201
|
Shoji Y, Takamura H, Ninomiya I, Fushida S, Tada Y, Yokota T, Ohta T, Koide H. The Embryonic Stem Cell-Specific Transcription Factor ZFP57 Promotes Liver Metastasis of Colorectal Cancer. J Surg Res 2019; 237:22-29. [PMID: 30694787 DOI: 10.1016/j.jss.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/28/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND The embryonic stem cell-specific transcription factor, ZFP57, has been shown to play an important role in tumor formation. In this study, we examined if ZFP57 is involved in colorectal cancer metastasis. MATERIALS AND METHODS First, we used colorectal cancer cell lines to perform in vivo metastatic experiments with nude mice. Next, we carried out immunohistochemical analysis of clinical specimens of colorectal cancers. RESULTS In liver metastatic experiments using human colorectal cancer HT29 and HCT116 cells, liver polymetastases occurred at high frequency in ZFP57-overexpressing HT29 and HCT116 cells, whereas both control cells only resulted in oligometastases. Next, we analyzed ZFP57 expression using clinical specimens. Liver metastasis-positive cases were more frequently associated with ZFP57 overexpression than negative cases in primary lesions of colorectal cancer, and the overexpression was particularly remarkable in tumor invasive lesions. Furthermore, ZFP57 overexpression was significantly correlated not only with liver metastasis but also with lymph node metastasis. In addition, the expression level of ZFP57 was significantly correlated with that of the metastasis-related gene NANOG. We also found that ZFP57 overexpression reduced the progression-free survival rate of patients with colorectal cancer. CONCLUSIONS This study demonstrated that ZFP57 plays an important role in the hematogenous metastasis of colorectal cancer, suggesting that it could be used as a novel treatment target.
Collapse
Affiliation(s)
- Yasuhiro Shoji
- Gastroenterologic Surgery, Kanazawa University, Ishikawa, Japan
| | | | - Itasu Ninomiya
- Gastroenterologic Surgery, Kanazawa University, Ishikawa, Japan
| | - Sachio Fushida
- Gastroenterologic Surgery, Kanazawa University, Ishikawa, Japan
| | - Yuhki Tada
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan; Technology and Development Team for Mammalian Genome Dynamics, RIKEN BioResource Center, Ibaraki, Japan
| | - Takashi Yokota
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Tetsuo Ohta
- Gastroenterologic Surgery, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Koide
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan; Laboratory of Molecular and Biochemical Research, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
202
|
Abstract
The monoallelic parent of origin-specific expression of imprinted genes in mammals is regulated by differentially DNA methylated imprinting control regions (ICRs). In contrast to most of the genome, ICRs must maintain their DNA methylation and parental identity despite extensive epigenetic reprogramming that takes place after fertilization. Previous work demonstrated that the Krüppel-associated box (KRAB)-containing zinc finger protein (KZFP) ZFP57 protects select ICRs from demethylation and preserves parental identity. However, some loci are unaffected in Zfp57-null mice. Thus, it has been speculated that other KZFPs must be involved in this process. Takahashi and colleagues (pp. 49-54) now report one such KZFP: ZFP445.
Collapse
Affiliation(s)
- Aimee M Juan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
203
|
Li J, Shen H, Xie H, Ying Y, Jin K, Yan H, Wang S, Xu M, Wang X, Xu X, Xie L. Dysregulation of ncRNAs located at the DLK1‑DIO3 imprinted domain: involvement in urological cancers. Cancer Manag Res 2019; 11:777-787. [PMID: 30697070 PMCID: PMC6339654 DOI: 10.2147/cmar.s190764] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting has been found to be involved in human physical development and several diseases. The DLK1-DIO3 imprinted domain is located on human chromosome 14 and contains paternally expressed protein-coding genes (DLK1, RTL1, DIO3) and numerous maternally expressed ncRNA genes (MEG3, MEG8, antisense RTL1, miRNAs, piRNAs, and snoRNAs). Emerging evidence has implicated that dysregulation of the DLK1-DIO3 imprinted domain especially the imprinted ncRNAs is critical for tumor progressions. Multiple miRNAs and lncRNAs have been investigated in urological cancers, of which several are transcribed from this domain. In this review, we present current data about the associated miRNAs, lncRNAs, and piRNAs and the regulation of differentially methylated regions methylation status in the progression of urological cancers and preliminarily propose certain concepts about the potential regulatory networks involved in DLK1-DIO3 imprinted domain.
Collapse
Affiliation(s)
- Jiangfeng Li
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Haixiang Shen
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Haiyun Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Yufan Ying
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Ke Jin
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Huaqing Yan
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Song Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Mingjie Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Xiao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China, ;
| |
Collapse
|
204
|
Wang H, Lou D, Wang Z. Crosstalk of Genetic Variants, Allele-Specific DNA Methylation, and Environmental Factors for Complex Disease Risk. Front Genet 2019; 9:695. [PMID: 30687383 PMCID: PMC6334214 DOI: 10.3389/fgene.2018.00695] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
Over the past decades, genome-wide association studies (GWAS) have identified thousands of phenotype-associated DNA sequence variants for potential explanations of inter-individual phenotypic differences and disease susceptibility. However, it remains a challenge for translating the associations into causative mechanisms for complex diseases, partially due to the involved variants in the noncoding regions and the inconvenience of functional studies in human population samples. So far, accumulating evidence has suggested a complex crosstalk among genetic variants, allele-specific binding of transcription factors (ABTF), and allele-specific DNA methylation patterns (ASM), as well as environmental factors for disease risk. This review aims to summarize the current studies regarding the interactions of the aforementioned factors with a focus on epigenetic insights. We present two scenarios of single nucleotide polymorphisms (SNPs) in coding regions and non-coding regions for disease risk, via potentially impacting epigenetic patterns. While a SNP in a coding region may confer disease risk via altering protein functions, a SNP in non-coding region may cause diseases, via SNP-altering ABTF, ASM, and allele-specific gene expression (ASE). The allelic increases or decreases of gene expression are key for disease risk during development. Such ASE can be achieved via either a "SNP-introduced ABTF to ASM" or a "SNP-introduced ASM to ABTF." Together with our additional in-depth review on insulator CTCF, we are convinced to propose a working model that the small effect of a SNP acts through altered ABTF and/or ASM, for ASE and eventual disease outcome (named as a "SNP intensifier" model). In summary, the significance of complex crosstalk among genetic factors, epigenetic patterns, and environmental factors requires further investigations for disease susceptibility.
Collapse
Affiliation(s)
- Huishan Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
205
|
Armstrong AE, Gadd S, Huff V, Gerhard DS, Dome JS, Perlman EJ. A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: A Children's Oncology Group study. PLoS One 2018; 13:e0208936. [PMID: 30543698 PMCID: PMC6292605 DOI: 10.1371/journal.pone.0208936] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
This study explores the genomic alterations that contribute to the formation of a unique subset of low-risk, epithelial differentiated, favorable histology Wilms tumors (WT), tumors that have been characterized by their expression of post-induction renal developmental genes (Subset 1 WT). We demonstrate copy neutral loss of heterozygosity involving 19q13.32-q13.43, unaccompanied by evidence for imprinting by DNA methylation. We further identified loss-of-function somatic mutations in TRIM28 (also known as KAP1), located at 19q13, in 8/9 Subset 1 tumors analyzed. An additional germline TRIM28 mutation was identified in one patient. Retrospective evaluation of previously analyzed WT outside of Subset 1 identified an additional tumor with anaplasia and both TRIM28 and TP53 mutations. A major function of TRIM28 is the repression of endogenous retroviruses early in development. We depleted TRIM28 in HEK293 cells, which resulted in increased expression of endogenous retroviruses, a finding also demonstrated in TRIM28-mutant WT. TRIM28 has been shown by others to be active during early renal development, and to interact with WTX, another gene recurrently mutated in WT. Our findings suggest that inactivation of TRIM28 early in renal development contributes to the formation of this unique subset of FHWTs, although the precise manner in which TRIM28 impacts both normal renal development and oncogenesis remains elusive.
