201
|
Dubbink HJ, Hersmus R, Pike ACW, Molier M, Brinkmann AO, Jenster G, Trapman J. Androgen receptor ligand-binding domain interaction and nuclear receptor specificity of FXXLF and LXXLL motifs as determined by L/F swapping. Mol Endocrinol 2006; 20:1742-55. [PMID: 16627595 DOI: 10.1210/me.2005-0348] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) ligand-binding domain (LBD) binds FXXLF motifs, present in the AR N-terminal domain and AR-specific cofactors, and some LXXLL motifs of nuclear receptor coactivators. We demonstrated that in the context of the AR FXXLF motif many different amino acid residues at positions +2 and +3 are compatible with strong AR LBD interaction, although a preference for E at +2 and K or R at +3 was found. Pairwise systematic analysis of F/L swaps at +1 and +5 in FXXLF and LXXLL motifs showed: 1) F to L substitutions in natural FXXLF motifs abolished AR LBD interaction; 2) binding of interacting LXXLL motifs was unchanged or increased upon L to F substitutions; 3) certain noninteracting LXXLL motifs became strongly AR-interacting FXXLF motifs; whereas 4) other nonbinders remained unaffected by L to F substitutions. All FXXLF motifs, but not the corresponding LXXLL motifs, displayed a strong preference for AR LBD. Progesterone receptor LBD interacted with some FXXLF motifs, albeit always less efficiently than corresponding LXXLL motifs. AR LBD interaction of most FXXLF and LXXLL peptides depended on classical charge clamp residue K720, whereas E897 was less important. Other charged residues lining the AR coactivator-binding groove, K717 and R726, modulated optimal peptide binding. Interestingly, these four charged residues affected binding of individual peptides independent of an F or L at +1 and +5 in swap experiments. In conclusion, F residues determine strong and selective peptide interactions with AR. Sequences flanking the core motif determine the specific mode of FXXLF and LXXLL interactions.
Collapse
Affiliation(s)
- Hendrikus J Dubbink
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
202
|
Rees I, Lee S, Kim H, Tsai FTF. The E3 ubiquitin ligase CHIP binds the androgen receptor in a phosphorylation-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1073-9. [PMID: 16725394 DOI: 10.1016/j.bbapap.2006.03.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 03/09/2006] [Accepted: 03/27/2006] [Indexed: 11/17/2022]
Abstract
In Eukarya, the 26S proteasome is primarily responsible for intracellular protein degradation. To be degraded, proteins must be ubiquitinated. The latter requires a multi-enzyme cascade consisting of an E1, an E2, and an E3 enzyme. While there is only a single E1 and a few E2s, there are many different E3s that target substrates by recognizing specific sequence motifs, known as degrons. Here, we have used the peptide array technology to identify binding motifs in the human androgen receptor (AR), which are recognized by the Carboxyl-terminus of Hsc70-Interacting Protein (CHIP), a U-box E3 and Hsp70/Hsp90 co-chaperone. We show that CHIP recognizes AR in a highly specific, phosphorylation- and sequence-dependent manner, and propose that this interaction could provide a mechanism that regulates the degradation of CHIP substrates.
