201
|
Steineman BD, LaPrade RF, Santangelo KS, Warner BT, Goodrich LR, Haut Donahue TL. Early Osteoarthritis After Untreated Anterior Meniscal Root Tears: An In Vivo Animal Study. Orthop J Sports Med 2017; 5:2325967117702452. [PMID: 28508006 PMCID: PMC5415046 DOI: 10.1177/2325967117702452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Meniscal root tears cause menisci and their insertions to inadequately distribute loads and potentially leave underlying articular cartilage unprotected. Untreated meniscal root tears are becoming increasingly recognized to induce joint degradation; however, little information is known about anterior meniscal root tears and how they affect joint tissue. Purpose: To observe the early degenerative changes within the synovial fluid, menisci, tibial articular cartilage, and subchondral bone after arthroscopic creation of untreated anterior meniscal root tears. Study Design: Controlled laboratory study. Methods: Anterolateral meniscal root tears were created in 1 knee joint of 5 adult Flemish Giant rabbits, and anteromedial meniscal root tears were created in 4 additional rabbits. The contralateral limbs were used as nonoperated controls. The animals were euthanized at 8 weeks postoperatively; synovial fluid was aspirated, and tissue samples of menisci and tibial articular cartilage were collected and processed for multiple analyses to detect signs of early degeneration. Results: Significant changes were found within the synovial fluid, meniscal tissue, and tibial subchondral bone of the knees with anterior meniscal root tears when compared with controls. There were no significant changes identified in the tibial articular cartilage when comparing the tear groups with controls. Conclusion: This study demonstrated early degenerative changes within the synovial fluid, menisci, and tibial subchondral bone when leaving anterior meniscal root tears untreated for 8 weeks. The results suggest that meniscal tissue presents measurable, degenerative changes prior to changes within the articular cartilage after anterior meniscal root tears. Anterior destabilization of the meniscus arthroscopically may lead to measurable degenerative changes and be useful for future in vivo natural history and animal repair studies. Clinical Relevance: The present study is the first to investigate various tissue changes after anterior meniscal root tears of both the medial and lateral menisci. The results from this study suggest that degenerative changes occur within the synovial fluid, meniscus, and tibial subchondral bone prior to any measurable changes to the tibial articular cartilage. Further studies should expand on this study to evaluate how these components continue to progress when left untreated for long periods.
Collapse
Affiliation(s)
- Brett D Steineman
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Robert F LaPrade
- The Steadman Clinic, Vail, Colorado, USA.,Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA.,Orthopedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, Colorado, USA
| | | | - Laurie R Goodrich
- Orthopedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, Colorado, USA
| | - Tammy L Haut Donahue
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
202
|
Andrews SHJ, Adesida AB, Abusara Z, Shrive NG. Current concepts on structure-function relationships in the menisci. Connect Tissue Res 2017; 58:271-281. [PMID: 28267400 DOI: 10.1080/03008207.2017.1303489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The menisci are intricately organized structures that perform many tasks in the knee. We review their structure and function and introduce new data about their tibial and femoral surfaces. As the femur and tibia approach each other when the knee is bearing load, circumferential tension develops in the menisci, enabling the transmission of compressive load between the femoral and tibial cartilage layers. A low shear modulus is necessary for the tissue to adapt its shape to the changing radius of the femur as that bone moves relative to the tibia during joint articulation. The organization of the meniscus facilitates its functions. In the outer region of the menisci, intertwined collagen fibrils, fibers, and fascicles with predominantly circumferential orientation are prevalent; these structures are held together by radial tie fibers and sheets. Toward the inner portion of the menisci, there is more proteoglycan and the structure becomes more cartilage-like. The transition between these structural forms is gradual and seamless. The flexible roots, required for rigid body motion of the menisci, meld with both the tibia and the outer portion of the menisci to maintain continuity for resistance to the circumferential tension. Our new data demonstrate that the femoral and tibial surfaces of the menisci are structurally analogous to the surfaces of articular cartilage, enabling consistent modes of lubrication and load transfer to occur at the interfacing surfaces throughout motion. The structure and function of the menisci are thus shown to be strongly related to one another: form clearly complements function.
Collapse
Affiliation(s)
| | | | - Ziad Abusara
- b Faculty of Kinesiology , University of Calgary , Calgary , Canada
| | - Nigel G Shrive
- c McCaig Institute for Bone and Joint Health, and Department of Civil Engineering , University of Calgary , Calgary , Canada
| |
Collapse
|
203
|
Chen XX, Li J, Wang T, Zhao Y, Kang H. Anatomical Knee Variants in Discoid Lateral Meniscal Tears. Chin Med J (Engl) 2017; 130:536-541. [PMID: 28229984 PMCID: PMC5339926 DOI: 10.4103/0366-6999.200535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Discoid lateral meniscus was a common meniscal dysplasia and was predisposed to tear. There were some anatomical knee variants in patients with discoid lateral meniscus. The aim of this study was to analyze the relationship between anatomical knee variants and discoid lateral meniscal tears. Methods: There were totally 125 cases of discoid lateral meniscus enrolled in this study from February 2008 to December 2013. Eighty-seven patients who underwent arthroscopic surgery for right torn discoid lateral meniscus were enrolled in the torn group. An additional 38 patients who were incidentally identified as having intact discoid lateral menisci on magnetic resonance imaging (MRI) findings were included in the control group. All patients were evaluated for anatomical knee variants on plain radiographs, including lateral joint space distance, height of the lateral tibial spine, height of the fibular head, obliquity of the lateral tibial plateau, squaring of the lateral femoral condyle, cupping of the lateral tibial plateau, lateral femoral condylar notch, and condylar cutoff sign. The relationship between anatomical variants and meniscal tear was evaluated. These anatomical variants in cases with complete discoid meniscus were also compared with those in cases with incomplete discoid meniscus. Results: There were no significant differences between the two groups in lateral joint space distance (P = 0.528), height of the lateral tibial spine (P = 0.927), height of the fibular head (P = 0.684), obliquity of the lateral tibial plateau (P = 0.672), and the positive rates of squaring of the lateral femoral condyle (P = 0.665), cupping of the lateral tibial plateau (P = 0.239), and lateral femoral condylar notch (P = 0.624). The condylar cutoff sign was significantly different between the two groups, with the prominence ratio in the torn group being smaller than that in the control group (0.74 ± 0.11 vs. 0.81 ± 0.04, P = 0.049). With the decision value of the prominence ratio (0.78) in predicting discoid lateral meniscal tear, the sensitivity and specificity of the cutoff sign were 66% and 71%, respectively. There were no significant differences in radiographic variants between the complete and incomplete discoid lateral meniscal groups. Conclusions: The condylar cutoff sign observed on the tunnel view of the radiograph is helpful in predicting meniscal tear in adult patients with discoid lateral meniscus. As for these patients, further MRI test is recommended.
Collapse
Affiliation(s)
- Xu-Xu Chen
- Department of Sports Medicine, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, China
| | - Jian Li
- Department of Sports Medicine, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, China
| | - Tao Wang
- Department of Sports Medicine, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, China
| | - Yang Zhao
- Department of Sports Medicine, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, China
| | - Hui Kang
- Department of Sports Medicine, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, China
| |
Collapse
|
204
|
Shimomura K, Rothrauff BB, Tuan RS. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering. Am J Sports Med 2017; 45:604-611. [PMID: 27895039 DOI: 10.1177/0363546516674184] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. PURPOSE To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). STUDY DESIGN Controlled laboratory study. METHODS Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 106 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. RESULTS Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the glycosaminoglycan content was higher in both the inner and outer mECM groups compared with the control group. CONCLUSION These results showed that the inner mECM enhances the fibrocartilaginous differentiation of hBMSCs, while the outer mECM promotes a more fibroblastic phenotype. Our findings support the feasibility of fabricating bioactive scaffolds using region-specific mECM preparations for meniscus tissue engineering. CLINICAL RELEVANCE This is the first report to demonstrate the feasibility of applying region-specific mECMs for the engineering of meniscus implants capable of reproducing the biphasic, anatomic, and biochemical characteristics of the meniscus, features that should contribute to the feasibility of their clinical application.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Medicine for Sports and Performing Arts, Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.,Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
205
|
Choi YH, Seo YJ, Ha JM, Jung KH, Kim J, Song SY. Collagenous Ultrastructure of the Discoid Meniscus: A Transmission Electron Microscopy Study. Am J Sports Med 2017; 45:598-603. [PMID: 27899354 DOI: 10.1177/0363546516674181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The collagen ultrastructure of the discoid lateral meniscus (DLM) has not been precisely defined. PURPOSE To investigate the ultrastructure of the DLM, focusing on its collagen fibers, and to compare the collagen net architecture between intact and torn DLMs using the Collagen Meniscal Architecture (CMA) scoring system. STUDY DESIGN Descriptive laboratory study. METHODS Thirty specimens were taken from 30 patients with a diagnosis of a complete DLM using a 1-piece technique. The collagen ultrastructure of the DLMs was assessed with transmission electron microscopy. To evaluate the meniscal ultrastructure, the degree of collagen disruption, intrafibrillar edema, loss of banding, degree of collagen packing, and fibril size variability were assessed and graded from 1 (normal) to 3 (severe disarray) according to the CMA scoring system. The DLM specimens were divided into 3 groups according to the intrasubstance tear: the intact group (group I) had no tear; the simple tear group (group S) had a radial, longitudinal, or horizontal tear; and the complicated tear group (group C) had a complicated horizontal tear. Intact normal meniscus specimens (group N) were used as the control group. RESULTS There were 10 specimens in group I, 8 in group S, 12 in group C, and 13 in group N. In group I, there were 5 grade 1 and 5 grade 2 menisci; group S had 2 grade 1, 3 grade 2, and 3 grade 3 menisci; group C had 1 grade 1, 4 grade 2, and 7 grade 3 menisci; and group N had 4 grade 1, 7 grade 2, and 2 grade 3 menisci. A significant difference in the CMA score was observed between the 4 groups ( P = .009). The median CMA score was significantly lower in group I (2; range, 1-4) than in group S (4; range, 2-7) ( P = .041) and group C (4.25; range, 1.5-7) ( P = .018). No significant difference was found between groups S, C, and N. CONCLUSION Variability existed in the collagen ultrastructure of the DLM, and some DLMs showed a nearly normal ultrastructural pattern. The degree of density and disorganization of the collagen architecture in the DLM was related to the tear. CLINICAL RELEVANCE The study results might provide a histological background for partial meniscectomy in the treatment of a symptomatic DLM.
