201
|
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022; 23:329-349. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Citation(s) in RCA: 441] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.
Collapse
Affiliation(s)
- Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
202
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
203
|
Sooraj D, Sun C, Doan A, Garama DJ, Dannappel MV, Zhu D, Chua HK, Mahara S, Wan Hassan WA, Tay YK, Guanizo A, Croagh D, Prodanovic Z, Gough DJ, Wan C, Firestein R. MED12 and BRD4 cooperate to sustain cancer growth upon loss of mediator kinase. Mol Cell 2022; 82:123-139.e7. [PMID: 34910943 DOI: 10.1016/j.molcel.2021.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022]
Abstract
Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Binding Sites
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/genetics
- Cyclin-Dependent Kinase 8/genetics
- Cyclin-Dependent Kinase 8/metabolism
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/metabolism
- Enhancer Elements, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- Humans
- Male
- Mediator Complex/antagonists & inhibitors
- Mediator Complex/genetics
- Mediator Complex/metabolism
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Burden
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Dhanya Sooraj
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Claire Sun
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Anh Doan
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Daniel J Garama
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Marius V Dannappel
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Danxi Zhu
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Hui K Chua
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Sylvia Mahara
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Wan Amir Wan Hassan
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Yeng Kwang Tay
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Aleks Guanizo
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Daniel Croagh
- School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Zdenka Prodanovic
- Department of Pathology, Monash Medical Centre, Clayton, VIC, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Chunhua Wan
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Ron Firestein
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
204
|
BRD9 regulates interferon-stimulated genes during macrophage activation via cooperation with BET protein BRD4. Proc Natl Acad Sci U S A 2022; 119:2110812119. [PMID: 34983841 PMCID: PMC8740701 DOI: 10.1073/pnas.2110812119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Macrophages regulate many aspects of the innate immune response and the activation of adaptive immunity following exposure to microbial ligands. However, macrophages can also contribute to inflammation underlying diseases such as atherosclerosis and obesity. Epigenetic regulators control inflammatory gene regulation and, as such, are potential targets for modulation of the inflammatory response. Here, we show that inhibitors and degraders of the bromodomain protein BRD9, a subunit of the noncanonical BAF complex, limit inflammation by specifically blocking the induction of interferon-stimulated genes. This effect overlaps with the transcriptional responses with the BET inhibitor JQ1 but affects fewer genes and is more specific in scope. Our results suggest that BRD9 inhibitors/degraders may be therapeutically relevant agents to limit interferon-associated inflammation. Macrophages induce a number of inflammatory response genes in response to stimulation with microbial ligands. In response to endotoxin Lipid A, a gene-activation cascade of primary followed by secondary-response genes is induced. Epigenetic state is an important regulator of the kinetics, specificity, and mechanism of gene activation of these two classes. In particular, SWI/SNF chromatin-remodeling complexes are required for the induction of secondary-response genes, but not primary-response genes, which generally exhibit open chromatin. Here, we show that a recently discovered variant of the SWI/SNF complex, the noncanonical BAF complex (ncBAF), regulates secondary-response genes in the interferon (IFN) response pathway. Inhibition of bromodomain-containing protein 9 (BRD9), a subunit of the ncBAF complex, with BRD9 bromodomain inhibitors (BRD9i) or a degrader (dBRD9) led to reduction in a number of interferon-stimulated genes (ISGs) following stimulation with endotoxin lipid A. BRD9-dependent genes overlapped highly with a subset of genes differentially regulated by BET protein inhibition with JQ1 following endotoxin stimulation. We find that the BET protein BRD4 is cobound with BRD9 in unstimulated macrophages and corecruited upon stimulation to ISG promoters along with STAT1, STAT2, and IRF9, components of the ISGF3 complex activated downstream of IFN-alpha receptor stimulation. In the presence of BRD9i or dBRD9, STAT1-, STAT2-, and IRF9-binding is reduced, in some cases with reduced binding of BRD4. These results demonstrate a specific role for BRD9 and the ncBAF complex in ISG activation and identify an activity for BRD9 inhibitors and degraders in dampening endotoxin- and IFN-dependent gene expression.
Collapse
|
205
|
Nord JA, Wynia-Smith SL, Gehant AL, Jones Lipinski RA, Naatz A, Rioja I, Prinjha RK, Corbett JA, Smith BC. N-terminal BET bromodomain inhibitors disrupt a BRD4-p65 interaction and reduce inducible nitric oxide synthase transcription in pancreatic β-cells. Front Endocrinol (Lausanne) 2022; 13:923925. [PMID: 36176467 PMCID: PMC9513428 DOI: 10.3389/fendo.2022.923925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/19/2022] [Indexed: 02/02/2023] Open
Abstract
Chronic inflammation of pancreatic islets is a key driver of β-cell damage that can lead to autoreactivity and the eventual onset of autoimmune diabetes (T1D). In the islet, elevated levels of proinflammatory cytokines induce the transcription of the inducible nitric oxide synthase (iNOS) gene, NOS2, ultimately resulting in increased nitric oxide (NO). Excessive or prolonged exposure to NO causes β-cell dysfunction and failure associated with defects in mitochondrial respiration. Recent studies showed that inhibition of the bromodomain and extraterminal domain (BET) family of proteins, a druggable class of epigenetic reader proteins, prevents the onset and progression of T1D in the non-obese diabetic mouse model. We hypothesized that BET proteins co-activate transcription of cytokine-induced inflammatory gene targets in β-cells and that selective, chemotherapeutic inhibition of BET bromodomains could reduce such transcription. Here, we investigated the ability of BET bromodomain small molecule inhibitors to reduce the β-cell response to the proinflammatory cytokine interleukin 1 beta (IL-1β). BET bromodomain inhibition attenuated IL-1β-induced transcription of the inflammatory mediator NOS2 and consequent iNOS protein and NO production. Reduced NOS2 transcription is consistent with inhibition of NF-κB facilitated by disrupting the interaction of a single BET family member, BRD4, with the NF-κB subunit, p65. Using recently reported selective inhibitors of the first and second BET bromodomains, inhibition of only the first bromodomain was necessary to reduce the interaction of BRD4 with p65 in β-cells. Moreover, inhibition of the first bromodomain was sufficient to mitigate IL-1β-driven decreases in mitochondrial oxygen consumption rates and β-cell viability. By identifying a role for the interaction between BRD4 and p65 in controlling the response of β-cells to proinflammatory cytokines, we provide mechanistic information on how BET bromodomain inhibition can decrease inflammation. These studies also support the potential therapeutic application of more selective BET bromodomain inhibitors in attenuating β-cell inflammation.
