201
|
Mou L, Zhang Q, Wang Y, Zhang Q, Sun L, Li C, Huang W, Yuan Y, Duan Y, Diao R, Jiang Z, Ye J, Cai Z, Gui Y. Identification of Ube2b as a Novel Target of Androgen Receptor in Mouse Sertoli Cells1. Biol Reprod 2013; 89:32. [DOI: 10.1095/biolreprod.112.103648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
202
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
203
|
Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 2013; 20:259-66. [PMID: 23463310 DOI: 10.1038/nsmb.2470] [Citation(s) in RCA: 631] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/02/2012] [Indexed: 12/12/2022]
Abstract
Chromatin is a dynamic structure that must respond to myriad stimuli to regulate access to DNA, and chemical modification of histones is a major means by which the cell modulates nucleosome mobility and turnover. Histone modifications are linked to essentially every cellular process requiring DNA access, including transcription, replication and repair. Here we consider properties of the major types of histone modification in the context of their associated biological processes to view them in light of the cellular mechanisms that regulate nucleosome dynamics.
Collapse
|
204
|
Nakayasu ES, Brown RN, Ansong C, Sydor MA, Imtiaz S, Mihai C, Sontag R, Hixson KK, Monroe ME, Sobreira TJP, Orr G, Petyuk VA, Yang F, Smith RD, Adkins JN. Multi-omic data integration links deleted in breast cancer 1 (DBC1) degradation to chromatin remodeling in inflammatory response. Mol Cell Proteomics 2013; 12:2136-47. [PMID: 23639857 DOI: 10.1074/mcp.m112.026138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study investigated the dynamics of ubiquitinated proteins after the inflammatory stimulation of RAW 264.7 macrophage-like cells with bacterial lipopolysaccharide. Ubiquitination is a common protein post-translational modification that regulates many key cellular functions. We demonstrated that levels of global ubiquitination and K48 and K63 polyubiquitin chains change after lipopolysaccharide stimulation. Quantitative proteomic analysis identified 1199 ubiquitinated proteins, 78 of which exhibited significant changes in ubiquitination levels following stimulation. Integrating the ubiquitinome data with global proteomic and transcriptomic results allowed us to identify a subset of 88 proteins that were targeted for degradation after lipopolysaccharide stimulation. Using cellular assays and Western blot analyses, we biochemically validated DBC1 (a histone deacetylase inhibitor) as a degradation substrate that is targeted via an orchestrated mechanism utilizing caspases and the proteasome. The degradation of DBC1 releases histone deacetylase activity, linking lipopolysaccharide activation to chromatin remodeling in caspase- and proteasome-mediated signaling.
Collapse
Affiliation(s)
- Ernesto S Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 2013; 49:808-24. [PMID: 23473600 DOI: 10.1016/j.molcel.2013.02.013] [Citation(s) in RCA: 552] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromatin modification by Polycomb proteins provides an essential strategy for gene silencing in higher eukaryotes. Polycomb repressive complexes (PRCs) silence key developmental regulators and are centrally integrated in the transcriptional circuitry of stem cells. PRC2 trimethylates histone H3 on lysine 27 (H3K27me3), and PRC1-type complexes ubiquitylate histone H2A and compact polynucleosomes. How PRCs are deployed to select and silence genomic targets is the subject of intense investigation. We review advances on targeting, modulation, and functions of PRC1 and PRC2 and progress on defining the transcriptional steps they impact. Recent findings emphasize PRC1 targeting independent of H3K27me3, nonenzymatic PRC1-mediated compaction, and connections between PRCs and noncoding RNAs. Systematic analyses of Polycomb complexes and associated histone modifications during DNA replication and mitosis have also emerged. The stage is now set to reveal fundamental epigenetic mechanisms that determine how Polycomb target genes are silenced and how Polycomb silence is preserved through cell-cycle progression.
Collapse
|
206
|
Maethner E, Garcia-Cuellar MP, Breitinger C, Takacova S, Divoky V, Hess JL, Slany RK. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells. Cell Rep 2013; 3:1553-66. [PMID: 23623499 DOI: 10.1016/j.celrep.2013.03.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/12/2013] [Accepted: 03/22/2013] [Indexed: 01/08/2023] Open
Abstract
Stimulation of transcriptional elongation is a key activity of leukemogenic MLL fusion proteins. Here, we provide evidence that MLL-ENL also inhibits Polycomb-mediated silencing as a prerequisite for efficient transformation. Biochemical studies identified ENL as a scaffold that contacted the elongation machinery as well as the Polycomb repressive complex 1 (PRC1) component CBX8. These interactions were mutually exclusive in vitro, corresponding to an antagonistic behavior of MLL-ENL and CBX8 in vivo. CBX8 inhibited elongation in a specific reporter assay, and this effect was neutralized by direct association with ENL. Correspondingly, CBX8-binding-defective MLL-ENL could not fully activate gene loci necessary for transformation. Finally, we demonstrate dimerization of MLL-ENL as a neomorphic activity that may augment Polycomb inhibition and transformation.
Collapse
Affiliation(s)
- Emanuel Maethner
- Department of Genetics, University Erlangen, 91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
207
|
Kartikasari AER, Zhou JX, Kanji MS, Chan DN, Sinha A, Grapin-Botton A, Magnuson MA, Lowry WE, Bhushan A. The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO J 2013; 32:1393-408. [PMID: 23584530 DOI: 10.1038/emboj.2013.78] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/13/2013] [Indexed: 02/07/2023] Open
Abstract
Stem cell differentiation depends on transcriptional activation driven by lineage-specific regulators as well as changes in chromatin organization. However, the coordination of these events is poorly understood. Here, we show that T-box proteins team up with chromatin modifying enzymes to drive the expression of the key lineage regulator, Eomes during endodermal differentiation of embryonic stem (ES) cells. The Eomes locus is maintained in a transcriptionally poised configuration in ES cells. During early differentiation steps, the ES cell factor Tbx3 associates with the histone demethylase Jmjd3 at the enhancer element of the Eomes locus to allow enhancer-promoter interactions. This spatial reorganization of the chromatin primes the cells to respond to Activin signalling, which promotes the binding of Jmjd3 and Eomes to its own bivalent promoter region to further stimulate Eomes expression in a positive feedback loop. In addition, Eomes activates a transcriptional network of core regulators of endodermal differentiation. Our results demonstrate that Jmjd3 sequentially associates with two T-box factors, Tbx3 and Eomes to drive stem cell differentiation towards the definitive endoderm lineage.
Collapse
|
208
|
Abstract
This spotlight review focuses on the second-generation proteasome inhibitor carfilzomib, which was recently approved by the U.S. Food and Drug Administration for treatment of relapsed and refractory multiple myeloma patients who have received at least 2 prior therapies, including bortezomib and an immunomodulatory agent, and have demonstrated disease progression on or within 60 days of the completion of the last therapy. This review focuses on clinical trial data leading to drug approval and provides advice for treating physicians who are now accessing this drug for patients.