Collapse
Affiliation(s)
- Amy E. Armstrong
- Division of Hematology-Oncology and Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University’s Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Samantha Gadd
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University’s Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, Illinois, United States of America
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Daniela S. Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeffrey S. Dome
- Division of Pediatric Hematology/Oncology, Children's National Medical Center, Washington, District of Columbia, United States of America
| | - Elizabeth J. Perlman
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University’s Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
206
|
Ferguson-Smith AC, Bourc'his D. The discovery and importance of genomic imprinting. eLife 2018; 7:42368. [PMID: 30343680 PMCID: PMC6197852 DOI: 10.7554/elife.42368] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 11/29/2022] Open
Abstract
The discovery of genomic imprinting by Davor Solter, Azim Surani and co-workers in
the mid-1980s has provided a foundation for the study of epigenetic inheritance and
the epigenetic control of gene activity and repression, especially during
development. It also has shed light on a range of diseases, including both rare
genetic disorders and common diseases. This article is being published to celebrate
Solter and Surani receiving a 2018 Canada Gairdner International Award "for the
discovery of mammalian genomic imprinting that causes parent-of-origin specific gene
expression and its consequences for development and disease".
Collapse
Affiliation(s)
| | - Deborah Bourc'his
- Genetics and Developmental Biology Department, Institut Curie, Paris, France
| |
Collapse
|
207
|
Fontana L, Bedeschi MF, Maitz S, Cereda A, Faré C, Motta S, Seresini A, D'Ursi P, Orro A, Pecile V, Calvello M, Selicorni A, Lalatta F, Milani D, Sirchia SM, Miozzo M, Tabano S. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics 2018; 13:897-909. [PMID: 30221575 PMCID: PMC6284780 DOI: 10.1080/15592294.2018.1514230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of multilocus imprinting disturbances (MLID) appears fundamental to uncover molecular pathways underlying imprinting disorders (IDs) and to complete clinical diagnosis of patients. However, MLID genetic associated mechanisms remain largely unknown. To characterize MLID in Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, we profiled by MassARRAY the methylation of 12 imprinted differentially methylated regions (iDMRs) in 21 BWS and 7 SRS patients with chromosome 11p15.5 epimutations. MLID was identified in 50% of BWS and 29% of SRS patients as a maternal hypomethylation syndrome. By next-generation sequencing, we searched for putative MLID-causative mutations in genes involved in methylation establishment/maintenance and found two novel missense mutations possibly causative of MLID: one in NLRP2, affecting ADP binding and protein activity, and one in ZFP42, likely leading to loss of DNA binding specificity. Both variants were paternally inherited. In silico protein modelling allowed to define the functional effect of these mutations. We found that MLID is very frequent in BWS/SRS. In addition, since MLID-BWS patients in our cohort show a peculiar pattern of BWS-associated clinical signs, MLID test could be important for a comprehensive clinical assessment. Finally, we highlighted the possible involvement of ZFP42 variants in MLID development and confirmed NLRP2 as causative locus in BWS-MLID.
Collapse
Affiliation(s)
- L Fontana
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| | - M F Bedeschi
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Maitz
- c Clinical Pediatric, Genetics Unit , MBBM Foundation, San Gerardo Monza , Monza , Italy
| | - A Cereda
- d Medical Genetics Unit , Papa Giovanni XXIII Hospital , Bergamo , Italy
| | - C Faré
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Motta
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - A Seresini
- f Medical Genetics Laboratory , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milano , Italy.,g Fondazione Grigioni per il Morbo di Parkinson , Milano , Italy
| | - P D'Ursi
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - A Orro
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - V Pecile
- i Medical Genetics Division , Institute for maternal and child health IRCCS Burlo Garofolo , Trieste , Italy
| | - M Calvello
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy.,j Division of Cancer Prevention and Genetics, IEO , European Institute of Oncology IRCCS , Milano , Italy
| | - A Selicorni
- k UOC Pediatria , ASST Lariana , Como , Italy
| | - F Lalatta
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - D Milani
- l Pediatric Highly Intensive Care Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S M Sirchia
- m Medical Genetics, Department of Health Sciences , Università degli Studi di Milano , Milano , Italy
| | - M Miozzo
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy.,e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Tabano
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
208
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
209
|
Maternally inherited 133kb deletion of 14q32 causing Kagami–Ogata syndrome. J Hum Genet 2018; 63:1231-1239. [DOI: 10.1038/s10038-018-0506-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022]
|
210
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
211
|
Xie W, Qiao X, Shang L, Dou J, Yang X, Qiao S, Wu Y. Knockdown of ZNF233 suppresses hepatocellular carcinoma cell proliferation and tumorigenesis. Gene 2018; 679:179-185. [PMID: 30179682 DOI: 10.1016/j.gene.2018.08.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022]
Abstract
Zinc finger proteins (ZNFs) are one of the most abundant proteins in eukaryotic genomes with extraordinarily diverse functions. ZNF233 is located on 19q13.31 and encodes a 670-amino acid protein belonging to the Krüppel C2H2-type ZNF family. However, little is known about the role of ZNF233 in cancer progression. In this study, we reported for the first time that ZNF233 mRNA was remarkably up-regulated in hepatocellular carcinoma (HCC) tissues in comparison with corresponding non-tumorous normal liver tissues. ZNF233 expression level was correlated with tumor grade, tumor stage and prognosis of HCC patients. We further investigated the effect of ZNF233 on HCC cell growth. It is found that overexpression of ZNF233 in SMMC-7721 could promote G1/S transition and thus accelerate cell growth ratio. Consistently, knockdown of ZNF233 in QGY-7701 cells successfully suppressed cell proliferation in vitro and in vivo. Further immunohistochemical staining revealed a reduced Ki-67-positive cell percentage in xenografted tumor derived from ZNF233-knocking down cells. Taken together, these results demonstrate a positive role of ZNF233 in regulating HCC cell growth. ZNF233 might be developed as a novel biomarker and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Wenjuan Xie
- School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Xiaojing Qiao
- School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Lingyue Shang
- School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jianming Dou
- School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Xi Yang
- School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Shouyi Qiao
- School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yanhua Wu
- School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
212
|
Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 2018; 837:8-24. [PMID: 30125562 DOI: 10.1016/j.ejphar.2018.08.021] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023]
Abstract
Addition of chemical tags on the DNA and modification of histone proteins impart a distinct feature on chromatin architecture. With the advancement in scientific research, the key players underlying these changes have been identified as epigenetic modifiers of the chromatin. Indeed, the plethora of enzymes catalyzing these modifications, portray the diversity of epigenetic space and the intricacy in regulating gene expression. These epigenetic players are categorized as writers: that introduce various chemical modifications on DNA and histones, readers: the specialized domain containing proteins that identify and interpret those modifications and erasers: the dedicated group of enzymes proficient in removing these chemical tags. Research over the past few decades has established that these epigenetic tools are associated with numerous disease conditions especially cancer. Besides, with the involvement of epigenetics in cancer, these enzymes and protein domains provide new targets for cancer drug development. This is certain from the volume of epigenetic research conducted in universities and R&D sector of pharmaceutical industry. Here we have highlighted the different types of epigenetic enzymes and protein domains with an emphasis on methylation and acetylation. This review also deals with the recent developments in small molecule inhibitors as potential anti-cancer drugs targeting the epigenetic space.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
213
|
Pathak R, Feil R. Environmental effects on chromatin repression at imprinted genes and endogenous retroviruses. Curr Opin Chem Biol 2018; 45:139-147. [DOI: 10.1016/j.cbpa.2018.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/24/2018] [Indexed: 12/26/2022]
|
214
|
Fu J, Wei C, Zhang W, Schlondorff D, Wu J, Cai M, He W, Baron MH, Chuang PY, Liu Z, He JC, Lee K. Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice. Kidney Int 2018; 94:326-345. [PMID: 29861058 PMCID: PMC6054896 DOI: 10.1016/j.kint.2018.02.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction promotes the pathogenesis of diabetic nephropathy (DN), which is considered to be an early event in disease progression. However, the molecular changes associated with glomerular endothelial cell (GEC) injury in early DN are not well defined. Most gene expression studies have relied on the indirect assessment of GEC injury from isolated glomeruli or renal cortices. Here, we present transcriptomic analysis of isolated GECs, using streptozotocin-induced diabetic wildtype (STZ-WT) and diabetic eNOS-null (STZ-eNOS-/-) mice as models of mild and advanced DN, respectively. GECs of both models in comparison to their respective nondiabetic controls showed significant alterations in the regulation of apoptosis, oxidative stress, and proliferation. The extent of these changes was greater in STZ-eNOS-/- than in STZ-WT GECs. Additionally, genes in STZ-eNOS-/- GECs indicated further dysregulation in angiogenesis and epigenetic regulation. Moreover, a biphasic change in the number of GECs, characterized by an initial increase and subsequent decrease over time, was observed only in STZ-eNOS-/- mice. This is consistent with an early compensatory angiogenic process followed by increased apoptosis, leading to an overall decrease in GEC survival in DN progression. From the genes altered in angiogenesis in STZ-eNOS-/- GECs, we identified potential candidate genes, Lrg1 and Gpr56, whose function may augment diabetes-induced angiogenesis. Thus, our results support a role for GEC in DN by providing direct evidence for alterations of GEC gene expression and molecular pathways. Candidate genes of specific pathways, such as Lrg1 and Gpr56, can be further explored for potential therapeutic targeting to mitigate the initiation and progression of DN.