Collapse
Affiliation(s)
- Joshua A. Nord
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alyssa L. Gehant
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Inmaculada Rioja
- Immuno-Epigenetics, Immunology Research Unit, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Immuno-Epigenetics, Immunology Research Unit, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | - John A. Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Brian C. Smith,
| |
Collapse
|
206
|
Zhang J, Huang L, Zhang P, Huang X, Yang W, Liu R, Sun Q, Lu Y, Zhang M, Fu Q. Genomic Identification, Evolution, and Expression Analysis of Bromodomain Genes Family in Buffalo. Genes (Basel) 2022; 13:genes13010103. [PMID: 35052443 PMCID: PMC8774554 DOI: 10.3390/genes13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Bromodomain (BRD) is an evolutionarily conserved protein-protein interaction module that is critical in gene regulation, cellular homeostasis, and epigenetics. This study aimed to conduct an identification, evolution, and expression analysis of the BRD gene family in the swamp buffalo (Bubalus bubalis). A total of 101 BRD protein sequences deduced from 22 BRD genes were found in the buffalo genome. The BRD proteins were classified into six groups based on phylogenetic relationships, conserved motifs, and conserved domains. The BRD genes were irregularly distributed in 13 chromosomes. Collinearity analysis revealed 20 BRD gene pairs that had remarkable homologous relationships between the buffalo and cattle, although no tandem or segmental duplication event was found in the buffalo BRD genes. Comparative transcriptomics using a 10x sequencing platform analysis showed that 22 BRD genes were identified in the Sertoli cells (SCs) at different developmental stages of buffalo. Further, the mRNA expression levels of bromodomain and the extraterminal (BET) family in SCs at the pubertal stage were higher than that at the prepubertal stage of buffalo. However, the SMARCA2, PHIP, BRD9, and TAF1 genes exhibited the opposite trend. The maturation process of SCs may be regulated by the BRD family members expressed differentially in SCs at different developmental stages of buffalo. In summary, our findings provide an understanding of the evolutionary, structural, and functional properties of the buffalo BRD family members, and further characterize the function of the BRD family in the maturation of SCs. It also provides a theoretical basis for further understanding in the future of the mechanism of SCs regulating spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiang Fu
- Correspondence: ; Tel.: +86-771-3237124
| |
Collapse
|
207
|
Wu Q, Liu F, Ge M, Laster KV, Wei L, Du R, Jiang M, Zhang J, Zhi Y, Jin G, Zhao S, Kim DJ, Dong Z, Liu K. BRD4 drives esophageal squamous cell carcinoma growth by promoting RCC2 expression. Oncogene 2022; 41:347-360. [PMID: 34750516 DOI: 10.1038/s41388-021-02099-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
The low survival rate of esophageal squamous cell carcinoma patients is primarily attributed to technical limitations and a lack of insight regarding the molecular mechanisms contributing to its progression. Alterations in epigenetic modulators are critical to cancer development and prognosis. BRD4, a chromatin reader protein, plays an essential role in regulating oncogene expression. Here, we investigated the contributing role of BRD4 and its related mechanisms in the context of ESCC tumor progression. Our observations showed that BRD4 transcript and protein expression levels are significantly increased in ESCC patient tissues. Genetic or pharmacological inhibition of BRD4 suppressed ESCC cell proliferation in vitro and in vivo. Proteomic and transcriptomic analyses were subsequently used to deduce the potential targets of BRD4. Mechanistic studies showed that RCC2 is a downstream target of BRD4. Inhibition of either BRD4 or RCC2 resulted in decreased ESCC cell proliferation. The BRD4-TP73 interaction facilitated the binding of BRD4 complex to the promoter region of RCC2, and subsequently modulated RCC2 transcription. Furthermore, targeting BRD4 with inhibitors significantly decreased tumor volume in ESCC PDX models, indicating that BRD4 expression may contribute to tumor progression. Collectively, these findings suggest that BRD4 inhibition could be a promising strategy to treat ESCC by downregulating RCC2.
Collapse
Affiliation(s)
- Qiong Wu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Fangfang Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Mengmeng Ge
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | | | - Lixiao Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Ruijuan Du
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Ming Jiang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Jing Zhang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Yafei Zhi
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.,The Henan Luoyang Orthopedic Hospital, Zhengzhou, 450000, Henan, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.,Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
| | - Zigang Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450000, Henan, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450000, Henan, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China. .,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
208
|
Khurana S, Markowitz TE, Kabat J, McBride AA. Spatial and Functional Organization of Human Papillomavirus Replication Foci in the Productive Stage of Infection. mBio 2021; 12:e0268421. [PMID: 34749533 PMCID: PMC8576538 DOI: 10.1128/mbio.02684-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/20/2022] Open
Abstract
The life cycle of human papillomavirus (HPV) depends on keratinocyte differentiation as the virus modulates and takes advantage of cellular pathways to replicate its genome and assemble viral particles in differentiated cells. Viral genomes are amplified in nuclear replication foci in differentiated keratinocytes, and DNA repair factors from the DNA damage response signaling pathway are recruited to replicate viral DNA. The HPV genome is associated with cellular histones at all stages of the infectious cycle, and here, we show that the histone variant macroH2A1 is bound to the HPV genome and enriched in viral replication foci in differentiated cells. macroH2A1 isoforms play important roles in cellular transcriptional repression, double-strand break repair, and replication stress. The viral E8^E2 protein also binds to the HPV genome and inhibits viral replication and gene expression by recruiting NCoR/SMRT complexes. We show here that E8^E2 and SMRT also localize within replication foci, though independently from macroH2A1. Conversely, transcription complexes containing RNA polymerase II and Brd4 are located on the surface of the foci. Foci generated with an HPV16 E8^E2 mutant genome are not enriched for SMRT or macroH2A1 but contain transcriptional complexes throughout the foci. We propose that both the cellular macroH2A1 protein and viral E8^E2 protein help to spatially separate replication and transcription activities within viral replication foci. IMPORTANCE Human papillomaviruses are small DNA viruses that cause chronic infection of cutaneous and mucosal epithelium. In some cases, persistent infection with HPV can result in cancer, and 5% of human cancers are the result of HPV infection. In differentiated cells, HPV amplifies viral DNA in nuclear replication factories and transcribes late mRNAs to produce capsid proteins. However, very little is known about the spatial organization of these activities in the nucleus. Here, we show that repressive viral and cellular factors localize within the foci to suppress viral transcription, while active transcription takes place on the surface. The cellular histone variant macroH2A1 is important for this spatial organization.
Collapse
Affiliation(s)
- Simran Khurana
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tovah E. Markowitz
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Juraj Kabat
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
209
|
Liu Y, Li L, Timani K, White C, He JJ. Tip110 Expression Facilitates the Release of HEXIM1 and pTEFb from the 7SK Ribonucleoprotein Complex Involving Regulation of the Intracellular Redox Level. Aging Dis 2021; 12:2113-2124. [PMID: 34881089 PMCID: PMC8612609 DOI: 10.14336/ad.2021.0528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 Tat-interacting protein of 110 kDa (Tip110; p110nrb/SART3) has been identified to be important for HIV gene transcription and several host gene expression. In this study, we showed that Tip110 was present in the 7SK snRNP through direct binding to MEPCE, a component of the 7SK snRNP complex. In addition, we found a positive association between Tip110 expression, change of HEXIM1 from dimer/oligomer to monomer, and release of HEXIM1 and P-TEFb from the 7SK snRNP complex. A similar association was also noted specifically in nuclear matrix as well as in chromatin where the free HEXIM1 and 7SK snRNP-bound HEXIM1 are located. Moreover, we demonstrated that Tip110 expression was linked to the glutathione metabolic pathway and the intracellular redox level, which in turn regulated HEXIM1 dimerization/oligomerization. Lastly, we performed the FRET microscopic analysis and confirmed the direct relationship between Tip110 expression and HEXIM1 dimerization/oligomerization in vivo. Taken together, these results identified a new mechanism governing HEXIM1 dimerization/oligomerization and the release of HEXIM1 and P-TEFb from the 7SK snRNP complex. These results also yield new insights to the roles of Tip110 in HIV gene transcription and replication.
Collapse
Affiliation(s)
- Ying Liu
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Lu Li
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Khalid Timani
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| | - Carl White
- 2Center for Cancer Cell Biology, Immunology and Infection, and.,3Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Johnny J He
- 1Department of Microbiology and Immunology.,2Center for Cancer Cell Biology, Immunology and Infection, and
| |
Collapse
|
210
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
211
|
Djamai H, Berrou J, Dupont M, Coudé MM, Delord M, Clappier E, Marceau-Renaut A, Kaci A, Raffoux E, Itzykson R, Berthier C, Wu HC, Hleihel R, Bazarbachi A, de Thé H, Baruchel A, Gardin C, Dombret H, Braun T. Biological Effects of BET Inhibition by OTX015 (MK-8628) and JQ1 in NPM1-Mutated (NPM1c) Acute Myeloid Leukemia (AML). Biomedicines 2021; 9:biomedicines9111704. [PMID: 34829934 PMCID: PMC8615962 DOI: 10.3390/biomedicines9111704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
BET inhibitors (BETi) including OTX015 (MK-8628) and JQ1 demonstrated antileukemic activity including NPM1c AML cells. Nevertheless, the biological consequences of BETi in NPM1c AML were not fully investigated. Even if of better prognosis AML patients with NPM1c may relapse and treatment remains difficult. Differentiation-based therapy by all trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) demonstrated activity in NPM1c AML. We found that BETi, similar to ATO + ATRA, induced differentiation and apoptosis which was TP53 independent in the NPM1c cell line OCI-AML3 and primary cells. Furthermore, BETi induced proteasome-dependent degradation of NPM1c. BETi degraded NPM1c in the cytosol while BRD4 is degraded in the nucleus which suggests that restoration of the NPM1/BRD4 equilibrium in the nucleus of NPM1c cells is essential for the efficacy of BETi. While ATO + ATRA had significant biological activity in NPM1c IMS-M2 cell line, those cells were resistant to BETi. Gene profiling revealed that IMS-M2 cells probably resist to BETi by upregulation of LSC pathways independently of the downregulation of a core BET-responsive transcriptional program. ATO + ATRA downregulated a NPM1c specific HOX gene signature while anti-leukemic effects of BETi appear HOX gene independent. Our preclinical results encourage clinical testing of BETi in NPM1c AML patients.
