201
|
Majzoub K, Wrensch F, Baumert TF. The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Viruses 2019; 11:v11080758. [PMID: 31426357 PMCID: PMC6723221 DOI: 10.3390/v11080758] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Animal cells have evolved dedicated molecular systems for sensing and delivering a coordinated response to viral threats. Our understanding of these pathways is almost entirely defined by studies in humans or model organisms like mice, fruit flies and worms. However, new genomic and functional data from organisms such as sponges, anemones and mollusks are helping redefine our understanding of these immune systems and their evolution. In this review, we will discuss our current knowledge of the innate immune pathways involved in sensing, signaling and inducing genes to counter viral infections in vertebrate animals. We will then focus on some central conserved players of this response including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and cGAS-STING, attempting to put their evolution into perspective. To conclude, we will reflect on the arms race that exists between viruses and their animal hosts, illustrated by the dynamic evolution and diversification of innate immune pathways. These concepts are not only important to understand virus-host interactions in general but may also be relevant for the development of novel curative approaches against human disease.
Collapse
Affiliation(s)
- Karim Majzoub
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France.
| | - Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
- Institut Universitaire de France, 75231 Paris, France.
| |
Collapse
|
202
|
Tang Q, Li W, Dai N, Gao Y, Han Y, Cheng G, Gu C. The Role of Necroptosis, Apoptosis, and Inflammation in Fowl Cholera-Associated Liver Injury in a Chicken Model. Avian Dis 2019; 61:491-502. [PMID: 29337619 DOI: 10.1637/11732-073017-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fowl cholera resulting from infection with Pasteurella multocida causes huge economic losses in the poultry industry. Necrotic hepatitis is reported to be a significant lesion associated with fowl cholera in chickens. Clarifying the underlying molecular mechanism of hepatic injury caused by P. multocida infection is needed to develop new strategies to control fowl cholera. Pasteurella multocida Q (the standard reference strain) and P. multocida 1G1 (a clinical strain) were used to infect healthy laying hens. Clinical signs were observed and gross lesions in livers were observed postmortem. Histologic lesions and the localization and expression of protein molecules associated with necroptosis, apoptosis, and inflammation in hepatic tissues were examined by hematoxylin and eosin staining and immunohistochemistry. Western blot analysis was used to determine the expression of liver injury-related genes. Necroptotic molecules such as RIPK1 (receptor interaction protein kinases 1), RIPK3 (receptor interaction protein kinases 3), and MLKL (mixed lineage kinase domain-like protein) were observed by immunostaining primarily in the cytoplasm of hepatocytes within or around necrotic foci, and inflammatory mediators HMGB1 (high-mobility group box 1) and IL-6 (interleukin-6) were found in the cytoplasm of heterophils, monocytes/macrophages, and hepatic sinusoids. In addition, MMP9 (matrix metalloproteinase 9) and TIMP1 (tissue inhibitor of metalloproteinase 1) were observed in hepatic parenchymal cells, inflammatory cells, and interstitial spaces, whereas the apoptotic effector molecule caspase-3 (cysteine-containing aspartic proteolytic enzymes 3) was mainly found in hepatocytes. The expression of RIPK1, RIPK3, and MLKL was significantly higher in the infected chickens than in the controls. HMGB1 and IL-6 protein levels were also increased in infected chickens relative to those in controls. Both MMP9 and TIMP1 were highly expressed in infected chickens. In addition, caspase-3 protein levels were significantly elevated in infected chickens. Necroptosis, apoptosis, and inflammation played a significant role in hepatic injury caused by P. multocida.
Collapse
Affiliation(s)
- Qiyu Tang
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weitian Li
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Na Dai
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiming Gao
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yu Han
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guofu Cheng
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changqin Gu
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
203
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|
204
|
Caspase-8-dependent control of NK- and T cell responses during cytomegalovirus infection. Med Microbiol Immunol 2019; 208:555-571. [PMID: 31098689 DOI: 10.1007/s00430-019-00616-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
Caspase-8 (CASP8) impacts antiviral immunity in expected as well as unexpected ways. Mice with combined deficiency in CASP8 and RIPK3 cannot support extrinsic apoptosis or RIPK3-dependent programmed necrosis, enabling studies of CASP8 function without complications of unleashed necroptosis. These extrinsic cell death pathways are naturally targeted by murine cytomegalovirus (MCMV)-encoded cell death suppressors, showing they are key to cell-autonomous host defense. Remarkably, Casp8-/-Ripk3-/-, Ripk1-/-Casp8-/-Ripk3-/- and Casp8-/-Ripk3K51A/K51A mice mount robust antiviral T cell responses to control MCMV infection. Studies in Casp8-/-Ripk3-/- mice show that CASP8 restrains expansion of MCMV-specific natural killer (NK) and CD8 T cells without compromising contraction or immune memory. Infected Casp8-/-Ripk3-/- or Casp8-/-Ripk3K51A/K51A mice have higher levels of virus-specific NK cells and CD8 T cells compared to matched RIPK3-deficient littermates or WT mice. CASP8, likely acting downstream of Fas death receptor, dampens proliferation of CD8 T cells during expansion. Importantly, contraction proceeds unimpaired in the absence of extrinsic death pathways owing to intact Bim-dependent (intrinsic) apoptosis. CD8 T cell memory develops in Casp8-/-Ripk3-/- mice, but memory inflation characteristic of MCMV infection is not sustained in the absence of CASP8 function. Despite this, Casp8-/-Ripk3-/- mice are immune to secondary challenge. Interferon (IFN)γ is recognized as a key cytokine for adaptive immune control of MCMV. Ifngr-/-Casp8-/-Ripk3-/- mice exhibit increased lifelong persistence in salivary glands as well as lungs compared to Ifngr-/- and Casp8-/-Ripk3-/- mice. Thus, mice deficient in CASP8 and RIPK3 are more dependent on IFNγ mechanisms for sustained T cell immune control of MCMV. Overall, appropriate NK- and T cell immunity to MCMV is dependent on host CASP8 function independent of RIPK3-regulated pathways.
Collapse
|
205
|
Song YK, Hu BC, Xu L, Liu JQ, Chen X, Zheng Y, Chen MH, Wang JZ, Sun RH, Mo SJ. Productive transcription of miR-124-3p by RelA and RNA polymerase II directs RIP1 ubiquitination-dependent apoptosis resistance during hypoxia. Exp Cell Res 2019; 378:21-31. [DOI: 10.1016/j.yexcr.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
206
|
Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int J Mol Sci 2019; 20:ijms20081887. [PMID: 30995806 PMCID: PMC6515381 DOI: 10.3390/ijms20081887] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Collapse
|
207
|
Ertosun MG, Kocak G, Ozes ON. The regulation of circadian clock by tumor necrosis factor alpha. Cytokine Growth Factor Rev 2019; 46:10-16. [PMID: 31000463 DOI: 10.1016/j.cytogfr.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
All organisms display circadian rhythms which are under the control of the circadian clock located in the hypothalamus at the suprachiasmatic nucleus, (SCN). The circadian rhythms allow individuals to adjust their physiological activities and daily behavior for the diurnal changes in the living environment. To achieve these, all metabolic processes are aligned with the sleep/wake and fasting/feeding cycles. Subtle changes of daily behavior or food intake can result in misalignment of circadian rhythms. This can cause development of variety of metabolic diseases and even cancer. Although light plays a pivotal role for the activation of the master clock in SCN, the peripheral secondary clocks (or non-SCN), such as melatonin, growth hormone (GH), insulin, adiponectin and Ghrelin also are important in maintaining the circadian rhythms in the brain and peripheral organs. In recent years, growing body of evidence strongly suggest that CA2+ signaling, tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGFβ) also play very important roles in the regulation of circadian rhythms by regulating the transcription of the clock genes.
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University School of Medicine, Department of Plastic, Reconstructive & Anesthetic Surgery, Turkey.
| | - Gamze Kocak
- Akdeniz University School of Medicine, Department of Medical Biology and Genetics, Turkey.
| | | |
Collapse
|
208
|
Song W, Zhang CL, Gou L, He L, Gong YY, Qu D, Zhao L, Jin N, Chan TF, Wang L, Tian XY, Luo JY, Huang Y. Endothelial TFEB (Transcription Factor EB) Restrains IKK (IκB Kinase)-p65 Pathway to Attenuate Vascular Inflammation in Diabetic
db/db
Mice. Arterioscler Thromb Vasc Biol 2019; 39:719-730. [DOI: 10.1161/atvbaha.119.312316] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective—
TFEB (transcription factor EB) was recently reported to be induced by atheroprotective laminar flow and play an anti-atherosclerotic role by inhibiting inflammation in endothelial cells (ECs). This study aims to investigate whether TFEB regulates endothelial inflammation in diabetic
db/db
mice and the molecular mechanisms involved.
