomes, plastids (containing starch deposits) etc. appeared, accompanied with anther structural alterations during anther development, suggesting many metabolic processes occurring. Global transcriptome analysis revealed dynamic changes in gene expression during anther development that corresponded to dynamic functional alterations between early and late anther developmental stages. The early stage anthers preferentially expressed genes involved in lipid metabolism that are related to pollen extine formation as well as elaioplast and tapetosome biosynthesis, whereas the late stage anthers expressed genes associated with carbohydrate metabolism to form pollen intine and to accumulate starch in mature pollen grains. Finally, a predictive gene regulatory module responsible for early pollen extine formation was generated. Taken together, this analysis provides a comprehensive understanding of dynamic gene expression programming of metabolic processes in the rapeseed anther, especially with respect to lipid and carbohydrate metabolism during pollen development.
Collapse
Affiliation(s)
- Zhanjie Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peipei Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyang Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufeng Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianmin Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huixian Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.,College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
209
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
210
|
Abstract
Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.
Collapse
Affiliation(s)
- Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Xijia Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| |
Collapse
|
211
|
Li Q, Deng Z, Gong C, Wang T. The Rice Eukaryotic Translation Initiation Factor 3 Subunit f (OseIF3f) Is Involved in Microgametogenesis. FRONTIERS IN PLANT SCIENCE 2016; 7:532. [PMID: 27200010 PMCID: PMC4844609 DOI: 10.3389/fpls.2016.00532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/04/2016] [Indexed: 05/13/2023]
Abstract
Microgametogenesis is the post-meiotic pollen developmental phase when unicellular microspores develop into mature tricellular pollen. In rice, microgametogenesis can influence grain yields to a great degree because pollen abortion occurs more easily during microgametogenesis than during other stages of pollen development. However, our knowledge of the genes involved in microgametogenesis in rice remains limited. Due to the dependence of pollen development on the regulatory mechanisms of protein expression, we identified the encoding gene of the eukaryotic translation initiation factor 3, subunit f in Oryza sativa (OseIF3f). Immunoprecipitation combined with mass spectrometry confirmed that OseIF3f was a subunit of rice eIF3, which consisted of at least 12 subunits including eIF3a, eIF3b, eIF3c, eIF3d, eIF3e, eIF3f, eIF3g, eIF3h, eIF3i, eIF3k, eIF3l, and eIF3m. OseIF3f showed high mRNA levels in immature florets and is highly abundant in developing anthers. Subcellular localization analysis showed that OseIF3f was localized to the cytosol and the endoplasmic reticulum in rice root cells. We further analyzed the biological function of OseIF3f using the double-stranded RNA-mediated interference (RNAi) approach. The OseIF3f-RNAi lines grew normally at the vegetative stage but displayed a large reduction in seed production and pollen viability, which is associated with the down-regulation of OseIF3f. Further cytological observations of pollen development revealed that the OseIF3f-RNAi lines showed no obvious abnormalities at the male meiotic stage and the unicellular microspore stage. However, compared to the wild-type, OseIF3f-RNAi lines contained a higher percentage of arrested unicellular pollen at the bicellular stage and a higher percentage of arrested unicellular and bicellular pollen, and aborted pollen at the tricellular stage. These results indicate that OseIF3f plays a role in microgametogenesis.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhuyun Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Chunyan Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Tai Wang,
| |
Collapse
|
212
|
Gómez JF, Talle B, Wilson ZA. Anther and pollen development: A conserved developmental pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:876-91. [PMID: 26310290 PMCID: PMC4794635 DOI: 10.1111/jipb.12425] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/23/2015] [Indexed: 05/19/2023]
Abstract
Pollen development is a critical step in plant development that is needed for successful breeding and seed formation. Manipulation of male fertility has proved a useful trait for hybrid breeding and increased crop yield. However, although there is a good understanding developing of the molecular mechanisms of anther and pollen anther development in model species, such as Arabidopsis and rice, little is known about the equivalent processes in important crops. Nevertheless the onset of increased genomic information and genetic tools is facilitating translation of information from the models to crops, such as barley and wheat; this will enable increased understanding and manipulation of these pathways for agricultural improvement.
Collapse
Affiliation(s)
- José Fernández Gómez
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Behzad Talle
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
213
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. Genetic and Biochemical Mechanisms of Pollen Wall Development. TRENDS IN PLANT SCIENCE 2015; 20:741-753. [PMID: 26442683 DOI: 10.1016/j.tplants.2015.07.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 05/18/2023]
Abstract
The pollen wall is a specialized extracellular cell wall matrix that surrounds male gametophytes and plays an essential role in plant reproduction. Uncovering the mechanisms that control the synthesis and polymerization of the precursors of pollen wall components has been a major research focus in plant biology. We review current knowledge on the genetic and biochemical mechanisms underlying pollen wall development in eudicot model Arabidopsis thaliana and monocot model rice (Oryza sativa), focusing on the genes involved in the biosynthesis, transport, and assembly of various precursors of pollen wall components. The conserved and divergent aspects of the genes involved as well as their regulation are addressed. Current challenges and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meihua Cui
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| |
Collapse
|
214
|
Mirgorodskaya OE, Koteyeva NK, Volchanskaya AV, Miroslavov EA. Pollen development in Rhododendron in relation to winter dormancy and bloom time. PROTOPLASMA 2015; 252:1313-23. [PMID: 25643916 DOI: 10.1007/s00709-015-0764-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/19/2015] [Indexed: 05/23/2023]
Abstract
Microsporogenesis and microgametogenesis of Rhododendron ledebourii (semi-deciduous), Rhododendron luteum (deciduous), and Rhododendron catawbiense (evergreen) were studied by light and electron microscopies in order to determine the stages of pollen development in relation to period of winter dormancy and bloom time throughout an annual growth cycle. Development of generative organs starts in June in R. ledebourii and in July in R. luteum and R. catawbiense and reaches completion about 11 months later. R. luteum and R. catawbiense microspores undergo meiosis at the end of the August and spend winter at the vacuolization stage. Mitosis with the formation of bicellular pollen grain occurs shortly before flowering at the beginning of June. R. ledebourii develops two types of flowers which differ in the timing of microgametogenesis. The first type is characterized by early microspore meiosis and mitosis leading to development of bicellular pollen grains by the end of August, and is prone to fall blooming during warm autumn temperatures. Microspores of the second flower type have a more prolonged vacuolization stage with mitosis and subsequent bicellular pollen grains occurring in November. By winter, flower buds in R. ledebourii are more advanced developmentally than in R. catawbiense and R. luteum, and bloom about 1 month earlier. The different strategies of pollen development identified both within and between these three Rhododendron species were recognized which are not associated with leaf drop during winter but appear to be related to the time of spring flowering and the frequency of autumn flowering.
