201
|
Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 2014; 8:20-30. [PMID: 24953649 DOI: 10.1016/j.celrep.2014.05.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/16/2014] [Accepted: 05/16/2014] [Indexed: 11/21/2022] Open
Abstract
The bacterial type VI secretion system is a multicomponent molecular machine directed against eukaryotic host cells and competing bacteria. An intracellular contractile tubular structure that bears functional homology with bacteriophage tails is pivotal for ejection of pathogenic effectors. Here, we present the 6 Å cryoelectron microscopy structure of the contracted Vibrio cholerae tubule consisting of the proteins VipA and VipB. We localized VipA and VipB in the protomer and identified structural homology between the C-terminal segment of VipB and the tail-sheath protein of T4 phages. We propose that homologous segments in VipB and T4 phages mediate tubule contraction. We show that in type VI secretion, contraction leads to exposure of the ClpV recognition motif, which is embedded in the type VI-specific four-helix-bundle N-domain of VipB. Disaggregation of the tubules by the AAA+ protein ClpV and recycling of the VipA/B subunits are thereby limited to the contracted state.
Collapse
|
202
|
Screening for inhibition of Vibrio cholerae VipA-VipB interaction identifies small-molecule compounds active against type VI secretion. Antimicrob Agents Chemother 2014; 58:4123-30. [PMID: 24798289 DOI: 10.1128/aac.02819-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The type VI secretion system (T6SS) is the most prevalent bacterial secretion system and an important virulence mechanism utilized by Gram-negative bacteria, either to target eukaryotic cells or to combat other microbes. The components show much variability, but some appear essential for the function, and two homologues, denoted VipA and VipB in Vibrio cholerae, have been identified in all T6SSs described so far. Secretion is dependent on binding of an α-helical region of VipA to VipB, and in the absence of this binding, both components are degraded within minutes and secretion is ceased. The aim of the study was to investigate if this interaction could be blocked, and we hypothesized that such inhibition would lead to abrogation of T6S. A library of 9,600 small-molecule compounds was screened for their ability to block the binding of VipA-VipB in a bacterial two-hybrid system (B2H). After excluding compounds that showed cytotoxicity toward eukaryotic cells, that inhibited growth of Vibrio, or that inhibited an unrelated B2H interaction, 34 compounds were further investigated for effects on the T6SS-dependent secretion of hemolysin-coregulated protein (Hcp) or of phospholipase A1 activity. Two compounds, KS100 and KS200, showed intermediate or strong effects in both assays. Analogues were obtained, and compounds with potent inhibitory effects in the assays and desirable physicochemical properties as predicted by in silico analysis were identified. Since the compounds specifically target a virulence mechanism without affecting bacterial replication, they have the potential to mitigate the virulence with minimal risk for development of resistance.
Collapse
|
203
|
Hachani A, Allsopp LP, Oduko Y, Filloux A. The VgrG proteins are "à la carte" delivery systems for bacterial type VI effectors. J Biol Chem 2014; 289:17872-84. [PMID: 24794869 PMCID: PMC4067218 DOI: 10.1074/jbc.m114.563429] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The bacterial type VI secretion system (T6SS) is a supra-molecular complex akin to bacteriophage tails, with VgrG proteins acting as a puncturing device. The Pseudomonas aeruginosa H1-T6SS has been extensively characterized. It is involved in bacterial killing and in the delivery of three toxins, Tse1–3. Here, we demonstrate the independent contribution of the three H1-T6SS co-regulated vgrG genes, vgrG1abc, to bacterial killing. A putative toxin is encoded in the vicinity of each vgrG gene, supporting the concept of specific VgrG/toxin couples. In this respect, VgrG1c is involved in the delivery of an Rhs protein, RhsP1. The RhsP1 C terminus carries a toxic activity, from which the producing bacterium is protected by a cognate immunity. Similarly, VgrG1a-dependent toxicity is associated with the PA0093 gene encoding a two-domain protein with a putative toxin domain (Toxin_61) at the C terminus. Finally, VgrG1b-dependent killing is detectable upon complementation of a triple vgrG1abc mutant. The VgrG1b-dependent killing is mediated by PA0099, which presents the characteristics of the superfamily nuclease 2 toxin members. Overall, these data develop the concept that VgrGs are indispensable components for the specific delivery of effectors. Several additional vgrG genes are encoded on the P. aeruginosa genome and are not linked genetically to other T6SS genes. A closer inspection of these clusters reveals that they also encode putative toxins. Overall, these associations further support the notion of an original form of secretion system, in which VgrG acts as the carrier.