Approach and Results—
Endothelial denudation shows that TFEB is mainly expressed in ECs in mouse aortas. Western blotting shows TFEB total protein level decreases whereas the p-TFEB S142 (phosphorylated form of TFEB) increases in
db/db
mouse aortas, suggesting a decreased TFEB activity. Adenoviral TFEB overexpression reduces endothelial inflammation as evidenced by decreased expression of vascular inflammatory markers in
db/db
mouse aortas, and reduced expression of a wide range of adhesion molecules and chemokines in human umbilical vein ECs. Monocyte attachment assay shows TFEB suppresses monocyte adhesion to human umbilical vein ECs. RNA sequencing of TFEB-overexpressed human umbilical vein ECs suggested TFEB inhibits NF-κB (nuclear factor-kappa B) signaling. Indeed, luciferase assay shows TFEB suppresses NF-κB transcriptional activity. Mechanistically, TFEB suppresses IKK (IκB kinase) activity to protect IκB-α from degradation, leading to reduced p65 nuclear translocation. Inhibition of IKK by PS-1145 abolished TFEB silencing-induced inflammation in human umbilical vein ECs. Lastly, we identified KLF2 (Krüppel-like factor 2) upregulates TFEB expression and promoter activity. Laminar flow experiment showed that KLF2 is required for TFEB induction by laminar flow and TFEB is an anti-inflammatory effector downstream of laminar flow-KLF2 signaling in ECs.
Conclusions—
These findings suggest that TFEB exerts anti-inflammatory effects in diabetic mice and such function in ECs is achieved by inhibiting IKK activity and increasing IκBα level to suppress NF-κB activity. KLF2 mediates TFEB upregulation in response to laminar flow.
Collapse
Affiliation(s)
- Wencong Song
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Cheng-Lin Zhang
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Lingshan Gou
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Lei He
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Yao-Yu Gong
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Dan Qu
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Lei Zhao
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Nana Jin
- School of Life Sciences (N.J., T.F.C.), Chinese University of Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences (N.J., T.F.C.), Chinese University of Hong Kong, China
| | - Li Wang
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Xiao Yu Tian
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Jiang-Yun Luo
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Yu Huang
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| |
Collapse
|
209
|
Lee IY, Lim JM, Cho H, Kim E, Kim Y, Oh HK, Yang WS, Roh KH, Park HW, Mo JS, Yoon JH, Song HK, Choi EJ. MST1 Negatively Regulates TNFα-Induced NF-κB Signaling through Modulating LUBAC Activity. Mol Cell 2019; 73:1138-1149.e6. [DOI: 10.1016/j.molcel.2019.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/20/2018] [Accepted: 01/14/2019] [Indexed: 12/25/2022]
|
210
|
A network-centric approach to drugging TNF-induced NF-κB signaling. Nat Commun 2019; 10:860. [PMID: 30808860 PMCID: PMC6391473 DOI: 10.1038/s41467-019-08802-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
Target-centric drug development strategies prioritize single-target potency in vitro and do not account for connectivity and multi-target effects within a signal transduction network. Here, we present a systems biology approach that combines transcriptomic and structural analyses with live-cell imaging to predict small molecule inhibitors of TNF-induced NF-κB signaling and elucidate the network response. We identify two first-in-class small molecules that inhibit the NF-κB signaling pathway by preventing the maturation of a rate-limiting multiprotein complex necessary for IKK activation. Our findings suggest that a network-centric drug discovery approach is a promising strategy to evaluate the impact of pharmacologic intervention in signaling. Chemical perturbation of specific protein–protein interactions is notoriously difficult, yet necessary when complete inhibition of a signalling pathway is detrimental to the cell. Here, the authors use a systems approach and identify two first-in-class small molecules that specifically inhibit TNF-induced NF-κB activation.
Collapse
|
211
|
Abstract
Drug-induced liver injury (DILI) is an important cause of liver toxicity which can have varying clinical presentations, the most severe of which being acute liver failure. Hepatocyte death as a cause of drug toxicity is a feature of DILI. There are multiple cell death subroutines; some, like apoptosis, necroptosis, autophagy, and necrosis have been extensively studied, while others such as pyroptosis and ferroptosis have been more recently described. The mode of cell death in DILI depends on the culprit drug, as it largely dictates the mechanism and extent of injury. The main cell death subroutines in DILI are apoptosis and necrosis, with mitochondrial involvement being pivotal for the execution of both. A few drugs such as acetaminophen (APAP) can cause direct, dose-dependent toxicity, while the majority of drugs cause idiosyncratic DILI (IDILI). IDILI is an unpredictable form of liver injury that is not dose dependent, occurs in individuals with a genetic predisposition, and presents with variable latency. APAP-induced programmed necrosis has been extensively studied. However, the mechanisms and pathogenesis of cell death from drugs causing IDILI are harder to elucidate due to the complex and multifactorial nature of the disease. Cell death in IDILI is likely death receptor-mediated apoptosis and the result of an activated innate and adaptive immune system, compounded by other host factors such as genetics, gender, age, and capacity for immune tolerance. This chapter will review the different modes of cell death, namely apoptosis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis and their pertinence to DILI.
Collapse
|
212
|
Abstract
The master pro-inflammatory cytokine, tumour necrosis factor (TNF), has been shown to modulate multiple signalling pathways, with wide-ranging downstream effects. TNF plays a vital role in the typical immune response through the regulation of a number of pathways encompassing an immediate inflammatory reaction with significant innate immune involvement as well as cellular activation with subsequent proliferation and programmed cell death or necrosis. As might be expected with such a broad spectrum of cellular effects and complex signalling pathways, TNF has also been implicated in a number of disease states, such as rheumatoid arthritis, ankylosing spondylitis, and Crohn’s disease. Since the time of its discovery over 40 years ago, TNF ligand and its receptors, TNF receptor (TNFR) 1 and 2, have been categorised into two complementary superfamilies, namely TNF (TNFSF) and TNFR (TNFRSF), and 19 ligands and 29 receptors have been identified to date. There have been significant advances in our understanding of TNF signalling pathways in the last decade, and this short review aims to elucidate some of the most recent advances involving TNF signalling in health and disease.
Collapse
Affiliation(s)
- Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Heledd Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Michael McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| |
Collapse
|
213
|
Abstract
Ubiquitination (also known as ubiquitylation) is a post-translational modification that creates versatility in cell signalling and regulates a multitude of cellular processes. Its versatility lies in the capacity to form eight different inter-ubiquitin linkages through the seven lysine residues of ubiquitin and through its N-terminal methionine (M1). The latter, referred to as linear or M1 linkage, is created by the linear ubiquitin chain assembly complex (LUBAC), the only E3 ligase known to date that is capable of forming linear ubiquitin chains de novo Linear ubiquitin chains are crucial modulators of innate and adaptive immune responses, and act by regulating inflammatory and cell death signalling. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the role of LUBAC and linear ubiquitination in immune signalling and human physiology. We specifically focus on the role for LUBAC in signalling that is induced by the cytokine tumour necrosis factor (TNF) and its role in inflammation, gene activation and cell death. Furthermore, we highlight the roles of deubiquitinases (DUBs) that cleave M1 linkages and add an additional layer in the control of LUBAC-mediated immune signalling.
Collapse
Affiliation(s)
- Maureen Spit
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
214
|
Annibaldi A, Wicky John S, Vanden Berghe T, Swatek KN, Ruan J, Liccardi G, Bianchi K, Elliott PR, Choi SM, Van Coillie S, Bertin J, Wu H, Komander D, Vandenabeele P, Silke J, Meier P. Ubiquitin-Mediated Regulation of RIPK1 Kinase Activity Independent of IKK and MK2. Mol Cell 2019; 69:566-580.e5. [PMID: 29452637 PMCID: PMC5823975 DOI: 10.1016/j.molcel.2018.01.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 10/25/2022]
Abstract
Tumor necrosis factor (TNF) can drive inflammation, cell survival, and death. While ubiquitylation-, phosphorylation-, and nuclear factor κB (NF-κB)-dependent checkpoints suppress the cytotoxic potential of TNF, it remains unclear whether ubiquitylation can directly repress TNF-induced death. Here, we show that ubiquitylation regulates RIPK1's cytotoxic potential not only via activation of downstream kinases and NF-kB transcriptional responses, but also by directly repressing RIPK1 kinase activity via ubiquitin-dependent inactivation. We find that the ubiquitin-associated (UBA) domain of cellular inhibitor of apoptosis (cIAP)1 is required for optimal ubiquitin-lysine occupancy and K48 ubiquitylation of RIPK1. Independently of IKK and MK2, cIAP1-mediated and UBA-assisted ubiquitylation suppresses RIPK1 kinase auto-activation and, in addition, marks it for proteasomal degradation. In the absence of a functional UBA domain of cIAP1, more active RIPK1 kinase accumulates in response to TNF, causing RIPK1 kinase-mediated cell death and systemic inflammatory response syndrome. These results reveal a direct role for cIAP-mediated ubiquitylation in controlling RIPK1 kinase activity and preventing TNF-mediated cytotoxicity.