Collapse
|
209
|
Pinder JB, Attwood KM, Dellaire G. Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair. Front Genet 2013; 4:45. [PMID: 23554604 PMCID: PMC3612592 DOI: 10.3389/fgene.2013.00045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/13/2013] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is both a hallmark of cancer and a major contributing factor to tumor development. Central to the maintenance of genome stability is the repair of DNA damage, and the most toxic form of DNA damage is the DNA double-strand break. As a consequence the eukaryotic cell harbors an impressive array of protein machinery to detect and repair DNA breaks through the initiation of a multi-branched, highly coordinated signaling cascade. This signaling cascade, known as the DNA damage response (DDR), functions to integrate DNA repair with a host of cellular processes including cell cycle checkpoint activation, transcriptional regulation, and programmed cell death. In eukaryotes, DNA is packaged in chromatin, which provides a mechanism to regulate DNA transactions including DNA repair through an equally impressive array of post-translational modifications to proteins within chromatin, and the DDR machinery itself. Histones, as the major protein component of chromatin, are subject to a host of post-translational modifications including phosphorylation, methylation, and acetylation. More recently, modification of both the histones and DDR machinery by ubiquitin and other ubiquitin-like proteins, such as the small ubiquitin-like modifiers, has been shown to play a central role in coordinating the DDR. In this review, we explore how ubiquitination and sumoylation contribute to the “writing” of key post-translational modifications within chromatin that are in turn “read” by the DDR machinery and chromatin-remodeling factors, which act together to facilitate the efficient detection and repair of DNA damage.
Collapse
Affiliation(s)
- Jordan B Pinder
- Department of Pathology, Dalhousie University Halifax, NS, Canada
| | | | | |
Collapse
|
210
|
Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia 2012; 27:523-33. [PMID: 23257781 DOI: 10.1038/leu.2012.368] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.
Collapse
|
211
|
Scmh1 has E3 ubiquitin ligase activity for geminin and histone H2A and regulates geminin stability directly or indirectly via transcriptional repression of Hoxa9 and Hoxb4. Mol Cell Biol 2012. [PMID: 23207902 DOI: 10.1128/mcb.00974-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polycomb-group (PcG) complex 1 acts as an E3 ubiquitin ligase both for histone H2A to silence transcription and for geminin to regulate its stability. Scmh1 is a substoichiometric component of PcG complex 1 that provides the complex with an interaction domain for geminin. Scmh1 is unstable and regulated through the ubiquitin-proteasome system, but its molecular roles are unknown, so we generated Scmh1-deficient mice to elucidate its function. Loss of Scmh1 caused derepression of Hoxb4 and Hoxa9, direct targets of PcG complex 1-mediated transcriptional silencing in hematopoietic cells. Double knockdown of Hoxb4 and Hoxa9 or transduction of a dominant-negative Hoxb4N→A mutant caused geminin accumulation. Age-related transcriptional downregulation of derepressed Hoxa9 also leads to geminin accumulation. Transduction of Scmh1 lacking a geminin-binding domain restored derepressed expression of Hoxb4 and Hoxa9 but did not downregulate geminin like full-length Scmh1. Each of Hoxb4 and Hoxa9 can form a complex with Roc1-Ddb1-Cul4a to act as an E3 ubiquitin ligase for geminin. We suggest that geminin dysregulation may be restored by derepressed Hoxb4 and Hoxa9 in Scmh1-deficient mice. These findings suggest that PcG and a subset of Hox genes compose a homeostatic regulatory system for determining expression level of geminin.
Collapse
|
212
|
Liu Y, Liu F, Yu H, Zhao X, Sashida G, Deblasio A, Harr M, She QB, Chen Z, Lin HK, Di Giandomenico S, Elf SE, Yang Y, Miyata Y, Huang G, Menendez S, Mellinghoff IK, Rosen N, Pandolfi PP, Hedvat CV, Nimer SD. Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the tumor-suppressing ink4a-arf locus. Sci Signal 2012; 5:ra77. [PMID: 23092893 DOI: 10.1126/scisignal.2003199] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Polycomb group protein Bmi1 is a transcriptional silencer of the Ink4a-Arf locus, which encodes the cell cycle regulator p16(Ink4a) and the tumor suppressor p19(Arf). Bmi1 plays a key role in oncogenesis and stem cell self-renewal. We report that phosphorylation of human Bmi1 at Ser³¹⁶ by Akt impaired its function by triggering its dissociation from the Ink4a-Arf locus, which resulted in decreased ubiquitylation of histone H2A and the inability of Bmi1 to promote cellular proliferation and tumor growth. Moreover, Akt-mediated phosphorylation of Bmi1 also inhibited its ability to promote self-renewal of hematopoietic stem and progenitor cells. Our study provides a mechanism for the increased abundance of p16(Ink4a) and p19(Arf) seen in cancer cells with an activated phosphoinositide 3-kinase to Akt signaling pathway and identifies crosstalk between phosphorylation events and chromatin structure.
Collapse
Affiliation(s)
- Yan Liu
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Chen YH, Hung MC, Li LY. EZH2: a pivotal regulator in controlling cell differentiation. Am J Transl Res 2012; 4:364-75. [PMID: 23145205 PMCID: PMC3493026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/29/2012] [Indexed: 06/01/2023]
Abstract
Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.
Collapse
Affiliation(s)
- Ya-Huey Chen
- Graduate Institute of Cancer Biology, China Medical UniversityTaichung 40447, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Cancer Biology, China Medical UniversityTaichung 40447, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Long-Yuan Li
- Graduate Institute of Cancer Biology, China Medical UniversityTaichung 40447, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 40447, Taiwan
- Cancer Biology and Drug Discovery Ph.D. Program, China Medical UniversityTaichung 40402, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
| |
Collapse
|
214
|
Sashida G, Iwama A. Epigenetic regulation of hematopoiesis. Int J Hematol 2012; 96:405-12. [PMID: 23054647 DOI: 10.1007/s12185-012-1183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 11/26/2022]
Abstract
Epigenetic regulation is required not only for development, but also for tissue homeostasis, which is maintained via the self-renewal and differentiation of somatic stem cells. Accumulating evidence suggests that epigenetic regulators play critical roles in the maintenance of both self-renewing hematopoietic stem cells and leukemic stem cells. Recent genome-wide comprehensive analyses have identified mutations in epigenetic regulator genes, including genes whose products modify DNA and histones in hematological malignancies. Among these epigenetic regulators, repressive histone modifications by Polycomb-group complexes have been most fully characterized in hematopoietic stem cells, and are recognized as general regulators of stem cells. Hematopoietic stem cells are controlled by both cell-intrinsic and -extrinsic regulators, including transcription factors, signal transduction pathways, and niche factors. However, there is little insight into the mechanism of how epigenetic regulators act in concert with these factors to ensure blood homeostasis. In this review, we highlight recent findings in epigenetic regulation of hematopoiesis with emphasis on the role of Polycomb-group proteins and DNA-methylation modulators in hematopoietic stem cells and their progeny.
