201
|
Plant LD, Dowdell EJ, Dementieva IS, Marks JD, Goldstein SAN. SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons. ACTA ACUST UNITED AC 2011; 137:441-54. [PMID: 21518833 PMCID: PMC3082930 DOI: 10.1085/jgp.201110604] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Voltage-gated Kv2.1 potassium channels are important in the brain for determining activity-dependent excitability. Small ubiquitin-like modifier proteins (SUMOs) regulate function through reversible, enzyme-mediated conjugation to target lysine(s). Here, sumoylation of Kv2.1 in hippocampal neurons is shown to regulate firing by shifting the half-maximal activation voltage (V1/2) of channels up to 35 mV. Native SUMO and Kv2.1 are shown to interact within and outside channel clusters at the neuronal surface. Studies of single, heterologously expressed Kv2.1 channels show that only K470 is sumoylated. The channels have four subunits, but no more than two non-adjacent subunits carry SUMO concurrently. SUMO on one site shifts V1/2 by 15 mV, whereas sumoylation of two sites produces a full response. Thus, the SUMO pathway regulates neuronal excitability via Kv2.1 in a direct and graded manner.
Collapse
Affiliation(s)
- Leigh D Plant
- Department of Pediatrics and Institute for Molecular Pediatric Sciences, Biological Sciences Division, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
202
|
Chen CC, Chen YY, Tang IC, Liang HM, Lai CC, Chiou JM, Yeh KC. Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. PLANT PHYSIOLOGY 2011; 156:2225-34. [PMID: 21632972 PMCID: PMC3149952 DOI: 10.1104/pp.111.178996] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/28/2011] [Indexed: 05/19/2023]
Abstract
The reversible conjugation of the small ubiquitin-like modifier (SUMO) to protein substrates occurs as a posttranslational regulatory process in eukaryotic organisms. In Arabidopsis (Arabidopsis thaliana), several stress-responsive SUMO conjugations are mediated mainly by the SUMO E3 ligase SIZ1. In this study, we observed a phenotype of hypersensitivity to excess copper in the siz1-2 and siz1-3 mutants. Excess copper can stimulate the accumulation of SUMO1 conjugates in wild-type plants but not in the siz1 mutant. Copper accumulated to a higher level in the aerial parts of soil-grown plants in the siz1 mutant than in the wild type. A dramatic difference in copper distribution was also observed between siz1 and wild-type Arabidopsis treated with excess copper. As a result, the shoot-to-root ratio of copper concentration in siz1 is nearly twice as high as that in the wild type. We have found that copper-induced Sumoylation is involved in the gene regulation of metal transporters YELLOW STRIPE-LIKE 1 (YSL1) and YSL3, as the siz1 mutant is unable to down-regulate the expression of YSL1 and YSL3 under excess copper stress. The hypersensitivity to excess copper and anomalous distribution of copper observed in the siz1 mutant are greatly diminished in the siz1ysl3 double mutant and slightly in the siz1ysl1 double mutant. These data suggest that SIZ1-mediated sumoylation is involved specifically in copper homeostasis and tolerance in planta.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center (C.-C.C., Y.-Y.C., I-C.T., H.-M.L., C.-C.L., K.-C.Y.) and Institute of Statistical Science (J.-M.C.), Academia Sinica, Taipei, Taiwan 11529
| |
Collapse
|
203
|
Alterations of ubiquitylation and sumoylation in conventional renal cell carcinomas after the Chernobyl accident: a comparison with Spanish cases. Virchows Arch 2011; 459:307-13. [PMID: 21786080 DOI: 10.1007/s00428-011-1124-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 07/04/2011] [Indexed: 01/17/2023]
Abstract
We determined whether ubiquitylation and sumoylation processes are involved in conventional renal cell carcinogenesis associated with chronic, long-term, persistent low doses of ionizing radiation (IR) in patients living for more than 20 years in cesium-137 ((137)Cs)-contaminated areas after the Chernobyl accident in Ukraine. To this end, we assessed the immunohistochemical expression of ubiquitin (Ub), SUMO1, SUMO E2 conjugating enzyme Ubc9, and the cell cycle regulators p53, mdm2, and p14(ARF) in 38 conventional renal cell carcinomas from Ukrainian patients with different degrees of radiation exposure after the Chernobyl accident. As control cases, 18 conventional renal carcinoma (cRCC) tissues from a Spanish cohort were analyzed. No significant differences between the Ukrainian and Spanish groups were found regarding Ub overexpression, although being higher in the Ukrainian cases. Furthermore, this expression was inversely associated with SUMO1 and Ubc9, with no correlation with tumor nuclear grade. There was also a direct relationship between Ubc9 and inflammatory response. These findings do not allow us to consider the immunohistochemical expression of ubiquitylation and sumoylation as valuable markers for discriminating the effects of long-term, low-dose IR exposure in cRCC carcinogenesis.
Collapse
|
204
|
Guttmann RP, Ghoshal S. Thiol-protease oxidation in age-related neuropathology. Free Radic Biol Med 2011; 51:282-8. [PMID: 21565267 DOI: 10.1016/j.freeradbiomed.2011.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 11/27/2022]
Abstract
Increased oxidative stress is a hallmark of every major neurodegenerative disease that has been studied. Numerous biomarkers of oxidative stress have been found, indicating that waves of oxidation had, at one time or another, overwhelmed antioxidant defenses, leaving behind a host of oxidized DNA, lipids, and proteins in their path. Although some level of oxidation may be beneficial, perhaps mediated by a hormetic response, the extent and types of oxidation detected in neuropathological states would suggest that oxidative stress contributes to a loss of homeostasis and cellular dysfunction. Although there are many targets of oxidants, this review emphasizes protein oxidation with a focus on an important group of redox-sensitive enzymes, the thiol-proteases. Both the direct and the indirect effects of oxidation and their potential importance in neurodegeneration are considered.
Collapse
Affiliation(s)
- Rodney P Guttmann
- Department of Gerontology, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| | | |
Collapse
|
205
|
Pandey D, Chen F, Patel A, Wang CY, Dimitropoulou C, Patel VS, Rudic RD, Stepp DW, Fulton DJ. SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Arterioscler Thromb Vasc Biol 2011; 31:1634-42. [PMID: 21527745 PMCID: PMC3464053 DOI: 10.1161/atvbaha.111.226621] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/08/2011] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Increased protein SUMOylation (small ubiquitin-related modifier [SUMO]) provides protection from cellular stress, including oxidative stress, but the mechanisms involved are incompletely understood. The NADPH oxidases (Nox) are a primary source of reactive oxygen species (ROS) and oxidative stress, and thus our goal was to determine whether SUMO regulates NADPH oxidase activity. METHODS AND RESULTS Increased expression of SUMO1 potently inhibited the activity of Nox1 to Nox5. In contrast, inhibition of endogenous SUMOylation with small interfering RNA to SUMO1 or ubiquitin conjugating enzyme 9 or with the inhibitor anacardic acid increased ROS production from human embryonic kidney-Nox5 cells, human vascular smooth muscle cells, and neutrophils. The suppression of ROS production was unique to SUMO1, and it required a C-terminal diglycine and the SUMO-specific conjugating enzyme ubiquitin conjugating enzyme 9. SUMO1 did not modify intracellular calcium or Nox5 phosphorylation but reduced ROS output in an isolated enzyme assay, suggesting direct effects of SUMOylation on enzyme activity. However, we could not detect the presence of SUMO1 conjugation on Nox5 using a variety of approaches. Moreover, the mutation of more than 17 predicted and conserved lysine residues on Nox5 did not alter the inhibitory actions of SUMO1. CONCLUSIONS Together, these results suggest that SUMO is an important regulatory mechanism that indirectly represses the production of ROS to ameliorate cellular stress.
Collapse
Affiliation(s)
- Deepesh Pandey
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Ho CW, Chen HT, Hwang J. UBC9 autosumoylation negatively regulates sumoylation of septins in Saccharomyces cerevisiae. J Biol Chem 2011; 286:21826-34. [PMID: 21518767 PMCID: PMC3122237 DOI: 10.1074/jbc.m111.234914] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
Sumoylation regulates a wide range of cellular processes. However, little is known about the regulation of the SUMO machinery. In this study, we demonstrate that two lysine residues (Lys-153 and Lys-157) in the C-terminal region of the yeast E2-conjugating enzyme Ubc9 are the major and minor autosumoylation sites, respectively. Surprisingly, mutation of Lys-157 (ubc9(K157R)) significantly stimulates the level of Ubc9 autosumoylation at Lys-153. The functional role of Ubc9 autosumoylation is exemplified in our findings that cell cycle-dependent sumoylation of cytoskeletal septin proteins is inversely correlated with the Ubc9 autosumoylation level and that mutation of the Ubc9 autosumoylation sites results in aberrant cell morphology. Our study elucidates a regulatory mechanism that utilizes automodification of the E2 enzyme of the sumoylation machinery to control substrate sumoylation.