Collapse
Affiliation(s)
- Alessandro Annibaldi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Sidonie Wicky John
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kirby N Swatek
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Jianbin Ruan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Room 3024B, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Katiuscia Bianchi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Paul R Elliott
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Sze Men Choi
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Samya Van Coillie
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - John Bertin
- Pattern Recognition Receptor DPU and Platform Technology and Science, GlaxoSmithKline, Collegeville Road, Collegeville, PA 19426, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Room 3024B, 3 Blackfan Circle, Boston, MA 02115, USA
| | - David Komander
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Peter Vandenabeele
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3050, Australia
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
215
|
Post-translational modification of the death receptor complex as a potential therapeutic target in cancer. Arch Pharm Res 2019; 42:76-87. [PMID: 30610617 DOI: 10.1007/s12272-018-01107-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 12/26/2022]
Abstract
Programmed cell death is critical to the physiological function of multi-cellular organisms, controlling development, immunity, inflammation, and cancer progression. Death receptor (DR)-mediated regulation of a protease functions as a second messenger to initiate a death signal cascade to induce apoptosis or necroptosis. Recently, it has become clear that post-translational modifications (PTMs) of signaling components in the DR complex are highly complex, temporally controlled, and tightly regulated, and play an important role in cell death signaling. This review focuses on the molecular mechanisms and pathophysiological consequences of PTMs on the formation of the DR signaling complex, especially with respect to tumor necrosis factor receptor 1 (TNFR1). Furthermore, characterization of the role of PTMs in spatially different TNFR1 complexes (complexes I and II), especially with respect to the role of ubiquitination and phosphorylation of receptor interacting protein 1 (RIP1) in programmed cell death in cancer cells, will be reviewed. By integrating recently gained insight of the functional importance of PTMs in complex I or II, this review discusses how the concerted action of PTMs results in life or death upon DR ligation. Finally, the emerging concept of a sequential cell death checkpoint by the PTMs of RIP1, which may reveal novel therapeutic opportunities for the treatment of some cancers, will be discussed.
Collapse
|
216
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
217
|
Huang X, Xiao F, Li Y, Qian W, Ding W, Ye X. Bypassing drug resistance by triggering necroptosis: recent advances in mechanisms and its therapeutic exploitation in leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:310. [PMID: 30541583 PMCID: PMC6291981 DOI: 10.1186/s13046-018-0976-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Resistance to regulated cell death is one of the hallmarks of human cancers; it maintains cell survival and significantly limits the effectiveness of conventional drug therapy. Leukemia represents a class of hematologic malignancies that is characterized by dysregulation of cell death pathways and treatment-related resistance. As the majority of chemotherapeutic and targeted drugs kill leukemia cells by triggering apoptosis, the observed resistance indicates the need for novel therapeutic strategies to reactivate nonapoptotic cell death programs in refractory leukemia. Necroptosis is a regulated form of necrosis that is precisely modulated by intracellular signaling pathways and thus provides potential molecular targets for rational therapeutic intervention. Indeed, accumulating evidence indicates that many current antitumor agents can activate necroptotic pathways and thereby induce leukemia cell death. Elucidation of the complete regulatory mechanism of necroptosis is expected to accelerate the development of novel therapeutic strategies for overcoming apoptosis resistance in leukemia. Here, we review the latest research advances in the regulatory mechanisms of necroptosis and summarize the progression of necroptosis-based therapeutic strategies in leukemia.
Collapse
Affiliation(s)
- Xianbo Huang
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China
| | - Feng Xiao
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.,Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuan Li
- Institute of Hematology, the First Hospital of Jiaxing, Jiaxing, 314000, China
| | - Wenbin Qian
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.,Malignant Lymphoma Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Ding
- Department of Pathology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.
| | - Xiujin Ye
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
218
|
Abstract
The inhibitor of apoptosis proteins (IAPs) are a family of proteins that were chiefly known for their ability to inhibit apoptosis by blocking caspase activation or activity. Recent research has shown that cellular IAP1 (cIAP1), cIAP2, and X-linked IAP (XIAP) also regulate signaling by receptors of the innate immune system by ubiquitylating their substrates. These IAPs thereby act at the intersection of pathways leading to cell death and inflammation. Mutation of IAP genes can impair tissue homeostasis and is linked to several human diseases. Small-molecule IAP antagonists have been developed to treat certain malignant, infectious, and inflammatory diseases. Here, we will discuss recent advances in our understanding of the functions of cIAP1, cIAP2, and XIAP; the consequences of their mutation or dysregulation; and the therapeutic potential of IAP antagonist drugs.
Collapse
Affiliation(s)
- Najoua Lalaoui
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3050, Australia
| | - David Lawrence Vaux
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3050, Australia
| |
Collapse
|
219
|
Lafont E, Draber P, Rieser E, Reichert M, Kupka S, de Miguel D, Draberova H, von Mässenhausen A, Bhamra A, Henderson S, Wojdyla K, Chalk A, Surinova S, Linkermann A, Walczak H. TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation. Nat Cell Biol 2018; 20:1389-1399. [PMID: 30420664 PMCID: PMC6268100 DOI: 10.1038/s41556-018-0229-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The linear-ubiquitin chain assembly complex (LUBAC) modulates signalling via various immune receptors. In tumour necrosis factor (TNF) signalling, linear (also known as M1) ubiquitin enables full gene activation and prevents cell death. However, the mechanisms underlying cell death prevention remain ill-defined. Here, we show that LUBAC activity enables TBK1 and IKKε recruitment to and activation at the TNF receptor 1 signalling complex (TNFR1-SC). While exerting only limited effects on TNF-induced gene activation, TBK1 and IKKε are essential to prevent TNF-induced cell death. Mechanistically, TBK1 and IKKε phosphorylate the kinase RIPK1 in the TNFR1-SC, thereby preventing RIPK1-dependent cell death. This activity is essential in vivo, as it prevents TNF-induced lethal shock. Strikingly, NEMO (also known as IKKγ), which mostly, but not exclusively, binds the TNFR1-SC via M1 ubiquitin, mediates the recruitment of the adaptors TANK and NAP1 (also known as AZI2). TANK is constitutively associated with both TBK1 and IKKε, while NAP1 is associated with TBK1. We discovered a previously unrecognized cell death checkpoint that is mediated by TBK1 and IKKε, and uncovered an essential survival function for NEMO, whereby it enables the recruitment and activation of these non-canonical IKKs to prevent TNF-induced cell death.
Collapse
Affiliation(s)
- Elodie Lafont
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Peter Draber
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Rieser
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Matthias Reichert
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Sebastian Kupka
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Diego de Miguel
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Helena Draberova
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technical University Dresden, Dresden, Germany
| | - Amandeep Bhamra
- Proteomics Research Core Facility, UCL Cancer Institute, University College London, London, UK
| | - Stephen Henderson
- Bill Lyons Informatics Centre (BLIC), UCL Cancer Institute, University College London, London, UK
| | - Katarzyna Wojdyla
- Proteomics Research Core Facility, UCL Cancer Institute, University College London, London, UK
| | - Avigayil Chalk
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Silvia Surinova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Proteomics Research Core Facility, UCL Cancer Institute, University College London, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technical University Dresden, Dresden, Germany
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
220
|
Seo J, Kim MW, Bae KH, Lee SC, Song J, Lee EW. The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochem Pharmacol 2018; 162:21-40. [PMID: 30452908 DOI: 10.1016/j.bcp.2018.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 01/24/2023]
Abstract
Regulation of cell survival and death, including apoptosis and necroptosis, is important for normal development and tissue homeostasis, and disruption of these processes can cause cancer, inflammatory diseases, and degenerative diseases. Ubiquitination is a cellular process that induces proteasomal degradation by covalently attaching ubiquitin to the substrate protein. In addition to proteolytic ubiquitination, nonproteolytic ubiquitination, such as M1-linked and K63-linked ubiquitination, has been shown to be important in recent studies, which have demonstrated its function in cell signaling pathways that regulate inflammation and cell death pathways. In this review, we summarize the TRAIL- and TNF-induced death receptor signaling pathways along with recent advances in this field and illustrate how different types of ubiquitination control cell death and survival. In particular, we provide an overview of the different types of ubiquitination, target residues, and modifying enzymes, including E3 ligases and deubiquitinating enzymes. Given the relevance of these regulatory pathways in human disease, we hope that a better understanding of the regulatory mechanisms of cell death pathways will provide insights into and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| |
Collapse
|
221
|
Bonvini A, Coqueiro AY, Tirapegui J, Calder PC, Rogero MM. Immunomodulatory role of branched-chain amino acids. Nutr Rev 2018; 76:840-856. [PMID: 30124936 DOI: 10.1093/nutrit/nuy037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Branched-chain amino acids (BCAAs) have been associated with immunomodulation since the mid-1970s and 1980s and have been used in the nutritional therapy of critically ill patients. Evidence shows that BCAAs can directly contribute to immune cell function, aiding recovery of an impaired immune system, as well as improving the nutritional status in cancer and liver diseases. Branched-chain amino acids may also play a role in treatment of patients with sepsis or trauma, contributing to improved clinical outcomes and survival. Branched-chain amino acids, especially leucine, are activators of the mammalian target of rapamycin (mTOR), which, in turn, interacts with several signaling pathways involved in biological mechanisms of insulin action, protein synthesis, mitochondrial biogenesis, inflammation, and lipid metabolism. Although many in vitro and human and animal model studies have provided evidence for the biological activity of BCAAs, findings have been conflicting, and the mechanisms of action of these amino acids are still poorly understood. This review addresses several aspects related to BCAAs, including their transport, oxidation, and mechanisms of action, as well as their role in nutritional therapy and immunomodulation.