Collapse
Affiliation(s)
- Olga E Mirgorodskaya
- V.L. Komarov Botanical Institute of Russian Academy of Science, 2, Prof. Popov St., 197376, St. Petersburg, Russia
| | | | | | | |
Collapse
|
215
|
Cao H, Li X, Wang Z, Ding M, Sun Y, Dong F, Chen F, Liu L, Doughty J, Li Y, Liu YX. Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum Degradation-Related Genes in Rice. PLANT PHYSIOLOGY 2015; 168:1389-405. [PMID: 26143250 PMCID: PMC4528728 DOI: 10.1104/pp.114.256578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/02/2015] [Indexed: 05/06/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is an important regulatory mechanism in eukaryotic gene transcription and is essential for normal plant development. However, the function of H2Bub1 in reproductive development remains elusive. Here, we report rice (Oryza sativa) HISTONE MONOUBIQUITINATION1 (OsHUB1) and OsHUB2, the homologs of Arabidopsis (Arabidopsis thaliana) HUB1 and HUB2 proteins, which function as E3 ligases in H2Bub1, are involved in late anther development in rice. oshub mutants exhibit abnormal tapetum development and aborted pollen in postmeiotic anthers. Knockout of OsHUB1 or OsHUB2 results in the loss of H2Bub1 and a reduction in the levels of dimethylated lysine-4 on histone 3 (H3K4me2). Anther transcriptome analysis revealed that several key tapetum degradation-related genes including OsC4, rice Cysteine Protease1 (OsCP1), and Undeveloped Tapetum1 (UDT1) were down-regulated in the mutants. Further, chromatin immunoprecipitation assays demonstrate that H2Bub1 directly targets OsC4, OsCP1, and UDT1 genes, and enrichment of H2Bub1 and H3K4me2 in the targets is consistent to some degree. Our studies suggest that histone H2B monoubiquitination, mediated by OsHUB1 and OsHUB2, is an important epigenetic modification that in concert with H3K4me2, modulates transcriptional regulation of anther development in rice.
Collapse
Affiliation(s)
- Hong Cao
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yongzhen Sun
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Li'an Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - James Doughty
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| |
Collapse
|
216
|
Chen R, Shen LP, Wang DH, Wang FG, Zeng HY, Chen ZS, Peng YB, Lin YN, Tang X, Deng MH, Yao N, Luo JC, Xu ZH, Bai SN. A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58. MOLECULAR PLANT 2015; 8:1069-89. [PMID: 25684654 DOI: 10.1016/j.molp.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 05/19/2023]
Abstract
Stamen is a unique plant organ wherein germ cells or microsporocytes that commit to meiosis are initiated from somatic cells during its early developmental process. While genes determining stamen identity are known according to the ABC model of floral development, little information is available on how these genes affect germ cell initiation. By using the Affymetrix GeneChip Rice Genome Array to assess 51 279 transcripts, we established a dynamic gene expression profile (GEP) of the early developmental process of rice (Oryza sativa) stamen. Systematic analysis of the GEP data revealed novel expression patterns of some developmentally important genes including meiosis-, tapetum-, and phytohormone-related genes. Following the finding that a substantial amount of nuclear genes encoding photosynthetic proteins are expressed at the low levels in early rice stamen, through the ChIP-seq analysis we found that a C-class MADS box protein, OsMADS58, binds many nuclear-encoded genes participated in photosystem and light reactions and the expression levels of most of them are increased when expression of OsMADS58 is downregulated in the osmads58 mutant. Furthermore, more pro-chloroplasts are observed and increased signals of reactive oxygen species are detected in the osmads58 mutant anthers. These findings implicate a novel link between stamen identity determination and hypoxia status establishment.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Ping Shen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fu-Gui Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Shan Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yi-Ben Peng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ya-Nan Lin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Tang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Ming-Hua Deng
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-Chu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Nong Bai
- Center for Quantitative Biology, Peking University, Beijing 100871, China; The National Center of Plant Gene Research, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, 624 Jin-Guang Life Science Building, 5 Yiheyuan Road, Beijing 100871, China.
| |
Collapse
|
217
|
Nguyen V, Fleury D, Timmins A, Laga H, Hayden M, Mather D, Okada T. Addition of rye chromosome 4R to wheat increases anther length and pollen grain number. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:953-64. [PMID: 25716820 DOI: 10.1007/s00122-015-2482-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/09/2015] [Indexed: 05/25/2023]
Abstract
The research identified rye chromosome 4R arms associated with good pollinator traits, and demonstrated possible use of rye genetic resources to develop elite pollinators for hybrid wheat breeding. Bread wheat (Triticum aestivum) is a predominantly self-pollinating plant which has relatively small-sized anthers and produces a low number of pollen grains. These features limit the suitability of most wheat lines as pollinators for hybrid seed production. One strategy for improving the pollination ability of wheat is to introgress cross-pollination traits from related species. One such species is rye (Secale cereale L.), which has suitable traits such as high anther extrusion, long anthers containing large amounts of pollen and long pollen viability. Therefore, introducing these traits into wheat is of great interest in hybrid wheat breeding. Here, we investigated wheat-rye chromosome addition lines for the effects of rye chromosomes on anther and pollen development in wheat. Using a single nucleotide polymorphism genotyping array, we detected 984 polymorphic markers that showed expected syntenic relationships between wheat and rye. Our results revealed that the addition of rye chromosomes 1R or 2R reduced pollen fertility, while addition of rye chromosome 4R increased anther size by 16% and pollen grain number by 33%. The effect on anther length was associated with increases in both cell size and the number of endothecium cells and was attributed to the long arm of chromosome 4R. In contrast, the effect on pollen grain number was attributed to the short arm of chromosome 4R. These results indicate that rye chromosome 4R contains at least two genetic factors associated with increased anther size and pollen grain number that can favourably affect pollination traits in wheat.
Collapse
Affiliation(s)
- Vy Nguyen
- Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
218
|
Tsou CH, Cheng PC, Tseng CM, Yen HJ, Fu YL, You TR, Walden DB. Anther development of maize (Zea mays) and longstamen rice (Oryza longistaminata) revealed by cryo-SEM, with foci on locular dehydration and pollen arrangement. PLANT REPRODUCTION 2015; 28:47-60. [PMID: 25666915 PMCID: PMC4333360 DOI: 10.1007/s00497-015-0257-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/23/2015] [Indexed: 05/04/2023]
Abstract
Key message: Pollen maturation in Poaceae. Another development has been extensively examined by various imaging tools, including transmission electron microscopy, scanning electron microscopy, and light microscopy, but none is capable of identifying liquid water. Cryo-scanning electron microscopy with high-pressure rapid freeze fixation is excellent in preserving structures at cellular level and differentiating gas- versus liquid-filled space, but rarely used in anther study. We applied this technique to examine anther development of Poaceae because of its economic importance and unusual peripheral arrangement of pollen. Maize and longstamen rice were focused on. Here, we report for the first time that anthers of Poaceae lose the locular free liquid during late-microspore to early pollen stages; the majority of pollen grains arranged in a tight peripheral whorl develops normally and reaches maturity in the gas-filled loculus. Occasionally, pollen grains are found situated in the locular cavity, but they remain immature or become shrunk at anthesis. At pollen stage, microchannels and cytoplasmic strands are densely distributed in the entire pollen exine and intine, respectively, suggesting that nutrients are transported into the pollen from the entire surface. We propose that in Poaceae, the specialized peripheral arrangement of pollen grains is crucial for pollen maturation in the gas-filled loculus, which enables pollen achieving large surface contact area with the tapetum and neighboring grains to maintain sufficient nutrient flow. This report also shows that the single aperture of pollen in Poaceae usually faces the tapetum, but other orientation is also common; pollen grains with different aperture orientations show no morphological differences.