Collapse
Affiliation(s)
- Hanane Djamai
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
| | - Jeannig Berrou
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
| | - Mélanie Dupont
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
| | - Marie-Magdelaine Coudé
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Laboratory of Hematology, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
| | - Marc Delord
- Bioinformatics, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France;
| | - Emmanuelle Clappier
- Laboratory of Hematology, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
| | | | - Anna Kaci
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
| | - Emmanuel Raffoux
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Leukemia Unit, Hematology Department, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
| | - Raphaël Itzykson
- Leukemia Unit, Hematology Department, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
- INSERM U944—CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (C.B.); (H.-C.W.); (H.d.T.)
| | - Caroline Berthier
- INSERM U944—CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (C.B.); (H.-C.W.); (H.d.T.)
| | - Hsin-Chieh Wu
- INSERM U944—CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (C.B.); (H.-C.W.); (H.d.T.)
| | - Rita Hleihel
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 113-6044, Lebanon; (R.H.); (A.B.)
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 113-6044, Lebanon; (R.H.); (A.B.)
| | - Hugues de Thé
- INSERM U944—CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (C.B.); (H.-C.W.); (H.d.T.)
| | - André Baruchel
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré, AP-HP, Université de Paris, 75010 Paris, France
| | - Claude Gardin
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Hematology Department, Hôpital Avicenne, AP-HP, Université de Paris, 93000 Bobigny, France
| | - Hervé Dombret
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Leukemia Unit, Hematology Department, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Hematology Department, Hôpital Avicenne, AP-HP, Université de Paris, 93000 Bobigny, France
- Correspondence: ; Tel.: +33-148957072
| |
Collapse
|
212
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Nicoli D, Farnetti E, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 5: Epigenetic Regulation of PD-L1. Int J Mol Sci 2021; 22:12314. [PMID: 34830196 PMCID: PMC8619683 DOI: 10.3390/ijms222212314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alterations (including DNA methylation or miRNAs) influence oncogene/oncosuppressor gene expression without changing the DNA sequence. Prostate cancer (PC) displays a complex genetic and epigenetic regulation of cell-growth pathways and tumor progression. We performed a systematic literature review (following PRISMA guidelines) focused on the epigenetic regulation of PD-L1 expression in PC. In PC cell lines, CpG island methylation of the CD274 promoter negatively regulated PD-L1 expression. Histone modifiers also influence the PD-L1 transcription rate: the deletion or silencing of the histone modifiers MLL3/MML1 can positively regulate PD-L1 expression. Epigenetic drugs (EDs) may be promising in reprogramming tumor cells, reversing epigenetic modifications, and cancer immune evasion. EDs promoting a chromatin-inactive transcriptional state (such as bromodomain or p300/CBP inhibitors) downregulated PD-L1, while EDs favoring a chromatin-active state (i.e., histone deacetylase inhibitors) increased PD-L1 expression. miRNAs can regulate PD-L1 at a post-transcriptional level. miR-195/miR-16 were negatively associated with PD-L1 expression and positively correlated to longer biochemical recurrence-free survival; they also enhanced the radiotherapy efficacy in PC cell lines. miR-197 and miR-200a-c positively correlated to PD-L1 mRNA levels and inversely correlated to the methylation of PD-L1 promoter in a large series. miR-570, miR-34a and miR-513 may also be involved in epigenetic regulation.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
213
|
Gokani S, Bhatt LK. Bromodomains: A novel target for the anticancer therapy. Eur J Pharmacol 2021; 911:174523. [PMID: 34563497 DOI: 10.1016/j.ejphar.2021.174523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 02/02/2023]
Abstract
Bromodomains are a group of structurally diverse proteins characterized as readers of post-translational modifications. They bear unique structural topology and are known to have diverse cellular functions. As epigenetic readers of histone acetylation, bromodomains appear to have both physiological and pathological implications. Among the various types of bromodomain-containing proteins, BRD2 and BRD4 proteins are expressed ubiquitously and act as critical regulators of the cell cycle in normal mammalian cells. Therefore, they are increasingly involved in the process of oncogenesis. Bromodomains are the emerging novel epigenetic targets for the treatment of cancer. Various small molecules are proposed to target the bromodomain proteins as the readers of acetyl-lysine residues. In recent years, inhibiting the interaction of acetyl-lysine residues and bromodomain proteins on chromatin has served as an interesting target to regulate the expression of various pathological genes, including BCL-2, MYC, and NF-κB. The review summarizes bromodomains as potential targets in cancer and various bromodomain inhibitors in the early stages of the clinical trial.
Collapse
Affiliation(s)
- Shivani Gokani
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India.
| |
Collapse
|
214
|
Drumond-Bock AL, Bieniasz M. The role of distinct BRD4 isoforms and their contribution to high-grade serous ovarian carcinoma pathogenesis. Mol Cancer 2021; 20:145. [PMID: 34758842 PMCID: PMC8579545 DOI: 10.1186/s12943-021-01424-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most aggressive type of ovarian cancer, often diagnosed at advanced stages. Molecularly, HGSOC shows high degree of genomic instability associated with large number of genetic alterations. BRD4 is the 4th most amplified gene in HGSOC, which correlates with poor patients' prognosis. BRD4 is constitutively expressed and generates two proteins, BRD4 long (BRD4-L) and BRD4 short (BRD4-S). Both isoforms contain bromodomains that bind to lysine-acetylated histones. Amongst other functions, BRD4 participates in chromatin organization, acetylation of histones, transcriptional control and DNA damage repair. In cancer patients with amplified BRD4, the increased activity of BRD4 is associated with higher expression of oncogenes, such as MYC, NOTCH3 and NRG1. BRD4-driven oncogenes promote increased tumor cells proliferation, genetic instability, epithelial-mesenchymal transition, metastasis and chemoresistance. Ablation of BRD4 activity can be successfully achieved with bromodomain inhibitors (BETi) and degraders, and it has been applied in pre-clinical and clinical settings. Inhibition of BRD4 function has an effective anti-cancer effect, reducing tumor growth whether ablated by single agents or in combination with other drugs. When combined with standard chemotherapy, BETi are capable of sensitizing highly resistant ovarian cancer cell lines to platinum drugs. Despite the evidence that BRD4 amplification in ovarian cancer contributes to poor patient prognosis, little is known about the specific mechanisms by which BRD4 drives tumor progression. In addition, newly emerging data revealed that BRD4 isoforms exhibit contradicting functions in cancer. Therefore, it is paramount to expand studies elucidating distinct roles of BRD4-L and BRD4-S in HGSOC, which has important implications on development of therapeutic approaches targeting BRD4.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Magdalena Bieniasz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
215
|
Malvezzi F, Stubbs CJ, Jowitt TA, Dale IL, Guo X, DeGnore JP, Degliesposti G, Skehel JM, Bannister AJ, McAlister MS. Phosphorylation-dependent BRD4 dimerization and implications for therapeutic inhibition of BET family proteins. Commun Biol 2021; 4:1273. [PMID: 34754068 PMCID: PMC8578508 DOI: 10.1038/s42003-021-02750-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is an epigenetic reader and oncology drug target that regulates gene transcription through binding to acetylated chromatin via bromodomains. Phosphorylation by casein kinase II (CK2) regulates BRD4 function, is necessary for active transcription and is involved in resistance to BRD4 drug inhibition in triple-negative breast cancer. Here, we provide the first biophysical analysis of BRD4 phospho-regulation. Using integrative structural biology, we show that phosphorylation by CK2 modulates the dimerization of human BRD4. We identify two conserved regions, a coiled-coil motif and the Basic-residue enriched Interaction Domain (BID), essential for the BRD4 structural rearrangement, which we term the phosphorylation-dependent dimerization domain (PDD). Finally, we demonstrate that bivalent inhibitors induce a conformational change within BRD4 dimers in vitro and in cancer cells. Our results enable the proposal of a model for BRD4 activation critical for the characterization of its protein-protein interaction network and for the development of more specific therapeutics.