Collapse
Affiliation(s)
- Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Audrey Y Coqueiro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julio Tirapegui
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Marcelo M Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
222
|
Li Y, Deng L, Zhao X, Li B, Ren D, Yu L, Pan H, Gong Q, Song L, Zhou X, Dai T. Tripartite motif-containing 37 (TRIM37) promotes the aggressiveness of non-small-cell lung cancer cells by activating the NF-κB pathway. J Pathol 2018; 246:366-378. [PMID: 30043491 DOI: 10.1002/path.5144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Non-small-cell lung cancer (NSCLC), in which the NF-κB pathway is constitutively activated, is one of the most common malignancies. Herein, we identify an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37), participating in the K63 polyubiquitination of TRAF2, which is a significant step in the activation of NF-κB signaling. Both the mRNA and the protein expression levels of TRIM37 were much higher in NSCLC cell lines and tissues than in normal bronchial epithelial cells and matched adjacent non-tumor tissues. TRIM37 expression correlated closely with clinical stage and poor survival in NSCLC. Overexpression of TRIM37 antagonized cisplatin-induced apoptosis, induced angiogenesis and proliferation, and increased the aggressiveness of NSCLC cells in vitro and in vivo, whereas inhibition of TRIM37 led to the opposite effects. Gene set enrichment analysis (GSEA) showed that TRIM37 expression significantly correlated with NF-κB signaling. Furthermore, we found that TRIM37 bound to TRAF2 and promoted K63-linked ubiquitination of TRAF2, sustaining the eventual activation of the NF-κB pathway. Mutation in the ring finger domain of TRIM37, a hallmark of E3 ubiquitin ligases, led to loss of the ability to promote K63 polyubiquitination of TRAF2 and activate NF-κB signaling. Taken together, our findings provide evidence that TRIM37 plays an important role in constitutive NF-κB pathway activation and could serve as a prognostic factor and therapeutic target in NSCLC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yun Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China.,Department of Immunobiology, Jinan University, Guangzhou, PR China
| | - Liwen Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Bohan Li
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Dong Ren
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Hehai Pan
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
223
|
Muller J, Baeyens A, Dustin ML. Tumor Necrosis Factor Receptor Superfamily in T Cell Priming and Effector Function. Adv Immunol 2018; 140:21-57. [PMID: 30366518 DOI: 10.1016/bs.ai.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) and their ligands mediate lymphoid tissue development and homeostasis in addition to key aspects of innate and adaptive immune responses. T cells of the adaptive immune system express a number of TNFRSF members that are used to receive signals at different instructive stages and produce several tumor necrosis factor superfamily (TNFSF) members as effector molecules. There is also one example of a TNFRSF member serving as a ligand for negative regulatory checkpoint receptors. In most cases, the ligands in afferent and efferent phases are membrane proteins and thus the interaction with TNFRSF members must take place in immunological synapses and other modes of cell-cell interaction. A particular feature of the TNFRSF-mediated signaling is the prominent use of linear ubiquitin chains as scaffolds for signaling complexes that activate nuclear factor κ-B and Fos/Jun transcriptional regulators. This review will focus on the signaling mechanisms triggered by TNFRSF members in their role as costimulators of early and late phases of T cell instruction and the delivery mechanism of TNFSF members through the immunological synapses of helper and cytotoxic effector cells.
Collapse
Affiliation(s)
- James Muller
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Audrey Baeyens
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States; Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
224
|
Tan X, Sun L, Chen J, Chen ZJ. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annu Rev Microbiol 2018; 72:447-478. [DOI: 10.1146/annurev-micro-102215-095605] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial infections are recognized by the innate immune system through germline-encoded pattern recognition receptors (PRRs). As most microbial pathogens contain DNA and/or RNA during their life cycle, nucleic acid sensing has evolved as an essential strategy for host innate immune defense. Pathogen-derived nucleic acids with distinct features are recognized by specific host PRRs localized in endolysosomes and the cytosol. Activation of these PRRs triggers signaling cascades that culminate in the production of type I interferons and proinflammatory cytokines, leading to induction of an antimicrobial state, activation of adaptive immunity, and eventual clearance of the infection. Here, we review recent progress in innate immune recognition of nucleic acids upon microbial infection, including pathways involving endosomal Toll-like receptors, cytosolic RNA sensors, and cytosolic DNA sensors. We also discuss the mechanisms by which infectious microbes counteract host nucleic acid sensing to evade immune surveillance.
Collapse
Affiliation(s)
- Xiaojun Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lijun Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | - Jueqi Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| |
Collapse
|
225
|
Chen D, Yu M, Chen H, Zeng M, Sun Y, Huang Q. Identification and functional characterization of NEMO in Crassostrea gigas reveals its crucial role in the NF-κB activation. FISH & SHELLFISH IMMUNOLOGY 2018; 80:46-55. [PMID: 29859307 DOI: 10.1016/j.fsi.2018.05.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
NEMO (NF-κB essential modulator) is one of the important regulatory subunits of the IκB kinase (IκK) complex that controls the activation of the NF-κB signaling pathway. Here, we have identified the homolog of NEMO from the pacific oyster Crassostrea gigas. CgNEMO harbors the conserved the IκK binding region, NEMO ubiquitin binding domain and Zinc finger domain. In terms of tissue distribution, CgNEMO is expressed in various tissues with an observed highest expression in the hemocytes. Furthermore, infection by two related Vibrio strains significantly increased CgNEMO expression in the hemocytes. Cell culture based luciferase reporter assays showed that CgNEMO activates the NF-κB reporter in a dose-pendent manner. Moreover, CgNEMO was also found to counter the IkB-dependent inhibitory effect on NF-κB activation, providing a plausible mechanism of NF-κB activation by CgNEMO. Meanwhile, site-directed mutagenesis demonstrated that the putative ubiquitination site K535 is required for the activation of NF-κB, implying that ubiquitination of NEMO may be involved in regulating its activity. Finally, RNAi mediated knockdown of CgNEMO in vivo significantly compromised the bacterial induction of key cytokines TNF-α and IL-17, strongly suggesting a role for CgNEMO in acute immune defense in oyster. In conclusion, this study provides new insights into our understanding about the evolution of NEMO mediated NF-κB activation and the induction of cytokine. Our findings may provide valuable information about diseases control and management in oyster aquaculture.
Collapse
Affiliation(s)
- Dongbo Chen
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingjia Yu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China.
| | - Hongmei Chen
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Manhong Zeng
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Sun
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingsong Huang
- School of Basic Courses of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
226
|
RIP kinases as modulators of inflammation and immunity. Nat Immunol 2018; 19:912-922. [DOI: 10.1038/s41590-018-0188-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
|
227
|
Yan K, Ponnusamy M, Xin Y, Wang Q, Li P, Wang K. The role of K63-linked polyubiquitination in cardiac hypertrophy. J Cell Mol Med 2018; 22:4558-4567. [PMID: 30102008 PMCID: PMC6156430 DOI: 10.1111/jcmm.13669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Ubiquitination, also known as ubiquitylation, is a vital post‐translational modification of proteins that play a crucial role in the multiple biological processes including cell growth, proliferation and apoptosis. K63‐linked ubiquitination is one of the vital post‐translational modifications of proteins that are involved in the activation of protein kinases and protein trafficking during cell survival and proliferation. It also contributes to the development of various disorders including cancer, neurodegeneration and cardiac hypertrophy. In this review, we summarize the role of K63‐linked ubiquitination signalling in protein kinase activation and its implications in cardiac hypertrophy. We have also provided our perspectives on therapeutically targeting K63‐linked ubiquitination in downstream effector molecules of growth factor receptors for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Kaowen Yan
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | | | - Ying Xin
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
228
|
Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front Immunol 2018; 9:1849. [PMID: 30140268 PMCID: PMC6094638 DOI: 10.3389/fimmu.2018.01849] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jian-Hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
229
|
Aalto AL, Mohan AK, Schwintzer L, Kupka S, Kietz C, Walczak H, Broemer M, Meinander A. M1-linked ubiquitination by LUBEL is required for inflammatory responses to oral infection in Drosophila. Cell Death Differ 2018; 26:860-876. [PMID: 30026495 PMCID: PMC6462001 DOI: 10.1038/s41418-018-0164-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Post-translational modifications such as ubiquitination play a key role in regulation of inflammatory nuclear factor-κB (NF-κB) signalling. The Drosophila IκB kinase γ (IKKγ) Kenny is a central regulator of the Drosophila Imd pathway responsible for activation of the NF-κB Relish. We found the Drosophila E3 ligase and HOIL-1L interacting protein (HOIP) orthologue linear ubiquitin E3 ligase (LUBEL) to catalyse formation of M1-linked linear ubiquitin (M1-Ub) chains in flies in a signal-dependent manner upon bacterial infection. Upon activation of the Imd pathway, LUBEL modifies Kenny with M1-Ub chains. Interestingly, the LUBEL-mediated M1-Ub chains seem to be targeted both directly to Kenny and to K63-linked ubiquitin chains conjugated to Kenny by DIAP2. This suggests that DIAP2 and LUBEL work together to promote Kenny-mediated activation of Relish. We found LUBEL-mediated M1-Ub chain formation to be required for flies to survive oral infection with Gram-negative bacteria, for activation of Relish-mediated expression of antimicrobial peptide genes and for pathogen clearance during oral infection. Interestingly, LUBEL is not required for mounting an immune response against systemic infection, as Relish-mediated antimicrobial peptide genes can be expressed in the absence of LUBEL during septic injury. Finally, transgenic induction of LUBEL-mediated M1-Ub drives expression of antimicrobial peptide genes and hyperplasia in the midgut in the absence of infection. This suggests that M1-Ub chains are important for Imd signalling and immune responses in the intestinal epithelia, and that enhanced M1-Ub chain formation is able to drive chronic intestinal inflammation in flies.