Collapse
Affiliation(s)
- Chih-Hua Tsou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC,
| | | | | | | | | | | | | |
Collapse
|
219
|
Sharma A, Singh MB, Bhalla PL. Anther ontogeny in Brachypodium distachyon. PROTOPLASMA 2015; 252:439-50. [PMID: 25149150 DOI: 10.1007/s00709-014-0689-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/13/2014] [Indexed: 05/07/2023]
Abstract
Brachypodium distachyon has emerged as a model plant for the improvement of grain crops such as wheat, barley and oats and for understanding basic biological processes to facilitate the development of grasses as superior energy crops. Brachypodium is also the first species of the grass subfamily Pooideae with a sequenced genome. For obtaining a better understanding of the mechanisms controlling male gametophyte development in B. distachyon, here we report the cellular changes during the stages of anther development, with special reference to the development of the anther wall. Brachypodium anthers are tetrasporangiate and follow the typical monocotyledonous-type anther wall formation pattern. Anther differentiation starts with the appearance of archesporial cells, which divide to generate primary parietal and primary sporogenous cells. The primary parietal cells form two secondary parietal layers. Later, the outer secondary parietal layer directly develops into the endothecium and the inner secondary parietal layer forms an outer middle layer and inner tapetum by periclinal division. The anther wall comprises an epidermis, endothecium, middle layer and the secretory-type tapetum. Major documented events of anther development include the degradation of a secretory-type tapetum and middle layer during the course of development and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The tapetum undergoes degeneration at the tetrad stage and disintegrates completely at the bicellular stage of pollen development. The distribution of insoluble polysaccharides in the anther layers and connective tissue through progressive developmental stages suggests their role in the development of male gametophytes. Until sporogenous cell stage, the amount of insoluble polysaccharides in the anther wall was negligible. However, abundant levels of insoluble polysaccharides were observed during microspore mother cell and tetrad stages and gradually declined during the free microspore and vacuolated microspore stages to undetectable level at the mature stage. Thus, the cellular features in the development of anthers in B. distachyon share similarities with anther and pollen development of other members of Poaceae.
Collapse
Affiliation(s)
- Akanksha Sharma
- Plant Molecular Biology and Biotechnology Laboratory, Melbourne School of Land and Environment, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | | | | |
Collapse
|
220
|
Li L, Li Y, Song S, Deng H, Li N, Fu X, Chen G, Yuan L. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. PLANTA 2015; 241:157-166. [PMID: 25236969 DOI: 10.1007/s00425-014-2160-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, 410125, China,
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Sharma N, Tripathi A, Sanan-Mishra N. Profiling the expression domains of a rice-specific microRNA under stress. FRONTIERS IN PLANT SCIENCE 2015; 6:333. [PMID: 26029232 PMCID: PMC4429473 DOI: 10.3389/fpls.2015.00333] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/27/2015] [Indexed: 05/20/2023]
Abstract
Plant microRNAs (miRs) have emerged as important regulators of gene expression under normal as well as stressful environments. Rice is an important cereal crop whose productivity is compromised due to various abiotic stress factors such as salt, heat and drought. In the present study, we have investigated the role of rice-specific Osa-miR820, in indica rice cultivars showing contrasting response to salt stress. The dissection of expression patterns indicated that the miR is present in all the tissues but is enriched in the anther tissues. In salinity, the miR levels are up-regulated in the leaf tissues but down-regulated in the root tissues. To map the deregulation under salt stress comprehensive time kinetics of expression was performed in the leaf and root tissues. The reproductive stages were also analyzed under salt stress. It emerged that a common regulatory scheme for Osa-miR820 expression is present in the salt-susceptible Pusa Basmati 1 and salt-tolerant Pokkali varieties, although there is a variation in the levels of the miR and its target transcript, OsDRM2. The regulation of Osa-miR820 and its target were also studied under other abiotic stresses. This study thus captures the window for the miR-target correlation and the putative role of this regulation is discussed. This will help in gaining useful insights on the role of species specific miRs in plant development and abiotic stress response.
Collapse
Affiliation(s)
| | | | - Neeti Sanan-Mishra
- *Correspondence: Neeti Sanan-Mishra, Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India,
| |
Collapse
|
222
|
Shi X, Sun X, Zhang Z, Feng D, Zhang Q, Han L, Wu J, Lu T. GLUCAN SYNTHASE-LIKE 5 (GSL5) Plays an Essential Role in Male Fertility by Regulating Callose Metabolism During Microsporogenesis in Rice. ACTA ACUST UNITED AC 2014; 56:497-509. [DOI: 10.1093/pcp/pcu193] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
223
|
Jeong HJ, Kang JH, Zhao M, Kwon JK, Choi HS, Bae JH, Lee HA, Joung YH, Choi D, Kang BC. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6693-709. [PMID: 25262227 PMCID: PMC4246194 DOI: 10.1093/jxb/eru389] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Male fertility in flowering plants depends on proper cellular differentiation in anthers. Meiosis and tapetum development are particularly important processes in pollen production. In this study, we showed that the tomato male sterile (ms10(35)) mutant of cultivated tomato (Solanum lycopersicum) exhibited dysfunctional meiosis and an abnormal tapetum during anther development, resulting in no pollen production. We demonstrated that Ms10(35) encodes a basic helix-loop-helix transcription factor that is specifically expressed in meiocyte and tapetal tissue from pre-meiotic to tetrad stages. Transgenic expression of the Ms10(35) gene from its native promoter complemented the male sterility of the ms10(35) mutant. In addition, RNA-sequencing-based transcriptome analysis revealed that Ms10(35) regulates 246 genes involved in anther development processes such as meiosis, tapetum development, cell-wall degradation, pollen wall formation, transport, and lipid metabolism. Our results indicate that Ms10(35) plays key roles in regulating both meiosis and programmed cell death of the tapetum during microsporogenesis.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Jin-Ho Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Meiai Zhao
- College of Life Science, Qingdao Agricultural University, Qingdao 266-109, PR China
| | - Jin-Kyung Kwon
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Hak-Soon Choi
- National Institute of Horticultural and Herbal Science, Suwon 440-310, Republic of Korea
| | - Jung Hwan Bae
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Hyun-Ah Lee
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Young-Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Doil Choi
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| |
Collapse
|
224
|
Jiang J, Yao L, Yu Y, Lv M, Miao Y, Cao J. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1095-105. [PMID: 24773757 DOI: 10.1111/jipb.12209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/25/2014] [Indexed: 05/08/2023]
Abstract
PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture.