Collapse
Affiliation(s)
- Goro Sashida
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | |
Collapse
|
215
|
Smolle M, Workman JL. Transcription-associated histone modifications and cryptic transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:84-97. [PMID: 22982198 DOI: 10.1016/j.bbagrm.2012.08.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022]
Abstract
Eukaryotic genomes are packaged into chromatin, a highly organized structure consisting of DNA and histone proteins. All nuclear processes take place in the context of chromatin. Modifications of either DNA or histone proteins have fundamental effects on chromatin structure and function, and thus influence processes such as transcription, replication or recombination. In this review we highlight histone modifications specifically associated with gene transcription by RNA polymerase II and summarize their genomic distributions. Finally, we discuss how (mis-)regulation of these histone modifications perturbs chromatin organization over coding regions and results in the appearance of aberrant, intragenic transcription. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
216
|
Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med 2012; 34:753-64. [PMID: 22906839 DOI: 10.1016/j.mam.2012.07.018] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/31/2012] [Indexed: 12/12/2022]
Abstract
While the eukaryotic genome is the same throughout all somatic cells in an organism, there are specific structures and functions that discern one type of cell from another. These differences are due to the cell's unique gene expression patterns that are determined during cellular differentiation. Interestingly, these cell-specific gene expression patterns can be affected by an organism's environment throughout its lifetime leading to phenotypical changes that have the potential of altering risk of some diseases. Both cell-specific gene expression signatures and environment mediated changes in expression patterns can be explained by a complex network of modifications to the DNA, histone proteins and degree of DNA packaging called epigenetic marks. Several areas of research have formed to study these epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling and microRNA (miRNA). The original definition of epigenetics incorporates inheritable but reversible phenomena that affect gene expression without altering base pairs. Even though not all of the above listed epigenetic traits have demonstrated heritability, they can all alter gene transcription without modification to the underlying genetic sequence. Because these epigenetic patterns can also be affected by an organism's environment, they serve as an important bridge between life experiences and phenotypes. Epigenetic patterns may change throughout one's lifespan, by an early life experience, environmental exposure or nutritional status. Epigenetic signatures influenced by the environment may determine our appearance, behavior, stress response, disease susceptibility, and even longevity. The interaction between types of epigenetic modifications in response to environmental factors and how environmental cues affect epigenetic patterns will further elucidate how gene transcription can be affectively altered.
Collapse
Affiliation(s)
- Stephanie A Tammen
- Jean Mayer USDA Human Nutrition Research Center on Aging - Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
217
|
van der Velden YU, Wang L, van Lohuizen M, Haramis APG. The Polycomb group protein Ring1b is essential for pectoral fin development. Development 2012; 139:2210-20. [PMID: 22619390 DOI: 10.1242/dev.077156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that mediate epigenetic gene silencing by chromatin modification. PcG-mediated gene repression is implicated in development, cell differentiation, stem-cell fate maintenance and cancer. However, analysis of the roles of PcG proteins in orchestrating vertebrate developmental programs in vivo has been hampered by the early embryonic lethality of several PcG gene knockouts in mice. Here, we demonstrate that zebrafish Ring1b, the E3 ligase in Polycomb Repressive Complex 1 (PRC1), is essential for pectoral fin development. We show that differentiation of lateral plate mesoderm (LPM) cells into presumptive pectoral fin precursors is initiated normally in ring1b mutants, but fin bud outgrowth is impaired. Fgf signaling, which is essential for migration, proliferation and cell-fate maintenance during fin development, is not sufficiently activated in ring1b mutants. Exogenous application of FGF4, as well as enhanced stimulation of Fgf signaling by overactivated Wnt signaling in apc mutants, partially restores the fin developmental program. These results reveal that, in the absence of functional Ring1b, fin bud cells fail to execute the pectoral fin developmental program. Together, our results demonstrate that PcG-mediated gene regulation is essential for sustained Fgf signaling in vertebrate limb development.
Collapse
Affiliation(s)
- Yme U van der Velden
- Department of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
218
|
Botchkarev VA, Gdula MR, Mardaryev AN, Sharov AA, Fessing MY. Epigenetic regulation of gene expression in keratinocytes. J Invest Dermatol 2012; 132:2505-21. [PMID: 22763788 PMCID: PMC3650472 DOI: 10.1038/jid.2012.182] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleus is a complex and highly compartmentalized organelle, which organization undergoes major changes during cell differentiation allowing cells to become specialized and fulfill their functions.During terminal differentiation of the epidermal keratinocytes, nucleus undergoes programmed transformation from active status, associated with execution of the genetic programs of cornification and epidermal barrier formation, to fully inactive condition and becomes a part of the keratinized cells of the cornified layer. Tremendous progress achieved within the last two decades in understanding the biology of the nucleus and epigenetic mechanisms controlling gene expression allowed defining several levels in the regulation of cell differentiation-associated gene expression programs, including an accessibility of the gene regulatory regions to DNA-protein interactions, covalent DNA and histone modifications and ATP-dependent chromatin remodeling, as well as higher-order chromatin remodeling and nuclear compartmentalization of the genes and transcription machinery. Here, we integrate our current knowledge of the mechanisms controlling gene expression during terminal keratinocyte differentiation with distinct levels of chromatin organization and remodeling. We also propose the directions to further explore the role of epigenetic mechanisms and their interactions with other regulatory systems in the control of keratinocyte differentiation in normal and diseased skin.
Collapse
|
219
|
Braun S, Madhani HD. Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Rep 2012; 13:619-30. [PMID: 22688965 DOI: 10.1038/embor.2012.78] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022] Open
Abstract
The organization of eukaryotic chromosomes into transcriptionally active euchromatin and repressed heterochromatin requires mechanisms that establish, maintain and distinguish these canonical chromatin domains. Post-translational modifications are fundamental in these processes. Monoubiquitylation of histones was discovered more than three decades ago, but its precise function has been enigmatic until recently. It is now appreciated that the spectrum of chromatin ubiquitylation is not restricted to monoubiquitylation of histones, but includes degradatory ubiquitylation of histones, histone-modifying enzymes and non-histone chromatin factors. These occur in a spatially and temporally controlled manner. In this review, we summarize our understanding of these mechanisms with a particular emphasis on how ubiquitylation shapes the physical landscape of chromatin.