Collapse
Affiliation(s)
- Young-Hee Choi
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Republic of Korea
| | - Young-Jin Seo
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Republic of Korea
| | - Jong Mun Ha
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Republic of Korea
| | - Koo Hyun Jung
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Republic of Korea
| | - Jeehyoung Kim
- Department of Orthopaedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Republic of Korea
| | - Si Young Song
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Republic of Korea
| |
Collapse
|
206
|
|
207
|
Scaffold-Free Tissue-Engineered Allogenic Adipose-Derived Stem Cells Promote Meniscus Healing. Arthroscopy 2017; 33:346-354. [PMID: 27670757 DOI: 10.1016/j.arthro.2016.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE To determine whether meniscal tissue could be healed histologically by the implantation of allogenic three-dimensional formed adipose-derived stem cells (ADSCs) in a rabbit model of partial meniscectomy. METHODS Forty Japanese white rabbits (aged 15-17 weeks) were assigned to 2 groups. Defects 1.5 mm in diameter were created in the anterior horn of the medial menisci. The defects were left empty in the control group and were filled with cylindrical plugs of allogenic ADSCs extracted from adipose tissue in the experimental group. Macroscopic scoring (range, 0-3), histological scoring (range, 0-12), and immunohistological stainability of type I collagen were evaluated at 2, 4, 8, and 12 weeks postoperatively (n = 5 rabbits for each week). RESULTS Macroscopically, the height of the healing tissue in the experimental group was significantly greater than that of the control group at 2 weeks (3 vs 0, P = .01), 4 weeks (3 vs 1, P = .01), and 8 weeks (3 vs 2, P = .02). Histologically, safranin-O staining was noted at 2 weeks and increased gradually over time in the experimental group. In contrast, the intensity of staining was lower in controls at all weeks. Tissue quality scores were significantly higher in the experimental group than in the controls at all weeks (3 vs 0 at 2 weeks [P = .00009], 4.5 vs 2 at 4 weeks [P = .00023], 9 vs 5 at 8 weeks [P = .0047], 10.5 vs 6 at 12 weeks [P = .00026]). The implanted tissue was positive for type I collagen, and stainability was increased gradually over time. CONCLUSIONS Three-dimensional scaffold-free allogenic ADSCs implanted into a 1.5-mm avascular meniscal defect survived, adhered to the defect, and promoted histological meniscus healing in a rabbit model. CLINICAL RELEVANCE ADSC implantation designed to promote meniscal healing may play an important role as a tool for meniscus healing.
Collapse
|
208
|
Kraeutler MJ, Mitchell JJ, Chahla J, McCarty EC, Pascual-Garrido C. Intra-articular Implantation of Mesenchymal Stem Cells, Part 2: A Review of the Literature for Meniscal Regeneration. Orthop J Sports Med 2017; 5:2325967116680814. [PMID: 28203596 PMCID: PMC5298485 DOI: 10.1177/2325967116680814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Knee osteoarthritis (OA) after partial or total meniscectomy is a prevalent issue that patients must face. Various methods of replacing meniscal tissue have been studied to avoid this progression, including meniscal allograft transplantation, meniscal scaffolds, and synthetic meniscus replacement. Studies have shown that meniscal scaffolds may improve symptoms but have not been shown to prevent progression of OA. Recently, mesenchymal stem cells (MSCs) have been proposed as a possible biological therapy for meniscal regeneration. Several animal studies and 1 human study have evaluated the effect of transplanting MSCs into the knee joint after partial meniscectomy. The purpose of this review was to assess the outcomes of intra-articular transplantation of MSCs on meniscal regeneration in animals and humans after partial meniscectomy. Limited results from animal studies suggest that there is some potential for intra-articular injection of MSCs for the regeneration of meniscal tissue. However, further studies are necessary to determine the quality of regenerated meniscal tissue through histological and biomechanical testing.
Collapse
Affiliation(s)
- Matthew J Kraeutler
- University of Colorado School of Medicine, Department of Orthopedics, Aurora, Colorado, USA
| | - Justin J Mitchell
- Gundersen Health System, Department of Sports Medicine, La Crosse, Wisconsin, USA
| | - Jorge Chahla
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Eric C McCarty
- University of Colorado School of Medicine, Department of Orthopedics, Aurora, Colorado, USA
| | | |
Collapse
|
209
|
Abstract
PURPOSE Meniscus contains heterogeneous populations of cells that have not been fully characterized. Cell phenotype is often lost during culture; however, culture expansion is typically required for tissue engineering. We examined and compared cell-surface molecule expression levels on human meniscus cells from the vascular and avascular regions and articular chondrocytes while documenting changes during culture-induced dedifferentiation. MATERIALS AND METHODS Expressions of 16 different surface molecules were examined by flow cytometry after monolayer culture for 24 h, 1 week, and 2 weeks. Menisci were also immunostained to document the spatial distributions of selected surface molecules. RESULTS Meniscus cells and chondrocytes exhibited several similarities in surface molecule profiles with dynamic changes during culture. A greater percentage of meniscal cells were positive for CD14, CD26, CD49c, and CD49f compared to articular chondrocytes. Initially, more meniscal cells from the vascular region were positive for CD90 compared to cells from the avascular region or chondrocytes. Cells from the vascular region also expressed higher levels of CD166 and CD271 compared to cells from the avascular region. CD90, CD166, and CD271-positive cells were predominately perivascular in location. However, CD166-positive cells were also located in the superficial layer and in the adjacent synovial and adipose tissue. CONCLUSIONS These surface marker profiles provide a target phenotype for differentiation of progenitors in tissue engineering. The spatial location of progenitor cells in meniscus is consistent with higher regenerative capacity of the vascular region, while the surface progenitor subpopulations have potential to be utilized in tears created in the avascular region.
Collapse
Affiliation(s)
- Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Chantal Pauli
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Martin K. Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| |
Collapse
|
210
|
Castrogiovanni P, Trovato FM, Loreto C, Nsir H, Szychlinska MA, Musumeci G. Nutraceutical Supplements in the Management and Prevention of Osteoarthritis. Int J Mol Sci 2016; 17:ijms17122042. [PMID: 27929434 PMCID: PMC5187842 DOI: 10.3390/ijms17122042] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022] Open
Abstract
Nutraceuticals are dietary compounds which have a role in the balance of anabolic and catabolic signals in joints. Their regulatory function on homeostasis of cartilage metabolism nutraceuticals is increasingly considered for the management and, above all, the prevention of osteoarthritis (OA). OA is a degenerative disease characterized by cartilage and synovium inflammation that can cause joint stiffness, swelling, pain, and loss of mobility. It is a multifactorial disease and, due to the great percentage of people suffering from it and the general increase in life expectancy, OA is considered as one of the most significant causes of disability in the world. OA impairs the structural integrity of articular cartilage that greatly depends on a balance between the anabolic and catabolic processes which occur in chondrocytes and synovial fluid of the joints, therefore the integration with nutraceutical compounds in diet increases the treatment options for patients with established OA beyond traditional rehabilitation, medications, and surgical strategies. In our review, with respect to the current literature, we highlight some of many existing nutraceutical compounds that could be used as integrators in a daily diet thanks to their easy availability, such as in olive oil, fish oil, and botanical extracts used as non-pharmacologic treatment.
Collapse
Affiliation(s)
- Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95100 Catania, Italy.
| | - Francesca Maria Trovato
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy.
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95100 Catania, Italy.
| | - Houda Nsir
- Department of Molecular and Cellular Biology and Plant Physiology, Centre of Biotechnology of Borj Cedreya, University of Carthage, Carthage 2050, Tunisia.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95100 Catania, Italy.
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, 95100 Catania, Italy.
| |
Collapse
|
211
|
Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration. Skeletal Radiol 2016; 45:1649-1660. [PMID: 27639388 DOI: 10.1007/s00256-016-2480-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. MATERIALS AND METHODS This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. RESULTS Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. CONCLUSIONS QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration.
Collapse
|
212
|
Rocha B, Cillero-Pastor B, Blanco FJ, Ruiz-Romero C. MALDI mass spectrometry imaging in rheumatic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:784-794. [PMID: 27742553 DOI: 10.1016/j.bbapap.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 01/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a technique used to visualize the spatial distribution of biomolecules such as peptides, proteins, lipids or other organic compounds by their molecular masses. Among the different MSI strategies, MALDI-MSI provides a sensitive and label-free approach for imaging of a wide variety of protein or peptide biomarkers from the surface of tissue sections, being currently used in an increasing number of biomedical applications such as biomarker discovery and tissue classification. In the field of rheumatology, MALDI-MSI has been applied to date for the analysis of joint tissues such as synovial membrane or cartilage. This review summarizes the studies and key achievements obtained using MALDI-MSI to increase understanding on rheumatic pathologies and to describe potential diagnostic or prognostic biomarkers of these diseases. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Beatriz Rocha
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain
| | | | - Francisco J Blanco
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; RIER-RED de Inflamación y Enfermedades Reumáticas, INIBIC-CHUAC, A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; CIBER-BBN Instituto de Salud Carlos III, INIBIC-CHUAC, A Coruña, Spain.
| |
Collapse
|
213
|
Abstract
The knee is a fascinating yet complex joint. Researchers and clinicians agree that the joint is an organ comprised of highly specialized intrinsic and extrinsic tissues contributing to both health and disease. Key to the function and movement of the knee are the menisci, exquisite fibrocartilage structures that are critical structures for maintaining biological and biomechanical integrity of the joint. The biological/physiological functions of the menisci must be understood at the tissue, cellular and even molecular levels in order to determine clinically relevant methods for assessing it and influencing it. By investigating normal and pathological functions at the basic science level, we can begin to translate data to patients. The objective of this article is to provide an overview of this translational pathway so that progression toward improved diagnostic, preventative, and therapeutic strategies can be effectively pursued. We have thoroughly examined the pathobiological, biomarker, and imaging aspects of meniscus research. This translational approach can be effective toward optimal diagnosis, prevention, and treatment for the millions of patients who suffer from meniscal disorders each year.