Collapse
Affiliation(s)
- Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Detlef Schlondorff
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jinshan Wu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Minchao Cai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wu He
- Flow Cytometry Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret H Baron
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters VA Medical Center at Bronx, New York, New York, USA.
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
215
|
Pegoraro M, Marshall H, Lonsdale ZN, Mallon EB. Do social insects support Haig's kin theory for the evolution of genomic imprinting? Epigenetics 2018; 12:725-742. [PMID: 28703654 PMCID: PMC5739101 DOI: 10.1080/15592294.2017.1348445] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although numerous imprinted genes have been described in several lineages, the phenomenon of genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to explain gene imprinting, the most supported being Haig's kinship theory. This theory explains the observed pattern of imprinting and the resulting phenotypes as a competition for resources between related individuals, but despite its relevance it has not been independently tested. Haig's theory predicts that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are therefore ideal for testing both the theory's predictions and the mechanism of gene imprinting. Here we review the behavioral evidence of genomic imprinting in eusocial insects, the evidence of a mechanism for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific expression in honeybees in the light of Haig's theory.
Collapse
Affiliation(s)
- Mirko Pegoraro
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Hollie Marshall
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Zoë N Lonsdale
- a Department of Genetics and Genome Biology , University of Leicester , UK
| | - Eamonn B Mallon
- a Department of Genetics and Genome Biology , University of Leicester , UK
| |
Collapse
|
216
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
217
|
SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 2018; 99:252-262. [PMID: 29462489 PMCID: PMC6044325 DOI: 10.1093/biolre/ioy036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
DNA methylation is an essential epigenetic mark crucial for normal mammalian development. This modification controls the expression of a unique class of genes, designated as imprinted, which are expressed monoallelically and in a parent-of-origin-specific manner. Proper parental allele-specific DNA methylation at imprinting control regions (ICRs) is necessary for appropriate imprinting. Processes that deregulate DNA methylation of imprinted loci cause disease in humans. DNA methylation patterns dramatically change during mammalian development: first, the majority of the genome, with the exception of ICRs, is demethylated after fertilization, and subsequently undergoes genome-wide de novo DNA methylation. Secondly, after primordial germ cells are specified in the embryo, another wave of demethylation occurs, with ICR demethylation occurring late in the process. Lastly, ICRs reacquire DNA methylation imprints in developing germ cells. We describe the past discoveries and current literature defining these crucial dynamics in relation to imprinted genes and the rest of the genome.
Collapse
Affiliation(s)
- Jennifer M SanMiguel
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
218
|
Kessler NJ, Waterland RA, Prentice AM, Silver MJ. Establishment of environmentally sensitive DNA methylation states in the very early human embryo. SCIENCE ADVANCES 2018; 4:eaat2624. [PMID: 30009262 PMCID: PMC6040841 DOI: 10.1126/sciadv.aat2624] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/01/2018] [Indexed: 05/04/2023]
Abstract
The molecular mechanisms responsible for the developmental origins of later disease are currently unknown. We previously demonstrated that women's periconceptional nutrition predicts their offspring's DNA methylation at metastable epialleles (MEs). We present a genome-wide screen yielding 687 MEs and track their trajectories across nine developmental stages in human in vitro fertilization embryos. MEs exhibit highly unusual methylation dynamics across the implantation-gastrulation transition, producing a large excess of intermediate methylation states, suggesting the potential for differential programming in response to external signals. Using a natural experiment in rural Gambia, we show that genomic regions sensitive to season of conception are highly enriched for MEs and show similar atypical methylation patterns. MEs are enriched for proximal enhancers and transcription start sites and are influenced by genotype. Together, these observations position MEs as distinctive epigenomic features programmed in the early embryo, sensitive to genetic and periconceptional environment, and with the potential to influence phenotype.
Collapse
Affiliation(s)
- Noah J. Kessler
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Robert A. Waterland
- U.S. Department of Agriculture/Agricultural Research Service Children’s Nutrition Research Center, Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Matt J. Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
219
|
Matsuzaki H, Okamura E, Kuramochi D, Ushiki A, Hirakawa K, Fukamizu A, Tanimoto K. Synthetic DNA fragments bearing ICR cis elements become differentially methylated and recapitulate genomic imprinting in transgenic mice. Epigenetics Chromatin 2018; 11:36. [PMID: 29958543 PMCID: PMC6027785 DOI: 10.1186/s13072-018-0207-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/01/2018] [Indexed: 11/24/2022] Open
Abstract
Background Genomic imprinting is governed by allele-specific DNA methylation at imprinting control regions (ICRs), and the mechanism controlling its differential methylation establishment during gametogenesis has been a subject of intensive research interest. However, recent studies have reported that gamete methylation is not restricted at the ICRs, thus highlighting the significance of ICR methylation maintenance during the preimplantation period where genome-wide epigenetic reprogramming takes place. Using transgenic mice (TgM), we previously demonstrated that the H19 ICR possesses autonomous activity to acquire paternal-allele-specific DNA methylation after fertilization. Furthermore, this activity is indispensable for the maintenance of imprinted methylation at the endogenous H19 ICR during the preimplantation period. In addition, we showed that a specific 5′ fragment of the H19 ICR is required for its paternal methylation after fertilization, while CTCF and Sox-Oct motifs are essential for its maternal protection from undesirable methylation after implantation. Results To ask whether specific cis elements are sufficient to reconstitute imprinted methylation status, we employed a TgM co-placement strategy for facilitating detection of postfertilization methylation activity and precise comparison of test sequences. Bacteriophage lambda DNA becomes highly methylated regardless of its parental origin and thus can be used as a neutral sequence bearing no inclination for differential DNA methylation. We previously showed that insertion of only CTCF and Sox-Oct binding motifs from the H19 ICR into a lambda DNA (LCb) decreased its methylation level after both paternal and maternal transmission. We therefore appended a 478-bp 5′ sequence from the H19 ICR into the LCb fragment and found that it acquired paternal-allele-specific methylation, the dynamics of which was identical to that of the H19 ICR, in TgM. Crucially, transgene expression also became imprinted. Although there are potential binding sites for ZFP57 (a candidate protein thought to control the methylation imprint) in the larger H19 ICR, they are not found in the 478-bp fragment, rendering the role of ZFP57 in postfertilization H19 ICR methylation a still open question. Conclusions Our results demonstrate that a differentially methylated region can be reconstituted by combining the activities of specific imprinting elements and that these elements together determine the activity of a genomically imprinted region in vivo. Electronic supplementary material The online version of this article (10.1186/s13072-018-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Eiichi Okamura
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Daichi Kuramochi
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Aki Ushiki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| | - Katsuhiko Hirakawa
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Akiyoshi Fukamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan. .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
220
|
Ibrahim A, Alhosin M, Papin C, Ouararhni K, Omran Z, Zamzami MA, Al-Malki AL, Choudhry H, Mély Y, Hamiche A, Mousli M, Bronner C. Thymoquinone challenges UHRF1 to commit auto-ubiquitination: a key event for apoptosis induction in cancer cells. Oncotarget 2018; 9:28599-28611. [PMID: 29983883 PMCID: PMC6033341 DOI: 10.18632/oncotarget.25583] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/19/2018] [Indexed: 01/26/2023] Open
Abstract
Down-regulation of UHRF1 (Ubiquitin-like containing PHD and Ring Finger 1) in Jurkat cells, induced by natural anticancer compounds such as thymoquinone, allows re-expression of tumor suppressor genes such as p73 and p16INK4A . In order to decipher the mechanisms of UHRF1 down-regulation, we investigated the kinetic of expression of HAUSP (herpes virus-associated ubiquitin-specific protease), UHRF1, cleaved caspase-3 and p73 in Jurkat cells treated with thymoquinone. We found that thymoquinone induced degradation of UHRF1, correlated with a sharp decrease in HAUSP and an increase in cleaved caspase-3 and p73. UHRF1 concomitantly underwent a rapid ubiquitination in response to thymoquinone and this effect was not observed in the cells expressing mutant UHRF1 RING domain, suggesting that UHRF1 commits an auto-ubiquitination through its RING domain in response to thymoquinone treatment. Exposure of cells to Z-DEVD, an inhibitor of caspase-3 markedly reduced the thymoquinone-induced down-regulation of UHRF1, while proteosomal inhibitor MG132 had no such effect. The present findings indicate that thymoquinone induces in cancer cells a fast UHRF1 auto-ubiquitination through its RING domain associated with HAUSP down-regulation. They further suggest that thymoquinone-induced UHRF1 auto-ubiquitination followed by its degradation is a key event in inducing apoptosis through a proteasome-independent mechanism.