Collapse
Affiliation(s)
- Anna L Aalto
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Aravind K Mohan
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Lukas Schwintzer
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Sebastian Kupka
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, London, WC1E 6BT, UK
| | - Christa Kietz
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, London, WC1E 6BT, UK
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Annika Meinander
- Department of Cell Biology, Faculty of Science and Engineering, BioCity, Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
230
|
Chen L, Miao Y, Liu M, Zeng Y, Gao Z, Peng D, Hu B, Li X, Zheng Y, Xue Y, Zuo Z, Xie Y, Ren J. Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development. Front Genet 2018; 9:254. [PMID: 30065750 PMCID: PMC6056651 DOI: 10.3389/fgene.2018.00254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Large-scale tumor genome sequencing projects have revealed a complex landscape of genomic mutations in multiple cancer types. A major goal of these projects is to characterize somatic mutations and discover cancer drivers, thereby providing important clues to uncover diagnostic or therapeutic targets for clinical treatment. However, distinguishing only a few somatic mutations from the majority of passenger mutations is still a major challenge facing the biological community. Fortunately, combining other functional features with mutations to predict cancer driver genes is an effective approach to solve the above problem. Protein lysine modifications are an important functional feature that regulates the development of cancer. Therefore, in this work, we have systematically analyzed somatic mutations on seven protein lysine modifications and identified several important drivers that are responsible for tumorigenesis. From published literature, we first collected more than 100,000 lysine modification sites for analysis. Another 1 million non-synonymous single nucleotide variants (SNVs) were then downloaded from TCGA and mapped to our collected lysine modification sites. To identify driver proteins that significantly altered lysine modifications, we further developed a hierarchical Bayesian model and applied the Markov Chain Monte Carlo (MCMC) method for testing. Strikingly, the coding sequences of 473 proteins were found to carry a higher mutation rate in lysine modification sites compared to other background regions. Hypergeometric tests also revealed that these gene products were enriched in known cancer drivers. Functional analysis suggested that mutations within the lysine modification regions possessed higher evolutionary conservation and deleteriousness. Furthermore, pathway enrichment showed that mutations on lysine modification sites mainly affected cancer related processes, such as cell cycle and RNA transport. Moreover, clinical studies also suggested that the driver proteins were significantly associated with patient survival, implying an opportunity to use lysine modifications as molecular markers in cancer diagnosis or treatment. By searching within protein-protein interaction networks using a random walk with restart (RWR) algorithm, we further identified a series of potential treatment agents and therapeutic targets for cancer related to lysine modifications. Collectively, this study reveals the functional importance of lysine modifications in cancer development and may benefit the discovery of novel mechanisms for cancer treatment.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Miao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengni Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanru Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zijun Gao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Peng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bosu Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Li
- Spine Center, Department of Orthopaedics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, China
| | - Yueyuan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
231
|
Zhe-Wei S, Li-Sha G, Yue-Chun L. The Role of Necroptosis in Cardiovascular Disease. Front Pharmacol 2018; 9:721. [PMID: 30034339 PMCID: PMC6043645 DOI: 10.3389/fphar.2018.00721] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/13/2018] [Indexed: 01/14/2023] Open
Abstract
A newly discovered mechanism of cell death, programmed necrosis (necroptosis), combines features of both necrosis and apoptosis. Necroptosis is tightly modulated by a series of characteristic signaling pathways. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting protein 1 (RIP1), which mediates the activation of receptor-interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) two critical downstream mediators of necroptosis. Recently, different cytokines have been found participating in this mechanism of cell death. Necroptosis has been proposed as an important component to the pathophysiology of heart disease such as vascular atherosclerosis, ischemia-reperfusion injury, myocardial infarction and cardiac remodeling. Targeting necroptosis signaling pathways may provide therapeutic benefit in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Shi Zhe-Wei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ge Li-Sha
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Yue-Chun
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
232
|
Liu J, Pan L. Structural bases of the assembly, recognition and disassembly of linear ubiquitin chain. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1410-1422. [PMID: 29981772 DOI: 10.1016/j.bbamcr.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Linear ubiquitin chain is a latest discovered type of poly-ubiquitin chain that is broadly involved in innate immune and inflammatory pathways. Dysfunctions in its assembly, recognition or disassembly are intimately related with numerous immunodeficiency or autoimmune diseases. Our understanding of the molecular mechanism for linear ubiquitin chain formation, recognition and disassembly has being significantly evolved in recent years, with particular contribution from the biochemical and structural characterizations of related proteins. Here, we focus on the relevant proteins for the synthesis, recognition and digestion of linear ubiquitin chain, and review recent findings to summarize currently known molecular mechanism from a perspective of structural biology.
Collapse
Affiliation(s)
- Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China; Collaborative Innovation Center of Chemistry for Life Sciences, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
233
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
234
|
Parkin regulates NF-κB by mediating site-specific ubiquitination of RIPK1. Cell Death Dis 2018; 9:732. [PMID: 29955050 PMCID: PMC6023924 DOI: 10.1038/s41419-018-0770-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
Parkin (Park2), a RING-between-RING-type E3 ubiquitin ligase, has been implicated in regulating NF-κB. Mutations in Parkin are associated with Parkinson’s disease. Here we investigated the interaction of Parkin with Receptor-interacting protein kinase 1 (RIPK1) kinase, a key mediator of multiple signaling pathways activated by TNFR1 including NF-κB pathway. We report that Parkin interacts with RIPK1 and mediates K63 ubiquitination of RIPK1 on K376 in TNFR1-signaling pathway. The expression of Parkin promotes the recruitment of transforming growth factor β (TGF-β)-activated kinase 1 (TAK1), nuclear factor-κB (NF-κB) essential molecule (NEMO), Sharpin and A20 in complex I associated with TNFR1 upon TNFα stimulation. Ubiquitination of RIPK1 by Parkin increases the activation of NF-κB and mitogen-activated protein kinases (MAPKs) by promoting the phosphorylation of inhibitor of kappa B kinase (IKK)α/β and IκBα and nuclear translocation of p65. Thus, we conclude that Parkin modulates the K63 ubiquitination status of RIPK1 to promote the activation of NF-κB and MAPKs.
Collapse
|
235
|
Abstract
This review by Shan et al. discusses necroptosis, a form of regulated necrotic cell death mediated by RIPK1 kinase activity, RIPK3, and MLKL, which can be activated under apoptosis-deficient conditions. Both necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of defective embryos and during human inflammatory and neurodegenerative pathologies. Necroptosis, a form of regulated necrotic cell death mediated by RIPK1 (receptor-interacting protein kinase 1) kinase activity, RIPK3, and MLKL (mixed-lineage kinase domain-like pseudokinase), can be activated under apoptosis-deficient conditions. Modulating the activation of RIPK1 by ubiquitination and phosphorylation is critical to control both necroptosis and apoptosis. Mutant mice with kinase-dead RIPK1 or RIPK3 and MLKL deficiency show no detrimental phenotype in regard to development and adult homeostasis. However, necroptosis and apoptosis can be activated in response to various mutations that result in the abortion of the defective embryos and human inflammatory and neurodegenerative pathologies. RIPK1 inhibition represents a key therapeutic strategy for treatment of diseases where blocking both necroptosis and apoptosis can be beneficial.