Collapse
Affiliation(s)
- Jingjing Jiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Agrobiotechnology Shenzhen Base, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | | | | | | | | | | |
Collapse
|
225
|
Wu L, Guan Y, Wu Z, Yang K, Lv J, Converse R, Huang Y, Mao J, Zhao Y, Wang Z, Min H, Kan D, Zhang Y. OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. PLANT CELL REPORTS 2014; 33:1881-99. [PMID: 25138437 PMCID: PMC4197380 DOI: 10.1007/s00299-014-1666-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 05/04/2023]
Abstract
An ABC transporter gene ( OsABCG15 ) was proven to be involved in pollen development in rice. The corresponding protein was localized on the plasma membrane using subcellular localization. Wax, cutin, and sporopollenin are important for normal development of the anther cuticle and pollen exine, respectively. Their lipid soluble precursors, which are produced in the tapetum, are then secreted and transferred to the anther and microspore surface for polymerization. However, little is known about the mechanisms underlying the transport of these precursors. Here, we identified and characterized a member of the G subfamily of ATP-binding cassette (ABC) transporters, OsABCG15, which is required for the secretion of these lipid-soluble precursors in rice. Using map-based cloning, we found a spontaneous A-to-C transition in the fourth exon of OsABCG15 that caused an amino acid substitution of Thr-to-Pro in the predicted ATP-binding domain of the protein sequence. This osabcg15 mutant failed to produce any viable pollen and was completely male sterile. Histological analysis indicated that osabcg15 exhibited an undeveloped anther cuticle, enlarged middle layer, abnormal Ubisch body development, tapetum degeneration with a falling apart style, and collapsed pollen grains without detectable exine. OsABCG15 was expressed preferentially in the tapetum, and the fused GFP-OsABCG15 protein was localized to the plasma membrane. Our results suggested that OsABCG15 played an essential role in the formation of the rice anther cuticle and pollen exine. This role may include the secretion of the lipid precursors from the tapetum to facilitate the transfer of precursors to the surface of the anther epidermis as well as to microspores.
Collapse
Affiliation(s)
- Lina Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Yusheng Guan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Zigang Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Kun Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715 China
| | - Jun Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715 China
| | - Richard Converse
- Cincinnati State Technical and Community College, 3520 Central Parkway, Cincinnati, OH 45223 USA
| | - Yuanxin Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715 China
| | - Jinxiong Mao
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000 Sichuan China
| | - Yong Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715 China
| | - Zhongwei Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Hengqi Min
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Dongyang Kan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Yi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400715 China
| |
Collapse
|
226
|
Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z, Liang W, Zhang D. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:979-94. [PMID: 24798002 DOI: 10.1111/jipb.12212] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/29/2014] [Indexed: 05/18/2023]
Abstract
Anther cuticle and pollen exine act as protective envelopes for the male gametophyte or pollen grain, but the mechanism underlying the synthesis of these lipidic polymers remains unclear. Previously, a tapetum-expressed CYP703A3, a putative cytochrome P450 fatty acid hydroxylase, was shown to be essential for male fertility in rice (Oryza sativa L.). However, the biochemical and biological roles of CYP703A3 has not been characterized. Here, we observed that cyp703a3-2 caused by one base insertion in CYP703A3 displays defective pollen exine and anther epicuticular layer, which differs from Arabidopsis cyp703a2 in which only defective pollen exine occurs. Consistently, chemical composition assay showed that levels of cutin monomers and wax components were dramatically reduced in cyp703a3-2 anthers. Unlike the wide range of substrates of Arabidopsis CYP703A2, CYP703A3 functions as an in-chain hydroxylase only for a specific substrate, lauric acid, preferably generating 7-hydroxylated lauric acid. Moreover, chromatin immunoprecipitation and expression analyses revealed that the expression of CYP703A3 is directly regulated by Tapetum Degeneration Retardation, a known regulator of tapetum PCD and pollen exine formation. Collectively, our results suggest that CYP703A3 represents a conserved and diversified biochemical pathway for in-chain hydroxylation of lauric acid required for the development of male organ in higher plants.
Collapse
Affiliation(s)
- Xijia Yang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
|
228
|
Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, Werck-Reichhart D, Schreiber L, Wilson ZA, Zhang D. ABORTED MICROSPORES Acts as a Master Regulator of Pollen Wall Formation in Arabidopsis. THE PLANT CELL 2014; 26:1544-1556. [PMID: 24781116 PMCID: PMC4036570 DOI: 10.1105/tpc.114.122986] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 05/18/2023]
Abstract
Mature pollen is covered by durable cell walls, principally composed of sporopollenin, an evolutionary conserved, highly resilient, but not fully characterized, biopolymer of aliphatic and aromatic components. Here, we report that ABORTED MICROSPORES (AMS) acts as a master regulator coordinating pollen wall development and sporopollenin biosynthesis in Arabidopsis thaliana. Genome-wide coexpression analysis revealed 98 candidate genes with specific expression in the anther and 70 that showed reduced expression in ams. Among these 70 members, we showed that AMS can directly regulate 23 genes implicated in callose dissociation, fatty acids elongation, formation of phenolic compounds, and lipidic transport putatively involved in sporopollenin precursor synthesis. Consistently, ams mutants showed defective microspore release, a lack of sporopollenin deposition, and a dramatic reduction in total phenolic compounds and cutin monomers. The functional importance of the AMS pathway was further demonstrated by the observation of impaired pollen wall architecture in plant lines with reduced expression of several AMS targets: the abundant pollen coat protein extracellular lipases (EXL5 and EXL6), and CYP98A8 and CYP98A9, which are enzymes required for the production of phenolic precursors. These findings demonstrate the central role of AMS in coordinating sporopollenin biosynthesis and the secretion of materials for pollen wall patterning.
Collapse
Affiliation(s)
- Jie Xu
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Ding
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gema Vizcay-Barrena
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, LE125RD, United Kingdom
| | - Jianxin Shi
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Yuan
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg Cedex, France
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, LE125RD, United Kingdom
| | - Dabing Zhang
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
229
|
Ji Y, Tu P, Wang K, Gao F, Yang W, Zhu Y, Li S. Defining reference genes for quantitative real-time PCR analysis of anther development in rice. Acta Biochim Biophys Sin (Shanghai) 2014; 46:305-12. [PMID: 24492537 DOI: 10.1093/abbs/gmu002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantitative real-time polymerase chain reaction (qPCR) is one of the most accurate and widely used methods for gene expression analysis. However, the choice of reference genes for normalization is critical for accurate quantification of gene expression. As development of genomics, mining large-scale datasets such as microarray and RNA-sequencing data becomes a new approach for exploitation of new reference genes. In this study, we analyzed an RNA-sequencing dataset of rice anther and 167 microarray datasets involving different tissues and developing stages of rice anthers and pollens. We selected 12 candidate genes and other 5 reference genes, including ACT1, eEF-1α, GAPDH, Exp2, and CCDC72 used in previous studies, and evaluated their expression in eight tissues and different developmental stages of anthers in rice variety 9311 and Yuetai. UPF3, eIF4A-3, GAPDH, and PPP6 were identified as the most suitable reference genes for qPCR analysis of anther development in rice. The new candidate reference genes showed more stable expression than the traditionally used reference genes. These results provide a set of reliable reference genes for studies in rice anther developmental process.