Collapse
Affiliation(s)
- Francesca Malvezzi
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Molecular Partners AG, Schlieren, Switzerland
| | - Christopher J Stubbs
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Ian L Dale
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Xieyang Guo
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jon P DeGnore
- Mechanistic Biology & Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, USA
| | - Gianluca Degliesposti
- Biological Mass Spectrometry and Proteomics, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Andrew J Bannister
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark S McAlister
- Structure, Biophysics and Fragment-Based Lead Generation, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
216
|
Cáceres-Gutiérrez RE, Andonegui MA, Oliva-Rico DA, González-Barrios R, Luna F, Arriaga-Canon C, López-Saavedra A, Prada D, Castro C, Parmentier L, Díaz-Chávez J, Alfaro-Mora Y, Navarro-Delgado EI, Fabian-Morales E, Tran B, Shetty J, Zhao Y, Alcaraz N, De la Rosa C, Reyes JL, Hédouin S, Hubé F, Francastel C, Herrera LA. Proteasome inhibition alters mitotic progression through the upregulation of centromeric α-Satellite RNAs. FEBS J 2021; 289:1858-1875. [PMID: 34739170 PMCID: PMC9299679 DOI: 10.1111/febs.16261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA‐seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α‐Satellite RNAs. We showed that α‐Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α‐Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α‐Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor‐binding motifs within α‐Satellite centromeric arrays. Using high‐resolution three‐dimensional immuno‐FISH and ChIP‐qPCR, we showed an association between the α‐Satellite upregulation and the recruitment of the transcription factor NFY‐A to the centromere upon MG132‐induced proteasome inhibition. Together, our results show that the proteasome controls α‐Satellite RNAs associated with the regulation of mitosis.
Collapse
Affiliation(s)
- Rodrigo E Cáceres-Gutiérrez
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Marco A Andonegui
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Diego A Oliva-Rico
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Fernando Luna
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Diddier Prada
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico.,Departamento de Informática Biomédica, Faculty of Medicine, UNAM, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clementina Castro
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Laurent Parmentier
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - José Díaz-Chávez
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Erick I Navarro-Delgado
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Eunice Fabian-Morales
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Bao Tran
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Jyoti Shetty
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Yongmei Zhao
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Nicolas Alcaraz
- The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.,National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos De la Rosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sabrine Hédouin
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Florent Hubé
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Claire Francastel
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Luis A Herrera
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico.,Dirección General, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
217
|
Wiegard A, Kuzin V, Cameron DP, Grosser J, Ceribelli M, Mehmood R, Ballarino R, Valant F, Grochowski R, Karabogdan I, Crosetto N, Lindqvist A, Bizard AH, Kouzine F, Natsume T, Baranello L. Topoisomerase 1 activity during mitotic transcription favors the transition from mitosis to G1. Mol Cell 2021; 81:5007-5024.e9. [PMID: 34767771 DOI: 10.1016/j.molcel.2021.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/26/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
As cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes. The stimulation of TOP1 activity by RNAPII during elongation allowed RNAPII clearance from genes in prometaphase and enabled chromosomal segregation. Disruption of the TOP1-RNAPII interaction impaired RNAPII spiking at promoters and triggered defects in the post-mitotic transcription program. This program includes factors necessary for cell growth, and cells with impaired TOP1-RNAPII interaction are more sensitive to inhibitors of mTOR signaling. We conclude that TOP1 is necessary for assisting transcription during mitosis with consequences for growth and gene expression long after mitosis is completed. In this sense, TOP1 ensures that cellular memory is preserved in subsequent generations.
Collapse
Affiliation(s)
- Anika Wiegard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jan Grosser
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michele Ceribelli
- Division of Pre-Clinical Innovation, NCATS, National Institutes of Health, Rockville, MD 20850, USA
| | - Rashid Mehmood
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Software Engineering, University of Kotli, AJ&K, 45320 Kotli Azad Kashmir, Pakistan
| | - Roberto Ballarino
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Francesco Valant
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Radosław Grochowski
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | | | - Nicola Crosetto
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Helene Bizard
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Shizuoka 411-8540, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
218
|
Aoi Y, Takahashi YH, Shah AP, Iwanaszko M, Rendleman EJ, Khan NH, Cho BK, Goo YA, Ganesan S, Kelleher NL, Shilatifard A. SPT5 stabilization of promoter-proximal RNA polymerase II. Mol Cell 2021; 81:4413-4424.e5. [PMID: 34480849 PMCID: PMC8687145 DOI: 10.1016/j.molcel.2021.08.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yoh-Hei Takahashi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avani P Shah
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nabiha H Khan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Byoung-Kyu Cho
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Young Ah Goo
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Sheetal Ganesan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Neil L Kelleher
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Proteomics Center of Excellence, Northwestern University, Evanston, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
219
|
Liang Y, Tian J, Wu T. BRD4 in physiology and pathology: ''BET'' on its partners. Bioessays 2021; 43:e2100180. [PMID: 34697817 DOI: 10.1002/bies.202100180] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing 4 (BRD4), a member of Bromo and Extra-Terminal (BET) family, recognizes acetylated histones and is of importance in transcription, replication, and DNA repair. It also binds non-histone proteins, DNA and RNA, contributing to development, tissue growth, and various physiological processes. Additionally, BRD4 has been implicated in driving diverse diseases, ranging from cancer, viral infection, inflammation to neurological disorders. Inhibiting its functions with BET inhibitors (BETis) suppresses the progression of several types of cancer, creating an impetus for translating these chemicals to the clinic. The diverse roles of BRD4 are largely dependent on its interaction partners in different contexts. In this review we discuss the molecular mechanisms of BRD4 with its interacting partners in physiology and pathology. Current development of BETis is also summarized. Further understanding the functions of BRD4 and its partners will facilitate resolving the liabilities of present BETis and accelerate their clinical translation.
Collapse
Affiliation(s)
- Yin Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieyi Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
220
|
Akawa OB, Soremekun OS, Olotu FA, Soliman MES. Atomistic insights into the selective therapeutic activity of 6-(2,4-difluorophenoxy)-5-((ethylmethyl)pyridine-3-yl)-8-methylpyrrolo[1,2-a]pyrazin-1(2H)-one towards bromodomain-containing proteins. Comput Biol Chem 2021; 95:107592. [PMID: 34710811 DOI: 10.1016/j.compbiolchem.2021.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Cross-target effect has been one of the major mechanisms of drug toxicity, this has necessitated the design of inhibitors that are specifically tailored to target particular biomolecules. 6-(2,4-difluorophenoxy)-5-((ethylmethyl)pyridine-3-yl)-8-methylpyrrolo[1,2-a] pyrazin-1(2H)-one (Cpd38) is an inhibitor possessing high inhibition rate and tailored specificity towards bromodomain-containing protein 4 (BRD4). In this research, we used an array of computational techniques to provide insight at the atomistic level the specific targeting of BRD4 by Cpd38 relative to the binding of Cpd38 with E1A binding protein P300 (EP300); another bromodomain-containing protein (BCP). Comparatively, binding of Cpd38 improved the conformational stability and compactness of BRD4 protein when compared to the Cpd38 bound EP300. Also, Cpd38 induced a conformational change in the active site of BRD4 that facilitated a complementary pose between Cpd38 and BRD4 suitable for effective atomistic interactions. Expectedly, thermodynamic calculations revealed that the Cpd38-BRD4 system had higher binding energy (-36.11 Kcal/mol) than the Cpd38-EP300 system with a free binding energy of -15.86 Kcal/mol. Noteworthy is the opposing role Trp81 (acting as hydrogen bond acceptor) and Pro1074 (acting as hydrogen bond donor) found on the WPF and LPF loops respectively play in maintaining Cpd38 stability. Furthermore, the hydrogen bond acceptor/donator ratio was approximately 4:1 in Cpd38-BRD4 system compared with 2:1 in Cpd38-EP300 system. Taken together, atomistic insights and structural perspectives detailed in this report supplements the experimental report supporting the improved selectivity of Cpd38 for BRD4 ahead of other BCPs while providing leeway for the future design of BET selective agents with better pharmacological profile.
Collapse
Affiliation(s)
- Oluwole B Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| |
Collapse
|
221
|
BET Proteins as Attractive Targets for Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222011102. [PMID: 34681760 PMCID: PMC8538173 DOI: 10.3390/ijms222011102] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be an essential driver of cancer initiation and progression. Loss of transcriptional control can cause cancer cells to become dependent on certain regulators of gene expression. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate the expression of multiple genes involved in carcinogenesis. BET inhibitors (BETis) disrupt BET protein binding to acetylated lysine residues of chromatin and suppress the transcription of various genes, including oncogenic transcription factors. Phase I and II clinical trials demonstrated BETis’ potential as anticancer drugs against solid tumours and haematological malignancies; however, their clinical success was limited as monotherapies. Emerging treatment-associated toxicities, drug resistance and a lack of predictive biomarkers limited BETis’ clinical progress. The preclinical evaluation demonstrated that BETis synergised with different classes of compounds, including DNA repair inhibitors, thus supporting further clinical development of BETis. The combination of BET and PARP inhibitors triggered synthetic lethality in cells with proficient homologous recombination. Mechanistic studies revealed that BETis targeted multiple essential homologous recombination pathway proteins, including RAD51, BRCA1 and CtIP. The exact mechanism of BETis’ anticancer action remains poorly understood; nevertheless, these agents provide a novel approach to epigenome and transcriptome anticancer therapy.