Collapse
Affiliation(s)
- Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China
| | - Heling Pan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, PuDong District, Shanghai 201203, China.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
236
|
Combination of IAP Antagonists and TNF-α-Armed Oncolytic Viruses Induce Tumor Vascular Shutdown and Tumor Regression. MOLECULAR THERAPY-ONCOLYTICS 2018; 10:28-39. [PMID: 30101187 PMCID: PMC6076221 DOI: 10.1016/j.omto.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/16/2018] [Indexed: 01/06/2023]
Abstract
Smac mimetic compounds (SMCs) are anti-cancer drugs that antagonize Inhibitor of Apoptosis proteins, which consequently sensitize cancer cells to death in the presence of proinflammatory ligands such as tumor necrosis factor alpha (TNF-α). SMCs synergize with the attenuated oncolytic vesicular stomatitis virus (VSVΔ51) by eliciting an innate immune response, which is dependent on the endogenous production of TNF-α and type I interferon. To improve on this SMC-mediated synergistic response, we generated TNF-α-armed VSVΔ51 to produce elevated levels of this death ligand. Due to ectopic expression of TNF-α from infected cells, a lower viral dose of TNF-α-armed VSVΔ51 combined with treatment of the SMC LCL161 was sufficient to improve the survival rate compared to LCL161 and unarmed VSVΔ51 co-therapy. This improved response is attributed to a bystander effect whereby the spread of TNF-α from infected cells leads to the death of uninfected cells in the presence of LCL161. In addition, the treatments induced vascular collapse in solid tumors with a concomitant increase of tumor cell death, revealing another mechanism by which cytokine-armed VSVΔ51 in combination with LCL161 can kill tumor cells. Our studies demonstrate the potential for cytokine-engineered oncolytic virus and SMCs as a new combination immunotherapy for cancer treatment.
Collapse
|
237
|
Rijal D, Ariana A, Wight A, Kim K, Alturki NA, Aamir Z, Ametepe ES, Korneluk RG, Tiedje C, Menon MB, Gaestel M, McComb S, Sad S. Differentiated macrophages acquire a pro-inflammatory and cell death-resistant phenotype due to increasing XIAP and p38-mediated inhibition of RipK1. J Biol Chem 2018; 293:11913-11927. [PMID: 29899110 DOI: 10.1074/jbc.ra118.003614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Monocytes differentiate into macrophages, which deactivate invading pathogens. Macrophages can be resistant to cell death mechanisms in some situations, and the mechanisms involved are not clear. Here, using mouse immune cells, we investigated whether the differentiation of macrophages affects their susceptibility to cell death by the ripoptosome/necrosome pathways. We show that treatment of macrophages with a mimetic of second mitochondrial activator of caspases (SMAC) resulted in ripoptosome-driven cell death that specifically depended on tumor necrosis factor α (TNFα) expression and the receptor-interacting serine/threonine protein kinase 1 (RipK1)-RipK3-caspase-8 interaction in activated and cycling macrophages. Differentiation of macrophages increased the expression of pro-inflammatory cytokines but reduced RipK1-dependent cell death and the RipK3-caspase-8 interaction. The expression of the anti-apoptotic mediators, X-linked inhibitor of apoptosis protein (XIAP) and caspase-like apoptosis regulatory protein (cFLIPL), also increased in differentiated macrophages, which inhibited caspase activation. The resistance to cell death was abrogated in XIAP-deficient macrophages. However, even in the presence of increased XIAP expression, inhibition of the mitogen-activated protein kinase (MAPK) p38 and MAPK-activated protein kinase 2 (MK2) made differentiated macrophages susceptible to cell death. These results suggest that the p38/MK2 pathway overrides apoptosis inhibition by XIAP and that acquisition of resistance to cell death by increased expression of XIAP and cFLIPL may allow inflammatory macrophages to participate in pathogen control for a longer duration.
Collapse
Affiliation(s)
- Dikchha Rijal
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Ardeshir Ariana
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Andrew Wight
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Kwangsin Kim
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Norah A Alturki
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Zoya Aamir
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Emmanuelle S Ametepe
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada
| | - Robert G Korneluk
- the Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 5B2, Canada
| | - Christopher Tiedje
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany.,the Department of Cellular and Molecular Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Manoj B Menon
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Matthias Gaestel
- the Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Scott McComb
- the Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa K1A 0R6, Ontario, Canada, and
| | - Subash Sad
- From the Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M8, Canada, .,the uOttawa Centre for Infection, Immunity, and Inflammation, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
238
|
Lei FX, Jin L, Liu XY, Lai F, Yan XG, Farrelly M, Guo ST, Zhao XH, Zhang XD. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis 2018; 9:679. [PMID: 29880840 PMCID: PMC5992182 DOI: 10.1038/s41419-018-0714-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/21/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Many recent studies have uncovered the necessary role for the receptor-interacting protein kinase 1 (RIP1) in regulating apoptosis and necrosis that cells undergo in response to various cellular stresses. However, the functional significance of RIP1 in promoting cancer cells survival remains poorly understood. Here, we report that RIP1 was upregulated and contributed to both intrinsic and acquired resistance of melanoma cells to BRAF/MEK inhibitors through activation of NF-κB. Strikingly, Snail1-mediated suppression of CYLD played a crucial role in promoting RIP1 expression upon ERK activation, particularly, in melanoma cells with acquired resistance to BRAF inhibitors. In addition, RIP1 kinase activity was not required for melanoma cells to survive BRAF/MEK inhibition as RIP1 mediated NF-κB activation through its intermediate domain. Collectively, our findings reveal that targeting RIP1 in combination with BRAF/MEK inhibitors is a potential approach in the treatment of the disease.
Collapse
Affiliation(s)
- Fu Xi Lei
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xiao Ying Liu
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.,School of Life Science, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fritz Lai
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xu Guang Yan
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Margaret Farrelly
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Su Tang Guo
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.,Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, Shanxi, 030013, China
| | - Xin Han Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xu Dong Zhang
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| |
Collapse
|
239
|
RIPK4 promotes bladder urothelial carcinoma cell aggressiveness by upregulating VEGF-A through the NF-κB pathway. Br J Cancer 2018; 118:1617-1627. [PMID: 29867225 PMCID: PMC6008479 DOI: 10.1038/s41416-018-0116-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Constitutively activated nuclear factor kappa B (NF-κB) signalling plays vital roles in bladder urothelial carcinoma (BC) progression. We investigate the effect of receptor-interacting protein kinase 4 (RIPK4) on NF-κB activation and BC progression. METHODS The expression of RIPK4 was examined in 25 cryopreserved paired bladder samples and 112 paraffin BC specimens. In vivo and in vitro assays were performed to validate effect of RIPK4 on NF-κB pathway-mediated BC progression. RESULTS High expression of RIPK4 was observed in BC tissues and was an independent predictor for poor overall survival. Up or downregulating the expression of RIPK4 enhanced or inhibited, respectively, the migration and invasion of BC cells in vitro and in vivo. Mechanistically, RIPK4 promoted K63-linked polyubiquitination of tumour necrosis factor receptor-associated factor 2 (TRAF2), receptor-interacting protein (RIP) and NF-κB essential modulator (NEMO). RIPK4 also promoted nuclear localisation of NF-κB-p65, and maintained activation of NF-κB substantially, leading to upregulation of VEGF-A, ultimately promoting BC cell aggressiveness. CONCLUSIONS Our data highlighted the molecular aetiology and clinical significance of RIPK4 in BC: upregulation of RIPK4 contributes to NF-κB activation, and upregulates VEGF-A, and BC progression. Targeting RIPK4 might represent a new therapeutic strategy to improve survival for patients with BC.
Collapse
|
240
|
RHIM-based protein:protein interactions in microbial defence against programmed cell death by necroptosis. Semin Cell Dev Biol 2018; 99:86-95. [PMID: 29738881 DOI: 10.1016/j.semcdb.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/16/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
The Receptor-interacting protein kinase Homotypic Interaction Motif (RHIM) is an amino acid sequence that mediates multiple protein:protein interactions in the mammalian programmed cell death pathway known as necroptosis. At least one key RHIM-based complex has been shown to have a functional amyloid fibril structure, which provides a stable hetero-oligomeric platform for downstream signaling. RHIMs and related motifs are present in immunity-related proteins across nature, from viruses to fungi to metazoans. Necroptosis is a hallmark feature of cellular clearance of infection. For this reason, numerous pathogens, including viruses and bacteria, have developed varied methods to modulate necroptosis, focusing on inhibiting RHIM:RHIM interactions, and thus their downstream cell death effects. This review will discuss current understanding of RHIM:RHIM interactions in normal cellular activation of necroptosis, from a structural and cell biology perspective. It will compare the mechanisms by which pathogens subvert these interactions in order to maintain their replicative and infective cycles and consider the similarities between RHIMs and other functional amyloid-forming proteins associated with cell death and innate immunity. It will discuss the implications of the heteromeric nature and structure of RHIM-based amyloid complexes in the context of other functional amyloids.