Collapse
Affiliation(s)
- Abdulkhaleg Ibrahim
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,BioTechnology Research Center (BTRC), Tripoli, Lybia
| | - Mahmoud Alhosin
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Christophe Papin
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Khalid Ouararhni
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Labeed Al-Malki
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yves Mély
- CNRS UMR 7021 Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ali Hamiche
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marc Mousli
- CNRS UMR 7021 Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Christian Bronner
- Institut De Génétique Et De Biologie Moléculaire Et Cellulaire (IGBMC), INSERM U1258 CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
221
|
Western PS. Epigenomic drugs and the germline: Collateral damage in the home of heritability? Mol Cell Endocrinol 2018; 468:121-133. [PMID: 29471014 DOI: 10.1016/j.mce.2018.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
The testis and ovary provide specialised environments that nurture germ cells and facilitate their maturation, culminating in the production of mature gametes that can found the following generation. The sperm and egg not only transmit genetic information, but also epigenetic modifications that affect the development and physiology of offspring. Importantly, the epigenetic information contained in mature sperm and oocytes can be influenced by a range of environmental factors, such as diet, chemicals and drugs. An increasing range of studies are revealing how gene-environment interactions are mediated through the germline. Outside the germline, altered epigenetic state is common in a range of diseases, including many cancers. As epigenetic modifications are reversible, pharmaceuticals that directly target epigenetic modifying proteins have been developed and are delivering substantial benefits to patients, particularly in oncology. While providing the most effective patient treatment is clearly the primary concern, some patients will want to conceive children after treatment. However, the impacts of epigenomic drugs on the male and female gametes are poorly understood and whether these drugs will have lasting effects on patients' germline epigenome and subsequent offspring remains largely undetermined. Currently, evidence based clinical guidelines for use of epigenomic drugs in patients of reproductive age are limited in this context. Developing a deeper understanding of the epigenetic mechanisms regulating the germline epigenome and its impact on inherited traits and disease susceptibility is required to determine how specific epigenomic drugs might affect the germline and inheritance. Understanding these potential effects will facilitate the development of informed clinical guidelines appropriate for the use of epigenomic drugs in patients of reproductive age, ultimately improving the safety of these therapies in the clinic.
Collapse
Affiliation(s)
- Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
222
|
Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Front Cell Dev Biol 2018; 6:50. [PMID: 29868581 PMCID: PMC5962689 DOI: 10.3389/fcell.2018.00050] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
The past decade has seen a tremendous increase in interest and progress in the field of sperm epigenetics. Studies have shown that chromatin regulation during male germline development is multiple and complex, and that the spermatozoon possesses a unique epigenome. Its DNA methylation profile, DNA-associated proteins, nucleo-protamine distribution pattern and non-coding RNA set up a unique epigenetic landscape which is delivered, along with its haploid genome, to the oocyte upon fertilization, and therefore can contribute to embryogenesis and to the offspring health. An emerging body of compelling data demonstrates that environmental exposures and paternal lifestyle can change the sperm epigenome and, consequently, may affect both the embryonic developmental program and the health of future generations. This short review will attempt to provide an overview of what is currently known about sperm epigenome and the existence of transgenerational epigenetic inheritance of paternally acquired traits that may contribute to the offspring phenotype.
Collapse
Affiliation(s)
- Alexandre Champroux
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Cocquet
- INSERM U1016, Institut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Joëlle Henry-Berger
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joël R. Drevet
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD, Laboratoire “Génétique, Reproduction and Développement,” UMR Centre National de la Recherche Scientifique 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
223
|
Mackin SJ, Thakur A, Walsh CP. Imprint stability and plasticity during development. Reproduction 2018; 156:R43-R55. [PMID: 29743259 DOI: 10.1530/rep-18-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
There have been a number of recent insights in the area of genomic imprinting, the phenomenon whereby one of two autosomal alleles is selected for expression based on the parent of origin. This is due in part to a proliferation of new techniques for interrogating the genome that are leading researchers working on organisms other than mouse and human, where imprinting has been most studied, to become interested in looking for potential imprinting effects. Here, we recap what is known about the importance of imprints for growth and body size, as well as the main types of locus control. Interestingly, work from a number of labs has now shown that maintenance of the imprint post implantation appears to be a more crucial step than previously appreciated. We ask whether imprints can be reprogrammed somatically, how many loci there are and how conserved imprinted regions are in other species. Finally, we survey some of the methods available for examining DNA methylation genome-wide and look to the future of this burgeoning field.
Collapse
Affiliation(s)
- Sarah-Jayne Mackin
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Avinash Thakur
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| |
Collapse
|
224
|
Studying X chromosome inactivation in the single-cell genomic era. Biochem Soc Trans 2018; 46:577-586. [PMID: 29678955 DOI: 10.1042/bst20170346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Single-cell genomics is set to revolutionise our understanding of how epigenetic silencing works; by studying specific epigenetic marks or chromatin conformations in single cells, it is possible to ask whether they cause transcriptional silencing or are instead a consequence of the silent state. Here, we review what single-cell genomics has revealed about X chromosome inactivation, perhaps the best characterised mammalian epigenetic process, highlighting the novel findings and important differences between mouse and human X inactivation uncovered through these studies. We consider what fundamental questions these techniques are set to answer in coming years and propose that X chromosome inactivation is an ideal model to study gene silencing by single-cell genomics as technical limitations are minimised through the co-analysis of hundreds of genes.
Collapse
|
225
|
Jiang Y, Liu Y, Lu H, Sun SC, Jin W, Wang X, Dong C. Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28. Nat Commun 2018; 9:1424. [PMID: 29651155 PMCID: PMC5897371 DOI: 10.1038/s41467-018-03852-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 03/14/2018] [Indexed: 12/02/2022] Open
Abstract
Epigenetic regulation is important for T-cell fate decision. Although STAT3 is known to initiate Th17 differentiation program, the downstream mechanism is unclear. Here we show that Tripartite motif containing 28 (Trim28) expression in Th17 cells is required for Th17-mediated cytokine production and experimental autoimmune diseases. Genome-wide occupancy analysis reveals that TRIM28-bound regions overlap with almost all Th17-specific super-enhancers (SE), and that those SEs are impaired by the deficiency of STAT3 or TRIM28, but not of RORγt. Importantly, IL-6-STAT3 signaling facilitates TRIM28 binding to the Il17-Il17f locus, and this process is required for epigenetic activation and high-order chromosomal interaction. TRIM28 also forms a complex with STAT3 and RORγt, and promotes the recruitment of RORγt to its target cytokine genes. Our study thus suggests TRIM28 to be important for the epigenetic activation during Th17 cell differentiation, and prompts the potential use of epigenetic interventions for Th17-related autoimmune diseases. T help 17 (Th17) cells are important mediators for both protective and pathogenic immune reactions, but how their functions are regulated at the epigenetic level is not understood. Here the authors show that TRIM28, a cofactor for transcriptional regulation, is important for epigenetic activation of Th17-related gene loci during Th17 response.