Collapse
Affiliation(s)
- Ian Rees
- Program in Structural and Computational Biology and Molecular Biophysics, One Baylor Plaza, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
203
|
Li J, Fu J, Toumazou C, Yoon HG, Wong J. A Role of the Amino-Terminal (N) and Carboxyl-Terminal (C) Interaction in Binding of Androgen Receptor to Chromatin. Mol Endocrinol 2006; 20:776-85. [PMID: 16373397 DOI: 10.1210/me.2005-0298] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The N-terminal domain of AR is known to engage a hormone-dependent interaction with its C-terminal ligand-binding domain, and this N/C interaction is known to modulate AR transcriptional activity. Using Xenopus oocytes as a model system to study transcriptional regulation in chromatin, we found that two previously reported N/C interaction-defective AR mutants, one with deletion of 23FQNLF27(ARDeltaF) and one with a Gly 21 to Glu mutation (ARG21E), were surprisingly inactive in activating transcription from various reporters assembled into chromatin. Further study using chromatin immunoprecipitation assay revealed that these mutants failed to bind both mouse mammary tumor virus-long terminal repeat and prostate-specific antigen enhancer assembled into chromatin. This defect is specific to chromatin because both mutants could bind to a consensus AR response element in vitro and activate transcription driven by mouse mammary tumor virus-long terminal repeat in transient transfection as effective as the wild-type AR. To further substantiate this novel finding, we established 293 cell lines that stably expressed either AR or ARDeltaF mutant in an inducible manner. Using these cell lines, we confirmed by using chromatin immunoprecipitation assay that AR but not ARDeltaF could bind to the endogenous prostate-specific antigen enhancer. Furthermore, we found that the ARDeltaF mutant interacts poorly with Brg1, the ATPase subunit of the chromatin-remodeling factor SWI/SNF. Taken together, our study reveals a novel role of AR N/C interaction in control of AR chromatin binding and suggests a working model that the proper N/C interaction is required for AR to recruit SWI/SNF complex, which in turn remodels chromatin to allow AR to bind to AR response elements in chromatin.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
204
|
Kazmin D, Prytkova T, Cook CE, Wolfinger R, Chu TM, Beratan D, Norris JD, Chang CY, McDonnell DP. Linking ligand-induced alterations in androgen receptor structure to differential gene expression: a first step in the rational design of selective androgen receptor modulators. Mol Endocrinol 2006; 20:1201-17. [PMID: 16574741 DOI: 10.1210/me.2005-0309] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously identified a family of novel androgen receptor (AR) ligands that, upon binding, enable AR to adopt structures distinct from that observed in the presence of canonical agonists. In this report, we describe the use of these compounds to establish a relationship between AR structure and biological activity with a view to defining a rational approach with which to identify useful selective AR modulators. To this end, we used combinatorial peptide phage display coupled with molecular dynamic structure analysis to identify the surfaces on AR that are exposed specifically in the presence of selected AR ligands. Subsequently, we used a DNA microarray analysis to demonstrate that differently conformed receptors facilitate distinct patterns of gene expression in LNCaP cells. Interestingly, we observed a complete overlap in the identity of genes expressed after treatment with mechanistically distinct AR ligands. However, it was differences in the kinetics of gene regulation that distinguished these compounds. Follow-up studies, in cell-based assays of AR action, confirmed the importance of these alterations in gene expression. Together, these studies demonstrate an important link between AR structure, gene expression, and biological outcome. This relationship provides a firm underpinning for mechanism-based screens aimed at identifying SARMs with useful clinical profiles.
Collapse
Affiliation(s)
- Dmitri Kazmin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
He B, Gampe RT, Hnat AT, Faggart JL, Minges JT, French FS, Wilson EM. Probing the Functional Link between Androgen Receptor Coactivator and Ligand-binding Sites in Prostate Cancer and Androgen Insensitivity. J Biol Chem 2006; 281:6648-63. [PMID: 16365032 DOI: 10.1074/jbc.m511738200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor required for male sex development and virilization and contributes to prostate cancer initiation and progression. High affinity androgen binding triggers conformational changes required for AR transactivation. Here we characterized naturally occurring AR gene mutations in the region of activation function 2 (AF2) that decrease or increase AR transcriptional activity by altering the region bounded by AF2 and the ligand binding pocket without affecting equilibrium androgen binding affinity. In the androgen insensitivity syndrome, germ line AR mutations increase the androgen dissociation rate and reduce AR FXXLF motif binding and the recruitment of steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs. In prostate cancer, somatic AR mutations in AF2 or near the bound ligand slow androgen dissociation and increase AR stabilization and coactivator recruitment. Crystal structures of the AR ligand binding domain bound to R1881 and FXXLF or LXXLL motif peptide indicate the mutations are proximal to the AF2 bound peptide, adjacent to the ligand pocket, or in a putative ligand gateway. The results suggest a bidirectional structural relay between bound ligand and coactivator that establishes AR functional potency in vivo.
Collapse
Affiliation(s)
- Bin He
- Laboratory for Reproductive Biology, Lineberger Comprehensive Cancer Center, Department of Pediatrics, Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
Callewaert L, Van Tilborgh N, Claessens F. Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res 2006; 66:543-53. [PMID: 16397271 DOI: 10.1158/0008-5472.can-05-2389] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) plays a key role in prostate cancer development, as well as its treatments, even for the hormone-refractory state. Here, we report that an earlier described lysine-to-arginine mutation at position 179 in AR leads to a more potent AR. We show that two activation domains (Tau-1 and Tau-5) are necessary and sufficient for the full activity of AR and the intrinsic activity of the AR-NTD. Two alpha-helices surrounding the Lys179 define the core of Tau-1, which can act as an autonomous activation function, independent of p160 coactivators. Furthermore, we show that although the recruitment of p160 coactivators is mediated through Tau-5, this event is attenuated by core Tau-1. This better definition of the mechanisms of action of both Tau-1 and Tau-5 is instrumental for the design of alternative therapeutic strategies against prostate cancer.