Collapse
|
241
|
Ryan TA, Tumbarello DA. Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Front Immunol 2018; 9:1024. [PMID: 29867991 PMCID: PMC5962687 DOI: 10.3389/fimmu.2018.01024] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Optineurin is a multifunctional adaptor protein intimately involved in various vesicular trafficking pathways. Through interactions with an array of proteins, such as myosin VI, huntingtin, Rab8, and Tank-binding kinase 1, as well as via its oligomerisation, optineurin has the ability to act as an adaptor, scaffold, or signal regulator to coordinate many cellular processes associated with the trafficking of membrane-delivered cargo. Due to its diverse interactions and its distinct functions, optineurin is an essential component in a number of homeostatic pathways, such as protein trafficking and organelle maintenance. Through the binding of polyubiquitinated cargoes via its ubiquitin-binding domain, optineurin also serves as a selective autophagic receptor for the removal of a wide range of substrates. Alternatively, it can act in an ubiquitin-independent manner to mediate the clearance of protein aggregates. Regarding its disease associations, mutations in the optineurin gene are associated with glaucoma and have more recently been found to correlate with Paget’s disease of bone and amyotrophic lateral sclerosis (ALS). Indeed, ALS-associated mutations in optineurin result in defects in neuronal vesicular localisation, autophagosome–lysosome fusion, and secretory pathway function. More recent molecular and functional analysis has shown that it also plays a role in mitophagy, thus linking it to a number of other neurodegenerative conditions, such as Parkinson’s. Here, we review the role of optineurin in intracellular membrane trafficking, with a focus on autophagy, and describe how upstream signalling cascades are critical to its regulation. Current data and contradicting reports would suggest that optineurin is an important and selective autophagy receptor under specific conditions, whereby interplay, synergy, and functional redundancy with other receptors occurs. We will also discuss how dysfunction in optineurin-mediated pathways may lead to perturbation of critical cellular processes, which can drive the pathologies of number of diseases. Therefore, further understanding of optineurin function, its target specificity, and its mechanism of action will be critical in fully delineating its role in human disease.
Collapse
Affiliation(s)
- Thomas A Ryan
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David A Tumbarello
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
242
|
Yu C, Chen S, Guo Y, Sun C. Oncogenic TRIM31 confers gemcitabine resistance in pancreatic cancer via activating the NF-κB signaling pathway. Am J Cancer Res 2018; 8:3224-3236. [PMID: 29930725 PMCID: PMC6010981 DOI: 10.7150/thno.23259] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/31/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Drug resistance is well known as a major obstacle for cancer recurrence and treatment failure, leading to poor survival in pancreatic cancer, which is a highly aggressive tumor. Identifying effective strategies to overcome drug resistance would have a significant clinical impact for patients with pancreatic cancer. Methods: The protein and mRNA expression of TRIM31 in pancreatic cancer cell lines and patient tissues were determined using Real-time PCR and Western blot, respectively. 89 human pancreatic cancer tissue samples were analyzed by IHC to investigate the association between TRIM31 expression and the clinicopathological characteristics of pancreatic cancer patients. Functional assays, such as MTT, FACS, and Tunel assay used to determine the oncogenic role of TRIM31 in human pancreatic cancer progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of TRIM31 promotes chemoresistance in pancreatic cancer cells. Results: The expression of TRIM31was markedly upregulated in pancreatic cancer cell lines and tissues, and high TRIM31 expression was associated with an aggressive phenotype and poor prognosis with pancreatic cancer patients. TRIM31 overexpression confers gemcitabine resistance on pancreatic cancer cells; however, inhibition of TRIM31 sensitized pancreatic cancer cell lines to gemcitabine cytotoxicity both in vitro and in vivo. Additionally, TRIM31 upregulated the levels of nuclear p65 by promoting K63-linked polyubiquitination of tumor necrosis factor receptor-associated factor 2 (TRAF2) and sustained the activation of nuclear transcription factor kappa B (NF-κB) in pancreatic cancer cells. Conclusions: Our findings provided evidence that TRIM31 is a potential therapeutic target for patients with pancreatic cancer. Targeting TRIM31 signaling may be a promising strategy to enhance gemcitabine response during pancreatic cancer chemo-resistance.
Collapse
|
243
|
Xu C, Zhang C, Ji J, Wang C, Yang J, Geng B, Zhao T, Zhou H, Mu X, Pan J, Hu S, Lv Y, Chen X, Wen H, You Q. CD36 deficiency attenuates immune-mediated hepatitis in mice by modulating the proapoptotic effects of CXC chemokine ligand 10. Hepatology 2018; 67:1943-1955. [PMID: 29220536 DOI: 10.1002/hep.29716] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/30/2017] [Accepted: 12/02/2017] [Indexed: 12/21/2022]
Abstract
UNLABELLED The scavenger receptor CD36 recognizes a diverse set of ligands and has been implicated in a wide variety of normal and pathological processes, including lipid metabolism, angiogenesis, atherosclerosis, and phagocytosis. In particular, recent findings have demonstrated its crucial functions in sterile inflammation and tumor metastasis. However, the role of CD36 in immune-mediated hepatitis remains unclear. Concanavalin A (ConA)-induced liver injury is a well-established experimental T cell-mediated hepatitis. To understand the role of CD36 in hepatitis, we tested the susceptibility of CD36-deficient (CD36-/- ) mice to this model, evaluated by a liver enzyme test, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, histological analysis, mononuclear cell (MNC) infiltration, and hepatic proinflammatory factor production. CD36-/- mice were less sensitive to ConA-induced hepatitis and had a significantly lower number of liver MNCs (LMNCs), including CD4+ cells, CD8+ T cells, natural killer cells, natural killer T cells, infiltrating macrophages, and neutrophils, as well as reduced expression of inflammatory mediators (tumor necrosis factor α, CXC chemokine ligand (CXCL) 10, interleukin (IL)-1α, monocyte chemotactic protein 1, and IL-6) compared with controls. Notably, we used bone marrow chimeric mice to demonstrate that CD36 expression on nonhematopoietic cells was required to drive ConA-induced liver injury. Furthermore, our data show that the CD36 receptor was essential for CXCL10-induced hepatocyte apoptosis and activation of IκB kinase, Akt, and Jun N-terminal kinase. Moreover, treatment of wild-type mice with genistein, a tyrosine kinase inhibitor that blocks CD36-Lyn signaling, attenuated ConA-induced liver injury and reduced the number of MNCs. CONCLUSIONS Our findings suggest that CD36 plays an important proinflammatory role in ConA-induced liver injury by promoting hepatic inflammation and mediating the proapoptotic effect of chemokine CXCL10, and therefore, may be a potential therapeutic target for immune-mediated hepatitis. (Hepatology 2018;67:1943-1955).
Collapse
Affiliation(s)
- Che Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Zhang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ji
- First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Wang
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Biao Geng
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Zhao
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianmin Mu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinshun Pan
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shi Hu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanfang Lv
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingguo Chen
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Wen
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
244
|
Schmidt N, Haydn T, Schneider I, Busch H, Boerries M, Fulda S. Smac mimetic induces an early wave of gene expression via NF-κB and AP-1 and a second wave via TNFR1 signaling. Cancer Lett 2018; 421:170-185. [DOI: 10.1016/j.canlet.2018.01.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
|
245
|
Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis 2018; 9:500. [PMID: 29703889 PMCID: PMC5923285 DOI: 10.1038/s41419-018-0524-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
Necroptosis, a form of regulated necrotic cell death, is mediated by receptor interacting protein 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). However, the mechanism by which necroptosis promotes inflammation is still unclear. Here we report that the expression of cytokines is robustly upregulated in a cell-autonomous manner during necroptosis induced by tumor necrosis factor alpha (TNFα). We demonstrate that TNFα-induced necroptosis leads to two waves of cytokine production. The first wave, more transient and weaker than the second, is in response to TNFα alone; whereas the second wave depends upon the necroptotic signaling. We show that necroptosis promotes the transcription of TNFα-target genes in a cell-intrinsic manner. The activation of both NF-κB and p38 by the necroptotic machinery, RIPK1, RIPK3, and MLKL, is involved in mediating the robust induction of cytokine expression in the second wave. In contrast, necroptosis induced by direct oligomerization of MLKL promotes cytokine production at much lower levels than that of necroptosis induced with TNFα. Thus, we conclude that TNFα-induced necroptosis signaling events mediated by RIPK1 and RIPK3 activation, in addition to the MLKL oligomerization, promotes the expression of cytokines involving multiple intracellular signaling mechanisms including NF-κB pathway and p38. These findings reveal that the necroptotic cell death machinery mounts an immune response by promoting cell-autonomous production of cytokines. Our study provides insights into the mechanism by which necroptosis promotes inflammation in human diseases.