Collapse
Affiliation(s)
- Chia-Wen Ho
- From the Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan and
- the Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Ta Chen
- the Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Jaulang Hwang
- From the Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan and
- the Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
207
|
Leitao BB, Jones MC, Brosens JJ. The SUMO E3-ligase PIAS1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. FASEB J 2011; 25:3416-25. [PMID: 21676946 PMCID: PMC3177572 DOI: 10.1096/fj.11-186346] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human endometrial stromal cells (HESCs) exposed to reactive oxygen species (ROS) mount a hypersumoylation response in a c-Jun N-terminal kinase (JNK)-dependent manner. The mechanism that couples JNK signaling to the small ubiquitin-related modifier (SUMO) pathway and its functional consequences are not understood. We show that ROS-dependent JNK activation converges on the SUMO pathway via PIAS1 (protein inhibitor of activated STAT1). Unexpectedly, PIAS1 knockdown not only prevented ROS-dependent hypersumoylation but also enhanced JNK signaling in HESCs. Conversely, PIAS overexpression increased sumoylation of various substrates, including c-Jun, yet inhibited basal and ROS-dependent JNK activity independently of its SUMO ligase function. Expression profiling demonstrated that PIAS1 knockdown enhances and profoundly modifies the transcriptional response to oxidative stress signals. Using a cutoff of 2-fold change or more, a total of 250 ROS-sensitive genes were identified, 97 of which were not dependent on PIAS1. PIAS1 knockdown abolished the regulation of 43 genes but also sensitized 110 other genes to ROS. Importantly, PIAS1 silencing was obligatory for the induction of several cellular defense genes in response to oxidative stress. In agreement, PIAS1 knockdown attenuated ROS-dependent caspase-3/7 activation and subsequent apoptosis. Thus, PIAS1 determines the level of JNK activity in HESCs, couples ROS signaling to the SUMO pathway, and promotes oxidative cell death.
Collapse
Affiliation(s)
- Beatriz B Leitao
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | |
Collapse
|
208
|
Droescher M, Begitt A, Marg A, Zacharias M, Vinkemeier U. Cytokine-induced paracrystals prolong the activity of signal transducers and activators of transcription (STAT) and provide a model for the regulation of protein solubility by small ubiquitin-like modifier (SUMO). J Biol Chem 2011; 286:18731-46. [PMID: 21460228 DOI: 10.1074/jbc.m111.235978] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biological effects of cytokines are mediated by STAT proteins, a family of dimeric transcription factors. In order to elicit transcriptional activity, the STATs require activation by phosphorylation of a single tyrosine residue. Our experiments revealed that fully tyrosine-phosphorylated STAT dimers polymerize via Tyr(P)-Src homology 2 domain interactions and assemble into paracrystalline arrays in the nucleus of cytokine-stimulated cells. Paracrystals are demonstrated to be dynamic reservoirs that protect STATs from dephosphorylation. Activated STAT3 forms such paracrystals in acute phase liver cells. Activated STAT1, in contrast, does not normally form paracrystals. By reversing the abilities of STAT1 and STAT3 to be sumoylated, we show that this is due to the unique ability of STAT1 among the STATs to conjugate to small ubiquitin-like modifier (SUMO). Sumoylation had one direct effect; it obstructed proximal tyrosine phosphorylation, which led to semiphosphorylated STAT dimers. These competed with their fully phosphorylated counterparts and interfered with their polymerization into paracrystals. Consequently, sumoylation, by preventing paracrystal formation, profoundly curtailed signal duration and reporter gene activation in response to cytokine stimulation of cells. The study thus identifies polymerization of activated STAT transcription factors as a positive regulatory mechanism in cytokine signaling. It provides a unifying explanation for the different subnuclear distributions of STAT transcription factors and reconciles the conflicting results as to the role of SUMO modification in STAT1 functioning. We present a generally applicable system in which protein solubility is maintained by a disproportionately small SUMO-modified fraction, whereby modification by SUMO partially prevents formation of polymerization interfaces, thus generating competitive polymerization inhibitors.
Collapse
Affiliation(s)
- Mathias Droescher
- School of Biomedical Sciences, Nottingham University Medical School, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | |
Collapse
|
209
|
SUMO2 and SUMO3 transcription is differentially regulated by oxidative stress in an Sp1-dependent manner. Biochem J 2011; 435:489-98. [DOI: 10.1042/bj20101474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein SUMOylation (SUMO is small ubiquitin-related modifier) is a dynamic process that is strictly regulated under physiological and pathological conditions. However, little is known about how various intra- or extra-cellular stimuli regulate expression levels of components in the SUMO system. SUMO isoforms SUMO2 and SUMO3 can rapidly convert to be conjugated in response to a variety of cellular stresses. Owing to the limitations of sequence homology, SUMO2 and SUMO3 cannot be differentiated between and are thus referred to as SUMO2/3. Whether these two isoforms are regulated in distinct manners has never been addressed. In the present paper we report that the expression of SUMO3, but not SUMO2, can be down-regulated at the transcription level by cellular oxidative stress. In the present study, we checked SUMO2 and SUMO3 mRNA levels in cells exposed to various doses of H2O2 and in cells bearing different levels of ROS (reactive oxygen species). We found an inverse relationship between SUMO3 transcription and ROS levels. We characterized a promoter region specific for the mouse Sumo3 gene that is bound by the redox-sensitive transcription factor Sp1 (specificity protein 1) and demonstrated oxidation of Sp1, as well as suppression of Sp1–DNA binding upon oxidative stress. This revealed for the first time that the expression of SUMO2 and SUMO3 is regulated differently by ROS. These findings may enhance our understanding about the regulation of SUMOylation and also shed light on the functions of Sp1.
Collapse
|
210
|
Grant MM. Identification of SUMOylated proteins in neuroblastoma cells after treatment with hydrogen peroxide or ascorbate. BMB Rep 2011; 43:720-5. [PMID: 21110914 DOI: 10.5483/bmbrep.2010.43.11.720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) proteins have been implicated in the pathology of a number of diseases, including neurodegenerative diseases. The conjugation machinery for SUMOylation consists of a number of proteins which are redox sensitive. Here, under oxidative stress (100 μM hydrogen peroxide), antioxidant (100 μM ascorbate) or control conditions 169 proteins were identified by electrospray ionisation fourier transform ion cyclotron resonance mass spectrometry. The majority of these proteins (70%) were found to contain SUMOylation consensus sequences. From the remaining proteins a small number (12%) were found to contain possible SUMO interacting motifs. The proteins identified included DNA and RNA binding proteins, structural proteins and proteasomal proteins. Several of the proteins identified under oxidative stress conditions had previously been identified as SUMOylated proteins, thus validating the method presented.
Collapse
Affiliation(s)
- Melissa M Grant
- School of Dentistry, University of Birmingham, Birmingham, B4 6NN, UK.
| |
Collapse
|
211
|
Kumsta C, Thamsen M, Jakob U. Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans. Antioxid Redox Signal 2011; 14:1023-37. [PMID: 20649472 PMCID: PMC3052275 DOI: 10.1089/ars.2010.3203] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accumulation of reactive oxygen species has been implicated in various diseases and aging. However, the precise physiological effects of accumulating oxidants are still largely undefined. Here, we applied a short-term peroxide stress treatment to young Caenorhabditis elegans and measured behavioral, physiological, and cellular consequences. We discovered that exposure to peroxide stress causes a number of immediate changes, including loss in mobility, decreased growth rate, and decreased cellular adenosine triphosphate levels. Many of these alterations, which are highly reminiscent of changes in aging animals, are reversible, suggesting the presence of effective antioxidant systems in young C. elegans. One of these antioxidant systems involves the highly abundant protein peroxiredoxin 2 (PRDX-2), whose gene deletion causes phenotypes symptomatic of chronic peroxide stress and shortens lifespan. Applying the quantitative redox proteomic technique OxICAT to oxidatively stressed wild-type and prdx-2 deletion worms, we identified oxidation-sensitive cysteines in 40 different proteins, including proteins involved in mobility and feeding (e.g., MYO-2 and LET-75), protein translation and homeostasis (e.g., elongation factor 1 [EFT-1] and heat shock protein 1), and adenosine triphosphate regeneration (e.g., nucleoside diphosphate kinase). The oxidative modification of some of these redox-sensitive cysteines may contribute to the physiological and behavioral changes observed in oxidatively stressed animals.