Collapse
Affiliation(s)
- Sigurd Braun
- Department of Biochemistry & Biophysics, University of California, 600 16th Street, San Francisco, California 94158 2200, USA.
| | | |
Collapse
|
220
|
Buzas DM, Tamada Y, Kurata T. FLC: a hidden polycomb response element shows up in silence. PLANT & CELL PHYSIOLOGY 2012; 53:785-793. [PMID: 22107881 DOI: 10.1093/pcp/pcr163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A sizeable fraction of eukaryotic genomes is regulated by Polycomb group (PcG) and trithorax group (trxG) proteins, which play key roles in epigenetic repression and activation, respectively. In Drosophila melanogaster, homeotic genes are well-documented PcG targets; they are known to contain cis-acting elements termed Polycomb response elements (PREs), which bind PcG proteins and satisfy three defined criteria, and also often contain binding sites for the trithorax (trx) protein. However, the presence of PREs, or an alternative mode for PcG/trxG interaction with the genome, has not been well documented outside Drosophila. In Arabidopsis thaliana, PcG/trxG regulation has been studied extensively for the flowering repressor gene FLOWERING LOCUS C (FLC). Here we evaluate how PRE-like activities that reside within the FLC locus may satisfy the defined Drosophila criteria, by analyzing four FLC transcription states. When the FLC locus is not transcribed, the intrinsic PcG recruitment ability of the coding region can be attributed to two redundant cis-acting elements (Modules IIA and IIB). When FLC is highly expressed, trxG recruitment is to a region overlapping the transcription start site (Module I). Exposure to prolonged cold converts the active FLC state into a repressed state that is maintained after the cold period finishes. These two additional transcriptional states also rely on the same three modules for PcG/trxG regulation. We conclude that each of Modules I, IIA and IIB partially fulfills the PRE function criteria, and that together they represent the functional FLC PRE, which differs structurally from canonical PREs in Drosophila.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- Plant Reproductive Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 Japan.
| | | | | |
Collapse
|
221
|
Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol Cell Biol 2012; 32:2490-502. [PMID: 22547677 DOI: 10.1128/mcb.06667-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The packaging of DNA into nucleosomes imposes obstacles on gene transcription, and histone-modifying and nucleosome-remodeling complexes work in concert to alleviate these obstacles so as to facilitate transcription. Emerging evidence shows that chromatin-associated poly(ADP-ribose) polymerase 1 (PARP-1) and its enzymatic activity facilitate inflammatory gene transcription and modulate the inflammatory response in animal models. However, the molecular mechanisms by which PARP-1 enzymatic activity facilitates transcription are not well understood. Here we show that through an intracellular signaling pathway, lipopolysaccharide (LPS) stimulation induces PARP-1 enzymatic activity and the ADP-ribosylation of histones at transcriptionally active and accessible chromatin regions in macrophages. In vitro DNase I footprinting and restriction endonuclease accessibility assays reveal that histone ADP-ribosylation directly destabilizes histone-DNA interactions in the nucleosome and increases the site accessibility of the nucleosomal DNA to nucleases. Consistent with this, LPS stimulation-induced ADP-ribosylation at the nucleosome-occupied promoters of il-1β, mip-2, and csf2 facilitates NF-κB recruitment and the transcription of these genes in macrophages. Therefore, our data suggest that PARP-1 enzymatic activity facilitates gene transcription through increasing promoter accessibility by histone ADP-ribosylation.
Collapse
|
222
|
Guenther MG. Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics 2012; 3:323-43. [PMID: 22122341 DOI: 10.2217/epi.11.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) have the potential to generate virtually any cell type or tissue type in the body. This remarkable plasticity has yielded great interest in using these cells to understand early development and in treating human disease. In an effort to understand the basis of ESC pluripotency, genetic and genomic studies have revealed transcriptional regulatory circuitry that maintains the pluripotent cell state and poises the genome for downstream activation. Critical components of this circuitry include ESC transcription factors, chromatin regulators, histone modifications, signaling molecules and regulatory RNAs. This article will focus on our current understanding of these components and how they influence ESC and induced pluripotent stem cell states. Emerging themes include regulation of the pluripotent genome by a core set of transcription factors, transcriptional poising of developmental genes by chromatin regulatory complexes and the establishment of multiple layers of repression at key genomic loci.
Collapse
|
223
|
Vastenhouw NL, Schier AF. Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol 2012; 24:374-86. [PMID: 22513113 DOI: 10.1016/j.ceb.2012.03.009] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/08/2023]
Abstract
Histone modifications influence the interactions of transcriptional regulators with chromatin. Studies in embryos and embryonic stem (ES) cells have uncovered histone modification patterns that are diagnostic for different cell types and developmental stages. For example, bivalent domains consisting of regions of H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 4 trimethylation (H3K4me3) mark lineage control genes in ES cells and zebrafish blastomeres. Such bivalent domains have garnered attention because the H3K27me3 mark might help repress lineage-regulatory genes during pluripotency while the H3K4me3 mark could poise genes for activation upon differentiation. Despite the prominence of the bivalent domain concept, studies in other model organisms have questioned its universal nature, and the function of bivalent domains has remained unclear. Histone marks are also associated with developmental regulatory genes in sperm. These observations have raised the possibility that specific histone modification patterns might persist from parent to offspring, but it is unclear whether histone marks are inherited or formed de novo. Here, we review the potential roles of H3K4me3 and H3K27me3 marks in embryos and ES cells and discuss how histone marks might be established, maintained and resolved during embryonic development.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
224
|
Wang C, Tian R, Zhao Q, Xu H, Meyer CA, Li C, Zhang Y, Liu XS. Computational inference of mRNA stability from histone modification and transcriptome profiles. Nucleic Acids Res 2012; 40:6414-23. [PMID: 22495509 PMCID: PMC3413115 DOI: 10.1093/nar/gks304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone modifications play important roles in regulating eukaryotic gene expression and have been used to model expression levels. Here, we present a regression model to systematically infer mRNA stability by comparing transcriptome profiles with ChIP-seq of H3K4me3, H3K27me3 and H3K36me3. The results from multiple human and mouse cell lines show that the inferred unstable mRNAs have significantly longer 3′Untranslated Regions (UTRs) and more microRNA binding sites within 3′UTR than the inferred stable mRNAs. Regression residuals derived from RNA-seq, but not from GRO-seq, are highly correlated with the half-lives measured by pulse-labeling experiments, supporting the rationale of our inference. Whereas, the functions enriched in the inferred stable and unstable mRNAs are consistent with those from pulse-labeling experiments, we found the unstable mRNAs have higher cell-type specificity under functional constraint. We conclude that the systematical use of histone modifications can differentiate non-expressed mRNAs from unstable mRNAs, and distinguish stable mRNAs from highly expressed ones. In summary, we represent the first computational model of mRNA stability inference that compares transcriptome and epigenome profiles, and provides an alternative strategy for directing experimental measurements.
Collapse
Affiliation(s)
- Chengyang Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 20092, China
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2012; 2:26. [PMID: 22649782 PMCID: PMC3355875 DOI: 10.3389/fonc.2012.00026] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022] Open
Abstract
Histone post-transcriptional modifications play essential roles in regulation of all DNA related processes. Among them, histone ubiquitination has been discovered for more than three decades. However, its functions are still less well understood than other histone modifications such as methylation and acetylation. In this review, we will summarize our current understanding of histone ubiquitination and deubiquitination. In particular, we will focus on how they are regulated by histone ubiquitin ligases and deubiquitinating enzymes. We will then discuss the roles of histone ubiquitination in transcription and DNA damage response and the crosstalk between histone ubiquitination and other histone modifications. Finally, we will review the important roles of histone ubiquitination in stem cell biology and cancer.