Collapse
Affiliation(s)
- Abderrahman Hachani
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Luke P Allsopp
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yewande Oduko
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alain Filloux
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
204
|
Lu D, Shang G, Zhang H, Yu Q, Cong X, Yuan J, He F, Zhu C, Zhao Y, Yin K, Chen Y, Hu J, Zhang X, Yuan Z, Xu S, Hu W, Cang H, Gu L. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex fromPseudomonas aeruginosareveal a calcium-dependent membrane-binding mechanism. Mol Microbiol 2014; 92:1092-112. [DOI: 10.1111/mmi.12616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Defen Lu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
- The Liver Centre of Fujian Province; MengChao Hepatobiliary Hospital of Fujian Medical University; Fuzhou 350025 Fujian China
| | - Guijun Shang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Heqiao Zhang
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
- School of Life Sciences; Tsinghua University; Beijing 100084 China
| | - Qian Yu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Xiaoyan Cong
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Jupeng Yuan
- Institute of Medical Genetics; Shandong University School of Medicine; Jinan 250012 Shandong China
| | - Fengjuan He
- Institute of Medical Genetics; Shandong University School of Medicine; Jinan 250012 Shandong China
| | - Chunyuan Zhu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Yanyu Zhao
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Kun Yin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Yuanyuan Chen
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
| | - Junqiang Hu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Xiaodan Zhang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Wei Hu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Huaixing Cang
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| |
Collapse
|
205
|
Jiang F, Waterfield N, Yang J, Yang G, Jin Q. A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host Microbe 2014; 15:600-10. [DOI: 10.1016/j.chom.2014.04.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/28/2014] [Accepted: 03/21/2014] [Indexed: 02/06/2023]
|
206
|
Zhang J, Zhang H, Gao Z, Hu H, Dong C, Dong YH. Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. FEBS Lett 2014; 588:1891-8. [PMID: 24751834 DOI: 10.1016/j.febslet.2014.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The bacterial type VI secretion system (T6SS) is used by donor cells to inject toxic effectors into receptor cells. The donor cells produce the corresponding immunity proteins to protect themselves against the effector proteins, thereby preventing their self-intoxication. Recently, the C-terminal domain of VgrG3 was identified as a T6SS effector. Information on the molecular mechanism of VgrG3 and its immunity protein TsaB has been lacking. Here, we determined the crystal structures of native TsaB and the VgrG3C-TsaB complex. VgrG3C adopts a canonical phage-T4-lysozyme-like fold. TsaB interacts with VgrG3C through molecular mimicry, and inserts into the VgrG3C pocket.
Collapse
Affiliation(s)
- Jiulong Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China; School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, People's Republic of China
| | - Heng Zhang
- State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Beijing 100871, People's Republic of China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haidai Hu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Cheng Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
207
|
Whitney JC, Beck CM, Goo YA, Russell AB, Harding BN, De Leon JA, Cunningham DA, Tran BQ, Low DA, Goodlett DR, Hayes CS, Mougous JD. Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol 2014; 92:529-42. [PMID: 24589350 DOI: 10.1111/mmi.12571] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2014] [Indexed: 12/01/2022]
Abstract
Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), haemolysin co-regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone-like quality of Hcp. Application of this approach to the Hcp secretion island I-encoded T6SS (H1-T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (type VI secretion exported 4), subsequently shown to act as a potent intra-specific H1-T6SS-delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1-T6SS effectors, Tse5 and Tse6, which differ from Hcp-stabilized substrates by the presence of toxin-associated PAAR-repeat motifs and genetic linkage to members of the valine-glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp-stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1-T6SS-exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export.