Collapse
Affiliation(s)
- Caroline Kumsta
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
212
|
Moutty MC, Sakin V, Melchior F. Importin α/β mediates nuclear import of individual SUMO E1 subunits and of the holo-enzyme. Mol Biol Cell 2011; 22:652-60. [PMID: 21209321 PMCID: PMC3046061 DOI: 10.1091/mbc.e10-05-0461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 11/11/2022] Open
Abstract
SUMOylation, reversible attachment of small ubiquitin-related modifier (SUMO), serves to regulate hundreds of proteins. Consistent with predominantly nuclear targets, enzymes required for attachment and removal of SUMO are highly enriched in this compartment. This is true also for the first enzyme of the SUMOylation cascade, the SUMO E1 enzyme heterodimer, Aos1/Uba2 (SAE1/SAE2). This essential enzyme serves to activate SUMO and to transfer it to the E2-conjugating enzyme Ubc9. Although the last 40 amino acids in yeast Uba2 have been implicated in its nuclear localization, little was known about the import pathways of Aos1, Uba2, and/or of the assembled E1 heterodimer. Here we show that the mammalian E1 subunits can be imported separately, identify nuclear localization signals (NLSs) in Aos1 and in Uba2, and demonstrate that their import is mediated by importin α/β in vitro and in intact cells. Once assembled into a stable heterodimer, the E1 enzyme can still be efficiently imported by importin α/β, due to the Uba2 NLS that is still accessible. These pathways may serve distinct purposes: import of nascent subunits prior to assembly and reimport of stable E1 enzyme complex after mitosis.
Collapse
Affiliation(s)
- Marie Christine Moutty
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | | |
Collapse
|
213
|
Leach MD, Stead DA, Argo E, Brown AJ. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol Biol Cell 2011; 22:687-702. [PMID: 21209325 PMCID: PMC3046064 DOI: 10.1091/mbc.e10-07-0632] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/24/2010] [Accepted: 12/21/2010] [Indexed: 11/23/2022] Open
Abstract
Posttranslational modifications of proteins play critical roles in the control of cellular differentiation, development, and environmental adaptation. In particular, the covalent attachment of the small ubiquitin-like modifier, SUMO, to target proteins (sumoylation) regulates cell cycle progression, transcription, nucleocytoplasmic transport, and stress responses. Here we combine proteomic, molecular, and cellular approaches to examine the roles of sumoylation in the major fungal pathogen of humans, Candida albicans. Using an N-terminally FLAG-tagged SUMO, 31 sumoylated proteins were identified in C. albicans with roles in stress responses (e.g., Hsp60, Hsp70 family members, Hsp104), the cytoskeleton and polarized growth (e.g., Tub1, Cct7, Mlc1), secretion, and endocytosis (e.g., Lsp1, Sec24, Sec7). The output from this proteomic screen was entirely consistent with the phenotypes of C. albicans mutants in which the single SUMO-encoding locus (SMT3) was inactivated or down-regulated. C. albicans smt3/smt3 cells displayed defects in growth, morphology, cell separation, nuclear segregation, and chitin deposition, suggesting important roles for sumoylation in cell cycle control. Smt3/smt3 cells also displayed sensitivity to thermal, oxidative, and cell wall stresses as well as to the antifungal drug caspofungin. Mutation of consensus sumoylation sites in Hsp60 and Hsp104 affected the resistance of C. albicans to thermal stress. Furthermore, signaling via the cell integrity pathway was defective in C. albicans smt3/smt3 cells. These observations provide mechanistic explanations for many of the observed phenotypic effects of Smt3 inactivation upon C. albicans growth and environmental adaptation. Clearly sumoylation plays key roles in fundamental cellular processes that underpin the pathogenicity of this medically important fungus.
Collapse
Affiliation(s)
- Michelle D. Leach
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - David A. Stead
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Evelyn Argo
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Alistair J.P. Brown
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
214
|
Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier. Proc Natl Acad Sci U S A 2011; 108:1763-70. [PMID: 21209336 DOI: 10.1073/pnas.1014402108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquitin (Ub)-related modifier Urm1 functions as a sulfur carrier in tRNA thiolation by means of a mechanism that requires the formation of a thiocarboxylate at the C-terminal glycine residue of Urm1. However, whether Urm1 plays an additional role as a Ub-like protein modifier remains unclear. Here, we show that Urm1 is conjugated to lysine residues of target proteins and that oxidative stress enhances protein urmylation in both Saccharomyces cerevisiae and mammalian cells. Similar to ubiquitylation, urmylation involves a thioester intermediate and results in the formation of a covalent peptide bond between Urm1 and its substrates. In contrast to modification by canonical Ub-like modifiers, however, conjugation of Urm1 involves a C-terminal thiocarboxylate of the modifier. We have confirmed that the peroxiredoxin Ahp1 is such a substrate in S. cerevisiae and found that Urm1 targets a specific lysine residue of Ahp1 in vivo. In addition, we have identified several unique substrates in mammalian cells and show that Urm1 targets at least two pathways on oxidant treatment. First, Urm1 is appended to lysine residues of three components that function in its own pathway (i.e., MOCS3, ATPBD3, and CTU2). Second, Urm1 is conjugated to the nucleocytoplasmic shuttling factor cellular apoptosis susceptibility protein. Thus, Urm1 has a conserved dual role by integrating the functions of prokaryotic sulfur carriers with those of eukaryotic protein modifiers of the Ub family.
Collapse
|
215
|
Miller MJ, Vierstra RD. Mass spectrometric identification of SUMO substrates provides insights into heat stress-induced SUMOylation in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:130-3. [PMID: 21270536 PMCID: PMC3122025 DOI: 10.4161/psb.6.1.14256] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 11/21/2010] [Indexed: 05/20/2023]
Abstract
The covalent addition of Small Ubiquitin-Related Modifier (SUMO) to various intracellular proteins is an essential regulatory step in most eukaryotes. Due to its necessity and the large number of putative targets, SUMO is thought to be second only to ubiquitin (Ub) among Ub-fold proteins in terms of regulatory influence. Whereas, ubiquitylation (i.e., the attachment of Ub) is generally associated with protein degradation, SUMOylation appears to have more diverse consequences, including the regulation of transcription, chromatin structure/accessibility, nuclear import, and various protein-protein interactions, and even appears to block the action of Ub by competing for the same binding sites on targets. Paramount to understanding SUMO function(s) is knowing the complete catalog of SUMO targets. In the following addendum we review our recent publication describing the proteomic identification of SUMO substrates in the model plant, Arabidopsis thaliana, and expand our analyses with regard to the changes in SUMOylation patterns that are induced by heat stress. Collectively, our data indicate that SUMOylation is highly dynamic with evidence that SUMO addition globally modifies transcription and chromatin accessibility, especially during stress.
Collapse
Affiliation(s)
- Marcus J Miller
- Department of Genetics, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
216
|
Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010; 11:861-71. [PMID: 21102611 PMCID: PMC3079294 DOI: 10.1038/nrm3011] [Citation(s) in RCA: 913] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins of the small ubiquitin-related modifier (SUMO) family are conjugated to proteins to regulate such cellular processes as nuclear transport, transcription, chromosome segregation and DNA repair. Recently, numerous insights into regulatory mechanisms of the SUMO modification pathway have emerged. Although SUMO-conjugating enzymes can discriminate between SUMO targets, many substrates possess characteristics that facilitate their modification. Other post-translational modifications also regulate SUMO conjugation, suggesting that SUMO signalling is integrated with other signal transduction pathways. A better understanding of SUMO regulatory mechanisms will lead to improved approaches for analysing the function of SUMO and substrate conjugation in distinct cellular pathways.
Collapse
Affiliation(s)
- Jaclyn R. Gareau
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Ave, New York NY USA
| | - Christopher D. Lima
- Structural Biology Program, Sloan-Kettering Institute, 1275 York Ave, New York NY USA
| |
Collapse
|
217
|
Agbor TA, Cheong A, Comerford KM, Scholz CC, Bruning U, Clarke A, Cummins EP, Cagney G, Taylor CT. Small ubiquitin-related modifier (SUMO)-1 promotes glycolysis in hypoxia. J Biol Chem 2010; 286:4718-26. [PMID: 21123177 DOI: 10.1074/jbc.m110.115931] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under conditions of hypoxia, most eukaryotic cells undergo a shift in metabolic strategy, which involves increased flux through the glycolytic pathway. Although this is critical for bioenergetic homeostasis, the underlying mechanisms have remained incompletely understood. Here, we report that the induction of hypoxia-induced glycolysis is retained in cells when gene transcription or protein synthesis are inhibited suggesting the involvement of additional post-translational mechanisms. Post-translational protein modification by the small ubiquitin related modifier-1 (SUMO-1) is induced in hypoxia and mass spectrometric analysis using yeast cells expressing tap-tagged Smt3 (the yeast homolog of mammalian SUMO) revealed hypoxia-dependent modification of a number of key glycolytic enzymes. Overexpression of SUMO-1 in mammalian cancer cells resulted in increased hypoxia-induced glycolysis and resistance to hypoxia-dependent ATP depletion. Supporting this, non-transformed cells also demonstrated increased glucose uptake upon SUMO-1 overexpression. Conversely, cells overexpressing the de-SUMOylating enzyme SENP-2 failed to demonstrate hypoxia-induced glycolysis. SUMO-1 overexpressing cells demonstrated focal clustering of glycolytic enzymes in response to hypoxia leading us to hypothesize a role for SUMOylation in promoting spatial re-organization of the glycolytic pathway. In summary, we hypothesize that SUMO modification of key metabolic enzymes plays an important role in shifting cellular metabolic strategies toward increased flux through the glycolytic pathway during periods of hypoxic stress.