Collapse
Affiliation(s)
- Yu Jiang
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Ying Liu
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Huiping Lu
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Shao-Cong Sun
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Jin
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, 100084, Beijing, China. .,Beijing Key Lab for Immunological Research on Chronic Diseases, 100084, Beijing, China.
| |
Collapse
|
226
|
Zhu Q, Stöger R, Alberio R. A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline. Front Cell Dev Biol 2018; 6:24. [PMID: 29637072 PMCID: PMC5880922 DOI: 10.3389/fcell.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
227
|
Patel A, Yang P, Tinkham M, Pradhan M, Sun MA, Wang Y, Hoang D, Wolf G, Horton JR, Zhang X, Macfarlan T, Cheng X. DNA Conformation Induces Adaptable Binding by Tandem Zinc Finger Proteins. Cell 2018; 173:221-233.e12. [PMID: 29551271 PMCID: PMC5877318 DOI: 10.1016/j.cell.2018.02.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/24/2017] [Accepted: 02/22/2018] [Indexed: 11/24/2022]
Abstract
Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Peng Yang
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Matthew Tinkham
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Mihika Pradhan
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Ming-An Sun
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Yixuan Wang
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Don Hoang
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Todd Macfarlan
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
228
|
Coluccio A, Ecco G, Duc J, Offner S, Turelli P, Trono D. Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naïve embryonic stem cells. Epigenetics Chromatin 2018; 11:7. [PMID: 29482634 PMCID: PMC6389204 DOI: 10.1186/s13072-018-0177-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/16/2018] [Indexed: 01/18/2023] Open
Abstract
Background The KZFP/KAP1 (KRAB zinc finger proteins/KRAB-associated protein 1) system plays a central role in repressing transposable elements (TEs) and maintaining parent-of-origin DNA methylation at imprinting control regions (ICRs) during the wave of genome-wide reprogramming that precedes implantation. In naïve murine embryonic stem cells (mESCs), the genome is maintained highly hypomethylated by a combination of TET-mediated active demethylation and lack of de novo methylation, yet KAP1 is tethered by sequence-specific KZFPs to ICRs and TEs where it recruits histone and DNA methyltransferases to impose heterochromatin formation and DNA methylation. Results Here, upon removing either KAP1 or the cognate KZFP, we observed rapid TET2-dependent accumulation of 5hmC at both ICRs and TEs. In the absence of the KZFP/KAP1 complex, ICRs lost heterochromatic histone marks and underwent both active and passive DNA demethylation. For KAP1-bound TEs, 5mC hydroxylation correlated with transcriptional reactivation. Using RNA-seq, we further compared the expression profiles of TEs upon Kap1 removal in wild-type, Dnmt and Tet triple knockout mESCs. While we found that KAP1 represents the main effector of TEs repression in all three settings, we could additionally identify specific groups of TEs further controlled by DNA methylation. Furthermore, we observed that in the absence of TET proteins, activation upon Kap1 depletion was blunted for some TE integrants and increased for others. Conclusions Our results indicate that the KZFP/KAP1 complex maintains heterochromatin and DNA methylation at ICRs and TEs in naïve embryonic stem cells partly by protecting these loci from TET-mediated demethylation. Our study further unveils an unsuspected level of complexity in the transcriptional control of the endovirome by demonstrating often integrant-specific differential influences of histone-based heterochromatin modifications, DNA methylation and 5mC oxidation in regulating TEs expression. Electronic supplementary material The online version of this article (10.1186/s13072-018-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Coluccio
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Gabriela Ecco
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
229
|
Is ZFP57 binding to H19/IGF2:IG-DMR affected in Silver-Russell syndrome? Clin Epigenetics 2018; 10:23. [PMID: 29484033 PMCID: PMC5822596 DOI: 10.1186/s13148-018-0454-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/02/2018] [Indexed: 01/21/2023] Open
Abstract
Background Loss of paternal methylation (LOM) of the H19/IGF2 intergenic differentially methylated region (H19/IGF2:IG-DMR) causes alteration of H19/IGF2 imprinting and Silver-Russell syndrome (SRS). Recently, internal deletions of the H19/IGF2:IG-DMR have been associated with LOM and SRS when present on the paternal chromosome. In contrast, previously described deletions, most of which cause gain of methylation (GOM) and Beckwith-Wiedemann syndrome (BWS) on maternal transmission, were consistently associated with normal methylation and phenotype if paternally inherited. Presentation of the hypothesis The presence of several target sites (ZTSs) and three demonstrated binding regions (BRs) for the imprinting factor ZFP57 in the H19/IGF2:IG-DMR suggest the involvement of this factor in the maintenance of methylation of this locus. By comparing the extension of the H19/IGF2:IG-DMR deletions with the binding profile of ZFP57, we propose that the effect of the deletions on DNA methylation and clinical phenotype is dependent on their interference with ZFP57 binding. Indeed, deletions strongly affecting a ZFP57 BR result in LOM and SRS, while deletions preserving a significant number of ZFPs in each BR do not alter methylation and are associated with normal phenotype. Testing the hypothesis The generation of transgenic mouse lines in which the endogenous H19/IGF2:IG-DMR is replaced by the human orthologous locus including the three ZFP57 BRs or their mutant versions will allow to test the role of ZFP57 binding in imprinted methylation and growth phenotype. Implications of the hypothesis Similarly to what is proposed for maternally inherited BWS mutations and CTCF and OCT4/SOX2 binding, we suggest that deletions of the H19/IGF2:IG-DMR result in SRS with LOM if ZFP57 binding on the paternal chromosome is affected. Electronic supplementary material The online version of this article (10.1186/s13148-018-0454-7) contains supplementary material, which is available to authorized users.
Collapse
|
230
|
Illum LRH, Bak ST, Lund S, Nielsen AL. DNA methylation in epigenetic inheritance of metabolic diseases through the male germ line. J Mol Endocrinol 2018; 60:R39-R56. [PMID: 29203518 DOI: 10.1530/jme-17-0189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
The global rise in metabolic diseases can be attributed to a complex interplay between biology, behavior and environmental factors. This article reviews the current literature concerning DNA methylation-based epigenetic inheritance (intergenerational and transgenerational) of metabolic diseases through the male germ line. Included are a presentation of the basic principles for DNA methylation in developmental programming, and a description of windows of susceptibility for the inheritance of environmentally induced aberrations in DNA methylation and their associated metabolic disease phenotypes. To this end, escapees, genomic regions with the intrinsic potential to transmit acquired paternal epigenetic information across generations by escaping the extensive programmed DNA demethylation that occurs during gametogenesis and in the zygote, are described. The ongoing descriptive and functional examinations of DNA methylation in the relevant biological samples, in conjugation with analyses of non-coding RNA and histone modifications, hold promise for improved delineation of the effect size and mechanistic background for epigenetic inheritance of metabolic diseases.
Collapse
Affiliation(s)
| | - Stine Thorhauge Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Endocrinology and Diabetes, Aarhus University Hospital, Aarhus, Denmark
| | - Sten Lund
- Department of Clinical Medicine, Endocrinology and Diabetes, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
231
|
Wang Y, Zhao C, Hou Z, Yang Y, Bi Y, Wang H, Zhang Y, Gao S. Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naïve state. eLife 2018; 7:29518. [PMID: 29381138 PMCID: PMC5807049 DOI: 10.7554/elife.29518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Derivation of human naïve cells in the ground state of pluripotency provides promising avenues for developmental biology studies and therapeutic manipulations. However, the molecular mechanisms involved in the establishment and maintenance of human naïve pluripotency remain poorly understood. Using the human inducible reprogramming system together with the 5iLAF naïve induction strategy, integrative analysis of transcriptional and epigenetic dynamics across the transition from human fibroblasts to naïve iPSCs revealed ordered waves of gene network activation sharing signatures with those found during embryonic development from late embryogenesis to pre-implantation stages. More importantly, Transcriptional analysis showed a significant transient reactivation of transcripts with 8-cell-stage-like characteristics in the late stage of reprogramming, suggesting transient activation of gene network with human zygotic genome activation (ZGA)-like signatures during the establishment of naïve pluripotency. Together, Dissecting the naïve reprogramming dynamics by integrative analysis improves the understanding of the molecular features involved in the generation of naïve pluripotency directly from somatic cells.