Collapse
Affiliation(s)
- James L Cook
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Keiichi Kuroki
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Aaron M Stoker
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Farrah A Monibi
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Brandon L Roller
- b Department of Radiology , Wake Forest Baptist Medical Center , Winston-Salem , NC , USA
| |
Collapse
|
214
|
Levillain A, Magoariec H, Boulocher C, Decambron A, Viateau V, Hoc T. Viscoelastic properties of rabbit osteoarthritic menisci: A correlation with matrix alterations. J Mech Behav Biomed Mater 2016; 65:1-10. [PMID: 27543842 DOI: 10.1016/j.jmbbm.2016.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/23/2016] [Accepted: 08/05/2016] [Indexed: 01/11/2023]
Abstract
The aim of this study was to evaluate the effect of early osteoarthritis (OA) on the viscoelastic properties of rabbit menisci and to correlate the mechanical alterations with the microstructural changes. Anterior Cruciate Ligament Transection (ACLT) was performed in six male New-Zealand White rabbits on the right knee joint. Six healthy rabbits served as controls. Menisci were removed six weeks after ACLT and were graded macroscopically. Indentation-relaxation tests were performed in the anterior and posterior regions of the medial menisci. The collagen fibre organization and glycosaminoglycan (GAG) content were assessed by biphotonic confocal microscopy and histology, respectively. OA menisci displayed severe macroscopic lesions compared with healthy menisci (p=0.009). Moreover, the instantaneous and equilibrium moduli, which were 2.9±1.0MPa and 0.60±0.18MPa in the anterior region of healthy menisci, respectively, decreased significantly (p=0.03 and p=0.004, respectively) in OA menisci by 55% and 57%, respectively, indicating a global decrease in meniscal stiffness in this region. The equilibrium modulus alone decreased significantly (p=0.04) in the posterior region, going from 0.60±0.18MPa to 0.26±012MPa. This induced a loss of tissue elasticity. These mechanical changes were associated in the posterior region with a structural disruption of the superficial layers, from which the tie fibres emanate, and with a decrease in the GAG content in the anterior region. Consequently, the circumferential collagen fibres of the deep zone were dissociated and the collagen bundles were less compact. Our results demonstrate the strong meniscal modifications induced by ACLT at an early stage of OA and highlight the relationship between structural and chemical matrix alterations and mechanical properties.
Collapse
Affiliation(s)
- A Levillain
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36av Guy de Collongue, 69134 Ecully Cedex, France
| | - H Magoariec
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36av Guy de Collongue, 69134 Ecully Cedex, France
| | - C Boulocher
- Research unit ICE, UPSP 2011.03.101, Université de Lyon, veterinary campus of VetAgro Sup, 69 280 Marcy l'Etoile, France
| | - A Decambron
- B2OA, UMR 7052, ENVA, 7Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - V Viateau
- B2OA, UMR 7052, ENVA, 7Avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | - T Hoc
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36av Guy de Collongue, 69134 Ecully Cedex, France.
| |
Collapse
|
215
|
Arno S, Bell CP, Xia D, Regatte RR, Krasnokutsky S, Samuels J, Oh C, Abramson S, Walker PS. Relationship between meniscal integrity and risk factors for cartilage degeneration. Knee 2016; 23:686-91. [PMID: 27180254 DOI: 10.1016/j.knee.2015.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND The purpose of this study was to use MRI to determine if a loss of meniscal intra-substance integrity, as determined by T2* relaxation time, is associated with an increase of Kellgren-Lawrence (KL) grade, and if this was correlated with risk factors for cartilage degeneration, namely meniscal extrusion, contact area and anterior-posterior (AP) displacement. METHODS Eleven symptomatic knees with a KL 2 to 4 and 11 control knees with a KL 0 to 1 were studied. A 3 Tesla MRI scanner was used to scan all knees at 15° of flexion. With a 222N compression applied, a 3D SPACE sequence was obtained, followed by a spin echo 3D T2* mapping sequence. Next, an internal tibial torque of 5Nm was added and a second 3D SPACE sequence obtained. The MRI scans were post-processed to evaluate meniscal extrusion, contact area, AP displacement and T2* relaxation time. RESULTS KL grade was correlated with T2* relaxation time for both the anterior medial meniscus (r=0.79, p<0.001) and the posterior lateral meniscus (r=0.55, p=0.009). In addition, T2* relaxation time was found to be correlated with risk factors for cartilage degeneration. The largest increases in meniscal extrusion and decreases in contact area were noted for those with meniscal tears (KL 3 to 4). All patients with KL 3 to 4 indicated evidence of meniscal tears. CONCLUSIONS This suggests that a loss of meniscal integrity, in the form of intra-substance degeneration, is correlated with risk factors for cartilage degeneration.
Collapse
Affiliation(s)
- Sally Arno
- Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Christopher P Bell
- Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Ding Xia
- Department of Radiology, NYU Langone Medical Center, New York, NY, USA
| | | | | | - Jonathan Samuels
- Department of Rheumatology, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Cheongeun Oh
- Department of Environmental Medicine, NYU School of Medicine, New York, NY, USA
| | - Steven Abramson
- Department of Rheumatology, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Peter S Walker
- Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA.
| |
Collapse
|
216
|
Abstract
Ageing-associated changes that affect articular tissues promote the development of osteoarthritis (OA). Although ageing and OA are closely linked, they are independent processes. Several potential mechanisms by which ageing contributes to OA have been elucidated. This Review focuses on the contributions of the following factors: age-related inflammation (also referred to as 'inflammaging'); cellular senescence (including the senescence-associated secretory phenotype (SASP)); mitochondrial dysfunction and oxidative stress; dysfunction in energy metabolism due to reduced activity of 5'-AMP-activated protein kinase (AMPK), which is associated with reduced autophagy; and alterations in cell signalling due to age-related changes in the extracellular matrix. These various processes contribute to the development of OA by promoting a proinflammatory, catabolic state accompanied by increased susceptibility to cell death that together lead to increased joint tissue destruction and defective repair of damaged matrix. The majority of studies to date have focused on articular cartilage, and it will be important to determine whether similar mechanisms occur in other joint tissues. Improved understanding of ageing-related mechanisms that promote OA could lead to the discovery of new targets for therapies that aim to slow or stop the progression of this chronic and disabling condition.
Collapse
Affiliation(s)
- Richard F Loeser
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - John A Collins
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, 3300 Thurston Building, Campus Box 7280, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280, USA
| | - Brian O Diekman
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, Campus Box 7295, Chapel Hill, North Carolina 27599-7295, USA
| |
Collapse
|
217
|
Qi Y, Chen G, Feng G. Osteoarthritis prevention and meniscus regeneration induced by transplantation of mesenchymal stem cell sheet in a rat meniscal defect model. Exp Ther Med 2016; 12:95-100. [PMID: 27347022 PMCID: PMC4906666 DOI: 10.3892/etm.2016.3325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/10/2016] [Indexed: 01/05/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) is a potential therapy for meniscus regeneration. However, when using single cell suspension injection, there is frequently a significant loss of cells, with only a small percentage of cells remaining at the target site. This issue may be solved with the use of MSC sheets. In the present study, we investigated whether the use of MSC sheets were able to regenerate the meniscus effectively in a rat meniscectomized model. The anterior half of the medial meniscus in 10 rats was excised and an MSC sheet was transplanted in the MSC sheet treatment group, while untreated rats served as the control. After 4 and 8 weeks, the knee joints were examined by gross and histological observation. Histological observation revealed that the anterior portion of meniscus was similar to the native tissue, showing typical fibrochondrocytes surrounded by richer extracellular matrix in the MSC sheet group. In addition, predominant collagen-rich matrix bridging the interface was observed and the neo-meniscus integrated well with its host meniscus. Furthermore, degenerative changes of tibial plateau and femoral condyle occurred in the two groups. MSC sheet transplantation alleviated the degenerative changes efficiently. In conclusion, transplantation of MSC sheets may efficiently promote meniscus regeneration, as well as inhibit the progression of osteoarthritis in knee joints.
Collapse
Affiliation(s)
- Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guangnan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
218
|
Badendick J, Godkin O, Kohl B, Meier C, Jagielski M, Huang Z, Arens S, Schneider T, Schulze-Tanzil G. Macroscopical, Histological, and In Vitro Characterization of Nonosteoarthritic Versus Osteoarthritic Hip Joint Cartilage. CLINICAL MEDICINE INSIGHTS-ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2016; 9:65-74. [PMID: 27158224 PMCID: PMC4856062 DOI: 10.4137/cmamd.s29844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/21/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) might affect chondrocyte culture characteristics and complement expression. Therefore, this study addressed the interrelation between macroscopical and microscopical structure, complement expression, and chondrocyte culture characteristics in non-OA and OA cartilage. Femoral head cartilage samples harvested from patients with femoral neck fractures (FNFs) and OA were analyzed for macroscopical alterations using an in-house scoring system, graded histologically (Mankin score), and immunolabeled for complement regulatory proteins (CRPs) and receptors. Morphology of monolayer cultured chondrocytes isolated from a subset of samples was assessed. The macroscopical score distinguished the FNF and OA cartilage samples and correlated significantly with the histological results. Chondrocyte phenotype from FNF or OA cartilage differed. Complement receptor C5aR, CRPs CD55 and CD59, and weakly receptor C3AR were detected in the investigated FNF and OA cartilage, except for CD46, which was detected in only two of the five investigated donors. The in-house score also allows inexperienced observers to distinguish non-OA and OA cartilage for experimental purposes.