Collapse
Affiliation(s)
- Yanxiao Ji
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
230
|
Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W. The Rice Basic Helix-Loop-Helix Transcription Factor TDR INTERACTING PROTEIN2 Is a Central Switch in Early Anther Development. THE PLANT CELL 2014; 26:1512-1524. [PMID: 24755456 PMCID: PMC4036568 DOI: 10.1105/tpc.114.123745] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 05/18/2023]
Abstract
In male reproductive development in plants, meristemoid precursor cells possessing transient, stem cell-like features undergo cell divisions and differentiation to produce the anther, the male reproductive organ. The anther contains centrally positioned microsporocytes surrounded by four distinct layers of wall: the epidermis, endothecium, middle layer, and tapetum. Here, we report that the rice (Oryza sativa) basic helix-loop-helix (bHLH) protein TDR INTERACTING PROTEIN2 (TIP2) functions as a crucial switch in the meristemoid transition and differentiation during early anther development. The tip2 mutants display undifferentiated inner three anther wall layers and abort tapetal programmed cell death, causing complete male sterility. TIP2 has two paralogs in rice, TDR and EAT1, which are key regulators of tapetal programmed cell death. We revealed that TIP2 acts upstream of TDR and EAT1 and directly regulates the expression of TDR and EAT1. In addition, TIP2 can interact with TDR, indicating a role of TIP2 in later anther development. Our findings suggest that the bHLH proteins TIP2, TDR, and EAT1 play a central role in regulating differentiation, morphogenesis, and degradation of anther somatic cell layers, highlighting the role of paralogous bHLH proteins in regulating distinct steps of plant cell-type determination.
Collapse
Affiliation(s)
- Zhenzhen Fu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaowei Cheng
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xu Zong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jie Xu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
231
|
Chao J, Jin J, Wang D, Han R, Zhu R, Zhu Y, Li S. Cytological and transcriptional dynamics analysis of host plant revealed stage-specific biological processes related to compatible rice-Ustilaginoidea virens interaction. PLoS One 2014; 9:e91391. [PMID: 24646527 PMCID: PMC3960121 DOI: 10.1371/journal.pone.0091391] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/09/2014] [Indexed: 01/22/2023] Open
Abstract
Rice false smut, a fungal disease caused by Ustilaginoidea virens is becoming a severe detriment to rice production worldwide. However, little is known about the molecular response of rice to attacks by the smut pathogen. In this article, we define the initial infection process as having three stages: initial colonization on the pistil (stage 1, S1), amplification on the anther (stage 2, S2) and sporulation in the anther chambers (stage 3, S3). Based on the transcriptome of rice hosts in response to U. virens in two separate years, we identified 126, 204, and 580 specific regulated genes in their respective stages S1, S2, and S3, respectively, by excluding common expression patterns in other openly biotic/abiotic databases using bioinformatics. As the disease progresses, several stage-specific biological processes (BP) terms were distinctively enriched: "Phosphorylation" in stage S1, "PCD" in S2, and "Cell wall biogenesis" in S3, implying a concise signal cascade indicative of the tactics that smut pathogens use to control host rice cells during infection. 113 regulated genes were coexpressed among the three stages. They shared highly conserved promoter cis-element in the promoters in response to the regulation of WRKY and Myb for up-regulation, and ABA and Ca2+ for down regulation, indicating their potentially critical roles in signal transduction during rice-U. virens interaction. We further analyzed seven highly regulated unique genes; four were specific to pollen development, implying that pollen-related genes play critical roles in the establishment of rice susceptibility to U. virens. To my knowledge, this is the first report about probing of molecular response of rice to smut pathogen infection, which will greatly expand our understanding of the molecular events surrounding infection by rice false smut.
Collapse
Affiliation(s)
- Jinquan Chao
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Jie Jin
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Dong Wang
- Department of Statistics, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Ran Han
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Renshan Zhu
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Yingguo Zhu
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory for Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
232
|
Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. PLANT PHYSIOLOGY 2014; 164:1293-308. [PMID: 24481135 PMCID: PMC3938621 DOI: 10.1104/pp.113.232314] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/30/2014] [Indexed: 05/18/2023]
Abstract
Male reproduction in flowering plants is highly sensitive to high temperature (HT). To investigate molecular mechanisms of the response of cotton (Gossypium hirsutum) anthers to HT, a relatively complete comparative transcriptome analysis was performed during anther development of cotton lines 84021 and H05 under normal temperature and HT conditions. In total, 4,599 differentially expressed genes were screened; the differentially expressed genes were mainly related to epigenetic modifications, carbohydrate metabolism, and plant hormone signaling. Detailed studies showed that the deficiency in S-adenosyl-L-homocysteine hydrolase1 and the inhibition of methyltransferases contributed to genome-wide hypomethylation in H05, and the increased expression of histone constitution genes contributed to DNA stability in 84021. Furthermore, HT induced the expression of casein kinasei (GhCKI) in H05, coupled with the suppression of starch synthase activity, decreases in glucose level during anther development, and increases in indole-3-acetic acid (IAA) level in late-stage anthers. The same changes also were observed in Arabidopsis (Arabidopsis thaliana) GhCKI overexpression lines. These results suggest that GhCKI, sugar, and auxin may be key regulators of the anther response to HT stress. Moreover, phytochrome-interacting factor genes (PIFs), which are involved in linking sugar and auxin and are regulated by sugar, might positively regulate IAA biosynthesis in the cotton anther response to HT. Additionally, exogenous IAA application revealed that high background IAA may be a disadvantage for late-stage cotton anthers during HT stress. Overall, the linking of HT, sugar, PIFs, and IAA, together with our previously reported data on GhCKI, may provide dynamic coordination of plant anther responses to HT stress.
Collapse
|
233
|
Zhang D, Yang L. Specification of tapetum and microsporocyte cells within the anther. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:49-55. [PMID: 24507494 DOI: 10.1016/j.pbi.2013.11.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/19/2013] [Accepted: 11/02/2013] [Indexed: 05/18/2023]
Abstract
Flowering plants form male reproductive cells (microsporocytes) during sporophytic generation, which subsequently differentiate into multicellular male gametes in the gametophytic generation. The tapetum is a somatic helper tissue neighboring microsporocytes and supporting gametogenesis. The mechanism controlling the specification of the tapetum and microsporocyte cell fate within the anther has long been a mystery in biology. Recent investigations have revealed molecular switches and signaling pathways underlying the establishment of somatic and reproductive cells in plants. In this review we discuss common and diversified signaling molecules and regulatory pathways including receptor-like protein kinases, redox status, glycoprotein, transcription factors, hormones and microRNA implicated in the specification of tapetum and microsporocytes in plants.