Collapse
Affiliation(s)
- Yixuan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chengchen Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhenzhen Hou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuanyuan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yan Bi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yong Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
232
|
Lee J, Matsuzawa A, Shiura H, Sutani A, Ishino F. Preferable in vitro condition for maintaining faithful DNA methylation imprinting in mouse embryonic stem cells. Genes Cells 2018; 23:146-160. [PMID: 29356242 DOI: 10.1111/gtc.12560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/16/2017] [Indexed: 01/13/2023]
Abstract
Epigenetic properties of cultured embryonic stem cells (ESCs), including DNA methylation imprinting, are important because they affect the developmental potential. Here, we tested a variety of culture media, including knockout serum replacement (KSR) and fetal bovine serum (FBS) with or without inhibitors of Gsk3β and Mek1/2 (2i) at various time points. In addition to the previously known passage-dependent global changes, unexpected dynamic DNA methylation changes occurred in both maternal and paternal differentially methylated regions: under the widely used condition of KSR with 2i, a highly hypomethylated state occurred at early passages (P1-7) as well as P10, but DNA methylation increased over further passages in most conditions, except under KSR with 2i at P25. Dramatic DNA demethylation under KSR+2i until P25 was associated with upregulated Tet1 and Parp1, and their related genes, whereas 2i regulated the expressions of DNA methyltransferase-related genes for the change in DNA methylation during the cumulative number of passages. Although DNA methylation imprinting is more labile under KSR with and without 2i, it can be more faithfully maintained under condition of cooperative FBS and 2i. Thus, our study will provide the useful information for improved epigenetic control of ESCs and iPSCs in applications in regenerative medicine.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akito Sutani
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
233
|
Deniz Ö, de la Rica L, Cheng KCL, Spensberger D, Branco MR. SETDB1 prevents TET2-dependent activation of IAP retroelements in naïve embryonic stem cells. Genome Biol 2018; 19:6. [PMID: 29351814 PMCID: PMC5775534 DOI: 10.1186/s13059-017-1376-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/07/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endogenous retroviruses (ERVs), which are responsible for 10% of spontaneous mouse mutations, are kept under control via several epigenetic mechanisms. The H3K9 histone methyltransferase SETDB1 is essential for ERV repression in embryonic stem cells (ESCs), with DNA methylation also playing an important role. It has been suggested that SETDB1 protects ERVs from TET-dependent DNA demethylation, but the relevance of this mechanism for ERV expression remains unclear. Moreover, previous studies have been performed in primed ESCs, which are not epigenetically or transcriptionally representative of preimplantation embryos. RESULTS We use naïve ESCs to investigate the role of SETDB1 in ERV regulation and its relationship with TET-mediated DNA demethylation. Naïve ESCs show an increased dependency on SETDB1 for ERV silencing when compared to primed ESCs, including at the highly mutagenic intracisternal A particles (IAPs). We find that in the absence of SETDB1, TET2 activates IAP elements in a catalytic-dependent manner. Surprisingly, TET2 does not drive changes in DNA methylation levels at IAPs, suggesting that it regulates these retrotransposons indirectly. Instead, SETDB1 depletion leads to a TET2-dependent loss of H4R3me2s, which is indispensable for IAP silencing during epigenetic reprogramming. CONCLUSIONS Our results demonstrate a novel and unexpected role for SETDB1 in protecting IAPs from TET2-dependent histone arginine demethylation.
Collapse
Affiliation(s)
- Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Lorenzo de la Rica
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK.,Present address: The Royal Society, 6-9 Carlton House Terrace, London, SW1Y 5AG, UK
| | - Kevin C L Cheng
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Dominik Spensberger
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.,Present address: Gene Targeting Facility, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, E1 2AT, UK.
| |
Collapse
|
234
|
Takahashi N, Gray D, Strogantsev R, Noon A, Delahaye C, Skarnes WC, Tate PH, Ferguson-Smith AC. ZFP57 and the Targeted Maintenance of Postfertilization Genomic Imprints. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 80:177-87. [PMID: 27325708 DOI: 10.1101/sqb.2015.80.027466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic modifications play an important role in modulating genome function. In mammals, inappropriate epigenetic states can cause embryonic lethality and various acquired and inherited diseases; hence, it is important to understand how such states are formed and maintained in particular genomic contexts. Genomic imprinting is a process in which epigenetic states provide a sustained memory of parental origin and cause gene expression/repression from only one of the two parental chromosomes. Genomic imprinting is therefore a valuable model to decipher the principles and processes associated with the targeting and maintenance of epigenetic states in general. Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are proteins that have the potential to mediate this. ZFP57, one of the best characterized proteins in this family, has been shown to target and maintain epigenetic states at imprinting control regions after fertilization. Its role in imprinting through the use of ZFP57 mutants in mouse and the wider implications of KRAB-ZFPs for the targeted maintenance of epigenetic states are discussed here.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Dionne Gray
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | | - Angela Noon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Celia Delahaye
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Peri H Tate
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
235
|
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2018; 356:356/6337/eaaj2239. [PMID: 28473536 DOI: 10.1126/science.aaj2239] [Citation(s) in RCA: 784] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022]
Abstract
The majority of CpG dinucleotides in the human genome are methylated at cytosine bases. However, active gene regulatory elements are generally hypomethylated relative to their flanking regions, and the binding of some transcription factors (TFs) is diminished by methylation of their target sequences. By analysis of 542 human TFs with methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), we found that there are also many TFs that prefer CpG-methylated sequences. Most of these are in the extended homeodomain family. Structural analysis showed that homeodomain specificity for methylcytosine depends on direct hydrophobic interactions with the methylcytosine 5-methyl group. This study provides a systematic examination of the effect of an epigenetic DNA modification on human TF binding specificity and reveals that many developmentally important proteins display preference for mCpG-containing sequences.
Collapse
Affiliation(s)
- Yimeng Yin
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Ekaterina Morgunova
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Arttu Jolma
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Eevi Kaasinen
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Biswajyoti Sahu
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Syed Khund-Sayeed
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Pratyush K Das
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Teemu Kivioja
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Kashyap Dave
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Fan Zhong
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Kazuhiro R Nitta
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Minna Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Paul A Ginno
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Silvia Domcke
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Jian Yan
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Dirk Schübeler
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden. .,Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
236
|
Wasson JA, Birol O, Katz DJ. A Resource for the Allele-Specific Analysis of DNA Methylation at Multiple Genomically Imprinted Loci in Mice. G3 (BETHESDA, MD.) 2018; 8:91-103. [PMID: 29138238 PMCID: PMC5765370 DOI: 10.1534/g3.117.300417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
Genomically imprinted loci are expressed mono-allelically, dependent upon the parent of origin. Their regulation not only illuminates how chromatin regulates gene expression but also how chromatin can be reprogrammed every generation. Because of their distinct parent-of-origin regulation, analysis of imprinted loci can be difficult. Single nucleotide polymorphisms (SNPs) are required to accurately assess these elements allele specifically. However, publicly available SNP databases lack robust verification, making analysis of imprinting difficult. In addition, the allele-specific imprinting assays that have been developed employ different mouse strains, making it difficult to systemically analyze these loci. Here, we have generated a resource that will allow the allele-specific analysis of many significant imprinted loci in a single hybrid strain of Mus musculus This resource includes verification of SNPs present within 10 of the most widely used imprinting control regions and allele-specific DNA methylation assays for each gene in a C57BL/6J and CAST/EiJ hybrid strain background.
Collapse
Affiliation(s)
- Jadiel A Wasson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Onur Birol
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
237
|
Ding D, Bergmaier P, Sachs P, Klangwart M, Rückert T, Bartels N, Demmers J, Dekker M, Poot RA, Mermoud JE. The CUE1 domain of the SNF2-like chromatin remodeler SMARCAD1 mediates its association with KRAB-associated protein 1 (KAP1) and KAP1 target genes. J Biol Chem 2017; 293:2711-2724. [PMID: 29284678 DOI: 10.1074/jbc.ra117.000959] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chromatin in embryonic stem cells (ESCs) differs markedly from that in somatic cells, with ESCs exhibiting a more open chromatin configuration. Accordingly, ATP-dependent chromatin remodeling complexes are important regulators of ESC homeostasis. Depletion of the remodeler SMARCAD1, an ATPase of the SNF2 family, has been shown to affect stem cell state, but the mechanistic explanation for this effect is unknown. Here, we set out to gain further insights into the function of SMARCAD1 in mouse ESCs. We identified KRAB-associated protein 1 (KAP1) as the stoichiometric binding partner of SMARCAD1 in ESCs. We found that this interaction occurs on chromatin and that SMARCAD1 binds to different classes of KAP1 target genes, including zinc finger protein (ZFP) and imprinted genes. We also found that the RING B-box coiled-coil (RBCC) domain in KAP1 and the proximal coupling of ubiquitin conjugation to ER degradation (CUE) domain in SMARCAD1 mediate their direct interaction. Of note, retention of SMARCAD1 in the nucleus depended on KAP1 in both mouse ESCs and human somatic cells. Mutations in the CUE1 domain of SMARCAD1 perturbed the binding to KAP1 in vitro and in vivo Accordingly, an intact CUE1 domain was required for tethering this remodeler to the nucleus. Moreover, mutation of the CUE1 domain compromised SMARCAD1 binding to KAP1 target genes. Taken together, our results reveal a mechanism that localizes SMARCAD1 to genomic sites through the interaction of SMARCAD1's CUE1 motif with KAP1.