Collapse
Affiliation(s)
- Jian Cao
- Department of Pathology, Yale University School of MedicineNew Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
226
|
Weake VM, Workman JL. SAGA function in tissue-specific gene expression. Trends Cell Biol 2011; 22:177-84. [PMID: 22196215 DOI: 10.1016/j.tcb.2011.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 01/28/2023]
Abstract
The Spt-Ada-Gcn5-acetyltransferase (SAGA) transcription coactivator plays multiple roles in regulating transcription because of the presence of functionally independent modules of subunits within the complex. We have recently identified a role for the ubiquitin protease activity of SAGA in regulating tissue-specific gene expression in Drosophila. Here, we discuss the modular nature of SAGA and the different mechanisms through which SAGA is recruited to target promoters. We propose that the genes sensitive to loss of the ubiquitin protease activity of SAGA share functional characteristics that require deubiquitination of monoubiquitinated histone H2B (ubH2B) for full activation. We hypothesize that deubiquitination of ubH2B by SAGA destabilizes promoter nucleosomes, thus enhancing recruitment of RNA polymerase II (Pol II) to weak promoters. In addition, SAGA-mediated deubiquitination of ubH2B may facilitate binding of factors that are important for the transition of paused Pol II into transcription elongation.
Collapse
Affiliation(s)
- Vikki M Weake
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
227
|
Switches, excitable responses and oscillations in the Ring1B/Bmi1 ubiquitination system. PLoS Comput Biol 2011; 7:e1002317. [PMID: 22194680 PMCID: PMC3240587 DOI: 10.1371/journal.pcbi.1002317] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 11/06/2011] [Indexed: 01/21/2023] Open
Abstract
In an active, self-ubiquitinated state, the Ring1B ligase monoubiquitinates histone H2A playing a critical role in Polycomb-mediated gene silencing. Following ubiquitination by external ligases, Ring1B is targeted for proteosomal degradation. Using biochemical data and computational modeling, we show that the Ring1B ligase can exhibit abrupt switches, overshoot transitions and self-perpetuating oscillations between its distinct ubiquitination and activity states. These different Ring1B states display canonical or multiply branched, atypical polyubiquitin chains and involve association with the Polycomb-group protein Bmi1. Bistable switches and oscillations may lead to all-or-none histone H2A monoubiquitination rates and result in discrete periods of gene (in)activity. Switches, overshoots and oscillations in Ring1B catalytic activity and proteosomal degradation are controlled by the abundances of Bmi1 and Ring1B, and the activities and abundances of external ligases and deubiquitinases, such as E6-AP and USP7. The generation of polyubiquitin chains on target proteins as a degradation signal was a landmark discovery rewarded by the 2004 Nobel Prize in Chemistry. However, emerging evidence suggests that protein ubiquitination is more versatile. Different types of ubiquitin chains serve numerous non-proteolytic functions, among them regulation of the biological activities of target proteins. Here we demonstrate a flexible role of ubiquitination in the dynamic control of Ring1B, a ubiquitin ligase that monoubiquitinates histone H2A, which in turn silences gene expression. Remarkably, Ring1B increases its own activity by self-ubiquitination. A binding partner of Ring1B, Bmi1, facilitates Ring1B self-ubiquitination and protects both proteins from rapid degradation. We use computational modeling to show that the Ring1B/Bmi1 system can act as analog-digital converter, generating abrupt switches, multistable dynamics, oscillations and excitable overshoots. For instance, an increase in Bmi1 abundance brings about an abrupt “On” switch of Ring1B monoubiquitinating activity and downregulation of H2A-controlled genes, while a decrease in Bmi1 leads to an “Off” switch. These digital responses can display hysteresis, creating the biological memory. Distinct types of Ring1B activity responses (oscillatory, bistable and excitable) facilitate signal discrimination and allow the Ring1B/Bmi1/H2A system to distinctly affect gene silencing and potentially trigger different cell fates.
Collapse
|
228
|
Jiang XX, Nguyen Q, Chou Y, Wang T, Nandakumar V, Yates P, Jones L, Wang L, Won H, Lee HR, Jung JU, Müschen M, Huang XF, Chen SY. Control of B cell development by the histone H2A deubiquitinase MYSM1. Immunity 2011; 35:883-96. [PMID: 22169041 DOI: 10.1016/j.immuni.2011.11.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/26/2011] [Accepted: 11/09/2011] [Indexed: 01/02/2023]
Abstract
Epigenetic histone modifications play critical roles in the control of gene transcription. Recently, an increasing number of histone H2A deubiquitinases have been identified and characterized. However, the physiological functions for this entire group of histone H2A deubiquitinases remain unknown. In this study, we revealed that the histone H2A deubiquitinase MYSM1 plays an essential and intrinsic role in early B cell development. MYSM1 deficiency results in a block in early B cell commitment and a defect of B cell progenitors in expression of EBF1 and other B lymphoid genes. We further demonstrated that MYSM1 derepresses EBF1 transcription in B cell progenitors by orchestrating histone modifications and transcription factor recruitment to the EBF1 locus. Thus, this study not only uncovers the essential role for MYSM1 in gene transcription during early B cell development but also underscores the biological significance of reversible epigenetic histone H2A ubiquitination.
Collapse
Affiliation(s)
- Xiao-Xia Jiang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Tang JB, Greenberg RA. Connecting the Dots: Interplay between Ubiquitylation and SUMOylation at DNA Double-Strand Breaks. Genes Cancer 2011; 1:787-96. [PMID: 21113239 DOI: 10.1177/1947601910382774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein modifications, including phosphorylation, ubiquitylation, and SUMOylation, have emerged as essential components of the response to DNA double-strand breaks (DSBs). Mutations within the genes encoding effectors of these components lead to genomic instability and in selected cases, human radiosensitivity and cancer susceptibility syndromes. In this review, we highlight recent advances in the study of DSB-associated signaling events by ubiquitylation and SUMOylation and discuss how coordination among protein modification systems integrates components of the DNA damage response into a network that regulates DNA repair and transcriptional processes on contiguous stretches of chromatin.
Collapse
Affiliation(s)
- Jiang-Bo Tang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
230
|
Duina AA. Histone Chaperones Spt6 and FACT: Similarities and Differences in Modes of Action at Transcribed Genes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:625210. [PMID: 22567361 PMCID: PMC3335715 DOI: 10.4061/2011/625210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
The process of gene transcription requires the participation of a large number of factors that collectively promote the accurate and efficient expression of an organism's genetic information. In eukaryotic cells, a subset of these factors can control the chromatin environments across the regulatory and transcribed units of genes to modulate the transcription process and to ensure that the underlying genetic information is utilized properly. This article focuses on two such factors-the highly conserved histone chaperones Spt6 and FACT-that play critical roles in managing chromatin during the gene transcription process. These factors have related but distinct functions during transcription and several recent studies have provided exciting new insights into their mechanisms of action at transcribed genes. A discussion of their respective roles in regulating gene transcription, including their shared and unique contributions to this process, is presented.