Collapse
Affiliation(s)
- Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Li Yang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
234
|
She W, Baroux C. Chromatin dynamics during plant sexual reproduction. FRONTIERS IN PLANT SCIENCE 2014; 5:354. [PMID: 25104954 PMCID: PMC4109563 DOI: 10.3389/fpls.2014.00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 05/19/2023]
Abstract
Plants have the remarkable ability to establish new cell fates throughout their life cycle, in contrast to most animals that define all cell lineages during embryogenesis. This ability is exemplified during sexual reproduction in flowering plants where novel cell types are generated in floral tissues of the adult plant during sporogenesis, gametogenesis, and embryogenesis. While the molecular and genetic basis of cell specification during sexual reproduction is being studied for a long time, recent works disclosed an unsuspected role of global chromatin organization and its dynamics. In this review, we describe the events of chromatin dynamics during the different phases of sexual reproduction and discuss their possible significance particularly in cell fate establishment.
Collapse
Affiliation(s)
| | - Célia Baroux
- *Correspondence: Célia Baroux, Institute of Plant Biology – Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland e-mail:
| |
Collapse
|
235
|
Kelliher T, Egger RL, Zhang H, Walbot V. Unresolved issues in pre-meiotic anther development. FRONTIERS IN PLANT SCIENCE 2014; 5:347. [PMID: 25101101 PMCID: PMC4104404 DOI: 10.3389/fpls.2014.00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 06/28/2014] [Indexed: 05/04/2023]
Abstract
Compared to the diversity of other floral organs, the steps in anther ontogeny, final cell types, and overall organ shape are remarkably conserved among Angiosperms. Defects in pre-meiotic anthers that alter cellular composition or function typically result in male-sterility. Given the ease of identifying male-sterile mutants, dozens of genes with key roles in early anther development have been identified and cloned in model species, ordered by time of action and spatiotemporal expression, and used to propose explanatory models for critical steps in cell fate specification. Despite rapid progress, fundamental issues in anther development remain unresolved, and it is unclear if insights from one species can be applied to others. Here we construct a comparison of Arabidopsis, rice, and maize immature anthers to pinpoint distinctions in developmental pace. We analyze the mechanisms by which archesporial (pre-meiotic) cells are specified distinct from the soma, discuss what constitutes meiotic preparation, and review what is known about the secondary parietal layer and its terminal periclinal division that generates the tapetal and middle layers. Finally, roles for small RNAs are examined, focusing on the grass-specific phasiRNAs.
Collapse
Affiliation(s)
- Timothy Kelliher
- Syngenta Biotechnology Inc., Research Triangle ParkNC, USA
- *Correspondence: Timothy Kelliher, Syngenta Biotechnology Inc., 3054 East Cornwallis Road, Research Triangle Park, NC 27709, USA e-mail:
| | | | - Han Zhang
- Department of Biology, Stanford UniversityStanford, CA, USA
| | | |
Collapse
|
236
|
Min L, Zhu L, Tu L, Deng F, Yuan D, Zhang X. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:823-35. [PMID: 23662698 DOI: 10.1111/tpj.12245] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 05/18/2023]
Abstract
Anther infertility under high temperature (HT) conditions is a critical factor contributing to yield loss in cotton (Gossypium hirsutum). Using large-scale expression profile sequencing, we studied the effect of HT on cotton anther development. Our analysis revealed that altered carbohydrate metabolism or disrupted tapetal programmed cell death (PCD) underlie anther sterility. Expression of the Gossypium hirsutum casein kinase I (GhCKI) gene, which encodes a homolog of casein kinase I (CKI), was induced in an HT-sensitive cotton line after exposure to HT. As mammalian homologs of GhCKI are involved in inactivation of glycogen synthase and the regulation of apoptosis, GhCKI may be considered a target gene for improving anther fertility under HT conditions. Our studies suggest that GhCKI exhibits starch synthase kinase activity, increases glucose content in early-stage buds and activates the accumulation of abscisic acid, thereby disturbing the balance of reactive oxygen species and eventually disrupting tapetal PCD, leading to anther abortion or indehiscence. These results indicate that GhCKI may be a key regulator of tapetal PCD and anther dehiscence, with the potential to facilitate regulation of HT tolerance in crops.
Collapse
Affiliation(s)
- Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | | | | | | | | |
Collapse
|
237
|
Ji C, Li H, Chen L, Xie M, Wang F, Chen Y, Liu YG. A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. MOLECULAR PLANT 2013; 6:1715-8. [PMID: 23519457 DOI: 10.1093/mp/sst046] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Chonghui Ji
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | | | |
Collapse
|
238
|
Jin Y, Yang H, Wei Z, Ma H, Ge X. Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming. MOLECULAR PLANT 2013; 6:1630-45. [PMID: 23604203 DOI: 10.1093/mp/sst067] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought affects rice reproduction and results in severe yield loss. The developmental defects and changes of gene regulation network in reproductive tissues under drought stress are largely unknown. In this study, rice plants subjected to reproductive stage drought stress were examined for floral development and transcriptomic changes. The results showed that male fertility was dramatically affected, with differing pollen viability in flowers of the same panicle due to aberrant anther development under water stress. Examination of local starch distribution revealed that starch accumulated abnormally in terms of position and abundance in anthers of water-stressed plants. Microarray analysis using florets of different sizes identified >1000 drought-responsive genes, most of which were specifically regulated in only one or two particular sizes of florets, suggesting developmental stage-dependent responses to drought. Genes known to be involved in tapetum and/or microspore development, cell wall formation or expansion, and starch synthesis were found more frequently among the genes affected by drought than genome average, while meiosis and MADS-box genes were less frequently affected. In addition, pathways related to gibberellin acid signaling and abscisic acid catabolism were reprogrammed by drought. Our results strongly suggest interactions between reproductive development, phytohormone signaling, and carbohydrate metabolism in water-stressed plants.
Collapse
Affiliation(s)
- Yue Jin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
239
|
Niu BX, He FR, He M, Ren D, Chen LT, Liu YG. The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:710-20. [PMID: 23570336 DOI: 10.1111/jipb.12053] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/27/2013] [Indexed: 05/21/2023]
Abstract
Plant male reproductive development is a complex biological process, but the underlying mechanism is not well understood. Here, we characterized a rice (Oryza sativa L.) male sterile mutant. Based on map-based cloning and sequence analysis, we identified a 1,459-bp deletion in an adenosine triphosphate (ATP)-binding cassette (ABC) transporter gene, OsABCG15, causing abnormal anthers and male sterility. Therefore, we named this mutant osabcg15. Expression analysis showed that OsABCG15 is expressed specifically in developmental anthers from stage 8 (meiosis II stage) to stage 10 (late microspore stage). Two genes CYP704B2 and WDA1, involved in the biosynthesis of very-long-chain fatty acids for the establishment of the anther cuticle and pollen exine, were downregulated in osabcg15 mutant, suggesting that OsABCG15 may play a key function in the processes related to sporopollenin biosynthesis or sporopollenin transfer from tapetal cells to anther locules. Consistently, histological analysis showed that osabcg15 mutants developed obvious abnormality in postmeiotic tapetum degeneration, leading to rapid degredation of young microspores. The results suggest that OsABCG15 plays a critical role in exine formation and pollen development, similar to the homologous gene of AtABCG26 in Arabidopsis. This work is helpful to understand the regulatory network in rice anther development.