Collapse
Affiliation(s)
- Jessica Badendick
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Owen Godkin
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Benjamin Kohl
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carola Meier
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michal Jagielski
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Zhao Huang
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Stephan Arens
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Tobias Schneider
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.; Department of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Nuremberg, Germany
| | - Gundula Schulze-Tanzil
- Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.; Department of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Nuremberg, Germany
| |
Collapse
|
219
|
Kwok J, Onuma H, Olmer M, Lotz MK, Grogan SP, D’Lima DD. Histopathological analyses of murine menisci: implications for joint aging and osteoarthritis. Osteoarthritis Cartilage 2016; 24:709-18. [PMID: 26585241 PMCID: PMC4799761 DOI: 10.1016/j.joca.2015.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To establish a standardized protocol for histopathological assessment of murine menisci that can be applied to evaluate transgenic, knock-out/in, and surgically induced OA models. METHODS Knee joints from C57BL/6J mice (6-36 months) as well as from mice with surgically-induced OA were processed and cut into sagittal sections. All sections included the anterior and posterior horns of the menisci and were graded for (1) surface integrity, (2) cellularity, (3) Safranin-O staining distribution and intensity. Articular cartilage in the knee joints was also scored. RESULTS The new histopathological grading system showed good inter- and intra-class correlation coefficients. The major age-related changes in murine menisci in the absence of OA included decreased Safranin O staining intensity, abnormal cell distribution and the appearance of acellular areas. Menisci from mice with surgically-induced OA showed severe fibrillations, partial/total loss of tissue, and calcifications. Abnormal cell arrangements included both regional hypercellularity and hypocellularity along with hypertrophy and cell clusters. In general, the posterior horns were less affected by age and OA. CONCLUSION A new standardized protocol and histopathological grading system has been developed and validated to allow for a comprehensive, systematic evaluation of changes in aging and OA-affected murine menisci. This system was developed to serve as a standardized technique and tool for further studies in murine meniscal pathophysiology models.
Collapse
Affiliation(s)
- Jeanie Kwok
- Materials Science and Engineering Program, Department of Mechanical and Aerospace Engineering, University of California, San Diego
| | - Hiroyuki Onuma
- St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Merissa Olmer
- Department of Molecular and Experimental Medicine, The Scripps Research Institute
| | - Martin K. Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic 11025 North Torrey Pines Road, Suite 200, La Jolla, CA 92037
| |
Collapse
|
220
|
Ozeki N, Muneta T, Matsuta S, Koga H, Nakagawa Y, Mizuno M, Tsuji K, Mabuchi Y, Akazawa C, Kobayashi E, Saito T, Sekiya I. Synovial mesenchymal stem cells promote meniscus regeneration augmented by an autologous Achilles tendon graft in a rat partial meniscus defect model. Stem Cells 2016; 33:1927-38. [PMID: 25993981 PMCID: PMC4497612 DOI: 10.1002/stem.2030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/27/2015] [Accepted: 03/08/2015] [Indexed: 12/26/2022]
Abstract
Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells2015;33:1927–1938
Collapse
Affiliation(s)
- Nobutake Ozeki
- Department of Joint Surgery and Sports medicine.,Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Japan
| | | | | | | | | | - Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Graduate School of Medicine
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Health care Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health care Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Saito
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
221
|
Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles. Int J Mol Sci 2016; 17:359. [PMID: 26978347 PMCID: PMC4813220 DOI: 10.3390/ijms17030359] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1) are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA), whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren–Lawrence OA severity scores, the Kraus’ modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI) system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01). By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01). Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.
Collapse
|
222
|
Leal MF, Arliani GG, Astur DC, Franciozi CE, Debieux P, Andreoli CV, Smith MC, Pochini ADC, Ejnisman B, Cohen M. Comprehensive selection of reference genes for expression studies in meniscus injury using quantitative real-time PCR. Gene 2016; 584:60-68. [PMID: 26968891 DOI: 10.1016/j.gene.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 11/29/2022]
Abstract
The meniscus plays critical roles in the knee function. Meniscal tears can lead to knee osteoarthritis. Gene expression analysis may be a useful tool for understanding meniscus tears, and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) has become an effective method for such studies. However, this technique requires the use of suitable reference genes for data normalization. We evaluated the suitability of six reference genes (18S, ACTB, B2M, GAPDH, HPRT1 and TBP) using meniscus samples of (1) 19 patients with isolated meniscal tears, (2) 20 patients with meniscal tears and combined anterior cruciate ligament injury (ACL), and (3) 11 controls without meniscal tears. The stability of the candidate reference genes was determined using the NormFinder, geNorm, BestKeeper DataAssist and RefFinder software packages and comparative ΔCt method. Overall, HPRT1 was the best single reference gene. However, GenEx software demonstrated that two or more reference genes should be used for gene expression normalization, which was confirmed when we evaluated TGFβR1 expression using several reference gene combinations. HPRT1+TBP was the most frequently identified pair from the analysis of samples of (1) meniscal tear samples of patients with a concomitant ACL tears, (2) all meniscal tears, and (3) all samples. HPRT1+GAPDH was the most frequently identified pair from the analysis of samples of isolated meniscal tear samples and controls. In the analysis involving only controls, GAPDH+18S was the most frequently identified pair. In the analysis of only isolated meniscal tear samples and in the analysis of meniscal tear samples of patients with concomitant ACL tears and controls, both HPRT1+TBP and HPRT1+GAPDH were identified as suitable pairs. If the gene expression study aims to compare non-injured meniscus, isolated meniscal tears and meniscal tears of patients with ACL tears as three independent groups, the trio of HPRT1+TBP+GAPDH is the most suitable combination of reference genes.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil; Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, 04023-001, São Paulo, SP, Brazil.
| | - Gustavo Gonçalves Arliani
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil
| | - Diego Costa Astur
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil
| | - Carlos Eduardo Franciozi
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil
| | - Pedro Debieux
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil
| | - Carlos Vicente Andreoli
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, 04023-001, São Paulo, SP, Brazil
| | - Alberto de Castro Pochini
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil
| | - Benno Ejnisman
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil
| | - Moises Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, 04038-032, São Paulo, SP, Brazil
| |
Collapse
|
223
|
Baek J, Sovani S, Glembotski NE, Du J, Jin S, Grogan SP, D'Lima DD. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells. Tissue Eng Part A 2016; 22:436-48. [PMID: 26842062 PMCID: PMC4800276 DOI: 10.1089/ten.tea.2015.0284] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.
Collapse
Affiliation(s)
- Jihye Baek
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California.,2 Department of Material Science and Engineering, University of California , La Jolla, California
| | - Sujata Sovani
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Nicholas E Glembotski
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Jiang Du
- 3 Department of Radiology, School of Medicine, University of California , San Diego, San Diego, California
| | - Sungho Jin
- 2 Department of Material Science and Engineering, University of California , La Jolla, California
| | - Shawn P Grogan
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| | - Darryl D D'Lima
- 1 Shiley Center for Orthopaedic Research and Education at Scripps Clinic , La Jolla, California
| |
Collapse
|
224
|
López-Franco M, López-Franco O, Murciano-Antón MA, Cañamero-Vaquero M, Fernández-Aceñero MJ, Herrero-Beaumont G, Gómez-Barrena E. Meniscal degeneration in human knee osteoarthritis: in situ hybridization and immunohistochemistry study. Arch Orthop Trauma Surg 2016; 136:175-183. [PMID: 26667622 DOI: 10.1007/s00402-015-2378-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Meniscus injury is one of the causes of secondary osteoarthritis (OA). However, the role of meniscus is still unclear. Human meniscal distribution of cells and cartilage oligomeric matrix protein (COMP) and their changes in advanced OA were analyzed. PATIENTS AND METHODS Thirty-one medial menisci from patients with knee OA that underwent a total knee arthroplasty were studied. Normal meniscal tissue was obtained from partial arthroscopic meniscectomy. Meniscal samples were processed for histology, immunohistochemistry and in situ hybridization, for cell assessment including density, active divisions, apoptosis, COMP distribution and proteoglycan content. RESULTS Osteoarthritic menisci demonstrated areas of cell depletion and significant decrease in COMP immunostaining. Actively dividing cells were only found in the meniscectomy group, but not in the osteoarthritic group. Proteoglycan staining was less prominent in menisci from the osteoarthritis group. CONCLUSIONS Our results show a decreased cell population, with low COMP and altered matrix organization in osteoarthritis menisci that suggest an altered meniscal scaffold and potential impairment of meniscal function. These meniscal changes may be associated with the development of knee osteoarthritis.
Collapse
Affiliation(s)
- Mariano López-Franco
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Infanta Sofía, Paseo de Europa, 34, 28702, San Sebastián de los Reyes, Madrid, Spain.