Collapse
Affiliation(s)
- Leen Callewaert
- Molecular Endocrinology Laboratory, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
207
|
Lavery D, Mcewan I. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 2006; 391:449-64. [PMID: 16238547 PMCID: PMC1276946 DOI: 10.1042/bj20050872] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Steroid hormones are important endocrine signalling molecules controlling reproduction, development, metabolism, salt balance and specialized cellular responses, such as inflammation and immunity. They are lipophilic in character and act by binding to intracellular receptor proteins. These receptors function as ligand-activated transcription factors, switching on or off networks of genes in response to a specific hormone signal. The receptor proteins have a conserved domain organization, comprising a C-terminal LBD (ligand-binding domain), a hinge region, a central DBD (DNA-binding domain) and a highly variable NTD (N-terminal domain). The NTD is structurally flexible and contains surfaces for both activation and repression of gene transcription, and the strength of the transactivation response has been correlated with protein length. Recent evidence supports a structural and functional model for the NTD that involves induced folding, possibly involving alpha-helix structure, in response to protein-protein interactions and structure-stabilizing solutes.
Collapse
Affiliation(s)
- Derek N. Lavery
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
| | - Iain J. Mcewan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
208
|
Elhaji YA, Stoica I, Dennis S, Purisima EO, Lumbroso R, Beitel LK, Trifiro MA. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity. Hum Mol Genet 2006; 15:921-31. [PMID: 16449235 DOI: 10.1093/hmg/ddl009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Structural studies of the ligand-binding domain (LBD) of several steroid receptors have revealed that the dynamic properties of the C-terminal helix 12 (H12) are the major determinant of the activation mode of these receptors. H12 exhibits high mobility and different conformations in the absence of ligand. Upon ligand binding, H12 is stabilized in a precise position to seal the ligand-binding pocket and finalize the assembly of the activation function (AF-2) domain. In this study, we investigated the role of the conserved proline 892 of the androgen receptor (AR) in directing the dynamic location and orientation of the AR-H12. We used a combined approach including kinetic and biochemical assays with molecular dynamic simulations to analyze two substitutions (P892A and P892L) identified in individuals with complete androgen insensitivity syndrome. Our analyses revealed distinct mechanisms by which these substitutions impair H12 function resulting in severely defective receptors. The AR-P892A receptor exhibited reduced ligand binding and transactivational potential because of an increased flexibility in H12. The AR-P892L substitution renders the receptor inactive due to a distorted, unstructured and misplaced H12. To confirm the mutants' inability to stabilize H12 in an active position, we have developed a novel in vivo assay to evaluate the accessibility of the H12-docking site on the AR-LBD surface. An extrinsic AR-H12 peptide was able to interact with wild-type and mutant LBDs in the absence of ligand. Ligand-induced proper positioning of the intrinsic H12 of wild-type AR prevented these interactions, whereas the misplacement of the mutants' H12 did not. Proline at this position may be critical for H12 dynamics not only in the AR, but also in other nuclear receptors where this proline is conserved.
Collapse
Affiliation(s)
- Youssef A Elhaji
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, National Research Council of Canada, Montreal, Que., Canada.
| | | | | | | | | | | | | |
Collapse
|
209
|
Sood VD, Baker D. Recapitulation and design of protein binding peptide structures and sequences. J Mol Biol 2006; 357:917-27. [PMID: 16473368 DOI: 10.1016/j.jmb.2006.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/03/2006] [Accepted: 01/09/2006] [Indexed: 11/23/2022]
Abstract
An important objective of computational protein design is the generation of high affinity peptide inhibitors of protein-peptide interactions, both as a precursor to the development of therapeutics aimed at disrupting disease causing complexes, and as a tool to aid investigators in understanding the role of specific complexes in the cell. We have developed a computational approach to increase the affinity of a protein-peptide complex by designing N or C-terminal extensions which interact with the protein outside the canonical peptide binding pocket. In a first in silico test, we show that by simultaneously optimizing the sequence and structure of three to nine residue peptide extensions starting from short (1-6 residue) peptide stubs in the binding pocket of a peptide binding protein, the approach can recover both the conformations and the sequences of known binding peptides. Comparison with phage display and other experimental data suggests that the peptide extension approach recapitulates naturally occurring peptide binding specificity better than fixed backbone design, and that it should be useful for predicting peptide binding specificities from crystal structures. We then experimentally test the approach by designing extensions for p53 and dystroglycan-based peptides predicted to bind with increased affinity to the Mdm2 oncoprotein and to dystrophin, respectively. The measured increases in affinity are modest, revealing some limitations of the method. Based on these in silico and experimental results, we discuss future applications of the approach to the prediction and design of protein-peptide interactions.