Collapse
Affiliation(s)
- Terence A Agbor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Gibbings S, Elkins ND, Fitzgerald H, Tiao J, Weyman ME, Shibao G, Fini MA, Wright RM. Xanthine oxidoreductase promotes the inflammatory state of mononuclear phagocytes through effects on chemokine expression, peroxisome proliferator-activated receptor-{gamma} sumoylation, and HIF-1{alpha}. J Biol Chem 2010; 286:961-75. [PMID: 21059659 DOI: 10.1074/jbc.m110.150847] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protective effects of pharmacological inhibitors of xanthine oxidoreductase (XOR) have implicated XOR in many inflammatory diseases. Nonetheless, the role played by XOR during inflammation is poorly understood. We previously observed that inhibition of XOR within the inflammatory mononuclear phagocytes (MNP) prevented neutrophil recruitment during adoptive transfer demonstrating the role of XOR in MNP-mediated neutrophil recruitment. To further explore the role of XOR in the inflammatory state of MNP, we studied MNP isolated from inflammatory lungs combined with analyses of MNP cell lines. We demonstrated that XOR activity was increased in inflammatory MNP following insufflation of Th-1 cytokines in vivo and that activity was specifically increased by MNP differentiation. Inhibition of XOR reduced levels of CINC-1 secreted by MNP. Expression of peroxisome proliferator-activated receptor γ (PPARγ) in purified rat lung MNP and MNP cell lines reflected both the presence of PPARγ isoforms and PPARγ SUMOylation, and XOR inhibitors increased levels of SUMO-PPARγ in MNP cell lines. Both ectopic overexpression of XOR cDNA and uric acid supplementation reduced SUMO-PPARγ in MNP cells. Levels of the M2 markers CD36, CD206, and arginase-1 were modulated by uric acid and oxonic acid, whereas siRNA to SUMO-1 or PIAS-1 also reduced arginase-1 in RAW264.7 cells. We also observed that HIF-1α was increased by XOR inhibitors in inflammatory MNP and in MNP cell lines. These data demonstrate that XOR promotes the inflammatory state of MNP through effects on chemokine expression, PPARγ SUMOylation, and HIF-1α and suggest that strategies for inhibiting XOR may be valuable in modulating lung inflammatory disorders.
Collapse
Affiliation(s)
- Sophie Gibbings
- Division of Pulmonary Sciences, Division of Pulmonary Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
219
|
CHEEMA AMRITA, KNIGHTS CHADD, RAO MAHADEV, CATANIA JASON, PEREZ RICARDO, SIMONS BRIGITTE, DAKSHANAMURTHY SIVANESAN, KOLUKULA VAMSIK, TILLI MADDALENA, FURTH PRISCILLAA, ALBANESE CHRISTOPHER, AVANTAGGIATI MARIALAURA. Functional mimicry of the acetylated C-terminal tail of p53 by a SUMO-1 acetylated domain, SAD. J Cell Physiol 2010; 225:371-84. [PMID: 20458745 PMCID: PMC3614007 DOI: 10.1002/jcp.22224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ubiquitin-like molecule, SUMO-1, a small protein essential for a variety of biological processes, is covalently conjugated to many intracellular proteins, especially to regulatory components of the transcriptional machinery, such as histones and transcription factors. Sumoylation provides either a stimulatory or an inhibitory signal for proliferation and for transcription, but the molecular mechanisms by which SUMO-1 achieves such versatility of effects are incompletely defined. The tumor suppressor and transcription regulator p53 is a relevant SUMO-1 target. Particularly, the C-terminal tail of p53 undergoes both sumoylation and acetylation. While the effects of sumoylation are still controversial, acetylation modifies p53 interaction with chromatin embedded promoters, and enforces p53 apoptotic activity. In this study, we show that the N-terminal region of SUMO-1 might functionally mimic this activity of the p53 C-terminal tail. We found that this SUMO-1 domain possesses similarity with the C-terminal acetylable p53 tail as well as with acetylable domains of other transcription factors. SUMO-1 is, indeed, acetylated when conjugated to its substrates and to p53. In the acetylable form SUMO-1 tunes the p53 response by modifying p53 transcriptional program, by promoting binding onto selected promoters and by favoring apoptosis. By contrast, when non-acetylable, SUMO-1 enforces cell-cycle arrest and p53 binding to a different sets of genes. These data demonstrate for the first time that SUMO-1, a post-translational modification is, in turn, modified by acetylation. Further, they imply that the pleiotropy of effects by which SUMO-1 influences various cellular outcomes and the activity of p53 depends upon its acetylation state.
Collapse
Affiliation(s)
- AMRITA CHEEMA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - CHAD D. KNIGHTS
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - MAHADEV RAO
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - JASON CATANIA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - RICARDO PEREZ
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - BRIGITTE SIMONS
- Product Application Laboratory, MDS Analytical Technologies, Toronto AB Sciex Demo Labs, Toronto, Ontario, Canada
| | - SIVANESAN DAKSHANAMURTHY
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - VAMSI K. KOLUKULA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - MADDALENA TILLI
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - PRISCILLA A. FURTH
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - CHRISTOPHER ALBANESE
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - MARIA LAURA AVANTAGGIATI
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
220
|
Li L, Cheung SH, Evans EL, Shaw PE. Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res 2010; 70:8222-32. [PMID: 20807804 DOI: 10.1158/0008-5472.can-10-0894] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) promote tumor cell proliferation and survival by directly modulating growth-regulatory molecules and key transcription factors. The signal transducer and activator of transcription 3 (STAT3) is constitutively active in a variety of tumor cell types, where the effect of ROS on the Janus kinase/STAT pathway has been examined. We report here that STAT3 is directly sensitive to intracellular oxidants. Oxidation of conserved cysteines by peroxide decreased STAT3 binding to consensus serum-inducible elements (SIE) in vitro and in vivo and diminished interleukin (IL)-6-mediated reporter expression. Inhibitory effects produced by cysteine oxidation in STAT3 were negated in redox-insensitive STAT3 mutants. In contrast, ROS had no effect on IL-6-induced STAT3 recruitment to the c-myc P2 promoter. Expression of a redox-insensitive STAT3 in breast carcinoma cells accelerated their proliferation while reducing resistance to oxidative stress. Our results implicate STAT3 in coupling intracellular redox homeostasis to cell proliferation and survival.
Collapse
Affiliation(s)
- Li Li
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | | | | | | |
Collapse
|
221
|
Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences of protein SUMOylation in neurons. BRAIN RESEARCH REVIEWS 2010; 64:195-212. [PMID: 20382182 PMCID: PMC3310160 DOI: 10.1016/j.brainresrev.2010.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/26/2022]
Abstract
The post-translational modification of proteins is critical for the spatial and temporal regulation of signalling cascades. This is especially important in the CNS where the processes affecting differentiation, growth, targeting and communication between neurones are highly complex and very tightly regulated. In recent years it has emerged that modification of proteins by members of the SUMO (small ubiquitin-related modifier) family of proteins play key roles in neuronal function. SUMOylation involves the covalent conjugation of a member of the SUMO family to lysine residues in target proteins. Multiple nuclear and perinuclear SUMOylation targets have been reported to be involved in nuclear organisation and transcriptional regulation. In addition, a growing number of extranuclear SUMO substrates have been identified that can have important acute effects on neuronal function. The SUMOylation of both intra- and extranuclear proteins have been implicated in a diverse array of processes that have far-reaching implications for neuronal function and pathophysiology. Here we review the current understanding of the targets and consequences of protein SUMOylation in the brain and examine its established and potential involvement in a wide range of neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin A. Wilkinson
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
222
|
Cho KI, Yi H, Tserentsoodol N, Searle K, Ferreira PA. Neuroprotection resulting from insufficiency of RANBP2 is associated with the modulation of protein and lipid homeostasis of functionally diverse but linked pathways in response to oxidative stress. Dis Model Mech 2010; 3:595-604. [PMID: 20682751 PMCID: PMC2931537 DOI: 10.1242/dmm.004648] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 05/19/2010] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.