- Orthopaedic Surgery Department, Hospital Sur de Alcorcón, Madrid, Spain.
| | - O López-Franco
- Centro de Estudios y Servicios de Salud, Universidad Veracruzana, Veracruz, Mexico
| | | | - M Cañamero-Vaquero
- Comparative Unit Pathology, Spanish National Research Centre, Madrid, Spain
| | | | - G Herrero-Beaumont
- Rheumatology Department, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - E Gómez-Barrena
- Orthopaedic Surgery Department, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
225
|
Lee HR, Shon OJ, Park SI, Kim HJ, Kim S, Ahn MW, Do SH. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model. Int J Mol Sci 2016; 17:ijms17010120. [PMID: 26784189 PMCID: PMC4730361 DOI: 10.3390/ijms17010120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 01/10/2023] Open
Abstract
Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW) rabbits were incubated for 3, 10, 14 and 21 days with PRP(−), 10% PRP (PRP(+)), IL(+) or IL(+)PRP(+). The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR). Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP) catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+) and in IL(+)PRP(+). In PRP(+), the aggrecan expression levels were lower than in the PRP(−) until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+) and IL(+)PRP(+), at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control) or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.
Collapse
Affiliation(s)
- Hye-Rim Lee
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Oog-Jin Shon
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, Korea.
| | - Se-Il Park
- Cardiovascular Product Evaluation Center, College of Medicine, Yonsei University, Seoul 120-752, Korea.
| | - Han-Jun Kim
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Sukyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749, Korea.
| | - Myun-Whan Ahn
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, Korea.
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
226
|
Takada T, Miyaki S, Ishitobi H, Hirai Y, Nakasa T, Igarashi K, Lotz MK, Ochi M. Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1. Arthritis Res Ther 2015; 17:285. [PMID: 26458773 PMCID: PMC4603301 DOI: 10.1186/s13075-015-0792-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction BTB and CNC homology 1 (Bach1) is a transcriptional repressor of Heme oxygenase-1 (HO-1), which is cytoprotective through its antioxidant effects. The objective of this study was to define the role of Bach1 in cartilage homeostasis and osteoarthritis (OA) development using in vitro models and Bach1-/- mice. Methods HO-1 expression in Bach1-/- mice was analyzed by real-time PCR, immunohistochemistry and immunoblotting. Knee joints from Bach1-/- and wild-type mice with age-related OA and surgically-induced OA were evaluated by OA scoring systems. Levels of autophagy proteins and superoxide dismutase 2 (SOD2) were determined by immunohistochemistry. The relationship between HO-1 and the protective effects for OA was determined in chondrocytes treated with small interfering RNA (siRNA) targeting HO-1 gene. Results HO-1 expression decreased with aging in articular cartilages and menisci of mouse knees. Bach1-/- mice showed reduced severity of age-related OA and surgically-induced OA compared with wild-type mice. Microtubule-associated protein 1 light chain 3 (LC3), autophagy marker, and SOD2 were increased in articular cartilage of Bach1-/- mice compared with wild-type mice. Interleukin-1β (IL-1β) induced a significant increase in Adamts-5 in wild-type chondrocytes but not in Bach1-/- chondrocytes. The expression of SOD2 and the suppression of apoptosis in Bach1-/- chondrocytes were mediated by HO-1. Conclusions Bach1 deficiency reduces the severity of OA-like changes. This may be due to maintenance of cartilage homeostasis and joint health by antioxidant effects through HO-1 and downregulation of extracellular matrix degrading enzymes. These results suggest that inactivation of Bach1 is a novel target and signaling pathway in OA prevention.
Collapse
Affiliation(s)
- Tsuyoshi Takada
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Shigeru Miyaki
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan. .,Department of Regenerative Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Hiroyuki Ishitobi
- Department of Regenerative Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Yuya Hirai
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Tomoyuki Nakasa
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| | - Martin K Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Mitsuo Ochi
- Department of Orthopedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima, 734-8551, Japan.
| |
Collapse
|
227
|
Nakagawa Y, Sekiya I, Kondo S, Tabuchi T, Ichinose S, Koga H, Tsuji K, Muneta T. Relationship between MRIT1rho value and histological findings of intact and radially incised menisci in microminipigs. J Magn Reson Imaging 2015; 43:434-45. [DOI: 10.1002/jmri.24988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/12/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yusuke Nakagawa
- Department of Joint Surgery and Sports Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine; Tokyo Medical and Dental University; Tokyo Japan
| | - Shimpei Kondo
- Department of Joint Surgery and Sports Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | | | - Shizuko Ichinose
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University; Tokyo Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine; Graduate School, Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
228
|
Sun YH, Chen LX, Jiao ZD, Wang L, Zhang RM, Fang J, Li J. Age-related Changes of Posterior Tibial Slope and Its Roles in Anterior Cruciate Ligament Injury. Int Surg 2015; 101:70-77. [PMID: 26151236 DOI: 10.9738/intsurg-d-15-00127.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nearly all previous studies in posterior tibial slope (PTS) and anterior cruciate ligament (ACL) injuries ignored age-related changes, and the published data are inconsistent. The objective of this study was to reveal age-related changes of PTS and its roles in ACL injury. Data for 2618 lower limbs were included initially based on the availability of lateral radiographs and a suitable femoro-tibial angle. The final 1431 subjects were analyzed according to age, gender, side, and injury status. Student's t-tests, one-way analysis of variance, and curve fitting were used to analyze data. The PTS in males was greater than that in females in the 0-9 and 30-39-year-old groups, but this pattern reversed in the 40-49, 60-69, 70-79, and 80-89-year-old groups. The PTS was greater on the left side than on the right side in the 0-9, 10-19, 50-59, 60-69, and 80-89-year-old groups. The curve fitting for PTS demonstrated a trend of first decreasing and then increasing with aging. The PTS values differed significantly between knees with an ACL injury and those without in the 20-29, 30-39, and 40-49-year-old groups but not in the 50-59-year-old group. The PTS follows a trend of first decreasing and then increasing, and its role in ACL injury changes with advancing age. The higher PTS is only unrelated to the risk of ACL injury in age groups with a lower mean PTS value.
Collapse
Affiliation(s)
- Ying-Hua Sun
- a Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, China
| | - Lian-Xu Chen
- b Institute of Sports Medicine, Peking University Third Hospital, Haidian District, Beijing, China
| | - Zhao-de Jiao
- c Department of Orthopedics, Yidu Central Hospital, Weifang Medical University, China
| | - Li Wang
- d Department of Orthopedics, Yidu Central Hospital, Weifang Medical University, China
| | - Rui-Ming Zhang
- e Department of Orthopedics, Yidu Central Hospital, Weifang Medical University, China
| | - Jun Fang
- f Department of Orthopedics, Yidu Central Hospital, Weifang Medical University, China
| | - Jianmin Li
- g Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
229
|
Levillain A, Boulocher C, Kaderli S, Viguier E, Hannouche D, Hoc T, Magoariec H. Meniscal biomechanical alterations in an ACLT rabbit model of early osteoarthritis. Osteoarthritis Cartilage 2015; 23:1186-93. [PMID: 25725391 DOI: 10.1016/j.joca.2015.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of this study was to analyze the early biomechanical alterations of menisci during the early stage of osteoarthritis (OA) development and to correlate them with the chemical composition and matrix alteration. A particular focus was paid to pathological changes in glycosaminoglycan (GAG) content and collagen fiber architecture. DESIGN Menisci (n = 24) were removed from rabbits' knee joints 6 weeks following surgical anterior cruciate ligament transection (ACLT). Both the anterior and posterior regions of medial and lateral menisci were characterized using indentation tests, Raman microspectroscopy (RM), biphotonic confocal microscopy (BCM) and histology. RESULTS Mechanical and matrix alterations occurred in both regions of medial and lateral menisci. A significant decrease in the mechanical properties was observed in OA menisci, with a mean reduced modulus from 2.3 to 1.1 MPa. Microstructural observations revealed less organized and less compact collagen bundles in operated menisci than in contralateral menisci, as well as a loss of fiber tension. GAG content was increased in OA menisci, especially in the damaged areas. Neither changes in the secondary structure of collagen nor mineralization were detected through RM at this stage of OA. CONCLUSION ACLT led to a disorganization of the collagen framework at the early stage of OA development, which decreases the mechanical resistance of the menisci. GAG content increases in response to this degradation. All of these results demonstrate the strong correlation between matrix and mechanical alterations.
Collapse
Affiliation(s)
- A Levillain
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France
| | - C Boulocher
- Research Unit ICE, UPSP 2011.03.101, Université de Lyon, Veterinary Campus of VetAgro Sup, 69 280 Marcy l'Etoile, France
| | - S Kaderli
- School of Pharmaceutical Sciences, University of Geneva and Lausanne, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - E Viguier
- Research Unit ICE, UPSP 2011.03.101, Université de Lyon, Veterinary Campus of VetAgro Sup, 69 280 Marcy l'Etoile, France
| | - D Hannouche
- B2OA, UMR CNRS 7052 CHU Lariboisière Saint Louis, 10 av de Verdun, 75020 Paris France
| | - T Hoc
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France.
| | - H Magoariec
- LTDS, UMR CNRS 5513, Université de Lyon, Ecole centrale de Lyon, 36 av Guy de Collongue, 69134 Ecully Cedex, France
| |
Collapse
|
230
|
Higher strains in the inner region of the meniscus indicate a potential source for degeneration. J Biomech 2015; 48:1377-82. [DOI: 10.1016/j.jbiomech.2015.02.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 11/18/2022]
|
231
|
Fischenich KM, Lewis J, Kindsfater KA, Bailey TS, Haut Donahue TL. Effects of degeneration on the compressive and tensile properties of human meniscus. J Biomech 2015; 48:1407-11. [DOI: 10.1016/j.jbiomech.2015.02.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 01/03/2023]
|
232
|
Hoshiyama Y, Otsuki S, Oda S, Kurokawa Y, Nakajima M, Jotoku T, Tamura R, Okamoto Y, Lotz MK, Neo M. Chondrocyte clusters adjacent to sites of cartilage degeneration have characteristics of progenitor cells. J Orthop Res 2015; 33:548-55. [PMID: 25691232 PMCID: PMC4454425 DOI: 10.1002/jor.22782] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 10/31/2014] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the site-specific characteristics and roles of chondrocyte clusters in human knee osteoarthritis. Cartilage explants were obtained from 45 knees undergoing total knee replacement surgery. The explants were taken from 4 locations in the knee: the medial femoral condyle, the medial posterior femoral condyle (MPC), the lateral femoral condyle, and the lateral posterior femoral condyle (LPC). Cartilage degeneration, cell density, and cell arrangement were compared histologically. A live/dead cell viability assay and immunohistochemical analyses using antibodies against STRO-1, FGF2, and Ki-67 were performed. Cell proliferation and cartilaginous nodule production in MPC and LPC explants in monolayer culture were compared. Finally, MPC cartilage explants were cultured to observe histological changes. The cell density of the MPC explants was higher than that of the LPC because of clustering. MPC explants contained more live cells than the LPC did, and the expression of IHC markers in MPC explants was higher than that in LPC. Chondrocytes from MPC proliferated faster and produced more nodules in monolayer culture than those from the LPC and MPC explants were repaired during organ culture. In conclusion, chondrocyte clusters adjacent to severe cartilage degeneration have specific characteristics, with progenitor and proliferative potential.