Collapse
Affiliation(s)
- Vanita D Sood
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
210
|
Bohl CE, Miller DD, Chen J, Bell CE, Dalton JT. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J Biol Chem 2005; 280:37747-54. [PMID: 16129672 PMCID: PMC2072880 DOI: 10.1074/jbc.m507464200] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which the androgen receptor (AR) distinguishes between agonist and antagonist ligands is poorly understood. AR antagonists are currently used to treat prostate cancer. However, mutations commonly develop in patients that convert these compounds to agonists. Recently, our laboratory discovered selective androgen receptor modulators, which structurally resemble the nonsteroidal AR antagonists bicalutamide and hydroxyflutamide but act as agonists for the androgen receptor in a tissue-selective manner. To investigate why subtle structural changes to both the ligand and the receptor (i.e. mutations) result in drastic changes in activity, we studied structure-activity relationships for nonsteroidal AR ligands through crystallography and site-directed mutagenesis, comparing bound conformations of R-bicalutamide, hydroxyflutamide, and two previously reported nonsteroidal androgens, S-1 and R-3. These studies provide the first crystallographic evidence of the mechanism by which nonsteroidal ligands interact with the wild type AR. We have shown that changes induced to the positions of Trp-741, Thr-877, and Met-895 allow for ligand accommodation within the AR binding pocket and that a water-mediated hydrogen bond to the backbone oxygen of Leu-873 and the ketone of hydroxyflutamide is present when bound to the T877A AR variant. Additionally, we demonstrated that R-bicalutamide stimulates transcriptional activation in AR harboring the M895T point mutation. As a whole, these studies provide critical new insight for receptor-based drug design of nonsteroidal AR agonists and antagonists.
Collapse
Affiliation(s)
- Casey E Bohl
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | |
Collapse
|
211
|
Affiliation(s)
- Wenqing Gao
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
212
|
Duff J, McEwan IJ. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol 2005; 19:2943-54. [PMID: 16081517 DOI: 10.1210/me.2005-0231] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The androgen receptor (AR) signaling pathway is a major therapeutic target in the treatment of prostate cancer. The AR functions as a ligand-activated transcription factor in the presence of the cognate hormone ligands testosterone and dihydrotestosterone (DHT). We have characterized a highly conserved sequence at the C-terminal end of helix 10/11 in the ligand-binding domain (LBD), which is prone to receptor point mutations in prostate cancer. This sequence includes threonine 877 that is involved in hydrogen bonding to the D ring of the steroid molecule and leads to promiscuous ligand activation of the AR when mutated to alanine or serine. A second mutation in this region, H874Y, also results in a receptor protein that has broadened ligand-binding specificity, but retains an affinity for DHT (K(d) = 0.77 nm) similar to that of the wild-type receptor. The structure of the mutant LBD, expressed in Escherichia coli, is not dramatically altered compared with the wild-type AR-LBD in the presence of DHT, but shows a modestly increased sensitivity to protease digestion in the absence of hormone. This mutant AR showed wild-type AR-LBD/N-terminal domain interactions, but significantly enhanced binding and transactivation activity with all three members of the p160 family of coactivator proteins. Together, these phenotypic changes are likely to confer a selective advantage for tumor cells in a low androgen environment resulting from hormone therapy.