Collapse
|
222
|
Feng L, Wang G, Chen Y, He G, Liu B, Liu J, Chiang CM, Ouyang L. Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives. Med Res Rev 2021; 42:710-743. [PMID: 34633088 DOI: 10.1002/med.21859] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
Bromodomain-containing protein 4 (BRD4), as the most studied member of the bromodomain and extra-terminal (BET) family, is a chromatin reader protein interpreting epigenetic codes through binding to acetylated histones and non-histone proteins, thereby regulating diverse cellular processes including cell cycle, cell differentiation, and cell proliferation. As a promising drug target, BRD4 function is closely related to cancer, inflammation, cardiovascular disease, and liver fibrosis. Currently, clinical resistance to BET inhibitors has limited their applications but synergistic antitumor effects have been observed when used in combination with other tumor inhibitors targeting additional cellular components such as PLK1, HDAC, CDK, and PARP1. Therefore, designing dual-target inhibitors of BET bromodomains is a rational strategy in cancer treatment to increase potency and reduce drug resistance. This review summarizes the protein structures and biological functions of BRD4 and discusses recent advances of dual BET inhibitors from a medicinal chemistry perspective. We also discuss the current design and discovery strategies for dual BET inhibitors, providing insight into potential discovery of additional dual-target BET inhibitors.
Collapse
Affiliation(s)
- Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
223
|
Abstract
Combinatory antiretroviral therapy (cART) reduces human immunodeficiency virus type 1 (HIV-1) replication but is not curative because cART interruption almost invariably leads to a rapid rebound of viremia due to the persistence of stable HIV-1-infected cellular reservoirs. These reservoirs are mainly composed of CD4+ T cells harboring replication-competent latent proviruses. A broadly explored approach to reduce the HIV-1 reservoir size, the shock and kill strategy, consists of reactivating HIV-1 gene expression from the latently infected cellular reservoirs (the shock), followed by killing of the virus-producing infected cells (the kill). Based on improved understanding of the multiple molecular mechanisms controlling HIV-1 latency, distinct classes of latency reversing agents (LRAs) have been studied for their efficiency to reactivate viral gene expression in in vitro and ex vivo cell models. Here, we provide an up-to-date review of these different mechanistic classes of LRAs and discuss optimizations of the shock strategy by combining several LRAs simultaneously or sequentially.
Collapse
Affiliation(s)
- Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium;
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, 4000 Liège, Belgium
| | - Carine M Van Lint
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium;
| |
Collapse
|
224
|
Romanelli MN, Borgonetti V, Galeotti N. Dual BET/HDAC inhibition to relieve neuropathic pain: Recent advances, perspectives, and future opportunities. Pharmacol Res 2021; 173:105901. [PMID: 34547384 DOI: 10.1016/j.phrs.2021.105901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Despite the intense research on developing new therapies for neuropathic pain states, available treatments have limited efficacy and unfavorable safety profiles. Epigenetic alterations have a great influence on the development of cancer and neurological diseases, as well as neuropathic pain. Histone acetylation has prevailed as one of the well investigated epigenetic modifications in these diseases. Altered spinal activity of histone deacetylase (HDAC) and Bromo and Extra terminal domain (BET) have been described in neuropathic pain models and restoration of these aberrant epigenetic modifications showed pain-relieving activity. Over the last decades HDACs and BETs have been the focus of drug discovery studies, leading to the development of numerous small-molecule inhibitors. Clinical trials to evaluate their anticancer activity showed good efficacy but raised toxicity concerns that limited translation to the clinic. To maximize activity and minimize toxicity, these compounds can be applied in combination of sub-maximal doses to produce additive or synergistic interactions (combination therapy). Recently, of particular interest, dual BET/HDAC inhibitors (multi-target drugs) have been developed to assure simultaneous modulation of BET and HDAC activity by a single molecule. This review will summarize the most recent advances with these strategies, describing advantages and limitations of single drug treatment vs combination regimens. This review will also provide a focus on dual BET/HDAC drug discovery investigations as future therapeutic opportunity for human therapy of neuropathic pain.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| |
Collapse
|
225
|
Mbonye U, Leskov K, Shukla M, Valadkhan S, Karn J. Biogenesis of P-TEFb in CD4+ T cells to reverse HIV latency is mediated by protein kinase C (PKC)-independent signaling pathways. PLoS Pathog 2021; 17:e1009581. [PMID: 34529720 PMCID: PMC8478230 DOI: 10.1371/journal.ppat.1009581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/28/2021] [Accepted: 09/04/2021] [Indexed: 01/09/2023] Open
Abstract
The switch between HIV latency and productive transcription is regulated by an auto-feedback mechanism initiated by the viral trans-activator Tat, which functions to recruit the host transcription elongation factor P-TEFb to proviral HIV. A heterodimeric complex of CDK9 and one of three cyclin T subunits, P-TEFb is expressed at vanishingly low levels in resting memory CD4+ T cells and cellular mechanisms controlling its availability are central to regulation of the emergence of HIV from latency. Using a well-characterized primary T-cell model of HIV latency alongside healthy donor memory CD4+ T cells, we characterized specific T-cell receptor (TCR) signaling pathways that regulate the generation of transcriptionally active P-TEFb, defined as the coordinate expression of cyclin T1 and phospho-Ser175 CDK9. Protein kinase C (PKC) agonists, such as ingenol and prostratin, stimulated active P-TEFb expression and reactivated latent HIV with minimal cytotoxicity, even in the absence of intracellular calcium mobilization with an ionophore. Unexpectedly, inhibition-based experiments demonstrated that PKC agonists and TCR-mobilized diacylglycerol signal through MAP kinases ERK1/2 rather than through PKC to effect the reactivation of both P-TEFb and latent HIV. Single-cell and bulk RNA-seq analyses revealed that of the four known isoforms of the Ras guanine nucleotide exchange factor RasGRP, RasGRP1 is by far the predominantly expressed diacylglycerol-dependent isoform in CD4+ T cells. RasGRP1 should therefore mediate the activation of ERK1/2 via Ras-Raf signaling upon TCR co-stimulation or PKC agonist challenge. Combined inhibition of the PI3K-mTORC2-AKT-mTORC1 pathway and the ERK1/2 activator MEK prior to TCR co-stimulation abrogated active P-TEFb expression and substantially suppressed latent HIV reactivation. Therefore, contrary to prevailing models, the coordinate reactivation of P-TEFb and latent HIV in primary T cells following either TCR co-stimulation or PKC agonist challenge is independent of PKC but rather involves two complementary signaling arms of the TCR cascade, namely, RasGRP1-Ras-Raf-MEK-ERK1/2 and PI3K-mTORC2-AKT-mTORC1.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (UM); (JK)
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meenakshi Shukla
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (UM); (JK)
| |
Collapse
|
226
|
Cheung KL, Kim C, Zhou MM. The Functions of BET Proteins in Gene Transcription of Biology and Diseases. Front Mol Biosci 2021; 8:728777. [PMID: 34540900 PMCID: PMC8446420 DOI: 10.3389/fmolb.2021.728777] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 12/25/2022] Open
Abstract
The BET (bromodomain and extra-terminal domain) family proteins, consisting of BRD2, BRD3, BRD4, and testis-specific BRDT, are widely acknowledged as major transcriptional regulators in biology. They are characterized by two tandem bromodomains (BDs) that bind to lysine-acetylated histones and transcription factors, recruit transcription factors and coactivators to target gene sites, and activate RNA polymerase II machinery for transcriptional elongation. Pharmacological inhibition of BET proteins with BD inhibitors has been shown as a promising therapeutic strategy for the treatment of many human diseases including cancer and inflammatory disorders. The recent advances in bromodomain protein biology have further uncovered the complex and versatile functions of BET proteins in the regulation of gene expression in chromatin. In this review article, we highlight our current understanding of BET proteins' functions in mediating protein-protein interactions required for chromatin-templated gene transcription and splicing, chromatin remodeling, DNA replication, and DNA damage repair. We further discuss context-dependent activator vs. repressor functions of individual BET proteins, isoforms, and bromodomains that may be harnessed for future development of BET bromodomain inhibitors as emerging epigenetic therapies for cancer and inflammatory disorders.