Collapse
Affiliation(s)
| | | | | | | | - Paulo A. Ferreira
- Department of Ophthalmology and
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Erwin Road, Durham, NC 27710, USA
| |
Collapse
|
223
|
Choi C, Sellak H, Brown FM, Lincoln TM. cGMP-dependent protein kinase and the regulation of vascular smooth muscle cell gene expression: possible involvement of Elk-1 sumoylation. Am J Physiol Heart Circ Physiol 2010; 299:H1660-70. [PMID: 20802137 DOI: 10.1152/ajpheart.00677.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the regulation of smooth muscle cell (SMC) gene expression by cGMP-dependent protein kinase (PKG) is now recognized, the mechanisms underlying these effects are not fully understood. In this study, we report that PKG-I stimulates myocardin/serum response factor (SRF)-dependent gene expression in vascular SMCs. The expression of PKG in PKG-deficient cells enhanced myocardin-induced SM22 promoter activity in a concentration-dependent fashion. However, neither SRF nor myocardin expression was affected. To investigate alternative mechanisms, we examined whether PKG affects the phosphorylation of E26-like protein-1 (Elk-1), a SRF/myocardin transcription antagonist. The activation of PKG caused an increase in a higher molecular mass form of phospho-Elk-1 that was determined to be small ubiquitin-related modifier (sumo)ylated Elk-1. PKG increased Elk-1 sumoylation twofold compared with the PKG-deficient cells, and Elk-1 sumoylation was reduced using dominant-negative sumo-conjugating enzyme, DN-Ubc9, confirming PKG-dependent sumoylation of phospho-Elk-1 in vascular SMCs. In addition, PKG stimulated Elk-1 sumoylation in COS-7 cells overexpressing Elk-1, sumo-1, and PKG-I. The increased expression of PKG in vascular SMCs inhibited Elk-1 binding to SMC-specific promoters, SM22 and smooth muscle myosin heavy chain, as measured by EMSA and chromatin immunoprecipitation assay, and PKG suppressed the Elk-1 inhibition of SM22 reporter gene expression. Taken together, these data suggest that PKG-I decreases Elk-1 activity by sumo modification of Elk-1, thereby increasing myocardin-SRF activity on SMC-specific gene expression.
Collapse
Affiliation(s)
- ChungSik Choi
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, Alabama 36609, USA
| | | | | | | |
Collapse
|
224
|
Riedel M, Goldbaum O, Wille M, Richter-Landsberg C. Membrane Lipid Modification by Docosahexaenoic Acid (DHA) Promotes the Formation of α-Synuclein Inclusion Bodies Immunopositive for SUMO-1 in Oligodendroglial Cells After Oxidative Stress. J Mol Neurosci 2010; 43:290-302. [DOI: 10.1007/s12031-010-9439-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 08/10/2010] [Indexed: 11/29/2022]
|
225
|
Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B, de Thé H. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 2010; 18:88-98. [PMID: 20609355 DOI: 10.1016/j.ccr.2010.06.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/05/2010] [Accepted: 06/10/2010] [Indexed: 11/26/2022]
Abstract
As(2)O(3) cures acute promyelocytic leukemia (APL) by initiating PML/RARA oncoprotein degradation, through sumoylation of its PML moiety. However, how As(2)O(3) initiates PML sumoylation has remained largely unexplained. As(2)O(3) binds vicinal cysteines and increases reactive oxygen species (ROS) production. We demonstrate that upon As(2)O(3) exposure, PML undergoes ROS-initiated intermolecular disulfide formation and binds arsenic directly. Disulfide-linked PML or PML/RARA multimers form nuclear matrix-associated nuclear bodies (NBs), become sumoylated and are degraded. Hematopoietic progenitors transformed by an As(2)O(3)-binding PML/RARA mutant exhibit defective As(2)O(3) response. Conversely, nonarsenical oxidants elicit PML/RARA multimerization, NB-association, degradation, and leukemia response in vivo, but do not affect PLZF/RARA-driven APLs. Thus, PML oxidation regulates NB-biogenesis, while oxidation-enforced PML/RARA multimerization and direct arsenic-binding cooperate to enforce APL's exquisite As(2)O(3) sensitivity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Arsenic Trioxide
- Arsenicals/pharmacology
- Blotting, Western
- CHO Cells
- COS Cells
- Chlorocebus aethiops
- Cricetinae
- Cricetulus
- Disulfides/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Intranuclear Inclusion Bodies/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Knockout
- Mutation/genetics
- Nuclear Proteins/physiology
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oxides/pharmacology
- Promyelocytic Leukemia Protein
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- Protein Processing, Post-Translational
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Small Ubiquitin-Related Modifier Proteins/metabolism
- Transcription Factors/physiology
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Marion Jeanne
- Inserm/Centre National de la Recherche Scientifique (CNRS)/Université Paris Diderot/Institut Universitaire Hématologie U944/UMR7212, Laboratoire associé de la Ligue Nationale contre le Cancer, Hôpital St Louis, 1, Av. C. Vellefaux, 75475 Paris, Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Shrivastava V, Pekar M, Grosser E, Im J, Vigodner M. SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells. Reproduction 2010; 139:999-1010. [PMID: 20385780 DOI: 10.1530/rep-09-0492] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small ubiquitin-like modifiers (SUMO) proteins have been implicated in cellular stress response in different tissues, but whether sumoylation has a similar role during spermatogenesis is currently unknown. In this study, changes in the levels of both free SUMO isoforms and high-molecular weight (HMW) SUMO conjugates were monitored before and after the induction of different types of cellular stresses. Using cell lines and primary cells freshly isolated from mouse testes, significant changes were detected in the levels of SUMO1 and SUMO2/3 conjugates following short exposure of the cells to heat stress and oxidative stress. While high concentrations of H(2)O(2) caused an increase in protein sumoylation, low concentrations of H(2)O(2) mostly caused protein desumoylation. Immunofluorescence studies localized SUMO to the sites of DNA double-strand breaks in stressed germ cells and during meiotic recombination. To study the effect of oxidative stress in vivo, animals exposed to tobacco smoke for 12 weeks were used. Changes in sumoylation of HMW proteins were consistent with their oxidative damage in the tobacco-exposed mice. Our results are consistent with the important roles of different SUMO isoforms in stress responses in germ cells. Furthermore, this study identified topoisomerase 2 alpha as one of the targets of sumoylation during normal spermatogenesis and under stress.
Collapse
Affiliation(s)
- Vibha Shrivastava
- Department of Biology, Stern College for Women, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
227
|
Li X, Lin HH, Chen H, Xu X, Shih HM, Ann DK. SUMOylation of the transcriptional co-repressor KAP1 is regulated by the serine and threonine phosphatase PP1. Sci Signal 2010; 3:ra32. [PMID: 20424263 PMCID: PMC3302164 DOI: 10.1126/scisignal.2000781] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Krüppel-associated box (KRAB) domain-associated protein 1 [KAP1, also known as transcription intermediary factor-1beta (TIF1beta)] is a ubiquitous transcriptional co-repressor that is susceptible to phosphorylation at Ser(824) by ataxia-telangiectasia mutated (ATM) and to modification by small ubiquitin-like modifying (SUMO) proteins. Here, we found that, whereas the protein phosphatase 1alpha isoform (PP1alpha) directly interacted with KAP1 under basal conditions, PP1beta interacted with KAP1 only in response to genotoxic stress. Changes in the abundance of PP1alpha or PP1beta had differential effects on the phosphorylation and SUMOylation states of KAP1 under basal conditions and in response to DNA double-strand breaks (DSBs). Chromatin immunoprecipitation and re-immunoprecipitation experiments revealed that PP1alpha and PP1beta were recruited to KAP1 with different kinetics before and after the induction of DNA DSBs, which provided a mechanistic basis for the switch in the phosphorylation and SUMOylation states of KAP1. PP1beta-dependent SUMOylation of KAP1 occurred by mechanisms that were dependent and independent of the phosphorylation status of Ser(824). We posit a mechanism whereby the combined actions of PP1alpha and PP1beta cause dephosphorylation of KAP1 at Ser(824) and assure its SUMOylation to counter the effect of ATM, thereby regulating the transcription of KAP1 target genes in unstressed and stressed cells.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
- Pharmacology and Pharmaceutical Science, University of Southern California, Los Angeles, CA, 90033, USA
| | - H. Helen Lin
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Hanqing Chen
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - David K. Ann
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
- Pharmacology and Pharmaceutical Science, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
228
|
Abstract
SUMOylation is a highly transient post-translational protein modification. Attachment of SUMO to target proteins occurs via a number of specific activating and ligating enzymes that form the SUMO-substrate complex, and other SUMO-specific proteases that cleave the covalent bond, thus leaving both SUMO and target protein free for the next round of modification. SUMO modification has major effects on numerous aspects of substrate function, including subcellular localisation, regulation of their target genes, and interactions with other molecules. The modified SUMO-protein complex is a very transient state, and it thus facilitates rapid response and actions by the cell, when needed. Like phosphorylation, acetylation and ubiquitination, SUMOylation has been associated with a number of cellular processes. In addition to its nuclear role, important sides of mitochondrial activity, stress response signalling and the decision of cells to undergo senescence or apoptosis, have now been shown to involve the SUMO pathway. With ever increasing numbers of reports linking SUMO to human disease, like neurodegeneration and cancer metastasis, it is highly likely that novel and equally important functions of components of the SUMOylation process in cell signalling pathways will be elucidated in the near future.