Collapse
Affiliation(s)
- Yoshiaki Hoshiyama
- Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki city, Osaka 569-8686, Japan
| | - Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki city, Osaka 569-8686, Japan
| | - Shuhei Oda
- Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki city, Osaka 569-8686, Japan
| | - Yoshitaka Kurokawa
- Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki city, Osaka 569-8686, Japan
| | - Mikio Nakajima
- Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki city, Osaka 569-8686, Japan
| | - Tsuyoshi Jotoku
- Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki city, Osaka 569-8686, Japan
| | - Ryuichi Tamura
- Department of Orthopedic Surgery, Rakusai Shimizu Hospital, 13-107 Oekutsukakecho Nishikyo-ku, Kyoto city, Kyoto 610-1106, Japan
| | - Yoshinori Okamoto
- Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki city, Osaka 569-8686, Japan
| | - Martin K. Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Masashi Neo
- Department of Orthopedic Surgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki city, Osaka 569-8686, Japan
| |
Collapse
|
233
|
Chang EY, Du J, Statum S, Pauli C, Chung CB. Quantitative bi-component T2* analysis of histologically normal Achilles tendons. Muscles Ligaments Tendons J 2015; 5:58-62. [PMID: 26261782 PMCID: PMC4496019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
INTRODUCTION the aim of this pilot study was to implement ultrashort echo time (UTE) MRI with bi-component analysis on grossly normal Achilles tendons with histologic correlation. MATERIALS AND METHODS six tendon samples which were grossly normal on visual inspection and palpation were harvested. A 2D UTE pulse sequence was implemented on a 3T MR scanner and bi-component and single-component T2* analysis was performed. Tendon samples were histologically processed and evaluated. RESULTS mean short T2* fraction was 79.2% (95% confidence interval [CI], 70.1 - 88.3%), mean short T2* was 1.8 ms (95% CI, 1.3 - 2.3 ms), mean long T2* fraction was 20.8% (95% CI, 11.7 - 29.9%), mean long T2* was 9.2 ms (95% CI, 5.1 - 13.3 ms), and mean single-component T2* was 2.5 ms (95% CI, 1.8 - 3.1 ms). DISCUSSION 2D UTE MRI with bi-component and single-component T2* analysis was successfully implemented. Inter-individual variation can be demonstrated in grossly and histologically normal Achilles tendons.
Collapse
Affiliation(s)
- Eric Y. Chang
- Radiology Service, VA San Diego Healthcare System, USA
- Department of Radiology, University of California, San Diego Medical Center, Usa
| | - Jiang Du
- Department of Radiology, University of California, San Diego Medical Center, Usa
| | - Sheronda Statum
- Department of Radiology, University of California, San Diego Medical Center, Usa
| | - Chantal Pauli
- Institute of Surgical Pathology, University Hospital Zurich, Switzerland
| | - Christine B. Chung
- Radiology Service, VA San Diego Healthcare System, USA
- Department of Radiology, University of California, San Diego Medical Center, Usa
| |
Collapse
|
234
|
Baek J, Chen X, Sovani S, Jin S, Grogan SP, D’Lima DD. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel. J Orthop Res 2015; 33:572-83. [PMID: 25640671 PMCID: PMC4386835 DOI: 10.1002/jor.22802] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/08/2014] [Indexed: 02/04/2023]
Abstract
Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies.
Collapse
Affiliation(s)
- Jihye Baek
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA,Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Xian Chen
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Sujata Sovani
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Sungho Jin
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Shawn P Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Darryl D D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| |
Collapse
|
235
|
Fuhrmann IK, Steinhagen J, Rüther W, Schumacher U. Comparative immunohistochemical evaluation of the zonal distribution of extracellular matrix and inflammation markers in human meniscus in osteoarthritis and rheumatoid arthritis. Acta Histochem 2015; 117:243-54. [PMID: 25827912 DOI: 10.1016/j.acthis.2014.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED The purpose of our study was to analyze the distribution of the major extracellular matrix glycosaminoglycan hyaluronan (HA), its receptor CD44 and cells which influence (re)modeling of the extracellular matrix (T- and B-cells, macrophages, endothelial cells) in menisci obtained from patients suffering from rheumatoid arthritis or osteoarthritis in order to analyze whether these markers could be useful to differentiate between both arthropathies. Human menisci were sampled from patients undergoing total knee arthroplasty. Histological staining (H&E, PAS/Alcian Blue for neutral and charged carbohydrate residues) and (immuno)histochemistry were performed for detection of HA, CD44, sphingosine-1-phosphate receptor 1 (EDG-1) as a marker for endothelial cells, CD3 as a marker for T-cells, CD20 as a marker for B-cells and CD68 as a marker for macrophages. The extracellular matrix in the vascularized zone showed higher amounts of HA as well as acid carbohydrate residues in comparison to the poorly vascularized zones of the meniscus in both disease entities. EDG-1 positive endothelial cells were present in all zones, with fewer cells being detected in the inner zones of the rheumatoid menisci than in the osteoarthritic ones. Macrophages, T- and B-cells as well as CD44-positive cells were more prominent in the vascularized zone of the meniscus than in the poorly vascularized central zone. The distribution patterns of the extracellular matrix components as well as the CD44-positive cells and the inflammation markers in the peripheral zone resembled the distribution in synovial tissue, indicating that both synovia and meniscus were involved in pathological changes in osteoarthritis and rheumatoid arthritis. IN CONCLUSION the distribution of extracellular glycoconjugates and of cells modulating their synthesis showed similar results in both arthropathies, not enabling a differentiation between rheumatoid arthritis and osteoarthritis but underlining the role of these markers in inflammation and degradation in human meniscus.
Collapse
|
236
|
Chang EY, Du J, Biswas R, Statum S, Pauli C, Bae WC, Chung CB. Off-resonance saturation ratio obtained with ultrashort echo time-magnetization transfer techniques is sensitive to changes in static tensile loading of tendons and degeneration. J Magn Reson Imaging 2015; 42:1064-71. [PMID: 25808266 DOI: 10.1002/jmri.24881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/18/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To determine if off-saturation ratio (OSR) measured with the ultrashort echo time magnetization transfer (UTE-MT) sequence could differentiate between tendons under different states of tensile load and to compare these changes between normal versus degenerated tendons. METHODS Fourteen tendons were imaged at 3 Tesla before and during the application of 0.5-1 kg tension. A two-dimensional (2D) -UTE-MT sequence with 1.5, 3, and 5 kHz frequency offsets was used on nine tendons and a 3D-UTE-MT sequence with 1.5 kHz frequency offset was used on five tendons. OSR was calculated and compared for each condition. Histologic correlation was performed using light microscopy. RESULTS In general, OSR increased after the application of tension. Mean increase of 2D OSR was 0.035 (95% confidence interval [CI], 0.013-0.056) at 1.5 kHz offset (P < 0.01), 0.031 (95% CI, 0.023-0.040) at 3 kHz offset (P < 0.01), and 0.013 (95% CI, -0.013-0.027) at 5 kHz offset (P = 0.07) from pre- to posttension states. Mean increase of 3D OSR was 0.026 (95% CI, 0.008-0.044) at a 1.5 kHz offset (P = 0.02) from pre- to posttension states. Mean decrease of 2D OSR at 1.5 kHz offset was 0.074-0.087 when comparing normal versus degenerated tendons (P < 0.01). CONCLUSION OSR as measured with 2D or 3D UTE-MT sequences can detect the changes in hydration seen when tendons are placed under two different states of tensile load, but these changes are smaller than those encountered when comparing between normal versus pathologic tendons. Lower off-resonance saturation frequencies (3 kHz or less) are more sensitive to these changes than higher off-resonance saturation frequencies.