Collapse
Affiliation(s)
- Bai-Xiao Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | |
Collapse
|
240
|
Huang J, Zhao X, Cheng K, Jiang Y, Ouyang Y, Xu C, Li X, Xiao J, Zhang Q. OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3351-60. [PMID: 23918968 PMCID: PMC3733154 DOI: 10.1093/jxb/ert173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aspartic proteases (APs) comprise a large proteolytic enzyme family widely distributed in animals, microbes, viruses, and plants. The rice genome encodes 96 APs, of which only a few have been functionally characterized. Here, the identification and characterization of a novel AP gene, OsAP65, which plays an indispensable role in pollen tube growth in rice, is reported. The T-DNA insertion line of OsAP65 caused severe segregation distortion. In the progeny derived from an individual heterozygous for the T-DNA insertion, the wild type and T-DNA-carrying heterozygote segregated at a ratio close to 1:1, while homozygotes of disrupted OsAP65 (OsAP65-/-) were not recovered. Reciprocal crosses between heterozygotes and wild-type plants demonstrated that the mutant alleles could not be transmitted through the male gamete. Examination of the anthers from heterozygous plants revealed that the mutant pollen matured normally, but did not germinate or elongate. OsAP65 was expressed in various tissues and the transcript level in heterozygous plants was about half of the amount measured in the wild-type plants. The subcellular localization showed that OsAP65 is a pre-vacuolar compartment (PVC) protein. These results indicated that OsAP65 was essential for rice pollen germination and tube growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qifa Zhang
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
241
|
Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 2013; 4:1445. [PMID: 23385589 DOI: 10.1038/ncomms2396] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/18/2012] [Indexed: 11/09/2022] Open
Abstract
Programmed cell death is essential for the development of multicellular organisms, yet pathways of plant programmed cell death and its regulation remain elusive. Here we report that ETERNAL TAPETUM 1, a basic helix-loop-helix transcription factor conserved in land plants, positively regulates programmed cell death in tapetal cells in rice anthers. eat1 exhibits delayed tapetal cell death and aborted pollen formation. ETERNAL TAPETUM 1 directly regulates the expression of OsAP25 and OsAP37, which encode aspartic proteases that induce programmed cell death in both yeast and plants. Expression and genetic analyses revealed that ETERNAL TAPETUM 1 acts downstream of TAPETUM DEGENERATION RETARDATION, another positive regulator of tapetal programmed cell death, and that ETERNAL TAPETUM 1 can also interact with the TAPETUM DEGENERATION RETARDATION protein. This study demonstrates that ETERNAL TAPETUM 1 promotes aspartic proteases triggering plant programmed cell death, and reveals a dynamic regulatory cascade in male reproductive development in rice.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
242
|
Ueda K, Yoshimura F, Miyao A, Hirochika H, Nonomura KI, Wabiko H. Collapsed abnormal pollen1 gene encoding the Arabinokinase-like protein is involved in pollen development in rice. PLANT PHYSIOLOGY 2013; 162:858-71. [PMID: 23629836 PMCID: PMC3668075 DOI: 10.1104/pp.113.216523] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Kenji Ueda
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
| | | | | | | | | | | |
Collapse
|
243
|
Guo C, Ge X, Ma H. The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages. PLANT MOLECULAR BIOLOGY 2013; 82:239-53. [PMID: 23686450 DOI: 10.1007/s11103-013-0057-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/06/2013] [Indexed: 05/18/2023]
Abstract
Drought is one of the critical factors limiting reproductive yields of rice and other crops globally. However, little is known about the molecular mechanism underlying reproductive development under drought stress in rice. To explore the potential gene function for improving rice reproductive development under drought, a drought induced gene, Oryza sativa Drought-Induced LTP (OsDIL) encoding a lipid transfer protein, was identified from our microarray data and selected for further study. OsDIL was primarily expressed in the anther and mainly responsive to abiotic stresses, including drought, cold, NaCl, and stress-related plant hormone abscisic acid (ABA). Compared with wild type, the OsDIL-overexpressing transgenic rice plants were more tolerant to drought stress during vegetative development and showed less severe tapetal defects and fewer defective anther sacs when treated with drought at the reproductive stage. The expression levels of the drought-responsive genes RD22, SODA1, bZIP46 and POD, as well as the ABA synthetic gene ZEP1 were up-regulated in the OsDIL-overexpression lines but the ABA degradation gene ABAOX3 was down-regulated. Moreover, overexpression of OsDIL lessened the down-regulation by drought of anther developmental genes (OsC4, CYP704B2 and OsCP1), providing a mechanism supporting pollen fertility under drought. Overexpression of OsDIL significantly enhanced drought resistance in transgenic rice during reproductive development, while showing no phenotypic changes or yield penalty under normal conditions. Therefore, OsDIL is an excellent candidate gene for genetic improvement of crop yield in adaption to unfavorable environments.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Amino Acid Sequence
- Antigens, Plant/classification
- Antigens, Plant/genetics
- Antigens, Plant/physiology
- Carrier Proteins/classification
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Droughts
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Oryza/genetics
- Oryza/physiology
- Phylogeny
- Plant Proteins/classification
- Plant Proteins/genetics
- Plant Proteins/physiology
- Plants, Genetically Modified
- RNA, Small Interfering/genetics
- Reproduction/genetics
- Reproduction/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Changkui Guo
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | |
Collapse
|
244
|
Yun D, Liang W, Dreni L, Yin C, Zhou Z, Kater MM, Zhang D. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. MOLECULAR PLANT 2013; 6:743-56. [PMID: 23300256 DOI: 10.1093/mp/sst003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rice (Oryza sativa) has unique floral patterns that contribute to grain yield. However, the molecular mechanism underlying the specification of floral organ identities in rice, particularly the interaction among floral homeotic genes, remains poorly understood. Here, we show that the floral homeotic gene OsMADS16 (also called SUPERWOMAN1, SPW1, a B-class gene) acts together with the rice C-class genes OsMADS3 and OsMADS58 in specifying floral organ patterning. OsMADS16 and the two C-class genes have an overlapping expression pattern in the third whorl founder cells. Compared with the single mutants, both spw1-1 osmads3-4 and spw1-1 osmads58 double mutants exhibit additional whorls of glume-like organs within the flower, particularly an extra whorl of six glume-like structures formed at the position of the wild-type stamens. These ectopic glume-like structures were shown to have palea identity through cellular observation and in situ hybridization analysis using marker genes. Our results suggest that B- and C-class genes play a key role in suppressing indeterminate growth within the floral meristem, particularly whorl-3 primordia. We also hypothesize that, in contrast to previous assumptions, the specialized spikelet organ in rice, the palea, is the counterpart of the sepal in eudicots, and the lemma is homologous to the bract.