Collapse
Affiliation(s)
- Artemisia M Andreou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | | |
Collapse
|
229
|
Janer A, Werner A, Takahashi-Fujigasaki J, Daret A, Fujigasaki H, Takada K, Duyckaerts C, Brice A, Dejean A, Sittler A. SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Hum Mol Genet 2010; 19:181-95. [PMID: 19843541 DOI: 10.1093/hmg/ddp478] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) was proposed to modulate the pathogenesis of several neurodegenerative diseases. Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder, whose pathology is caused by an expansion of a polyglutamine stretch in the protein ataxin-7 (ATXN7). Here, we identified ATXN7 as new target for SUMOylation in vitro and in vivo. The major SUMO acceptor site was mapped to lysine 257, which is part of an evolutionarily conserved consensus SUMOylation motif. SUMOylation did not influence the subcellular localization of ATXN7 nor its interaction with components of the TFTC/STAGA complex. Expansion of the polyglutamine stretch did not impair the SUMOylation of ATXN7. Furthermore, SUMO1 and SUMO2 colocalized with ATXN7 in a subset of neuronal intranuclear inclusions in the brain of SCA7 patients and SCA7 knock-in mice. In a COS-7 cellular model of SCA7, in addition to diffuse nucleoplasmic staining we identified two populations of nuclear inclusions: homogenous or non-homogenous. Non-homogenous inclusions showed significantly reduced colocalization with SUMO1 and SUMO2, but were highly enriched in Hsp70, 19S proteasome and ubiquitin. Interestingly, they were characterized by increased staining with the apoptotic marker caspase-3 and by disruption of PML nuclear bodies. Importantly, preventing the SUMOylation of expanded ATXN7 by mutating the SUMO site increased both the amount of SDS-insoluble aggregates and of caspase-3 positive non-homogenous inclusions, which act toxic to the cells. Our results demonstrate an influence of SUMOylation on the multistep aggregation process of ATXN7 and implicate a role for ATXN7 SUMOylation in SCA7 pathogenesis.
Collapse
|
230
|
The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif. Mol Cell Biol 2010; 30:2193-205. [PMID: 20176810 DOI: 10.1128/mcb.01510-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein modification by SUMO conjugation has emerged to be an important regulatory event. Recently, the mechanisms through which SUMO elicits its effects on target proteins have been elucidated. One of these is the noncovalent association between SUMO and coregulatory proteins via SUMO interaction motifs (SIMs). We therefore searched for additional binding proteins to elucidate how SUMO acts as a signal to potentiate novel noncovalent interactions with SUMO-binding proteins. We identified an E3 ligase, Pc2, as a SUMO-binding protein with two functionally distinct SIMs. Here, we focus on the role of SIM2 and demonstrate that it is crucial for many of the documented Pc2 functions, which converge on determining its E3 ligase activity. One role of SUMO binding in this context is the subnuclear partitioning of the active form of Ubc9 (SUMO approximately Ubc9) by Pc2. The significance of the SIM2-dependent functions of Pc2 is demonstrated in the control of the precise expression of lineage-specific genes during embryonic stem cell differentiation.
Collapse
|
231
|
Melchior F. Frauke Melchior: How SUMO wrestles other proteins. Interview by Caitlin Sedwick. ACTA ACUST UNITED AC 2010; 187:586-7. [PMID: 19951911 PMCID: PMC2806595 DOI: 10.1083/jcb.1875pi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melchior's laboratory is exploring the regulation and consequences of protein modification by the small protein SUMO.
Collapse
|
232
|
Abstract
Sumoylation, the covalent attachment of SUMO peptide to cellular proteins, is an essential regulator of protein function involved in a wide range of cellular events. Deregulation of the SUMO pathway is implicated in the pathogenesis of several diseases, so it is important to understand how this system is controlled. Sumoylation is a highly dynamic regulatory mechanism, involving an energy dependent enzyme cascade for conjugation and another set of enzymes for deconjugation. In this chapter we will highlight the different mechanisms controlling the SUMO system.
Collapse
Affiliation(s)
- Katharina Maderböck
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, 79108, Freiburg, Germany
| | | |
Collapse
|
233
|
Affiliation(s)
- Andrew S. Neish
- Department of Pathology, Emory University School of Medicine
| |
Collapse
|
234
|
Miteva M, Keusekotten K, Hofmann K, Praefcke GJK, Dohmen RJ. Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Subcell Biochem 2010; 54:195-214. [PMID: 21222284 DOI: 10.1007/978-1-4419-6676-6_16] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The small ubiquitin-related modifier (SUMO) is a versatile cellular tool to modulate a protein's function. SUMO modification is a reversible process analogous to ubiquitylation. The consecutive actions of E1, E2 and E3 enzymes catalyze the attachment of SUMO to target proteins, while deconjugation is promoted by SUMO specific proteases. Contrary to the long-standing assumption that SUMO has no role in proteolytic targeting and rather acts as an antagonist of ubiquitin in some cases, it has recently been discovered that sumoylation itself can function as a secondary signal mediating ubiquitin-dependent degradation by the proteasome. The discovery of a novel family of RING finger ubiquitin ligases bearing SUMO interaction motifs implicated the ubiquitin system in the control of SUMO modified proteins. SUMO modification as a signal for degradation is conserved in eukaryotes and ubiquitin ligases that specifically recognize SUMO-modified proteins have been discovered in species ranging from yeasts to humans. This chapter summarizes what is known about these ligases and their role in controlling sumoylated proteins.
Collapse
Affiliation(s)
- Maria Miteva
- Institute for Genetics, Cologne University, Zülpicher Straße 47, D- 50674, Cologne, Germany
| | | | | | | | | |
Collapse
|
235
|
Leitao B, Jones MC, Fusi L, Higham J, Lee Y, Takano M, Goto T, Christian M, Lam EWF, Brosens JJ. Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals. FASEB J 2009; 24:1541-51. [PMID: 20026682 PMCID: PMC2857868 DOI: 10.1096/fj.09-149153] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Survival of the conceptus is dependent on continuous progesterone signaling in the maternal decidua but how this is achieved under conditions of oxidative stress that characterize early pregnancy is unknown. Using primary cultures, we show that modest levels of reactive oxygen species (ROS) increase sumoylation in human endometrial stromal cells (HESCs), leading to enhanced modification and transcriptional inhibition of the progesterone receptor (PR). The ability of ROS to induce a sustained hypersumoylation response, or interfere with PR activity, was lost upon differentiation of HESCs into decidual cells. Hypersumoylation in response to modest levels of ROS requires activation of the JNK pathway. Although ROS-dependent JNK signaling is disabled on decidualization, the cells continue to mount a transcriptional response, albeit distinct from that observed in undifferentiated HESCs. We further show that attenuated JNK signaling in decidual cells is a direct consequence of altered expression of key pathway modulators, including induction of MAP kinase phosphatase 1 (MKP1). Overexpression of MKP1 dampens JNK signaling, prevents hypersumoylation, and maintains PR activity in undifferentiated HESCs exposed to ROS. Thus, JNK silencing uncouples ROS signaling from the SUMO conjugation pathway and maintains progesterone responses and cellular homeostasis in decidual cells under oxidative stress conditions imposed by pregnancy.—Leitao, B., Jones, M. C., Fusi, L., Higham, J., Lee, Y. Takano, M., Goto, T., Christian, M., Lam, E. W.-F., Brosens, J. J. Silencing of the Jnk pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals.
Collapse
Affiliation(s)
- Beatriz Leitao
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Rd., London W12 0NN
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, Ng T, Solomon E. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 2009; 462:886-90. [PMID: 20016594 DOI: 10.1038/nature08593] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 10/19/2009] [Indexed: 12/27/2022]
Abstract
Mutations in BRCA1 are associated with a high risk of breast and ovarian cancer. BRCA1 participates in the DNA damage response and acts as a ubiquitin ligase. However, its regulation remains poorly understood. Here we report that BRCA1 is modified by small ubiquitin-like modifier (SUMO) in response to genotoxic stress, and co-localizes at sites of DNA damage with SUMO1, SUMO2/3 and the SUMO-conjugating enzyme Ubc9. PIAS SUMO E3 ligases co-localize with and modulate SUMO modification of BRCA1, and are required for BRCA1 ubiquitin ligase activity in cells. In vitro SUMO modification of the BRCA1/BARD1 heterodimer greatly increases its ligase activity, identifying it as a SUMO-regulated ubiquitin ligase (SRUbL). Further, PIAS SUMO ligases are required for complete accumulation of double-stranded DNA (dsDNA) damage-repair proteins subsequent to RNF8 accrual, and for proficient double-strand break repair. These data demonstrate that the SUMOylation pathway plays a significant role in mammalian DNA damage response.