Collapse
|
227
|
Sasca D, Guezguez B, Kühn MWM. Next generation epigenetic modulators to target myeloid neoplasms. Curr Opin Hematol 2021; 28:356-363. [PMID: 34267079 DOI: 10.1097/moh.0000000000000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Comprehensive sequencing studies aimed at determining the genetic landscape of myeloid neoplasms have identified epigenetic regulators to be among the most commonly mutated genes. Detailed studies have also revealed a number of epigenetic vulnerabilities. The purpose of this review is to outline these vulnerabilities and to discuss the new generation of drugs that exploit them. RECENT FINDINGS In addition to deoxyribonucleic acid-methylation, novel epigenetic dependencies have recently been discovered in various myeloid neoplasms and many of them can be targeted pharmacologically. These include not only chromatin writers, readers, and erasers but also chromatin movers that shift nucleosomes to allow access for transcription. Inhibitors of protein-protein interactions represent a novel promising class of drugs that allow disassembly of oncogenic multiprotein complexes. SUMMARY An improved understanding of disease-specific epigenetic vulnerabilities has led to the development of second-generation mechanism-based epigenetic drugs against myeloid neoplasms. Many of these drugs have been introduced into clinical trials and synergistic drug combination regimens have been shown to enhance efficacy and potentially prevent drug resistance.
Collapse
Affiliation(s)
- Daniel Sasca
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
| | - Borhane Guezguez
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
- German Cancer Research Center (DKFZ), Heidelberg
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Michael W M Kühn
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz
| |
Collapse
|
228
|
Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer 2021; 7:863-877. [PMID: 34052137 DOI: 10.1016/j.trecan.2021.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Replication stress results from obstacles to replication fork progression, including ongoing transcription, which can cause transcription-replication conflicts. Oncogenic signaling can promote global increases in transcription activity, also termed hypertranscription. Despite the widely accepted importance of oncogene-induced hypertranscription, its study remains neglected compared with other causes of replication stress and genomic instability in cancer. A growing number of recent studies are reporting that oncogenes, such as RAS, and targeted cancer treatments, such as bromodomain and extraterminal motif (BET) bromodomain inhibitors, increase global transcription, leading to R-loop accumulation, transcription-replication conflicts, and the activation of replication stress responses. Here we discuss our mechanistic understanding of hypertranscription-induced replication stress and the resulting cellular responses, in the context of oncogenes and targeted cancer therapies.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard D W Kelly
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
229
|
Halder TG, Soldi R, Sharma S. Bromodomain and extraterminal domain protein bromodomain inhibitor based cancer therapeutics. Curr Opin Oncol 2021; 33:526-531. [PMID: 34280171 DOI: 10.1097/cco.0000000000000763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Bromodomain and extraterminal domain (BET) proteins are evolutionarily conserved, multifunctional super-regulators that specifically recognize acetyl-lysine on histones and other proteins controlling gene transcription. Several studies show that small molecules targeting these regulators preferentially suppress the transcription of cancer-promoting genes. Consequently, several BET inhibitors reached clinical trials and are in various stages for different kind of malignancies. In this review, we provide a concise summary of the molecular basis and preliminary clinical outcomes of BET inhibitors as anticancer therapeutics. RECENT FINDINGS Results from early clinical trials with BET inhibitors confirmed their antitumor potential in both hematologic and solid tumours, but the evidence does not support the application of BET inhibitors as a monotherapy for cancer treatment. Treatment-emergent toxicities such as thrombocytopenia and gastrointestinal disorders are also reported. Preclinical data suggest that BET inhibitors may have a promising future in combination with other anticancer agents. SUMMARY Despite of various challenges, BET inhibitors have high potential in combinatorial therapy and the future development of next-generation inhibitors could be promising. Further studies are needed to determine the predictive biomarkers for therapeutic response, which would translate into the long-term success of BET inhibitors as personalized medicines in cancer treatment.
Collapse
Affiliation(s)
- Tithi Ghosh Halder
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | | | | |
Collapse
|
230
|
Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, Kenney TMG, Wei Y, Andrews DW, Sunnerhagen M, Arrowsmith CH, Raught B, Penn LZ. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021; 21:579-591. [PMID: 34188192 DOI: 10.1038/s41568-021-00367-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a 'coalition model', as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis.
Collapse
Affiliation(s)
| | - Diana Resetca
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cornelia Redel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Lin
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alannah S MacDonald
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tristan M G Kenney
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Wei
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David W Andrews
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
231
|
Wang Q, Shao X, Leung ELH, Chen Y, Yao X. Selectively targeting individual bromodomain: Drug discovery and molecular mechanisms. Pharmacol Res 2021; 172:105804. [PMID: 34450309 DOI: 10.1016/j.phrs.2021.105804] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Bromodomain-containing proteins include bromodomain and extra-terminal (BET) and non-BET families. Due to the conserved bromodomain (BD) module between BD-containing proteins, and especially BETs with each member having two BDs (BD1 and BD2), the high degree of structural similarity makes BD-selective inhibitors much difficult to be designed. However, increasing evidences emphasized that individual BDs had distinct functions and different cellular phenotypes after pharmacological inhibition, and selectively targeting one of the BDs could result in a different efficacy and tolerability profile. This review is to summarize the pioneering progress of BD-selective inhibitors targeting BET and non-BET proteins, focusing on their structural features, biological activity, therapeutic application and experimental/theoretical mechanisms. The present proteolysis targeting chimeras (PROTAC) degraders targeting BDs, and clinical status of BD-selective inhibitors were also analyzed, providing a new insight into future direction of bromodomain-selective drug discovery.
Collapse
Affiliation(s)
- Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China
| | - Xiaomin Shao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China
| | - Elaine Lai Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau(SAR) 999078, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China.
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau(SAR) 999078, China.
| |
Collapse
|
232
|
Milner JJ, Toma C, Quon S, Omilusik K, Scharping NE, Dey A, Reina-Campos M, Nguyen H, Getzler AJ, Diao H, Yu B, Delpoux A, Yoshida TM, Li D, Qi J, Vincek A, Hedrick SM, Egawa T, Zhou MM, Crotty S, Ozato K, Pipkin ME, Goldrath AW. Bromodomain protein BRD4 directs and sustains CD8 T cell differentiation during infection. J Exp Med 2021; 218:e20202512. [PMID: 34037670 PMCID: PMC8160575 DOI: 10.1084/jem.20202512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
In response to infection, pathogen-specific CD8 T cells differentiate into functionally diverse effector and memory T cell populations critical for resolving disease and providing durable immunity. Through small-molecule inhibition, RNAi studies, and induced genetic deletion, we reveal an essential role for the chromatin modifier and BET family member BRD4 in supporting the differentiation and maintenance of terminally fated effector CD8 T cells during infection. BRD4 bound diverse regulatory regions critical to effector T cell differentiation and controlled transcriptional activity of terminal effector-specific super-enhancers in vivo. Consequentially, induced deletion of Brd4 or small molecule-mediated BET inhibition impaired maintenance of a terminal effector T cell phenotype. BRD4 was also required for terminal differentiation of CD8 T cells in the tumor microenvironment in murine models, which we show has implications for immunotherapies. Taken together, these data reveal an unappreciated requirement for BRD4 in coordinating activity of cis regulatory elements to control CD8 T cell fate and lineage stability.
Collapse
Affiliation(s)
- J. Justin Milner
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Sara Quon
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Nicole E. Scharping
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Miguel Reina-Campos
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Hongtuyet Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Adam J. Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Bingfei Yu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Arnaud Delpoux
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Tomomi M. Yoshida
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Adam Vincek
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stephen M. Hedrick
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Ananda W. Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
233
|
Abstract
Viral infection is intrinsically linked to the capacity of the virus to generate progeny. Many DNA and some RNA viruses need to access the nuclear machinery and therefore transverse the nuclear envelope barrier through the nuclear pore complex. Viral genomes then become chromatinized either in their episomal form or upon integration into the host genome. Interactions with host DNA, transcription factors or nuclear bodies mediate their replication. Often interfering with nuclear functions, viruses use nuclear architecture to ensure persistent infections. Discovering these multiple modes of replication and persistence served in unraveling many important nuclear processes, such as nuclear trafficking, transcription, and splicing. Here, by using examples of DNA and RNA viral families, we portray the nucleus with the virus inside.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Ines J de Castro
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital and German Center for Infection Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| |
Collapse
|
234
|
Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021; 11:1126. [PMID: 34439792 PMCID: PMC8391731 DOI: 10.3390/biom11081126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The recent pandemic we are experiencing caused by the coronavirus disease 2019 (COVID-19) has put the world's population on the rack, with more than 191 million cases and more than 4.1 million deaths confirmed to date. This disease is caused by a new type of coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A massive proteomic analysis has revealed that one of the structural proteins of the virus, the E protein, interacts with BRD2 and BRD4 proteins of the Bromodomain and Extra Terminal domain (BET) family of proteins. BETs are essential to cell cycle progression, inflammation and immune response and have also been strongly associated with infection by different types of viruses. The fundamental role BET proteins play in transcription makes them appropriate targets for the propagation strategies of some viruses. Recognition of histone acetylation by BET bromodomains is essential for transcription control. The development of drugs mimicking acetyl groups, and thereby able to displace BET proteins from chromatin, has boosted interest on BETs as attractive targets for therapeutic intervention. The success of these drugs against a variety of diseases in cellular and animal models has been recently enlarged with promising results from SARS-CoV-2 infection studies.