Collapse
Affiliation(s)
- Jennifer Duff
- School of Medical Sciences, Institute of Medical Sciences Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | |
Collapse
|
213
|
Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AAK, Miner JN, Diamond MI. The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci U S A 2005; 102:9802-7. [PMID: 15994236 PMCID: PMC1168953 DOI: 10.1073/pnas.0408819102] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-regulated transcription factors important in human physiology and disease. In certain NRs, including the androgen receptor (AR), ligand binding to the carboxy-terminal domain (LBD) regulates transcriptional activation functions in the LBD and amino-terminal domain (NTD). The basis for NTD-LBD communication is unknown but may involve NTD-LBD interactions either within a single receptor or between different members of an AR dimer. Here, measurement of FRET between fluorophores attached to the NTD and LBD of the AR established that agonist binding initiated an intramolecular NTD-LBD interaction in the nucleus and cytoplasm. This intramolecular folding was followed by AR self-association, which occurred preferentially in the nucleus. Rapid, ligand-induced intramolecular folding and delayed association also were observed for estrogen receptor-alpha but not for peroxisome proliferator activated receptor-gamma2. An antagonist ligand, hydroxyflutamide, blocked the NTD-LBD association within AR. NTD-LBD association also closely correlated with the transcriptional activation by heterologous ligands of AR mutants isolated from hormone-refractory prostate tumors. Intramolecular folding, but not AR-AR affinity, was disrupted by mutation of an alpha-helical ((23)FQNLF(27)) motif in the AR NTD previously described to interact with the AR LBD in vitro. This work establishes an intramolecular NTD-LBD conformational change as an initial component of ligand-regulated NR function.
Collapse
Affiliation(s)
- Fred Schaufele
- Diabetes Center and Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Chang CY, McDonnell DP. Androgen receptor-cofactor interactions as targets for new drug discovery. Trends Pharmacol Sci 2005; 26:225-8. [PMID: 15860367 DOI: 10.1016/j.tips.2005.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cofactor recruitment is a crucial regulatory step in nuclear receptor signal transduction. Given the obligate nature of interactions between cofactors and these receptors for transcriptional activity, it is likely that drugs that target coactivator interaction surfaces will function as pure antagonists with particular utility in the treatment of estrogen- and androgen-dependent cancers. Recent crystallographic analysis of one of the major protein-protein interaction surfaces on the androgen receptor has raised expectations that it will be possible to develop small-molecule antagonists that block cofactor interactions.
Collapse
Affiliation(s)
- Ching-yi Chang
- Duke University Medical Center, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
| | | |
Collapse
|
215
|
Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF. Physiological Role for the Cochaperone FKBP52 in Androgen Receptor Signaling. Mol Endocrinol 2005; 19:1654-66. [PMID: 15831525 DOI: 10.1210/me.2005-0071] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractMolecular chaperones mediate multiple aspects of steroid receptor function, but the physiological importance of most receptor-associated cochaperones has not been determined. To help fill this gap, we targeted for disruption the mouse gene for the 52-kDa FK506 binding protein, FKBP52, a 90-kDa heat shock protein (Hsp90)-binding immunophilin found in steroid receptor complexes. A mouse line lacking FKBP52 (52KO) was generated and characterized. Male 52KO mice have several defects in reproductive tissues consistent with androgen insensitivity; among these defects are ambiguous external genitalia and dysgenic prostate. FKBP52 and androgen receptor (AR) are coexpressed in prostate epithelial cells of wild-type mice. However, FKBP52 and AR are similarly coexpressed in testis even though testis morphology and spermatogenesis in 52KO males are usually normal. Molecular studies confirm that FKBP52 is a component of AR complexes, and cellular studies in yeast and human cell models demonstrate that FKBP52 can enhance AR-meditated transactivation. AR enhancement requires FKBP52 peptidylprolyl isomerase activity as well as Hsp90-binding ability, and enhancement probably relates to an affect of FKBP52 on AR-folding pathways. In the presence of FKBP52, but not other cochaperones, the function of a minimally active AR point mutant can be dramatically restored. We conclude that FKBP52 is an AR folding factor that has critically important physiological roles in some male reproductive tissues.