Collapse
Affiliation(s)
- Joanna R Morris
- Department of Medical and Molecular Genetics, King's College London, Guy's Medical School Campus, London SE1 9RT, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
The activity-dependent stimuli increase SUMO modification in SHSY5Y cells. Biochem Biophys Res Commun 2009; 390:872-6. [DOI: 10.1016/j.bbrc.2009.10.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
|
238
|
Martín-Garrido A, Boyano-Adánez MC, Alique M, Calleros L, Serrano I, Griera M, Rodríguez-Puyol D, Griendling KK, Rodríguez-Puyol M. Hydrogen peroxide down-regulates inositol 1,4,5-trisphosphate receptor content through proteasome activation. Free Radic Biol Med 2009; 47:1362-70. [PMID: 19596064 DOI: 10.1016/j.freeradbiomed.2009.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/19/2009] [Accepted: 07/03/2009] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) is implicated in the regulation of signaling pathways leading to changes in vascular smooth muscle function. Contractile effects produced by H(2)O(2) are due to the phosphorylation of myosin light chain kinase triggered by increases in intracellular calcium (Ca(2+)) from intracellular stores or influx of extracellular Ca(2+). One mechanism for mobilizing such stores involves the phosphoinositide pathway. Inositol 1,4,5-trisphosphate (IP(3)) mobilizes intracellular Ca(2+) by binding to a family of receptors (IP(3)Rs) on the endoplasmic-sarcoplasmic reticulum that act as ligand-gated Ca(2+) channels. IP(3)Rs can be rapidly ubiquitinated and degraded by the proteasome, causing a decrease in cellular IP(3)R content. In this study we show that IP(3)R(1) and IP(3)R(3) are down-regulated when vascular smooth muscle cells (VSMC) are stimulated by H(2)O(2), through an increase in proteasome activity. Moreover, we demonstrate that the decrease in IP(3)R by H(2)O(2) is accompanied by a reduction in calcium efflux induced by IP(3) in VSMC. Also, we observed that angiotensin II (ANGII) induces a decrease in IP(3)R by activation of NADPH oxidase and that preincubation with H(2)O(2) decreases ANGII-mediated calcium efflux and planar cell surface area in VSMC. The decreased IP(3) receptor content observed in cells was also found in aortic rings, which exhibited a decreased ANGII-dependent contraction after treatment with H(2)O(2). Altogether, these results suggest that H(2)O(2) mediates IP(3)R down-regulation via proteasome activity.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Cells, Cultured
- Down-Regulation/drug effects
- Enzyme Activation/drug effects
- Hydrogen Peroxide/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors/biosynthesis
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Proteasome Endopeptidase Complex/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- A Martín-Garrido
- Departamento Fisiología, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Ronen O, Malone JP, Kay P, Bivens C, Hall K, Paruchuri LP, Mo YY, Robbins KT, Ran S. Expression of a novel marker, Ubc9, in squamous cell carcinoma of the head and neck. Head Neck 2009; 31:845-55. [PMID: 19309722 DOI: 10.1002/hed.21048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ubiquitin-conjugating enzyme (Ubc9) is a novel enzyme involved in posttranslational modification of cellular proteins. The objective of this study was to determine the expression of Ubc9 in squamous cell carcinoma of the head and neck (SCCHN). METHODS SCCHN specimens were stained with anti-Ubc9 antibodies, scored using a semiquantitative method, and statistically analyzed. RESULTS Forty-six tumors were stained, 26 of which included adjacent mucosa. Ubc9 was significantly upregulated in the malignant and peritumoral tissues compared with mucosa from normal individuals. In peritumoral tissues, Ubc9 expression was detected in the basal and suprabasal epithelial layers. No Ubc9 was detected in epithelial cells in normal mucosa. These differences in Ubc9 expression were statistically significant (p < .0001). Tumor Ubc9 expression significantly correlated with clinical and pathologic stage. CONCLUSIONS Ubc9 is significantly overexpressed in the primary SCCHN tumors and peritumoral mucosa compared with normal epithelial cells. These findings suggest that Ubc9 may play an important role in tumorigenesis and tumor progression of SCCHN.
Collapse
Affiliation(s)
- Ohad Ronen
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Hsiao HH, Meulmeester E, Frank BTC, Melchior F, Urlaub H. "ChopNSpice," a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides. Mol Cell Proteomics 2009; 8:2664-75. [PMID: 19721078 DOI: 10.1074/mcp.m900087-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conjugation of small ubiquitin-like modifier (SUMO) to substrates is involved in a large number of cellular processes. Typically, SUMO is conjugated to lysine residues within a SUMO consensus site; however, an increasing number of proteins are sumoylated on non-consensus sites. To appreciate the functional consequences of sumoylation, the identification of SUMO attachment sites is of critical importance. Discovery of SUMO acceptor sites is usually performed by a laborious mutagenesis approach or using MS. In MS, identification of SUMO acceptor sites in higher eukaryotes is hampered by the large tryptic fragments of SUMO1 and SUMO2/3. MS search engines in combination with known databases lack the possibility to search MSMS spectra for larger modifications, such as sumoylation. Therefore, we developed a simple and straightforward database search tool ("ChopNSpice") that successfully allows identification of SUMO acceptor sites from proteins sumoylated in vivo and in vitro. By applying this approach we identified SUMO acceptor sites in, among others, endogenous SUMO1, SUMO2, RanBP2, and Ubc9.
Collapse
Affiliation(s)
- He-Hsuan Hsiao
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
241
|
SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J 2009; 28:2748-62. [PMID: 19680224 DOI: 10.1038/emboj.2009.210] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 06/29/2009] [Indexed: 02/02/2023] Open
Abstract
The physiological function of Sentrin/SUMO-specific proteases (SENPs) remains largely unexplored, and little is known about the regulation of SENPs themselves. Here, we show that a modest increase of reactive oxygen species (ROS) regulates SENP3 stability and localization. We found that SENP3 is continuously degraded through the ubiquitin-proteasome pathway under basal condition and that ROS inhibit this degradation. Furthermore, ROS causes SENP3 to redistribute from the nucleoli to the nucleoplasm, allowing it to regulate nuclear events. The stabilization and redistribution of SENP3 correlate with an increase in the transcriptional activity of the hypoxia-inducing factor-1 (HIF-1) under mild oxidative stress. ROS-enhanced HIF-1 transactivation is blocked by SENP3 knockdown. The de-SUMOylating activity of SENP3 is required for ROS-induced increase of HIF-1 transactivation, but the true substrate of SENP3 is the co-activator of HIF-1 alpha, p300, rather than HIF-1 alpha itself. Removing SUMO2/3 from p300 enhances its binding to HIF-1 alpha. In vivo nude mouse xenografts overexpressing SENP3 are more angiogenic. Taken together, our results identify SENP3 as a redox sensor that regulates HIF-1 transcriptional activity under oxidative stress through the de-SUMOylation of p300.
Collapse
|
242
|
Mukherjee S, Thomas M, Dadgar N, Lieberman AP, Iñiguez-Lluhí JA. Small ubiquitin-like modifier (SUMO) modification of the androgen receptor attenuates polyglutamine-mediated aggregation. J Biol Chem 2009; 284:21296-306. [PMID: 19497852 PMCID: PMC2755854 DOI: 10.1074/jbc.m109.011494] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/29/2009] [Indexed: 01/30/2023] Open
Abstract
The neurodegenerative disorder spinal and bulbar muscular atrophy or Kennedy disease is caused by a CAG trinucleotide repeat expansion within the androgen receptor (AR) gene. The resulting expanded polyglutamine tract in the N-terminal region of the receptor renders AR prone to ligand-dependent misfolding and formation of oligomers and aggregates that are linked to neuronal toxicity. How AR misfolding is influenced by post-translational modifications, however, is poorly understood. AR is a target of SUMOylation, and this modification inhibits AR activity in a promoter context-dependent manner. SUMOylation is up-regulated in response to multiple forms of cellular stress and may therefore play an important cytoprotective role. Consistent with this view, we find that gratuitous enhancement of overall SUMOylation significantly reduced the formation of polyglutamine-expanded AR aggregates without affecting the levels of the receptor. Remarkably, this effect requires SUMOylation of AR itself because it depends on intact AR SUMOylation sites. Functional analyses, however, indicate that the protective effects of enhanced AR SUMOylation are not due to alterations in AR transcriptional activity because a branched protein structure in the appropriate context of the N-terminal region of AR is necessary to antagonize aggregation but not for inhibiting AR transactivation. Remarkably, small ubiquitin-like modifier (SUMO) attenuates AR aggregation through a unique mechanism that does not depend on critical features essential for its interaction with canonical SUMO binding motifs. Our findings therefore reveal a novel function of SUMOylation and suggest that approaches that enhance AR SUMOylation may be of clinical use in polyglutamine expansion diseases.
Collapse
Affiliation(s)
| | - Monzy Thomas
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | - Nahid Dadgar
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | - Andrew P. Lieberman
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632
| | | |
Collapse
|
243
|
Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat Chem Biol 2009; 5:664-72. [PMID: 19648934 DOI: 10.1038/nchembio.194] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/12/2009] [Indexed: 12/14/2022]
Abstract
Cellular damage invoked by reactive oxygen species plays a key role in the pathobiology of cancer and aging. Forkhead box class O (FoxO) transcription factors are involved in various cellular processes including cell cycle regulation, apoptosis and resistance to reactive oxygen species, and studies in animal models have shown that these transcription factors are of vital importance in tumor suppression, stem cell maintenance and lifespan extension. Here we report that the activity of FoxO in human cells is directly regulated by the cellular redox state through a unique mechanism in signal transduction. We show that reactive oxygen species induce the formation of cysteine-thiol disulfide-dependent complexes of FoxO and the p300/CBP acetyltransferase, and that modulation of FoxO biological activity by p300/CBP-mediated acetylation is fully dependent on the formation of this redox-dependent complex. These findings directly link cellular redox status to the activity of the longevity protein FoxO.