Collapse
Affiliation(s)
- Eric Y Chang
- Radiology Service, VA San Diego Healthcare System, San Diego, California, USA.,Department of Radiology, University of California, San Diego Medical Center, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego Medical Center, San Diego, California, USA
| | - Reni Biswas
- Department of Radiology, University of California, San Diego Medical Center, San Diego, California, USA
| | - Sheronda Statum
- Department of Radiology, University of California, San Diego Medical Center, San Diego, California, USA
| | - Chantal Pauli
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Won C Bae
- Department of Radiology, University of California, San Diego Medical Center, San Diego, California, USA
| | - Christine B Chung
- Radiology Service, VA San Diego Healthcare System, San Diego, California, USA.,Department of Radiology, University of California, San Diego Medical Center, San Diego, California, USA
| |
Collapse
|
237
|
Efficacy of P188 on lapine meniscus preservation following blunt trauma. J Mech Behav Biomed Mater 2015; 47:57-64. [PMID: 25846264 DOI: 10.1016/j.jmbbm.2015.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 11/22/2022]
Abstract
Traumatic injury to the knee leads to the development of post-traumatic osteoarthritis. The objective of this study was to characterize the effects of a single intra-articular injection of a non-ionic surfactant, Poloxamer 188 (P188), in preservation of meniscal tissue following trauma through maintenance of meniscal glycosaminoglycan (GAG) content and mechanical properties. Flemish Giant rabbits were subjected to a closed knee joint, traumatic compressive impact with the joint constrained to prevent anterior tibial translation. The contralateral limb served as an un-impacted control. Six animals (treated) received an injection of P188 in phosphate buffered saline (PBS) post trauma, and another six animals (sham) received a single injection of PBS to the impacted limb. Histological analyses for GAG was determined 6 weeks post trauma, and functional outcomes were assessed using stress relaxation micro-indentation. The impacted limbs of the sham group demonstrated a significant decrease in meniscal GAG coverage compared to non-impacted limbs (p<0.05). GAG coverage of the impacted P188 treated limbs was not significantly different than contralateral non-impacted limbs in all regions except the medial anterior (p<0.05). No significant changes were documented in mechanics for either the sham or treated groups compared to their respective control limbs. This suggests that a single intra-articular injection of P188 shows promise in prevention of trauma induced GAG loss.
Collapse
|
238
|
Giunta S, Castorina A, Marzagalli R, Szychlinska MA, Pichler K, Mobasheri A, Musumeci G. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int J Mol Sci 2015; 16:5922-44. [PMID: 25782157 PMCID: PMC4394513 DOI: 10.3390/ijms16035922] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA); the most common form of degenerative joint disease, is associated with variations in pro-inflammatory growth factor levels, inflammation and hypocellularity resulting from chondrocyte apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide endowed with a range of trophic effects in several cell types; including chondrocytes. However; its role in OA has not been studied. To address this issue, we investigated whether PACAP expression is affected in OA cartilage obtained from experimentally-induced OA rat models, and then studied the effects of PACAP in isolated chondrocytes exposed to IL-1β in vitro to mimic the inflammatory milieu of OA cartilage. OA induction was established by histomorphometric and histochemical analyses. Changes in PACAP distribution in cartilage, or its concentration in synovial fluid (SF), were assessed by immunohistochemistry and ELISA. Results showed that PACAP abundance in cartilage tissue and SF was high in healthy controls. OA induction decreased PACAP levels both in affected cartilage and SF. In vitro, PACAP prevented IL-1β-induced chondrocyte apoptosis, as determined by MTT assay; Hoechst staining and western blots of apoptotic-related proteins. These changes were also accompanied by decreased i-NOS and COX-2 levels, suggesting an anti-inflammatory effect. Altogether, these findings support a potential role for PACAP as a chondroprotective agent for the treatment of OA.
Collapse
Affiliation(s)
- Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Alessandro Castorina
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Rubina Marzagalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Karin Pichler
- Department of Pediatrics, Clinic for Pediatrics I Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria.
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| |
Collapse
|
239
|
Li Q, Doyran B, Gamer LW, Lu XL, Qin L, Ortiz C, Grodzinsky AJ, Rosen V, Han L. Biomechanical properties of murine meniscus surface via AFM-based nanoindentation. J Biomech 2015; 48:1364-70. [PMID: 25817332 DOI: 10.1016/j.jbiomech.2015.02.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 01/15/2023]
Abstract
This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip≈5µm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction. The indentation resistance was calculated as both the effective modulus, Eind, via the isotropic Hertz model, and the effective stiffness, Sind = dF/dD. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1±0.8MPa for 12 weeks of age, mean±SEM, n=13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4±0.1MPa, n=6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models.
Collapse
Affiliation(s)
- Qing Li
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Basak Doyran
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Laura W Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Christine Ortiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
240
|
Ryu K, Iriuchishima T, Oshida M, Saito A, Kato Y, Tokuhashi Y, Aizawa S. Evaluation of the morphological variations of the meniscus: a cadaver study. Knee Surg Sports Traumatol Arthrosc 2015; 23:15-9. [PMID: 23873345 DOI: 10.1007/s00167-013-2612-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 07/11/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE The purpose of this study was to reveal the prevalence of the subtypes of the meniscus using human cadaver knees. METHODS Four hundred and thirty-seven cadaveric knees in 219 subjects (formalin fixed, Japanese population) with a median age of 83 years (54-97) were included in this study. All soft tissues surrounding the knee, excluding the meniscus, were resected, and macroscopic assessment of the meniscus was performed. Meniscus subtypes were classified as: (1) normal meniscus, (2) complete discoid, (3) incomplete discoid, (4) ring-shaped, and (5) double-layered. RESULTS All subtypes of the meniscus were observed in the lateral meniscus. Complete discoid lateral meniscus was observed in 27 knees (6.2%), incomplete discoid lateral meniscus was observed in 139 knees (31.8%), ring-shaped lateral meniscus was observed in 4 knees (0.9%), and double-layered meniscus was observed in 2 knees (0.5%). CONCLUSION This study reports the accurate prevalence of ring-shaped and double-layered meniscus. None of the subtypes were detected in the medial meniscus in this study. For clinical relevance, the results of this study can be useful in assisting the diagnosis of meniscus tear in clinical situations.
Collapse
Affiliation(s)
- Keinosuke Ryu
- Department of Orthopedic Surgery, Surugadai Nihon University Hospital, Chiyodaku Kanda Surugadai 1-8-13, Tokyo, Japan,
| | | | | | | | | | | | | |
Collapse
|
241
|
Fischenich KM, Coatney GA, Haverkamp JH, Button KD, DeCamp C, Haut RC, Haut Donahue TL. Evaluation of meniscal mechanics and proteoglycan content in a modified anterior cruciate ligament transection model. J Biomech Eng 2014; 136:1864206. [PMID: 24749144 DOI: 10.1115/1.4027468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/22/2014] [Indexed: 01/14/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) develops as a result of traumatic loading that causes tears of the soft tissues in the knee. A modified transection model, where the anterior cruciate ligament (ACL) and both menisci were transected, was used on skeletally mature Flemish Giant rabbits. Gross morphological assessments, elastic moduli, and glycosaminoglycan (GAG) coverage of the menisci were determined to quantify the amount of tissue damage 12 weeks post injury. This study is one of the first to monitor meniscal changes after inducing combined meniscal and ACL transections. A decrease in elastic moduli as well as a decrease in GAG coverage was seen.
Collapse
|
242
|
Fischenich KM, Button KD, Coatney GA, Fajardo RS, Leikert KM, Haut RC, Haut Donahue TL. Chronic changes in the articular cartilage and meniscus following traumatic impact to the lapine knee. J Biomech 2014; 48:246-53. [PMID: 25523754 DOI: 10.1016/j.jbiomech.2014.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 01/13/2023]
Abstract
The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post-impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (p=0.018) and femurs (p<0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (p=0.026), 34.8% increase in tibial plateau permeability (p=0.054), 40.8% increase in femoral condyle permeability (p=0.029), and 20.1% decrease in femoral condyle matrix modulus (p=0.012) in impacted joints compared to controls. Both instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (p<0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (p=0.036). In both meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post-injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee.
Collapse
Affiliation(s)
- Kristine M Fischenich
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Keith D Button
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Garrett A Coatney
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ryan S Fajardo
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Kevin M Leikert
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Roger C Haut
- Department of Radiology, Michigan State University, East Lansing, MI, USA; Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Tammy L Haut Donahue
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
243
|
Petzold J, Casadonte R, Otto M, Kriegsmann M, Granrath M, Baltzer A, Vogel J, Drees P, Deininger S, Becker M, Kriegsmann J. MALDI-Massenspektrometrie am Meniskus. Z Rheumatol 2014; 74:438-46. [DOI: 10.1007/s00393-014-1468-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
244
|
Chang EY, Biswas R, DiCamillo P, Statum S, Tafur M, Bydder GM, Chung CB. Morphologic characterization of meniscal root ligaments in the human knee with magnetic resonance microscopy at 11.7 and 3 T. Skeletal Radiol 2014; 43:1395-402. [PMID: 24957332 DOI: 10.1007/s00256-014-1941-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the feasibility of using MR microscopy to characterize the root ligaments of the human knee at both ultra-high-field (11.7 T) and high-field (3 T) strengths. MATERIALS AND METHODS Seven fresh cadaveric knees were used for this study. Six specimens were imaged at 11.7 T and one specimen at 3 T using isotropic or near-isotropic voxels. Histologic correlation was performed on the posteromedial root ligament of one specimen. Meniscal root ligament shape, signal intensity, and ultrastructure were characterized. RESULTS High-resolution, high-contrast volumetric images were generated from both MR systems. Meniscal root ligaments were predominantly oval in shape. Increased signal intensity was most evident at the posteromedial and posterolateral root ligaments. On the specimen that underwent histologic preparation, increased signal intensity corresponded to regions of enthesis fibrocartilage. Collagen fascicles were continuous between the menisci and root ligaments. Predominantly horizontal meniscal radial tie fibers continued into the root ligaments as vertical endoligaments. CONCLUSION MR microscopy can be used to characterize and delineate the distinct ultrastructure of the root ligaments on both ultra-high-field- and high-field-strength MR systems.