Collapse
|
246
|
Pegoretti V, Baron W, Laman JD, Eisel ULM. Selective Modulation of TNF-TNFRs Signaling: Insights for Multiple Sclerosis Treatment. Front Immunol 2018; 9:925. [PMID: 29760711 PMCID: PMC5936749 DOI: 10.3389/fimmu.2018.00925] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Autoimmunity develops when self-tolerance mechanisms are failing to protect healthy tissue. A sustained reaction to self is generated, which includes the generation of effector cells and molecules that destroy tissues. A way to restore this intrinsic tolerance is through immune modulation that aims at refurbishing this immunologically naïve or unresponsive state, thereby decreasing the aberrant immune reaction taking place. One major cytokine has been shown to play a pivotal role in several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS): tumor necrosis factor alpha (TNFα) modulates the induction and maintenance of an inflammatory process and it comes in two variants, soluble TNF (solTNF) and transmembrane bound TNF (tmTNF). tmTNF signals via TNFR1 and TNFR2, whereas solTNF signals mainly via TNFR1. TNFR1 is widely expressed and promotes mainly inflammation and apoptosis. Conversely, TNFR2 is restricted mainly to immune and endothelial cells and it is known to activate the pro-survival PI3K-Akt/PKB signaling pathway and to sustain regulatory T cells function. Anti-TNFα therapies are successfully used to treat diseases such as RA, colitis, and psoriasis. However, clinical studies with a non-selective inhibitor of TNFα in MS patients had to be halted due to exacerbation of clinical symptoms. One possible explanation for this failure is the non-selectivity of the treatment, which avoids TNFR2 stimulation and its immune and tissue protective properties. Thus, a receptor-selective modulation of TNFα signal pathways provides a novel therapeutic concept that might lead to new insights in MS pathology with major implications for its effective treatment.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology (GELIFES), University of Groningen, Groningen, Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
247
|
Feltham R, Jamal K, Tenev T, Liccardi G, Jaco I, Domingues CM, Morris O, John SW, Annibaldi A, Widya M, Kearney CJ, Clancy D, Elliott PR, Glatter T, Qiao Q, Thompson AJ, Nesvizhskii A, Schmidt A, Komander D, Wu H, Martin S, Meier P. Mind Bomb Regulates Cell Death during TNF Signaling by Suppressing RIPK1's Cytotoxic Potential. Cell Rep 2018; 23:470-484. [PMID: 29642005 PMCID: PMC5912950 DOI: 10.1016/j.celrep.2018.03.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/16/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor (TNF) is an inflammatory cytokine that can signal cell survival or cell death. The mechanisms that switch between these distinct outcomes remain poorly defined. Here, we show that the E3 ubiquitin ligase Mind Bomb-2 (MIB2) regulates TNF-induced cell death by inactivating RIPK1 via inhibitory ubiquitylation. Although depletion of MIB2 has little effect on NF-κB activation, it sensitizes cells to RIPK1- and caspase-8-dependent cell death. We find that MIB2 represses the cytotoxic potential of RIPK1 by ubiquitylating lysine residues in the C-terminal portion of RIPK1. Our data suggest that ubiquitin conjugation of RIPK1 interferes with RIPK1 oligomerization and RIPK1-FADD association. Disruption of MIB2-mediated ubiquitylation, either by mutation of MIB2's E3 activity or RIPK1's ubiquitin-acceptor lysines, sensitizes cells to RIPK1-mediated cell death. Together, our findings demonstrate that Mind Bomb E3 ubiquitin ligases can function as additional checkpoint of cytokine-induced cell death, selectively protecting cells from the cytotoxic effects of TNF.
Collapse
Affiliation(s)
- Rebecca Feltham
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK; Walter and Elisa Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Kunzah Jamal
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Isabel Jaco
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK; AstraZeneca, IMED Oncology, Bioscience, DDR Group, Chesterford Research Park, Little Chesterford CB10 1XL, UK
| | - Celia Monteiro Domingues
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Otto Morris
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Sidonie Wicky John
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Alessandro Annibaldi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Marcella Widya
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Conor J Kearney
- Molecular Cell Biology Laboratory, Department of Genetics & The Smurfit Institute, Immunology Research Centre, Trinity College, Dublin 2, Ireland
| | - Danielle Clancy
- Molecular Cell Biology Laboratory, Department of Genetics & The Smurfit Institute, Immunology Research Centre, Trinity College, Dublin 2, Ireland
| | - Paul R Elliott
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Timo Glatter
- Proteomics Core Facility, Biocentrum of the University of Basel, Basel, Switzerland; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
| | - Qi Qiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Andrew J Thompson
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Alexey Nesvizhskii
- Department of Pathology Department of Computational Medicine & Bioinformatics University of Michigan, Ann Arbor, MI, USA
| | - Alexander Schmidt
- Proteomics Core Facility, Biocentrum of the University of Basel, Basel, Switzerland
| | - David Komander
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Seamus Martin
- Molecular Cell Biology Laboratory, Department of Genetics & The Smurfit Institute, Immunology Research Centre, Trinity College, Dublin 2, Ireland
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
248
|
Wu Z, Neufeld H, Torlakovic E, Xiao W. Uev1A-Ubc13 promotes colorectal cancer metastasis through regulating CXCL1 expression via NF-кB activation. Oncotarget 2018; 9:15952-15967. [PMID: 29662619 PMCID: PMC5882310 DOI: 10.18632/oncotarget.24640] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 02/20/2018] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer is the second most common cause of cancer-related death worldwide. Uncontrolled growth and distant metastasis are hallmarks of colorectal cancer. However, the precise etiological factors and the mechanisms are diverse and still largely unclear. The potential proto-oncogene UEV1A encodes a ubiquitin conjugating enzyme variant, which is required for Ubc13-catalyzed K63-linked poly-ubiquitination of target proteins and the activation of NF-кB, a transcription factor known to be involved in innate immunity, anti-apoptosis, inflammation and cancer. In order to understand the roles of Uev1A in colon cancer progression, we experimentally manipulated the Uev1A level in HCT116 colon cancer cells and found that UEV1A overexpression alone is sufficient to promote invasion in vitro and metastasis in vivo. This process is mediated by NF-κB activation and depends on its physical interaction with Ubc13. No expression of Uev1A was detected in histologically normal human colonic mucosa, but its expression was detected in human colorectal adenocarcinoma, which was closely correlated with nuclear p65 levels, an indicator of NF-κB activation. Uev1A protein was detected in 46% of primary tumors and 79% of metastatic tumors examined. Our experimental data establish that among NF-κB target genes, Uev1A-regulated CXCL1 expression plays a critical role in colon cell invasion and metastasis, a notion supported by the colon adenocarcinoma survey. Furthermore, experimental depletion of Uev1 in HCT116 cells reduces CXCL1 expression, and prevents cell invasion and tumor growth in a xenograft mouse model. These results identify Uev1A as a potential therapeutic target in the treatment of metastatic colorectal cancers.
Collapse
Affiliation(s)
- Zhaojia Wu
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Heather Neufeld
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Eminao Torlakovic
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada.,Current address: Department of Laboratory Hematology, Toronto General Hospital/UHN, Toronto M5G 2C4, Canada
| | - Wei Xiao
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
249
|
Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. Infect Immun 2018; 86:IAI.00560-17. [PMID: 29339461 DOI: 10.1128/iai.00560-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.
Collapse
|
250
|
Zeng F, Chen X, Cui W, Wen W, Lu F, Sun X, Ma D, Yuan Y, Li Z, Hou N, Zhao H, Bi X, Zhao J, Zhou J, Zhang Y, Xiao RP, Cai J, Zhang X. RIPK1 Binds MCU to Mediate Induction of Mitochondrial Ca 2+ Uptake and Promotes Colorectal Oncogenesis. Cancer Res 2018. [PMID: 29531160 DOI: 10.1158/0008-5472.can-17-3082] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The receptor-interacting protein kinase 1 (RIPK1) is an essential signaling molecule in pathways for cell survival, apoptosis, and necroptosis. We report here that RIPK1 is upregulated in human colorectal cancer and promotes cell proliferation when overexpressed in a colon cancer cell line. RIPK1 interacts with mitochondrial Ca2+ uniporter (MCU) to promote proliferation by increasing mitochondrial Ca2+ uptake and energy metabolism. The ubiquitination site of RIPK1 (RIPK1-K377) was critical for this interaction with MCU and function in promoting cell proliferation. These findings identify the RIPK1-MCU pathway as a promising target to treat colorectal cancer.Significance: RIPK1-mediated cell proliferation through MCU is a central mechanism underlying colorectal cancer progression and may prove to be an important therapeutic target for colorectal cancer treatment. Cancer Res; 78(11); 2876-85. ©2018 AACR.
Collapse
Affiliation(s)
- Fanxin Zeng
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiyi Cui
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Wei Wen
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Fujian Lu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xueting Sun
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Dongwei Ma
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ye Yuan
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Zezhong Li
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ning Hou
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuqin Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China. .,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|