Collapse
|
244
|
Matafora V, D'Amato A, Mori S, Blasi F, Bachi A. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics 2009; 8:2243-55. [PMID: 19596686 DOI: 10.1074/mcp.m900079-mcp200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity.
Collapse
Affiliation(s)
- Vittoria Matafora
- Division of Genomics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
245
|
Li W, Zhang S, Numata O, Nozawa Y, Wang S. TpMRK regulates cell division of Tetrahymena in response to oxidative stress. Cell Biochem Funct 2009; 27:364-9. [PMID: 19585488 DOI: 10.1002/cbf.1583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TpMRK was identified as a stress-responsive mitogen activated protein kinase (MAPK)-related kinase and has been shown to play a critical role in the stress signalling in Tetrahymena cells. Here, we found that the mRNA expression of TpMRK was correlated with cell division of Tetrahymena with decreased expression occurring in cells prior to entering synchronous cell division induced by heat treatment. Notably, cell division was delayed with a lower division index of 40% after exposure to hydrogen peroxide while 85% of cells underwent cell division synchronously at 75 min after heat treatment without the oxidative exposure. Furthermore, inactivation of TpMRK signalling by p38 MAPK inhibitor SB203580 or MEK inhibitor PD 98059 partially derepressed cell division induced by hydrogen peroxide. Our data suggest that oxidative stimuli might cause aberration of synchronous cell division of Tetrahymena through activating the TpMRK cascade.
Collapse
Affiliation(s)
- Wenzhou Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University School of Life Sciences, Shanghai 200433, PR China
| | | | | | | | | |
Collapse
|
246
|
Fukuda I, Ito A, Hirai G, Nishimura S, Kawasaki H, Saitoh H, Kimura KI, Sodeoka M, Yoshida M. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. ACTA ACUST UNITED AC 2009; 16:133-40. [PMID: 19246003 DOI: 10.1016/j.chembiol.2009.01.009] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/10/2009] [Accepted: 01/14/2009] [Indexed: 01/13/2023]
Abstract
Protein modification by small ubiquitin-related modifier proteins (SUMOs) controls diverse cellular functions. Dysregulation of SUMOylation or deSUMOylation processes has been implicated in the development of cancer and neurodegenerative diseases. However, no small-molecule inhibiting protein SUMOylation has been reported so far. Here, we report inhibition of SUMOylation by ginkgolic acid and its analog, anacardic acid. Ginkgolic acid and anacardic acid inhibit protein SUMOylation both in vitro and in vivo without affecting in vivo ubiquitination. Binding assays with a fluorescently labeled probe showed that ginkgolic acid directly binds E1 and inhibits the formation of the E1-SUMO intermediate. These studies will provide not only a useful tool for investigating the roles of SUMO conjugations in a variety of pathways in cells, but also a basis for the development of drugs targeted against diseases involving aberrant SUMOylation.
Collapse
Affiliation(s)
- Isao Fukuda
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Xu Z, Chan HY, Lam WL, Lam KH, Lam LSM, Ng TB, Au SWN. SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 2009; 11:1453-84. [PMID: 19186998 DOI: 10.1089/ars.2008.2182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small-ubiquitin modifier (SUMO) has emerged as a novel modification system that governs the activities of a wide spectrum of protein substrates. SUMO-specific proteases (SENP) are of particular interest, as they are responsible for both the maturation of SUMO precursors and for their deconjugation. The interruption of SENPs has been implicated in embryonic defects and carcinoma cells, indicating that a proper balance of SUMO conjugation and deconjugation is crucial. Recent advances in molecular and cellular biology have highlighted the distinct subcellular localization, and endopeptidase and isopeptidase activities of SENPs, suggesting that they are nonredundant. A better understanding of the molecular basis of SUMO recognition and hydrolytic cleavage has been obtained from the crystal structures of SENP-substrate complexes. While a number of proteomic studies have shown an upregulation of sumoylation, attention is now increasingly being directed towards the regulatory mechanism of sumoylation, in particular the oxidative effect. Findings on the oxidation-induced intermolecular disulfide of E1-E2 ligases and SENP1/2 have improved our understanding of the mechanism by which modification is switched up or down. More intriguingly, a growing body of evidence suggests that sumoylation cross-talks with other modifications, and that the upstream and downstream signaling pathway is co-regulated by more than one modifier.
Collapse
Affiliation(s)
- Zheng Xu
- Centre for Protein Science and Crystallography, Department of Biochemistry and Molecular Biotechnology Program, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
248
|
Anderson DB, Wilkinson KA, Henley JM. Protein SUMOylation in neuropathological conditions. DRUG NEWS & PERSPECTIVES 2009; 22:255-65. [PMID: 19609463 PMCID: PMC3309023 DOI: 10.1358/dnp.2009.22.5.1378636] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Small ubiquitin-related modifier (SUMO) proteins are approximately 11 kDa proteins that can be covalently conjugated to lysine residues in defined target proteins. The resultant post-translational modification, SUMOylation, is vital for the viability of mammalian cells and regulates, among other things, a range of essential nuclear processes. It has become increasingly apparent in recent years that SUMOylation also serves multiple functions outside the nucleus and that it plays a critical role in the regulation of neuronal integrity and synaptic function. In particular, dysfunction of the SUMOylation pathway has been implicated in the molecular and cellular dysfunction associated with neurodegenerative and psychiatric disorders. Here, we outline current knowledge of the SUMO pathway and discuss the growing evidence for its involvement in multiple neurodegenerative disorders, with a view to highlighting the potential of the SUMO pathway as a putative drug target.
Collapse
Affiliation(s)
- Dina B. Anderson
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| | - Kevin A. Wilkinson
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| | - Jeremy M. Henley
- Dina B. Anderson and Kevin A. Wilkinson are Ph.D. students at MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K. Jeremy. M. Henley, BSc., Ph.D.,* is Professor of Molecular Neuroscience and Assistant Director of MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, U.K
| |
Collapse
|
249
|
Loftus LT, Gala R, Yang T, Jessick VJ, Ashley MD, Ordonez AN, Thompson SJ, Simon RP, Meller R. Sumo-2/3-ylation following in vitro modeled ischemia is reduced in delayed ischemic tolerance. Brain Res 2009; 1272:71-80. [PMID: 19332039 PMCID: PMC2774733 DOI: 10.1016/j.brainres.2009.03.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
Several recent studies suggest that sumo-2/3 modification of proteins occurs following harmful ischemia, however, sumo-2/3-ylation may also be associated with hibernation-mediated neuroprotection. Here we investigate the sumoylation of proteins following ischemia and ischemic tolerance using our established in vitro model of ischemia (oxygen and glucose deprivation; OGD). Following harmful ischemia (120 min OGD), we observed a significant increase in the sumo-2/3-ylation of high molecular weight proteins (>85 kDa), but not sumo-1-ylation of proteins. Sumo-2/3-ylation following 120 min OGD was reduced when cultures were preconditioned with non-harmful 30 min OGD 24 h earlier (delayed ischemic tolerance). However, we observed no change in sumo-2/3-ylation in a model of rapid ischemic tolerance. The effects of preconditioning on sumo-2/3-ylation following harmful ischemia were blocked by the protein synthesis inhibitor cycloheximide (1.0 muM), a known inhibitor of delayed ischemic tolerance. In addition, we observed a reduction in sumo-2/3-ylation using hypothermia (4 degrees C 30 min) as the preconditioning stimuli to induce delayed ischemic tolerance. Further studies show that sumo-2/3-ylation occurs during the ischemic insult and that preconditioning does not change expression of the sumo E1- and E2-ligases (UBA2 and Ubc9) or the sumo specific isopeptidases (SenP1-3). While sumo-2/3-ylation is enhanced under conditions of cell stress, it is not yet clear whether this is a cause or consequence of harmful ischemia-induced cell damage.
Collapse
Affiliation(s)
- Liam T Loftus
- Robert S. Dow Neurobiology Laboratories, Legacy Clinical Research and Technology Center, 1225 NE 2nd Avenue, Portland, OR 97232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10:319-31. [PMID: 19352404 PMCID: PMC2712597 DOI: 10.1038/nrm2673] [Citation(s) in RCA: 681] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Attachment of ubiquitin or ubiquitin-like proteins (known as UBLs) to their targets through multienzyme cascades is a central mechanism to modulate protein functions. This process is initiated by a family of mechanistically and structurally related E1 (or activating) enzymes. These activate UBLs through carboxy-terminal adenylation and thiol transfer, and coordinate the use of UBLs in specific downstream pathways by charging cognate E2 (or conjugating) enzymes, which then interact with the downstream ubiquitylation machinery to coordinate the modification of the target. A broad understanding of how E1 enzymes activate UBLs and how they selectively coordinate UBLs with downstream function has come from enzymatic, structural and genetic studies.
Collapse
Affiliation(s)
- Brenda A. Schulman
- Howard Hughes Medical Institute, Departments of Structural Biology, and Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115
| |
Collapse
|