Collapse
Affiliation(s)
- Eric Y Chang
- Department of Radiology, VA San Diego Healthcare System, San Diego, CA, 92161, USA,
| | | | | | | | | | | | | |
Collapse
|
245
|
Human migratory meniscus progenitor cells are controlled via the TGF-β pathway. Stem Cell Reports 2014; 3:789-803. [PMID: 25418724 PMCID: PMC4235742 DOI: 10.1016/j.stemcr.2014.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
Degeneration of the knee joint during osteoarthritis often begins with meniscal lesions. Meniscectomy, previously performed extensively after meniscal injury, is now obsolete because of the inevitable osteoarthritis that occurs following this procedure. Clinically, meniscus self-renewal is well documented as long as the outer, vascularized meniscal ring remains intact. In contrast, regeneration of the inner, avascular meniscus does not occur. Here, we show that cartilage tissue harvested from the avascular inner human meniscus during the late stages of osteoarthritis harbors a unique progenitor cell population. These meniscus progenitor cells (MPCs) are clonogenic and multipotent and exhibit migratory activity. We also determined that MPCs are likely to be controlled by canonical transforming growth factor β (TGF-β) signaling that leads to an increase in SOX9 and a decrease in RUNX2, thereby enhancing the chondrogenic potential of MPC. Therefore, our work is relevant for the development of novel cell biological, regenerative therapies for meniscus repair. Progenitor cells are found in the inner avascular part of human osteoarthritic menisci These meniscus progenitor cells (MPCs) are clonogenic, migratory, and multipotent MPCs are governed via the canonical TGF-β pathway TGF-β3 via Smad2 reduces Runx2 to enhance the chondrogenic potential of MPCs
Collapse
|
246
|
Di Rosa M, Szychlinska MA, Tibullo D, Malaguarnera L, Musumeci G. Expression of CHI3L1 and CHIT1 in osteoarthritic rat cartilage model. A morphological study. Eur J Histochem 2014; 58:2423. [PMID: 25308850 PMCID: PMC4194398 DOI: 10.4081/ejh.2014.2423] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a degenerative joint disease, which affects millions of people around the world. It occurs when the protective cartilage at the end of bones wears over time, leading to loss of flexibility of the joint, pain and stiffness. The cause of osteoarthritis is unknown, but its development is associated with different factors, such as metabolic, genetic, mechanical and inflammatory ones. In recent years the biological role of chitinases has been studied in relation to different inflammatory diseases and more in particular the elevated levels of human cartilage glycoprotein 39 (CHI3L1) and chitotriosidase (CHIT1) have been reported in a variety of diseases including chronic inflammation and degenerative disorders. The aim of this study was to investigate, by immunohistochemistry, the distribution of CHI3L1 and CHIT1 in osteoarthritic and normal rat articular cartilage, to discover their potential role in the development of this disease. The hypothesis was that the expression of chitinases could increase in OA disease. Immunohistochemical analysis showed that CHI3L1 and CHIT1 staining was very strong in osteoarthritic cartilage, especially in the superficial areas of the cartilage most exposed to mechanical load, while it was weak or absent in normal cartilage. These findings suggest that these two chitinases could be functionally associated with the development of osteoarthritis and could be used as markers, so in the future they could have a role in the daily clinical practice to stage the severity of the disease. However, the longer-term in vivoand in vitro studies are needed to understand the exact mechanism of these molecules, their receptors and activities on cartilage tissue.
Collapse
|
247
|
Kato T, Miyaki S, Ishitobi H, Nakamura Y, Nakasa T, Lotz MK, Ochi M. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther 2014; 16:R163. [PMID: 25092378 PMCID: PMC4261911 DOI: 10.1186/ar4679] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/21/2014] [Indexed: 01/15/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a whole joint disease, and characterized by progressive degradation of articular cartilage, synovial hyperplasia, bone remodeling and angiogenesis in various joint tissues. Exosomes are a type of microvesicles (MVs) that may play a role in tissue-tissue and cell-cell communication in homeostasis and diseases. We hypothesized that exosomes function in a novel regulatory network that contributes to OA pathogenesis and examined the function of exosomes in communication among joint tissue cells. Methods Human synovial fibroblasts (SFB) and articular chondrocytes were obtained from normal knee joints. Exosomes isolated from conditioned medium of SFB were analyzed for size, numbers, markers and function. Normal articular chondrocytes were treated with exosomes from SFB, and Interleukin-1β (IL-1β) stimulated SFB. OA-related genes expression was quantified using real-time PCR. To analyze exosome effects on cartilage tissue, we performed glycosaminoglycan release assay. Angiogenic activity of these exosomes was tested in migration and tube formation assays. Cytokines and miRNAs in exosomes were analyzed by Bio-Plex multiplex assay and NanoString analysis. Results Exosomes from IL-1β stimulated SFB significantly up-regulated MMP-13 and ADAMTS-5 expression in articular chondrocytes, and down-regulated COL2A1 and ACAN compared with SFB derived exosomes. Migration and tube formation activity were significantly higher in human umbilical vein endothelial cells (HUVECs) treated with the exosomes from IL-1β stimulated SFB, which also induced significantly more proteoglycan release from cartilage explants. Inflammatory cytokines, IL-6, MMP-3 and VEGF in exosomes were only detectable at low level. IL-1β, TNFα MMP-9 and MMP-13 were not detectable in exosomes. NanoString analysis showed that levels of 50 miRNAs were differentially expressed in exosomes from IL-1β stimulated SFB compared to non-stimulated SFB. Conclusions Exosomes from IL-1β stimulated SFB induce OA-like changes both in vitro and in ex vivo models. Exosomes represent a novel mechanism by which pathogenic signals are communicated among different cell types in OA-affected joints.
Collapse
|
248
|
Sigurdsson U, Siversson C, Lammentausta E, Svensson J, Tiderius CJ, Dahlberg LE. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). BMC Musculoskelet Disord 2014; 15:226. [PMID: 25005036 PMCID: PMC4125346 DOI: 10.1186/1471-2474-15-226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 07/01/2014] [Indexed: 11/11/2022] Open
Abstract
Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p < 0.05), and was lower in the medial than in the lateral meniscus at all time points (p < 0.05). A faster increase in ΔR1 was observed in the vascularized peripheral region of the posterior medial meniscus, than in the avascular central part of the posterior medial meniscus during the first 60 minutes (p < 0.05). Conclusion It is feasible to examine undamaged meniscus and cartilage simultaneously using dGEMRIC, preferably 90 minutes after the injection of a double dose of Gd-DTPA2- (0.2 mmol/kg body weight).
Collapse
Affiliation(s)
- Ulf Sigurdsson
- Department of Orthopaedics, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
249
|
Kwok J, Grogan S, Meckes B, Arce F, Lal R, D'Lima D. Atomic force microscopy reveals age-dependent changes in nanomechanical properties of the extracellular matrix of native human menisci: implications for joint degeneration and osteoarthritis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1777-85. [PMID: 24972006 DOI: 10.1016/j.nano.2014.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED With aging, the menisci become more susceptible to degeneration due to sustained mechanical stress accompanied by age-related changes in the extracellular matrix (ECM). However, the mechanistic relationship between age-related meniscal degeneration and osteoarthritis (OA) development is not yet fully understood. We have examined the nanomechanical properties of the ECM of normal, aged, and degenerated human menisci using atomic force microscopy (AFM). Elasticity maps of the ECM revealed a unique differential qualitative nanomechanical profile of healthy young tissue: prominent unimodal peaks in the elastic moduli distribution in each region (outer, middle, and inner). Healthy aged tissue showed similar regional elasticity but with both unimodal and bimodal distributions that included higher elastic moduli. In contrast, degenerated OA tissue showed the broadest distribution without prominent peaks indicative of substantially increased mechanical heterogeneity in the ECM. AFM analysis reveals distinct regional nanomechanical profiles that underlie aging-dependent tissue degeneration and OA. FROM THE CLINICAL EDITOR The authors of this study used atomic force microscopy to determine the nanomechanical properties of the extracellular matrix in normal and degenerated human menisci, as well as in menisci undergoing healthy aging. Comparison of these properties help to understand the relationship between healthy ageing, and age-dependent joint degeneration and osteoarthritis.
Collapse
Affiliation(s)
- Jeanie Kwok
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA; Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Shawn Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Brian Meckes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Fernando Arce
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ratnesh Lal
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA; Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Darryl D'Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA.
| |
Collapse
|
250
|
Musumeci G, Trovato FM, Pichler K, Weinberg AM, Loreto C, Castrogiovanni P. Extra-virgin olive oil diet and mild physical activity prevent cartilage degeneration in an osteoarthritis model: an in vivo and in vitro study on lubricin expression. J Nutr Biochem 2014; 24:2064-75. [PMID: 24369033 DOI: 10.1016/j.jnutbio.2013.07.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mediterranean diet includes a relatively high fat consumption mostly from monounsaturated fatty acids mainly provided by olive oil, the principal source of culinary and dressing fat. The beneficial effects of olive oil have been widely studied and could be due to its phytochemicals, which have been shown to possess anti-inflammatory properties. Lubricin is a chondroprotective glycoprotein and it serves as a critical boundary lubricant between opposing cartilage surfaces. A joint injury causes an initial flare of cytokines, which decreases lubricin expression and predisposes to cartilage degeneration such as osteoarthritis. The aim of this study was to evaluate the role of extra-virgin olive oil diet and physical activity on inflammation and expression of lubricin in articular cartilage of rats after injury. In this study we used histomorphometric, histological, immunocytochemical, immunohistochemical, western blot and biochemical analysis for lubricin and interleukin-1 evaluations in the cartilage and in the synovial fluid. We report the beneficial effect of physical activity (treadmill training) and extra-virgin olive oil supplementation, on the articular cartilage. The effects of anterior cruciate ligament transection decrease drastically the expression of lubricin and increase the expression of interleukin-1 in rats, while after physical activity and extra-virgin olive oil supplemented diet, the values return to a normal level compared to the control group. With our results we can confirm the importance of the physical activity in conjunction with extra-virgin olive oil diet in medical therapy to prevent osteoarthritis disease in order to preserve the articular cartilage and then the entire joint.
Collapse
|