Collapse
Affiliation(s)
- Dapeng Yun
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | |
Collapse
|
245
|
Wang K, Peng X, Ji Y, Yang P, Zhu Y, Li S. Gene, protein, and network of male sterility in rice. FRONTIERS IN PLANT SCIENCE 2013; 4:92. [PMID: 23596452 PMCID: PMC3622893 DOI: 10.3389/fpls.2013.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 05/18/2023]
Abstract
Rice is one of the most important model crop plants whose heterosis has been well-exploited in commercial hybrid seed production via a variety of types of male-sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility (CMS), photoperiod-sensitive male sterility, self-incompatibility, and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein, and integrated network levels, and also, present a perspective on the engineering of male-sterile lines for hybrid rice production.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering, College of Life Science, Nanchang UniversityNanchang, People's Republic of China
| | - Yanxiao Ji
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| |
Collapse
|
246
|
Jiang J, Zhang Z, Cao J. Pollen wall development: the associated enzymes and metabolic pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:249-63. [PMID: 23252839 DOI: 10.1111/j.1438-8677.2012.00706.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/22/2012] [Indexed: 05/18/2023]
Abstract
Pollen grains are surrounded by a sculpted wall, which protects male gametophytes from various environmental stresses and microbial attacks, and also facilitates pollination. Pollen wall development requires lipid and polysaccharide metabolism, and some key genes and proteins that participate in these processes have recently been identified. Here, we summarise the genes and describe their functions during pollen wall development via several metabolic pathways. A working model involving substances and catalytic enzyme reactions that occur during pollen development is also presented. This model provides information on the complete process of pollen wall development with respect to metabolic pathways.
Collapse
Affiliation(s)
- J Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
247
|
Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3-GENES GENOMES GENETICS 2013; 3:231-49. [PMID: 23390600 PMCID: PMC3564984 DOI: 10.1534/g3.112.004465] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/07/2012] [Indexed: 01/16/2023]
Abstract
Proper regulation of anther differentiation is crucial for producing functional pollen, and defects in or absence of any anther cell type result in male sterility. To deepen understanding of processes required to establish premeiotic cell fate and differentiation of somatic support cell layers a cytological screen of maize male-sterile mutants has been conducted which yielded 42 new mutants including 22 mutants with premeiotic cytological defects (increasing this class fivefold), 7 mutants with postmeiotic defects, and 13 mutants with irregular meiosis. Allelism tests with known and new mutants confirmed new alleles of four premeiotic developmental mutants, including two novel alleles of msca1 and single new alleles of ms32, ms8, and ocl4, and two alleles of the postmeiotic ms45. An allelic pair of newly described mutants was found. Premeiotic mutants are now classified into four categories: anther identity defects, abnormal anther structure, locular wall defects and premature degradation of cell layers, and/or microsporocyte collapse. The range of mutant phenotypic classes is discussed in comparison with developmental genetic investigation of anther development in rice and Arabidopsis to highlight similarities and differences between grasses and eudicots and within the grasses.
Collapse
|
248
|
Moon S, Kim SR, Zhao G, Yi J, Yoo Y, Jin P, Lee SW, Jung KH, Zhang D, An G. Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation. PLANT PHYSIOLOGY 2013; 161:663-75. [PMID: 23263792 PMCID: PMC3561011 DOI: 10.1104/pp.112.210948] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 05/21/2023]
Abstract
The pollen wall consists of an exine and an intine. The mechanism underlying its formation is not well understood. Glycosyltransferases catalyze the modification of biological molecules by attaching a single or multiple sugars and play key roles in a wide range of biological processes. We examined the role of GLYCOSYLTRANSFERASE1 (OsGT1) in pollen wall development in rice (Oryza sativa). This gene is highly expressed in mature pollen, and plants containing alleles caused by transfer DNA insertion do not produce homozygous progeny. Reciprocal crosses between OsGT1/osgt1 and the wild type indicated that the mutation leads to a male gametophyte defect. Microscopic analyses revealed that osgt1 pollen developed normally to the pollen mitosis stage but failed to produce mature grains. In osgt1 pollen, intine structure was disrupted. In addition, starch and protein levels were much lower in the mutant grains. Recombinant OsGT1 transferred glucose from UDP-glucose to the third and seventh positions of quercetin, a universal substrate of glycosyltransferases. Consistent with the role of OsGT1, an OsGT1-green fluorescent protein fusion protein was localized to the Golgi apparatus. Taken together, our results suggest that OsGT1 is a Golgi-localized glycosyltransferase essential for intine construction and pollen maturation, providing new insight into male reproductive development.
Collapse
|
249
|
Wang F, Chen R, Ji D, Bai S, Qian M, Deng M. Adjustment method for microarray data generated using two-cycle RNA labeling protocol. BMC Genomics 2013; 14:31. [PMID: 23324182 PMCID: PMC3658951 DOI: 10.1186/1471-2164-14-31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 12/26/2012] [Indexed: 11/18/2022] Open
Abstract
Background Microarray technology is widely utilized for monitoring the expression changes of thousands of genes simultaneously. However, the requirement of relatively large amount of RNA for labeling and hybridization makes it difficult to perform microarray experiments with limited biological materials, thus leads to the development of many methods for preparing and amplifying mRNA. It is addressed that amplification methods usually bring bias, which may strongly hamper the following interpretation of the results. A big challenge is how to correct for the bias before further analysis. Results In this article, we observed the bias in rice gene expression microarray data generated with the Affymetrix one-cycle, two-cycle RNA labeling protocols, followed by validation with Real Time PCR. Based on these data, we proposed a statistical framework to model the processes of mRNA two-cycle linear amplification, and established a linear model for probe level correction. Maximum Likelihood Estimation (MLE) was applied to perform robust estimation of the Retaining Rate for each probe. After bias correction, some known pre-processing methods, such as PDNN, could be combined to finish preprocessing. Then, we evaluated our model and the results suggest that our model can effectively increase the quality of the microarray raw data: (i) Decrease the Coefficient of Variation for PM intensities of probe sets; (ii) Distinguish the microarray samples of five stages for rice stamen development more clearly; (iii) Improve the correlation coefficients among stamen microarray samples. We also discussed the necessity of model adjustment by comparing with another simple adjustment method. Conclusion We conclude that the adjustment model is necessary and could effectively increase the quality of estimation for gene expression from the microarray raw data.
Collapse
Affiliation(s)
- Fugui Wang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | | | | | | | | | | |
Collapse
|
250
|
Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proc Natl Acad Sci U S A 2012; 110:76-81. [PMID: 23256151 DOI: 10.1073/pnas.1213041110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rice is a major staple food worldwide. Making hybrid rice has proved to be an effective strategy to significantly increase grain yield. Current hybrid rice technologies rely on male sterile lines and have been used predominantly in indica cultivars. However, intrinsic problems exist in the implementation of these technologies, such as limited germplasms and unpredictable conversions from sterility to fertility in the field. Here, we describe a photoperiod-controlled male sterile line, carbon starved anther (csa), which contains a mutation in an R2R3 MYB transcription regulator of pollen development. This mutation was introduced into indica and japonica rice, and it rendered male sterility under short-day conditions and male fertility under long-day conditions in both lines. Furthermore, F(1) plants of csa and a restorer line JP69 exhibited heterosis (hybrid vigor), suggesting the feasibility of using this mutation to create hybrid rice. The csa-based photoperiod-sensitive male sterile line allows the establishment of a stable two-line hybrid system, which promises to have a significant impact on agriculture.
Collapse
|