Collapse
Affiliation(s)
- Andrea A Duina
- Biology Department, Hendrix College, 1600 Washington Avenue, Conway, AR 72032, USA
| |
Collapse
|
231
|
Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2011; 24:410-421. [PMID: 22033037 DOI: 10.1016/j.cellsig.2011.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Rivaling or cooperating with other post-translational modifications, ubiquitination plays central roles in regulating numerous cellular processes. Not surprisingly, gain- or loss-of-function mutations in several components of the ubiquitin system are causally linked to human pathologies including cancer. The covalent attachment of ubiquitin to target proteins occurs in sequential steps and involves ubiquitin ligases (E3s) which are the most abundant enzymes of the ubiquitin system. Although often associated with proteasomal degradation, ubiquitination is also involved in regulatory events in a proteasome-independent manner. Moreover, ubiquitination is reversible and specific proteases, termed deubiquitinases (DUBs), remove ubiquitin from protein substrates. While we now appreciate the importance of ubiquitin signaling in coordinating a plethora of physio-pathological processes, the molecular mechanisms are not fully understood. This review summarizes current findings on the critical functions exerted by E3s and DUBs in transcriptional control, particularly chromatin remodeling and transcription initiation/elongation.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada.
| |
Collapse
|
232
|
Abstract
INTRODUCTION The revolution of epigenetics has revitalized cancer research, shifting focus away from somatic mutation toward a more holistic perspective involving the dynamic states of chromatin. Disruption of chromatin organization can directly and indirectly precipitate genomic instability and transformation. DISCUSSION One group of epigenetic mediators, the Polycomb group (PcG) proteins, establishes heritable gene repression through methylation of histone tails. Although classically considered regulators of development and cellular differentiation, PcG proteins engage in a variety of neoplastic processes, including cellular proliferation and invasion. Due to their multifaceted potential, PcG proteins rest at the intersection of transcriptional memory and malignancy. Expression levels of PcG proteins hold enormous diagnostic and prognostic value in breast, prostate, and more recently, gastrointestinal cancers. CONCLUSION In this review, we briefly summarize the function of PcG proteins and report the latest developments in understanding their role in pancreatic cancer.
Collapse
|
233
|
BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 2011; 477:179-84. [PMID: 21901007 PMCID: PMC3240576 DOI: 10.1038/nature10371] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 07/15/2011] [Indexed: 12/24/2022]
Abstract
Mutations in tumor suppressor BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of BRCA1 in mice results in transcriptional derepression of the tandemly repeated satellite DNA. BRCA1 deficiency is accompanied by reduction of condensed DNA regions in the genome and loss of ubiquitylation of histone H2A at satellite repeats. BRCA1 binds to satellite DNA regions in vivo and ubiquitylates H2A in vitro. Ectopic expression of an H2A fused to ubiquitin reverses the effects of BRCA1 loss, suggesting that BRCA1 maintains heterochromatin structure via ubiquitylation of histone H2A. Satellite DNA derepression was also observed mouse and human BRCA1 deficient breast cancers. Ectopic expression of satellite DNA can phenocopy BRCA1 loss in centrosome amplification, cell cycle checkpoint defects, DNA damage and genomic instability. We propose that the role of BRCA1 in maintaining global heterochromatin integrity accounts for many of its tumor suppressor functions.
Collapse
|
234
|
Calvo V, Beato M. BRCA1 counteracts progesterone action by ubiquitination leading to progesterone receptor degradation and epigenetic silencing of target promoters. Cancer Res 2011; 71:3422-31. [PMID: 21531767 DOI: 10.1158/0008-5472.can-10-3670] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Germ-line mutations in the BRCA1 gene increase the risk of breast cancer in women, but the precise mechanistic basis for this connection remains uncertain. One popular hypothesis to explain breast tissue specificity postulates a link between BRCA1 and the action of the ovarian hormones estrogen and progesterone. Given the relevance of progesterone for normal mammary development and breast cancer formation, we searched for a functional relationship between BRCA1 and progesterone receptor (PR) in the PR-positive breast cancer cell line T47D. Here, we report that BRCA1 inhibits the transcriptional activity of PR by at least 2 mechanisms involving the E3 ubiquitin ligase activity of BRCA1. First, BRCA1 has a direct effect on the cellular level of PR and, hence, on the extent of PR recruitment to target promoters through the promotion of its ligand-independent and -dependent degradation. Through in vitro and in vivo assays, we found that BRCA1/BARD1 may be the main E3 ubiquitin ligase responsible for ubiquitination and degradation of PR in the absence of hormone. Second, after hormone treatment of cells, the BRCA1/BARD1 complex is recruited via interaction with PR to the hormone-responsive regions of PR target genes, affecting local levels of monoubiquitinated histone H2A and contributing to epigenetic silencing of these promoters. The connections between BRCA1/BARD1 and PR activity suggested by our findings may help explain why host mutations in BRCA1 exert a tissue specificity in preferentially elevating the risk of breast cancer.
Collapse
Affiliation(s)
- Verónica Calvo
- Centre de Regulació Genòmica-Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
235
|
L3MBTL2 protein acts in concert with PcG protein-mediated monoubiquitination of H2A to establish a repressive chromatin structure. Mol Cell 2011; 42:438-50. [PMID: 21596310 DOI: 10.1016/j.molcel.2011.04.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 02/01/2011] [Accepted: 03/31/2011] [Indexed: 01/15/2023]
Abstract
We have identified human MBT domain-containing protein L3MBTL2 as an integral component of a protein complex that we termed Polycomb repressive complex 1 (PRC1)-like 4 (PRC1L4), given the copresence of PcG proteins RING1, RING2, and PCGF6/MBLR. PRC1L4 also contained E2F6 and CBX3/HP1γ, known to function in transcriptional repression. PRC1L4-mediated repression necessitated L3MBTL2 that compacted chromatin in a histone modification-independent manner. Genome-wide location analyses identified several hundred genes simultaneously bound by L3MBTL2 and E2F6, preferentially around transcriptional start sites that exhibited little overlap with those targeted by other E2Fs or by L3MBTL1, another MBT domain-containing protein that interacts with RB1. L3MBTL2-specific RNAi resulted in increased expression of target genes that exhibited a significant reduction in H2A lysine 119 monoubiquitination. Our findings highlight a PcG/MBT collaboration that attains repressive chromatin without entailing histone lysine methylation marks.