Collapse
Affiliation(s)
- Dong Ding
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Parysatis Sachs
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Marius Klangwart
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Tamina Rückert
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Nora Bartels
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany
| | - Jeroen Demmers
- Center for Proteomics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Mike Dekker
- Department of Cell Biology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jacqueline E Mermoud
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, Marburg 35043, Germany.
| |
Collapse
|
238
|
Tao Y, Yen MR, Chitiashvili T, Nakano H, Kim R, Hosohama L, Tan YC, Nakano A, Chen PY, Clark AT. TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency. Stem Cell Reports 2017; 10:243-256. [PMID: 29290627 PMCID: PMC5768987 DOI: 10.1016/j.stemcr.2017.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Transition from primed to naive pluripotency is associated with dynamic changes in transposable element (TE) expression and demethylation of imprinting control regions (ICRs). In mouse, ICR methylation and TE expression are each regulated by TRIM28; however, the role of TRIM28 in humans is less clear. Here, we show that a null mutation in TRIM28 causes significant alterations in TE expression in both the naive and primed states of human pluripotency, and phenotypically this has limited effects on self-renewal, instead causing a loss of germline competency. Furthermore, we discovered that TRIM28 regulates paternal ICR methylation and chromatin accessibility in the primed state, with no effects on maternal ICRs. Taken together, our study shows that abnormal TE expression is tolerated by self-renewing human pluripotent cells, whereas germline competency is not. Primed and naive hESC self-renewal does not depend on TRIM28 Human germ cell formation in vitro requires TRIM28 TRIM28 differentially regulates transposons in primed and naive hESCs DNA methylation of H19 and MEG3 requires TRIM28
Collapse
Affiliation(s)
- Yu Tao
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tsotne Chitiashvili
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haruko Nakano
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel Kim
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linzi Hosohama
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yao Chang Tan
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
239
|
Ubiquitome Analysis Reveals PCNA-Associated Factor 15 (PAF15) as a Specific Ubiquitination Target of UHRF1 in Embryonic Stem Cells. J Mol Biol 2017; 429:3814-3824. [DOI: 10.1016/j.jmb.2017.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/26/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022]
|
240
|
TRIM28 and Interacting KRAB-ZNFs Control Self-Renewal of Human Pluripotent Stem Cells through Epigenetic Repression of Pro-differentiation Genes. Stem Cell Reports 2017; 9:2065-2080. [PMID: 29198826 PMCID: PMC5785758 DOI: 10.1016/j.stemcr.2017.10.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/20/2022] Open
Abstract
Reprogramming to induced pluripotent stem cells (iPSCs) and differentiation of pluripotent stem cells (PSCs) are regulated by epigenetic machinery. Tripartite motif protein 28 (TRIM28), a universal mediator of Krüppel-associated box domain zinc fingers (KRAB-ZNFs), is known to regulate both processes; however, the exact mechanism and identity of participating KRAB-ZNF genes remain unknown. Here, using a reporter system, we show that TRIM28/KRAB-ZNFs alter DNA methylation patterns in addition to H3K9me3 to cause stable gene repression during reprogramming. Using several expression datasets, we identified KRAB-ZNFs (ZNF114, ZNF483, ZNF589) in the human genome that maintain pluripotency. Moreover, we identified target genes repressed by these KRAB-ZNFs. Mechanistically, we demonstrated that these KRAB-ZNFs directly alter gene expression of important developmental genes by modulating H3K9me3 and DNA methylation of their promoters. In summary, TRIM28 employs KRAB-ZNFs to evoke epigenetic silencing of its target differentiation genes via H3K9me3 and DNA methylation. Upon reprogramming KRAB-repressor evokes stable silencing of its target genes KRAB-ZNFs repress target genes required for differentiation of pluripotent cells KRAB-ZNFs are crucial for the maintenance of pluripotency of human stem cells TRIM28/KRAB-ZNFs repress developmental genes through H3K9 and de novo DNA methylation
Collapse
|
241
|
Seah MKY, Messerschmidt DM. From Germline to Soma: Epigenetic Dynamics in the Mouse Preimplantation Embryo. Curr Top Dev Biol 2017; 128:203-235. [PMID: 29477164 DOI: 10.1016/bs.ctdb.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When reflecting about cell fate commitment we think of differentiation. Be it during embryonic development or in an adult stem cell niche, where cells of a higher potency specialize and cell fate decisions are taken. Under normal circumstances this process is definitive and irreversible. Cell fate commitment is achieved by the establishment of cell-type-specific transcriptional programmes, which in turn are guided, reinforced, and ultimately locked-in by epigenetic mechanisms. Yet, this plunging drift in cellular potency linked to epigenetically restricted access to genomic information is problematic for reproduction. Particularly in mammals where germ cells are not set aside early on like in other species. Instead they are rederived from the embryonic ectoderm, a differentiating embryonic tissue with somatic epigenetic features. The epigenomes of germ cell precursors are efficiently reprogrammed against the differentiation trend, only to specialize once more into highly differentiated, sex-specific gametes: oocyte and sperm. Their differentiation state is reflected in their specialized epigenomes, and erasure of these features is required to enable the acquisition of the totipotent cell fate to kick start embryonic development of the next generation. Recent technological advances have enabled unprecedented insights into the epigenetic dynamics, first of DNA methylation and then of histone modifications, greatly expanding the historically technically limited understanding of this processes. In this chapter we will focus on the details of embryonic epigenetic reprogramming, a cell fate determination process against the tide to a higher potency.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel M Messerschmidt
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
242
|
Zuo Z, Roy B, Chang YK, Granas D, Stormo GD. Measuring quantitative effects of methylation on transcription factor-DNA binding affinity. SCIENCE ADVANCES 2017; 3:eaao1799. [PMID: 29159284 PMCID: PMC5694663 DOI: 10.1126/sciadv.aao1799] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Methylation of CpG (cytosine-phosphate-guanine) dinucleotides is a common epigenetic mark that influences gene expression. The effects of methylation on transcription factor (TF) binding are unknown for most TFs and, even when known, such knowledge is often only qualitative. In reality, methylation sensitivity is a quantitative effect, just as changes to the DNA sequence have quantitative effects on TF binding affinity. We describe Methyl-Spec-seq, an easy-to-use method that measures the effects of CpG methylation (mCPG) on binding affinity for hundreds to thousands of variants in parallel, allowing one to quantitatively assess the effects at every position in a binding site. We demonstrate its use on several important DNA binding proteins. We calibrate the accuracy of Methyl-Spec-seq using a novel two-color competitive fluorescence anisotropy method that can accurately determine the relative affinities of two sequences in solution. We also present software that extends standard methods for representing, visualizing, and searching for matches to binding site motifs to include the effects of methylation. These tools facilitate the study of the consequences for gene regulation of epigenetic marks on DNA.
Collapse
Affiliation(s)
- Zheng Zuo
- Corresponding author. (G.D.S.); (Z.Z.)