Collapse
Affiliation(s)
- Joyce Cheung-Flynn
- Department of Biochemistry and Molecular Biology, Johnson Research Building, Mayo Clinic Scottsdale, 13400 East Shea Boulevard, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | |
Collapse
|
216
|
Quigley CA, Tan JA, He B, Zhou ZX, Mebarki F, Morel Y, Forest MG, Chatelain P, Ritzén EM, French FS, Wilson EM. Partial androgen insensitivity with phenotypic variation caused by androgen receptor mutations that disrupt activation function 2 and the NH(2)- and carboxyl-terminal interaction. Mech Ageing Dev 2005; 125:683-95. [PMID: 15541764 DOI: 10.1016/j.mad.2004.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Partial androgen insensitivity with sex phenotype variation in two unrelated families was associated with missense mutations in the androgen receptor (AR) gene that disrupted the AR NH(2)-terminal/carboxy terminal interaction. Each mutation caused a single amino acid change within the region of the ligand-binding domain that forms activation function 2 (AF2). In one family, the mutation I737T was in alpha helix 4 and in the other F725L was between helices 3 and 4. Neither mutation altered androgen binding as determined by assays of mutant AR in the patient's cultured genital skin fibroblasts or of recombinant mutant receptors transfected into COS cells. In transient cotransfection assays in CV1 cells, transactivation with the AR mutants at low concentrations of DHT was reduced several fold compared with wild-type AR but increased at higher concentrations. Defects in NH(2)-terminal/carboxy terminal interactions were identified in mammalian two hybrid assays. In similar assays, there was reduced binding of the p160 coactivators TIF2/SRC2 and SRC1 to the mutant AR ligand binding domains (LBD). In the family with AR I737T, sex phenotype varied from severely defective masculinization in the proband to a maternal great uncle whose only manifestation of AIS was severe gynecomastia. He was fertile and passed the mutation to two daughters. The proband of the F725L family was also incompletely masculinized but was raised as a male while his half-sibling by a different father was affected more severely and reared as a female. These studies indicate that the function of an AR AF2 mutant in male development can vary greatly depending on the genetic background.
Collapse
Affiliation(s)
- Charmian A Quigley
- Department of Pediatrics, Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7500, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc Natl Acad Sci U S A 2005; 102:6201-6. [PMID: 15833816 PMCID: PMC1087923 DOI: 10.1073/pnas.0500381102] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/15/2005] [Indexed: 11/18/2022] Open
Abstract
Carcinoma of the prostate is the most commonly diagnosed cancer in men. The current pharmacological treatment of choice for progressive androgen-dependent prostate cancer is the nonsteroidal antiandrogen, bicalutamide, either as monotherapy or with adjuvant castration or luteinizing hormone-releasing hormone superagonists to block the synthesis of endogenous testosterone. To date, no nonsteroidal or antagonist-bound androgen receptor (AR) structure is available. We solved the x-ray crystal structure of the mutant W741L AR ligand-binding domain bound to R-bicalutamide at 1.8-A resolution. This mutation confers agonist activity to bicalutamide and is likely involved in bicalutamide withdrawal syndrome. The three-dimensional structure demonstrates that the B ring of R-bicalutamide in the W741L mutant is accommodated at the location of the indole ring of Trp-741 in the WT AR bound to dihydrotestosterone. Knowledge of the binding mechanism for R-bicalutamide will provide molecular rationale for the development of new antiandrogens and selective AR modulators.
Collapse
Affiliation(s)
- Casey E Bohl
- Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
218
|
Bai S, He B, Wilson EM. Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol Cell Biol 2005; 25:1238-57. [PMID: 15684378 PMCID: PMC548016 DOI: 10.1128/mcb.25.4.1238-1257.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene activation by steroid hormone receptors involves the recruitment of the steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs to activation function 2 (AF2) in the ligand binding domain. For the androgen receptor (AR), AF2 also serves as the interaction site for the AR NH(2)-terminal FXXLF motif in the androgen-dependent NH(2)-terminal and carboxyl-terminal (N/C) interaction. The relative importance of the AR AF2 site has been unclear, since the AR FXXLF motif interferes with coactivator recruitment by competitive inhibition of LXXLL motif binding. In this report, we identified the X chromosome-linked melanoma antigen gene product MAGE-11 as an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif. Binding of MAGE-11 to the AR FXXLF alpha-helical region stabilizes the ligand-free AR and, in the presence of an agonist, increases exposure of AF2 to the recruitment and activation by the SRC/p160 coactivators. Intracellular association between AR and MAGE-11 is supported by their coimmunoprecipitation and colocalization in the absence and presence of hormone and by competitive inhibition of the N/C interaction. AR transactivation increases in response to MAGE-11 and the SRC/p160 coactivators through mechanisms that include but are not limited to the AF2 site. MAGE-11 is expressed in androgen-dependent tissues and in prostate cancer cell lines. The results suggest MAGE-11 is a unique AR coregulator that increases AR activity by modulating the AR interdomain interaction.
Collapse
Affiliation(s)
- Suxia Bai
- Laboratories for Reproductive Biology, CB# 7500, Rm. 3340, Medical Biomolecular Research Building, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|