Collapse
|
236
|
Multiple roles of ubiquitination in the control of nucleotide excision repair. Mech Ageing Dev 2011; 132:355-65. [DOI: 10.1016/j.mad.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 11/19/2022]
|
237
|
Blundred RM, Stewart GS. DNA double-strand break repair, immunodeficiency and the RIDDLE syndrome. Expert Rev Clin Immunol 2011; 7:169-85. [PMID: 21426255 DOI: 10.1586/eci.10.93] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA double-strand break (DSB) repair is an essential cellular process required to maintain genomic integrity in the face of potentially lethal genetic damage. Failure to repair a DSB can trigger cell death, whereas misrepair of the break can lead to the generation of chromosomal translocations, which is a known causative event in the development or progression of cancer. DSBs can be induced following exposure to certain exogenous agents, such as ionising radiation or radiomimetic chemicals, as well as occurring naturally as intermediates of normal physiological processes, in particular during B and T cell antigen receptor assembly. Human syndromes with deficiencies in DSB repair commonly exhibit immunodeficiency, highlighting the critical nature of this pathway for development and maturation of the immune system. In this article we review the different pathways utilized by the cell to repair DSBs and how an inherited defect in some of the genes that are critical regulators of this process can be the underlying cause of human disorders associated with genome instability and immune system dysfunction. We focus on a newly described human immunodeficiency disorder called radiosensitivity, immunodeficiency dysmorphic features and learning difficulties (RIDDLE) syndrome, with particular reference to the function of the defective gene, RNF168. We also consider the implications of this finding on the mechanisms controlling development of the immune system.
Collapse
Affiliation(s)
- Rachel M Blundred
- School of Cancer Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
238
|
Bantignies F, Cavalli G. Polycomb group proteins: repression in 3D. Trends Genet 2011; 27:454-64. [PMID: 21794944 DOI: 10.1016/j.tig.2011.06.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
Abstract
Polycomb group (PcG) proteins are well-conserved chromatin factors that repress the transcription of their target genes. They bind to the genome at specific sites and act on chromatin through the regulation of both post-translational histone modifications and higher-order chromatin structure. Recent work has revealed that PcG-bound regulatory regions can interact with promoters and modulate their activity via mechanisms involving looping between regulatory elements and also long-distance interactions in cis or in trans (on different chromosomes). This indicates that the 3D organization of PcG proteins contributes significantly to their function. Moreover, because long-range chromosomal contacts have been shown to involve many genomic loci in addition to Polycomb target genes, their regulatory impact could extend beyond the function of Polycomb proteins.
Collapse
Affiliation(s)
- Frédéric Bantignies
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS) Unité Propre de Recherche 1142, 141, rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| | | |
Collapse
|
239
|
Abstract
Vertebrate CpG islands (CGIs) are short interspersed DNA sequences that deviate significantly from the average genomic pattern by being GC-rich, CpG-rich, and predominantly nonmethylated. Most, perhaps all, CGIs are sites of transcription initiation, including thousands that are remote from currently annotated promoters. Shared DNA sequence features adapt CGIs for promoter function by destabilizing nucleosomes and attracting proteins that create a transcriptionally permissive chromatin state. Silencing of CGI promoters is achieved through dense CpG methylation or polycomb recruitment, again using their distinctive DNA sequence composition. CGIs are therefore generically equipped to influence local chromatin structure and simplify regulation of gene activity.
Collapse
Affiliation(s)
- Aimée M Deaton
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
240
|
Young RA. Control of the embryonic stem cell state. Cell 2011; 144:940-54. [PMID: 21414485 DOI: 10.1016/j.cell.2011.01.032] [Citation(s) in RCA: 900] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/23/2010] [Accepted: 01/03/2011] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells hold great promise for regenerative medicine. These cells can be propagated in culture in an undifferentiated state but can be induced to differentiate into specialized cell types. Moreover, these cells provide a powerful model system for studies of cellular identity and early mammalian development. Recent studies have provided insights into the transcriptional control of embryonic stem cell state, including the regulatory circuitry underlying pluripotency. These studies have, as a consequence, uncovered fundamental mechanisms that control mammalian gene expression, connect gene expression to chromosome structure, and contribute to human disease.
Collapse
Affiliation(s)
- Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
241
|
Abstract
Many plants respond to winter with epigenetic factors that gradually dampen repression of flowering so that they can flower in spring. The study of this process was important for the identification of the plant Polycomb group (PcG) of proteins and their role in the epigenetic control of plant gene expression. Fittingly, these studies continue to illuminate our understanding of PcG function. We discuss recent advances, particularly the role of noncoding RNA in the recruitment of PcG to target genes, and the role of the PcG in regulating the stem cell pool in flowers.
Collapse
Affiliation(s)
- Ralf Müller
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building Mayfield Road, Edinburgh, EH9 3JH UK
| | | |
Collapse
|
242
|
Ruschak AM, Slassi M, Kay LE, Schimmer AD. Novel proteasome inhibitors to overcome bortezomib resistance. J Natl Cancer Inst 2011; 103:1007-17. [PMID: 21606441 DOI: 10.1093/jnci/djr160] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The proteasome is an intracellular enzyme complex that degrades ubiquitin-tagged proteins and thereby regulates protein levels within the cell. Given this important role in maintaining cellular homeostasis, it is perhaps somewhat surprising that proteasome inhibitors have a therapeutic window. Proteasome inhibitors have demonstrated clinical efficacy in the treatment of multiple myeloma and mantle cell lymphoma and are under evaluation for the treatment of other malignancies. Bortezomib is the first and only Food and Drug Administration-approved proteasome inhibitor that inhibits this enzyme complex in a reversible fashion. Although bortezomib improves clinical outcomes when used as a single agent, most patients do not respond to this drug and those who do respond almost uniformly relapse. As such, efforts are underway to develop proteasome inhibitors that act through mechanisms distinct from that of bortezomib. Specifically, inhibitors that bind the active site of the proteasome and inhibit the complex irreversibly have been developed and are in advanced clinical trials. Inhibitors that act on sites of the proteasome outside of the catalytic center have also been identified and are in preclinical development. In this review, we discuss the structure and function of the proteasome. We then focus on the molecular biology, chemistry, and the preclinical and clinical efficacy of novel proteasome inhibitors as strategies to inhibit this target and overcome some forms of bortezomib resistance.
Collapse
Affiliation(s)
- Amy M Ruschak
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
243
|
Avvakumov N, Nourani A, Côté J. Histone chaperones: modulators of chromatin marks. Mol Cell 2011; 41:502-14. [PMID: 21362547 DOI: 10.1016/j.molcel.2011.02.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/26/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
The many factors that control chromatin biology play key roles in essential nuclear functions like transcription, DNA damage response and repair, recombination, and replication and are critical for proper cell-cycle progression, stem cell renewal, differentiation, and development. These players belong to four broad classes: histone modifiers, chromatin remodelers, histone variants, and histone chaperones. A large number of studies have established the existence of an intricate functional crosstalk between the different factors, not only within a single class but also between different classes. In light of this, while many recent reviews have focused on structure and functions of histone chaperones, the current text highlights novel and striking links that have been established between these proteins and posttranslational modifications of histones and discusses the functional consequences of this crosstalk. These findings feed a current hot question of how cell memory may be maintained through epigenetic mechanisms involving histone chaperones.