| | | | | | | | | |
Collapse
|
243
|
Paternal transmission of early life traumatization through epigenetics: Do fathers play a role? Med Hypotheses 2017; 109:59-64. [DOI: 10.1016/j.mehy.2017.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/23/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
|
244
|
Mackay DJ, Temple IK. Human imprinting disorders: Principles, practice, problems and progress. Eur J Med Genet 2017; 60:618-626. [DOI: 10.1016/j.ejmg.2017.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
|
245
|
Maenohara S, Unoki M, Toh H, Ohishi H, Sharif J, Koseki H, Sasaki H. Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos. PLoS Genet 2017; 13:e1007042. [PMID: 28976982 PMCID: PMC5643148 DOI: 10.1371/journal.pgen.1007042] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/16/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023] Open
Abstract
The methylation of cytosine at CG sites in the mammalian genome is dynamically reprogrammed during gametogenesis and preimplantation development. It was previously shown that oocyte-derived DNMT1 (a maintenance methyltransferase) is essential for maintaining and propagating CG methylation at imprinting control regions in preimplantation embryos. In mammalian somatic cells, hemimethylated-CG-binding protein UHRF1 plays a critical role in maintaining CG methylation by recruiting DNMT1 to hemimethylated CG sites. However, the role of UHRF1 in oogenesis and preimplantation development is unknown. In the present study, we show that UHRF1 is mainly, but not exclusively, localized in the cytoplasm of oocytes and preimplantation embryos. However, smaller amounts of UHRF1 existed in the nucleus, consistent with the expected role in DNA methylation. We then generated oocyte-specific Uhrf1 knockout (KO) mice and found that, although oogenesis was itself unaffected, a large proportion of the embryos derived from the KO oocytes died before reaching the blastocyst stage (a maternal effect). Whole genome bisulfite sequencing revealed that blastocysts derived from KO oocytes have a greatly reduced level of CG methylation, suggesting that maternal UHRF1 is essential for maintaining CG methylation, particularly at the imprinting control regions, in preimplantation embryos. Surprisingly, UHRF1 was also found to contribute to de novo CG and non-CG methylation during oocyte growth: in Uhrf1 KO oocytes, transcriptionally-inactive regions gained less methylation, while actively transcribed regions, including the imprinting control regions, were unaffected or only slightly affected. We also found that de novo methylation was defective during the late stage of oocyte growth. To the best of our knowledge, this is the first study to demonstrate the role of UHRF1 in de novo DNA methylation in vivo. Our study reveals multiple functions of UHRF1 during the global epigenetic reprogramming of oocytes and early embryos. The methylation of cytosine at CG sites in the mammalian genome is an epigenetic modification that is important for cell differentiation and embryonic development. During oocyte growth, the actively transcribed regions gain both CG and non-CG methylation. However, after fertilization, such methylation is globally erased, except for certain gene control regions and a subset of retrotransposons that retain CG methylation. We examined the role of UHRF1, a protein essential for the maintenance of CG methylation in somatic cells, in oocytes and preimplantation embryos by generating oocyte-specific Uhrf1 gene knockout mice. We found that oocyte-derived maternal UHRF1 protein was important for nuclear localization of DNMT1 (a maintenance DNA methyltransferase) and for CG maintenance methylation, particularly at the imprinting control regions, in preimplantation embryos. Unexpectedly, we found that the gain in CG and non-CG methylation in oocytes was also affected by Uhrf1 knockout in certain genomic regions. To the best of our knowledge, this is the first study to demonstrate a role of UHRF1 in de novo DNA methylation in vivo. Our study reveals multiple functions of UHRF1 during the global epigenetic reprogramming of oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Shoji Maenohara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- * E-mail: (HS); (MU)
| | - Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ohishi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Jafar Sharif
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- * E-mail: (HS); (MU)
| |
Collapse
|
246
|
Wang Y, Shen Y, Dai Q, Yang Q, Zhang Y, Wang X, Xie W, Luo Z, Lin C. A permissive chromatin state regulated by ZFP281-AFF3 in controlling the imprinted Meg3 polycistron. Nucleic Acids Res 2017; 45:1177-1185. [PMID: 28180295 PMCID: PMC5388394 DOI: 10.1093/nar/gkw1051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Genomic imprinting is an epigenetic regulation that leads to gene expression in a parent-of-origin specific manner. AFF3, the central component of the Super Elongation Complex-like 3 (SEC-L3), is enriched at both the intergenic-differentially methylated region (IG-DMR) and the Meg3 enhancer within the imprinted Dlk1-Dio3 locus to regulate the allele-specific gene expression in this locus. The localization of AFF3 to IG-DMR requires ZFP57. However, how AFF3 functions at the Meg3 enhancer in maintaining allele-specific gene expression remains unclear. Here, we demonstrate that AFF3 is associated with the Krüppel-like zinc finger protein ZFP281 in mouse embryonic stem (ES) cells. ZFP281 recruits AFF3 to the Meg3 enhancer within the imprinted Dlk1-Dio3 locus, thus regulating the allele-specific expression of the Meg3 polycistron. Our genome-wide analyses further identify ZFP281 as a critical factor generally associating with AFF3 at enhancers and functioning together with AFF3 in regulating the expression of a subset of genes. Our study suggests that different zinc finger proteins can recruit AFF3 to different regulatory elements and differentially regulate the function of AFF3 in a context-dependent manner.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yang Shen
- Bioinformatics Core, A*STAR Genome Institute of Singapore, 60 Biopolis Street, Singapore
| | - Qian Dai
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Qian Yang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yue Zhang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xin Wang
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Wei Xie
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Zhuojuan Luo
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Chengqi Lin
- Institute of Life Sciences, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
247
|
Abstract
Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are the largest family of transcriptional regulators in higher vertebrates. Characterized by an N-terminal KRAB domain and a C-terminal array of DNA-binding zinc fingers, they participate, together with their co-factor KAP1 (also known as TRIM28), in repression of sequences derived from transposable elements (TEs). Until recently, KRAB-ZFP/KAP1-mediated repression of TEs was thought to lead to irreversible silencing, and the evolutionary selection of KRAB-ZFPs was considered to be just the host component of an arms race against TEs. However, recent advances indicate that KRAB-ZFPs and their TE targets also partner up to establish species-specific regulatory networks. Here, we provide an overview of the KRAB-ZFP gene family, highlighting how its evolutionary history is linked to that of TEs, and how KRAB-ZFPs influence multiple aspects of development and physiology.
Collapse
Affiliation(s)
- Gabriela Ecco
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Michael Imbeault
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| |
Collapse
|
248
|
Luo J, Zhang Y, Guo Y, Tang H, Wei H, Liu S, Wang X, Wang L, Zhou P. TRIM28 regulates Igf2-H19 and Dlk1-Gtl2 imprinting by distinct mechanisms during sheep fibroblast proliferation. Gene 2017; 637:152-160. [PMID: 28947302 DOI: 10.1016/j.gene.2017.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/14/2023]
Abstract
DNA methylation is an essential epigenetic modification involved in regulating gene expression and maintaining epigenetic information across generations. However, how these marks are recognized and interpreted to activate or repress imprinted genes is not fully understood. Preliminary evidence describes the transcriptional repressor TRIM28 as a key regulator of imprinted gene expression during and after early genome-wide reprogramming. Aberrant expression of imprinted genes maybe one possible cause of incomplete epigenetic reprogramming and low efficiency in somatic cell nuclear transfer. Here, we perform a series of experiments to determine whether knockdown of Trim28 alters imprinted gene expression and DMR methylation in sheep embryonic fibroblast (SEF) cells. siRNA-mediated Trim28 silencing in SEF cells resulted in significantly decreased expression of Gtl2 to 30% and increased expression of Dlk1 (~1.7-fold). Moreover, knocking down Trim28 induced DNA methylation at the IG-DMR and the Gtl2 promoter was disrupted. Here, we uncover an important role for Trim28 in the maintenance of DNA methylation at IG-DMR during replication-dependent dilution of methylated cytosine during cellular proliferation. Unlike Dlk1-Gtl2 however, knocking down Trim28 does not affect DMR methylation in the Igf2-H19 gene cluster, yet results in increased expression of Igf2 and H19. Interestingly, Peg3 expression decreased by 60% in Trim28 knockdown cells. PEG3 as a transcriptional repressor to the H19-ICR that interacts with the co-repressor protein TRIM28 through KRAB-A. Trim28 therefore appears to control the Igf2-H19 imprinted cluster indirectly via PEG3, which is distinct from its classical role in preserving DNA methylation during DNA replication. Our results therefore indicate that Trim28 regulates imprinted gene expression through at least two distinct mechanisms during cells proliferation.
Collapse
Affiliation(s)
- Jian Luo
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Yiyuan Zhang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Yanhua Guo
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Hong Tang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Haixia Wei
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shouren Liu
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xinhua Wang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China
| | - Limin Wang
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China; Department of Animal Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269, USA
| | - Ping Zhou
- Key Laboratory for Sheep Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
249
|
Lee CC, Peng SH, Shen L, Lee CF, Du TH, Kang ML, Xu GL, Upadhyay AK, Cheng X, Yan YT, Zhang Y, Juan LJ. The Role of N-α-acetyltransferase 10 Protein in DNA Methylation and Genomic Imprinting. Mol Cell 2017; 68:89-103.e7. [PMID: 28943313 DOI: 10.1016/j.molcel.2017.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
Abstract
Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.
Collapse
Affiliation(s)
- Chen-Cheng Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Shih-Huan Peng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan, ROC
| | - Li Shen
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chung-Fan Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ting-Huei Du
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ming-Lun Kang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Guo-Liang Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anup K Upadhyay
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Li-Jung Juan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC.
| |
Collapse
|
250
|
Yang P, Wang Y, Macfarlan TS. The Role of KRAB-ZFPs in Transposable Element Repression and Mammalian Evolution. Trends Genet 2017; 33:871-881. [PMID: 28935117 DOI: 10.1016/j.tig.2017.08.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
Kruppel-associated box zinc-finger proteins (KRAB-ZFPs) make up the largest family of transcription factors in humans. These proteins emerged in the last common ancestor of coelacanth and tetrapods, and have expanded and diversified in the mammalian lineage. Although their mechanism of transcriptional repression has been well studied for over a decade, the DNA-binding activities and the biological functions of these proteins have been largely unexplored. Recent large-scale ChIP-seq studies and loss-of-function experiments have revealed that KRAB-ZFPs play a major role in the recognition and transcriptional silencing of transposable elements (TEs), consistent with an 'arms race model' of KRAB-ZFP evolution against invading TEs. However, this model is insufficient to explain the evolution of many KRAB-ZFPs that appear to domesticate TEs for novel host functions. We highlight some of the mammalian regulatory innovations driven by specific KRAB-ZFPs, including genomic imprinting, meiotic recombination hotspot choice, and placental growth.
Collapse
Affiliation(s)
- Peng Yang
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Yixuan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|