Collapse
Affiliation(s)
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain;
| |
Collapse
|
235
|
McBride AA, Warburton A, Khurana S. Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Front Mol Biosci 2021; 8:725794. [PMID: 34386523 PMCID: PMC8353396 DOI: 10.3389/fmolb.2021.725794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle.
Collapse
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
236
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
237
|
A BRD4-mediated elongation control point primes transcribing RNA polymerase II for 3'-processing and termination. Mol Cell 2021; 81:3589-3603.e13. [PMID: 34324863 DOI: 10.1016/j.molcel.2021.06.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.
Collapse
|
238
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
239
|
Mochizuki K, Ishiyama S, Hariya N, Goda T. Regulation of Carbohydrate-Responsive Metabolic Genes by Histone Acetylation and the Acetylated Histone Reader BRD4 in the Gene Body Region. Front Mol Biosci 2021; 8:682696. [PMID: 34336926 PMCID: PMC8321877 DOI: 10.3389/fmolb.2021.682696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies indicate that induction of metabolic gene expression by nutrient intake, and in response to subsequently secreted hormones, is regulated by transcription factors binding to cis-elements and associated changes of epigenetic memories (histone modifications and DNA methylation) located in promoter and enhancer regions. Carbohydrate intake-mediated induction of metabolic gene expression is regulated by histone acetylation and the histone acetylation reader bromodomain-containing protein 4 (BRD4) on the gene body region, which corresponds to the transcribed region of the gene. In this review, we introduce carbohydrate-responsive metabolic gene regulation by (i) transcription factors and epigenetic memory in promoter/enhancer regions (promoter/enhancer-based epigenetics), and (ii) histone acetylation and BRD4 in the gene body region (gene body-based epigenetics). Expression of carbohydrate-responsive metabolic genes related to nutrient digestion and absorption, fat synthesis, inflammation in the small intestine, liver and white adipose tissue, and in monocytic/macrophage-like cells are regulated by various transcription factors. The expression of these metabolic genes are also regulated by transcription elongation via histone acetylation and BRD4 in the gene body region. Additionally, the expression of genes related to fat synthesis, and the levels of acetylated histones and BRD4 in fat synthesis-related genes, are downregulated in white adipocytes under insulin resistant and/or diabetic conditions. In contrast, expression of carbohydrate-responsive metabolic genes and/or histone acetylation and BRD4 binding in the gene body region of these genes, are upregulated in the small intestine, liver, and peripheral leukocytes (innate leukocytes) under insulin resistant and/or diabetic conditions. In conclusion, histone acetylation and BRD4 binding in the gene body region as well as transcription factor binding in promoter/enhancer regions regulate the expression of carbohydrate-responsive metabolic genes in many metabolic organs. Insulin resistant and diabetic conditions induce the development of metabolic diseases, including type 2 diabetes, by reducing the expression of BRD4-targeted carbohydrate-responsive metabolic genes in white adipose tissue and by inducing the expression of BRD4-targeted carbohydrate-responsive metabolic genes in the liver, small intestine, and innate leukocytes including monocytes/macrophages and neutrophils.
Collapse
Affiliation(s)
- Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
| | - Shiori Ishiyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
| | - Natsuyo Hariya
- Department of Nutrition, Faculty of Health and Nutrition, Yamanashi Gakuin University, Yamanashi, Japan
| | - Toshinao Goda
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
240
|
Chen Y, Vos SM, Dienemann C, Ninov M, Urlaub H, Cramer P. Allosteric transcription stimulation by RNA polymerase II super elongation complex. Mol Cell 2021; 81:3386-3399.e10. [PMID: 34265249 DOI: 10.1016/j.molcel.2021.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023]
Abstract
The super elongation complex (SEC) contains the positive transcription elongation factor b (P-TEFb) and the subcomplex ELL2-EAF1, which stimulates RNA polymerase II (RNA Pol II) elongation. Here, we report the cryoelectron microscopy (cryo-EM) structure of ELL2-EAF1 bound to a RNA Pol II elongation complex at 2.8 Å resolution. The ELL2-EAF1 dimerization module directly binds the RNA Pol II lobe domain, explaining how SEC delivers P-TEFb to RNA Pol II. The same site on the lobe also binds the initiation factor TFIIF, consistent with SEC binding only after the transition from transcription initiation to elongation. Structure-guided functional analysis shows that the stimulation of RNA elongation requires the dimerization module and the ELL2 linker that tethers the module to the RNA Pol II protrusion. Our results show that SEC stimulates elongation allosterically and indicate that this stimulation involves stabilization of a closed conformation of the RNA Pol II active center cleft.
Collapse
Affiliation(s)
- Ying Chen
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Seychelle M Vos
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Momchil Ninov
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
241
|
Vorobyeva NE, Mazina MY. The Elongation Regulators and Architectural Proteins as New Participants of Eukaryotic Gene Transcription. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
242
|
Wang X, Kutschat AP, Yamada M, Prokakis E, Böttcher P, Tanaka K, Doki Y, Hamdan FH, Johnsen SA. Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas. Cell Death Differ 2021; 28:2207-2220. [PMID: 33658703 PMCID: PMC8257622 DOI: 10.1038/s41418-021-00751-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer with a particularly high prevalence in certain geographical regions and a poor prognosis with a 5-year survival rate of 15-25%. Despite numerous studies characterizing the genetic and transcriptomic landscape of ESCC, there are currently no effective targeted therapies. In this study, we used an unbiased screening approach to uncover novel molecular precision oncology targets for ESCC and identified the bromodomain and extraterminal (BET) family member bromodomain testis-specific protein (BRDT) to be uniquely expressed in a subgroup of ESCC. Experimental studies revealed that BRDT expression promotes migration but is dispensable for cell proliferation. Further mechanistic insight was gained through transcriptome analyses, which revealed that BRDT controls the expression of a subset of ΔNp63 target genes. Epigenome and genome-wide occupancy studies, combined with genome-wide chromatin interaction studies, revealed that BRDT colocalizes and interacts with ΔNp63 to drive a unique transcriptional program and modulate cell phenotype. Our data demonstrate that these genomic regions are enriched for super-enhancers that loop to critical ΔNp63 target genes related to the squamous phenotype such as KRT14, FAT2, and PTHLH. Interestingly, BET proteolysis-targeting chimera, MZ1, reversed the activation of these genes. Importantly, we observed a preferential degradation of BRDT by MZ1 compared with BRD2, BRD3, and BRD4. Taken together, these findings reveal a previously unknown function of BRDT in ESCC and provide a proof-of-concept that BRDT may represent a novel therapeutic target in cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Ana P Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Moyuru Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Evangelos Prokakis
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Patricia Böttcher
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
243
|
Bossaert M, Pipier A, Riou JF, Noirot C, Nguyên LT, Serre RF, Bouchez O, Defrancq E, Calsou P, Britton S, Gomez D. Transcription-associated topoisomerase 2α (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. eLife 2021; 10:65184. [PMID: 34180392 PMCID: PMC8279764 DOI: 10.7554/elife.65184] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
G-quadruplexes (G4) are non-canonical DNA structures found in the genome of most species including human. Small molecules stabilizing these structures, called G4 ligands, have been identified and, for some of them, shown to induce cytotoxic DNA double-strand breaks. Through the use of an unbiased genetic approach, we identify here topoisomerase 2α (TOP2A) as a major effector of cytotoxicity induced by two clastogenic G4 ligands, pyridostatin and CX-5461, the latter molecule currently undergoing phase I/II clinical trials in oncology. We show that both TOP2 activity and transcription account for DNA break production following G4 ligand treatments. In contrast, clastogenic activity of these G4 ligands is countered by topoisomerase 1 (TOP1), which limits co-transcriptional G4 formation, and by factors promoting transcriptional elongation. Altogether our results support that clastogenic G4 ligands act as DNA structure-driven TOP2 poisons at transcribed regions bearing G4 structures.