Collapse
Affiliation(s)
- Nikita Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Quebec G1R 2J6, Canada
| | | | | |
Collapse
|
244
|
From Linear Genes to Epigenetic Inheritance of Three-dimensional Epigenomes. J Mol Biol 2011; 409:54-61. [DOI: 10.1016/j.jmb.2011.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 03/01/2011] [Indexed: 01/09/2023]
|
245
|
Klauke K, de Haan G. Polycomb group proteins in hematopoietic stem cell aging and malignancies. Int J Hematol 2011; 94:11-23. [PMID: 21523335 DOI: 10.1007/s12185-011-0857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.
Collapse
Affiliation(s)
- Karin Klauke
- Department of Cell Biology, Section of Stem Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,European Research Institute on the Biology of Ageing (ERIBA), Groningen, The Netherlands
| | - Gerald de Haan
- Department of Cell Biology, Section of Stem Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,European Research Institute on the Biology of Ageing (ERIBA), Groningen, The Netherlands.
| |
Collapse
|
246
|
Sussman RT, Zhang XY, McMahon SB. Enzymatic assays for assessing histone deubiquitylation activity. Methods 2011; 54:339-47. [PMID: 21513801 DOI: 10.1016/j.ymeth.2011.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/28/2022] Open
Abstract
While the post-translational modification of histones by the addition of ubiquitin was discovered decades ago, it has only recently been appreciated that the dynamic regulation of histone ubiquitylation patterns is an important mechanism for controlling a variety of biological processes. The processes include transcription, the recognition and repair of genomic damage and DNA replication, among others. Enzymes that catalyze the addition of ubiquitin to histones, such as the polycomb family, have been well-studied. In contrast, the enzymes that remove ubiquitin from histones are less well understood. The assay strategies described here provide a platform for the thorough in vitro and in vivo analysis of histone deubiquitylation. In some cases, these poorly characterized enzymes are likely to provide new opportunities for therapeutic targeting and a detailed understanding of their biochemical and biological activities is a prerequisite to these clinical advances.
Collapse
Affiliation(s)
- Robyn T Sussman
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
247
|
Winkler DD, Luger K. The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem 2011; 286:18369-74. [PMID: 21454601 DOI: 10.1074/jbc.r110.180778] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in chromatin architecture induced by epigenetic mechanisms are essential for normal cellular processes such as gene expression, DNA repair, and cellular division. Compact chromatin presents a barrier to these processes and is highly regulated by epigenetic markers binding to components of the nucleosome. Histone modifications directly influence chromatin dynamics and facilitate recruitment of additional factors such as chromatin remodelers and histone chaperones. One member of this last class of factors, FACT (facilitates chromatin transcription), is categorized as a histone chaperone critical for nucleosome reorganization during replication, transcription, and DNA repair. Significant discoveries regarding the role of histone chaperones and specifically FACT have come over the past dozen years from a number of independent laboratories. Here, we review the structural and biophysical basis for FACT-mediated nucleosome reorganization and discuss up-to-date models for FACT function.
Collapse
Affiliation(s)
- Duane D Winkler
- Department of Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | |
Collapse
|
248
|
Jones A, Joo HY, Robbins W, Wang H. Purification of histone ubiquitin ligases from HeLa cells. Methods 2011; 54:315-25. [PMID: 21402158 DOI: 10.1016/j.ymeth.2011.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 12/13/2022] Open
Abstract
Posttranslational histone modifications play an important role in regulating chromatin based nuclear processes including transcription. Of these modifications, histone ubiquitination is among the least understood. Histone ubiquitination predominately targets histones H2A and H2B. While ubiquitination of H2B is evolutionarily conserved from budding yeast to mammals, ubiquitination of H2A has not been detected in budding yeast, worms, or plants. Until recently, studies of histone ubiquitination lagged far behind the study of other histone modifications, largely because antibodies specific for ubiquitinated histones are difficult to generate. Despite this obstacle, the identification of the enzymatic machineries involved in histone ubiquitination, together with the successful use of a combination of genetic and immunoblot approaches to detect ubiquitinated histones, have helped to reveal important regulatory roles for this modification in transcriptional initiation and elongation, cell cycle progression, and DNA damage response. With the aid of the recently developed ubiquitinated histone-specific antibodies, an intriguing link between histone ubiquitination and cancer development has been established. While the enzymes involved in H2B ubiquitination were identified first in budding yeast and subsequently in higher organisms based on gene homology, the identification of the enzymatic machineries involved in H2A ubiquitination largely depended on a biochemical purification approach. The unbiased search for ubiquitin ligases targeting histones also led to the identification of a H3 and H4 ubiquitin ligase. Here we detail a protocol for the biochemical approach to identify histone ubiquitin ligase(s) from HeLa cells. Similar approaches have been successfully used to identify histone methyltransferases, histone demethylases, chromatin remodeling factors, and general transcription factors. So long as an in vitro enzymatic assay can be established, the approach we describe can be easily adapted to identify other histone and non-histone modifying enzymes.
Collapse
Affiliation(s)
- Amanda Jones
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294, United States
| | | | | | | |
Collapse
|
249
|
Abstract
Non-coding RNAs and their interaction with RNA-binding proteins regulate mRNA levels in key cellular processes. This has intensified interest in post-transcriptional regulation. Recent studies on the turnover of AU-rich cytokine mRNAs have linked mRNA metabolism with ubiquitination. Ubiquitin is well recognized for its role in protein regulation/degradation. In the present paper, we describe a new group of RNA-binding E3 ubiquitin ligases which are predicted to bind and regulate RNA stability. Although much effort has been focused on understanding the role of these proteins as key regulators of mRNA turnover, the requirement for E3 ligase activity in mRNA decay remains unclear. It is remarkable that the ubiquitin system is involved, either directly or indirectly, in both the degradation of nucleic acids as well as proteins. These new RNA-binding E3 ligases are potential candidates which link two important cellular regulatory pathways: the regulation of both protein and mRNA stability.
Collapse
|
250
|
Lin YW, Chen HM, Fang JY. Gene silencing by the Polycomb group proteins and associations with cancer. Cancer Invest 2011; 29:187-95. [PMID: 21294604 DOI: 10.3109/07357907.2010.512605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancer not only is associated with inherited genetic sequences but also results from epigenetic changes. Thus, understanding the mechanisms underlying epigenetic modifications is important for cancer prevention, diagnosis, and therapy. There is much evidence showing that some Polycomb group (PcG) proteins are abnormally expressed in certain tumors. This review addresses biological functions and biochemical behaviors of the Polycomb repression complex proteins, including their enzymatic activities. Additionally, the potential mechanisms of PcG gene silencing by PcG and its link to cancers are summarized that will shed light on this novel area of study in cancer.
Collapse
Affiliation(s)
- Yan-Wei Lin
- Shanghai Institute of Digestive Disease, School of Medicine Renji Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | | | | |
Collapse
|