Collapse
Affiliation(s)
- Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Jean-Francois Riou
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS, INSERM, Paris, France
| | - Céline Noirot
- INRAE, UR 875, Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo, Castanet-Tolosan, France
| | - Linh-Trang Nguyên
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Eric Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, Grenoble, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| |
Collapse
|
244
|
Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World J Stem Cells 2021; 13:542-567. [PMID: 34249227 PMCID: PMC8246247 DOI: 10.4252/wjsc.v13.i6.542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| |
Collapse
|
245
|
Dong J, Li J, Li Y, Ma Z, Yu Y, Wang CY. Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma. Nat Commun 2021; 12:3974. [PMID: 34172737 PMCID: PMC8233332 DOI: 10.1038/s41467-021-24137-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2021] [Indexed: 11/08/2022] Open
Abstract
Cancer stem cells (CSCs) play a critical role in invasive growth and metastasis of human head and neck squamous cell carcinoma (HNSCC). Although significant progress has been made in understanding the self-renewal and pro-tumorigenic potentials of CSCs, a key challenge remains on how to eliminate CSCs and halt metastasis effectively. Here we show that super-enhancers (SEs) play a critical role in the transcription of cancer stemness genes as well as pro-metastatic genes, thereby controlling their tumorigenic potential and metastasis. Mechanistically, we find that bromodomain-containing protein 4 (BRD4) recruits Mediators and NF-κB p65 to form SEs at cancer stemness genes such as TP63, MET and FOSL1, in addition to oncogenic transcripts. In vivo lineage tracing reveals that disrupting SEs by BET inhibitors potently inhibited CSC self-renewal and eliminated CSCs in addition to elimination of proliferating non-stem tumor cells in a mouse model of HNSCC. Moreover, disrupting SEs also inhibits the invasive growth and lymph node metastasis of human CSCs isolated from human HNSCC. Taken together, our results suggest that targeting SEs may serve as an effective therapy for HNSCC by eliminating CSCs.
Collapse
Affiliation(s)
- Jiaqiang Dong
- Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Richmond, VA, USA.
| | - Yang Li
- Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Zhikun Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Richmond, VA, USA
| | - Yongxin Yu
- Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
246
|
Jose L, Gilson T, Androphy EJ, DeSmet M. Regulation of the Human Papillomavirus Lifecyle through Post-Translational Modifications of the Viral E2 Protein. Pathogens 2021; 10:793. [PMID: 34201556 PMCID: PMC8308518 DOI: 10.3390/pathogens10070793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/28/2023] Open
Abstract
The human papillomavirus (HPV) is a DNA tumor virus that infects cutaneous and mucosal epithelia where high-risk (HR) HPV infections lead to cervical, oropharyngeal, and anogenital cancers. Worldwide, nearly 5% of all cancers are caused by HR HPV. The viral E2 protein is essential for episomal replication throughout the viral lifecycle. The E2 protein is regulated by phosphorylation, acetylation, sumoylation, and ubiquitination. In this mini-review, we summarize the recent advancements made to identify post translational modifications within E2 and their ability to control viral replication.
Collapse
Affiliation(s)
- Leny Jose
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.J.); (T.G.); (E.J.A.)
| | - Timra Gilson
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.J.); (T.G.); (E.J.A.)
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.J.); (T.G.); (E.J.A.)
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.J.); (T.G.); (E.J.A.)
| |
Collapse
|
247
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
248
|
Orhan E, Velazquez C, Tabet I, Sardet C, Theillet C. Regulation of RAD51 at the Transcriptional and Functional Levels: What Prospects for Cancer Therapy? Cancers (Basel) 2021; 13:2930. [PMID: 34208195 PMCID: PMC8230762 DOI: 10.3390/cancers13122930] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
The RAD51 recombinase is a critical effector of Homologous Recombination (HR), which is an essential DNA repair mechanism for double-strand breaks. The RAD51 protein is recruited onto the DNA break by BRCA2 and forms homopolymeric filaments that invade the homologous chromatid and use it as a template for repair. RAD51 filaments are detectable by immunofluorescence as distinct foci in the cell nucleus, and their presence is a read out of HR proficiency. RAD51 is an essential gene, protecting cells from genetic instability. Its expression is low and tightly regulated in normal cells and, contrastingly, elevated in a large fraction of cancers, where its level of expression and activity have been linked with sensitivity to genotoxic treatment. In particular, BRCA-deficient tumors show reduced or obliterated RAD51 foci formation and increased sensitivity to platinum salt or PARP inhibitors. However, resistance to treatment sets in rapidly and is frequently based on a complete or partial restoration of RAD51 foci formation. Consequently, RAD51 could be a highly valuable therapeutic target. Here, we review the multiple levels of regulation that impact the transcription of the RAD51 gene, as well as the post-translational modifications that determine its expression level, recruitment on DNA damage sites and the efficient formation of homofilaments. Some of these regulation levels may be targeted and their impact on cancer cell survival discussed.
Collapse
Affiliation(s)
- Esin Orhan
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | | | - Imene Tabet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | - Claude Sardet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
| | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier U1194 INSERM, Université de Montpellier, 34090 Montpellier, France; (E.O.); (I.T.); (C.S.)
- ICM, Institut du Cancer de Montpellier, 34090 Montpellier, France;
| |
Collapse
|
249
|
Vervoort SJ, Welsh SA, Devlin JR, Barbieri E, Knight DA, Offley S, Bjelosevic S, Costacurta M, Todorovski I, Kearney CJ, Sandow JJ, Fan Z, Blyth B, McLeod V, Vissers JHA, Pavic K, Martin BP, Gregory G, Demosthenous E, Zethoven M, Kong IY, Hawkins ED, Hogg SJ, Kelly MJ, Newbold A, Simpson KJ, Kauko O, Harvey KF, Ohlmeyer M, Westermarck J, Gray N, Gardini A, Johnstone RW. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Cell 2021; 184:3143-3162.e32. [PMID: 34004147 PMCID: PMC8567840 DOI: 10.1016/j.cell.2021.04.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/27/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia.
| | - Sarah A Welsh
- The Wistar Institute, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer R Devlin
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | | | - Deborah A Knight
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Sarah Offley
- The Wistar Institute, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Bjelosevic
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Matteo Costacurta
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Izabela Todorovski
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Conor J Kearney
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Zheng Fan
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Benjamin Blyth
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Victoria McLeod
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Joseph H A Vissers
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Ben P Martin
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Gareth Gregory
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, VIC, Australia
| | | | - Magnus Zethoven
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Simon J Hogg
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Madison J Kelly
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Andrea Newbold
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | | | - Otto Kauko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton 3168, VIC, Australia
| | - Michael Ohlmeyer
- Mount Sinai School of Medicine, New York, NY 10029, USA; Atux Iskay LLC, Plainsboro, NJ 08536, USA
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | | | | | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
250
|
Ijaz T, Burke MA. BET Protein-Mediated Transcriptional Regulation in Heart Failure. Int J Mol Sci 2021; 22:6059. [PMID: 34199719 PMCID: PMC8199980 DOI: 10.3390/ijms22116059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Heart failure is a complex disease process with underlying aberrations in neurohormonal systems that promote dysregulated cellular signaling and gene transcription. Over the past 10 years, the advent of small-molecule inhibitors that target transcriptional machinery has demonstrated the importance of the bromodomain and extraterminal (BET) family of epigenetic reader proteins in regulating gene transcription in multiple mouse models of cardiomyopathy. BETs bind to acetylated histone tails and transcription factors to integrate disparate stress signaling networks into a defined gene expression program. Under myocardial stress, BRD4, a BET family member, is recruited to superenhancers and promoter regions of inflammatory and profibrotic genes to promote transcription elongation. Whole-transcriptome analysis of BET-dependent gene networks suggests a major role of nuclear-factor kappa b and transforming growth factor-beta in the development of cardiac fibrosis and systolic dysfunction. Recent investigations also suggest a prominent role of BRD4 in maintaining cardiomyocyte mitochondrial respiration under basal conditions. In this review, we summarize the data from preclinical heart failure studies that explore the role of BET-regulated transcriptional mechanisms and delve into landmark studies that define BET bromodomain-independent processes involved in cardiac homeostasis.
Collapse
Affiliation(s)
| | - Michael A. Burke
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|