Collapse
Affiliation(s)
- John C Whitney
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, Journet L, Cambillau C, Cascales E. Architecture and assembly of the Type VI secretion system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1664-73. [PMID: 24681160 DOI: 10.1016/j.bbamcr.2014.03.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
The Type VI secretion system (T6SS) delivers protein effectors to diverse cell types including prokaryotic and eukaryotic cells, therefore it participates in inter-bacterial competition and pathogenesis. The T6SS is constituted of an envelope-spanning complex anchoring a cytoplasmic tubular edifice. This tubular structure is evolutionarily, functionally and structurally related to the tail of contractile phages. It is composed of an inner tube tipped by a spike complex, and engulfed within a sheath-like structure. This structure assembles onto a platform called "baseplate" that is connected to the membrane sub-complex. The T6SS functions as a nano-crossbow: upon contraction of the sheath, the inner tube is propelled towards the target cell, allowing effector delivery. This review focuses on the architecture and biogenesis of this fascinating secretion machine, highlighting recent advances regarding the assembly of the membrane or tail complexes. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Abdelrahim Zoued
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Yannick R Brunet
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Eric Durand
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Marie-Stéphanie Aschtgen
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Laureen Logger
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Badreddine Douzi
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Laure Journet
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, UMR 7257, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | - Eric Cascales
- Laboratoire d'Ingeniérie des Systèmes Macromoléculaires, CNRS, Aix-Marseille Université, UMR 7255, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
209
|
Lin JS, Wu HH, Hsu PH, Ma LS, Pang YY, Tsai MD, Lai EM. Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens. PLoS Pathog 2014; 10:e1003991. [PMID: 24626341 PMCID: PMC3953482 DOI: 10.1371/journal.ppat.1003991] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/27/2014] [Indexed: 11/26/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed. The bacterial type VI secretion system (T6SS) resembles a contractile phage tail structure and functions to deliver effectors to eukaryotic or prokaryotic target cells for the survival of many pathogenic bacteria. T6SS is highly regulated by various regulatory systems at multiple levels in response to environmental cues. Post-translational regulation via threonine (Thr) phosphorylation is an emerging theme in regulating prokaryotic signaling, including T6SS; the knowledge is mainly contributed by studies of Hcp secretion island 1-encoded T6SS (H1-T6SS) of Pseudomonas aeruginosa. Here, we discover a new phosphorylated target, a T6SS core-component TssL, and demonstrate that this Thr phosphorylation event post-translationally regulates type VI secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. We provide the first demonstration that the specific binding of Fha, a forkhead-associated domain-containing protein, to the phosphorylated target is required to stimulate type VI secretion. Genetic and biochemical data strongly suggest an ordered TssL-phosphorylation–dependent assembly and secretion pathway.
Collapse
Affiliation(s)
- Jer-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Hui Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Structural Biology Program, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Pang-Hung Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Life Science, Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yin-Yuin Pang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Structural Biology Program, National Tsing Hua University, Hsinchu, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
210
|
Douzi B, Spinelli S, Blangy S, Roussel A, Durand E, Brunet YR, Cascales E, Cambillau C. Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli. PLoS One 2014; 9:e86918. [PMID: 24551044 PMCID: PMC3925092 DOI: 10.1371/journal.pone.0086918] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/15/2013] [Indexed: 11/29/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread machine used by bacteria to control their environment and kill or disable bacterial species or eukaryotes through toxin injection. The T6SS comprises a central tube formed of stacked hexamers of hemolysin co-regulated proteins (Hcp) and terminated by a trimeric valine-glycine repeat protein G (VgrG) component, the cell puncturing device. A contractile tail sheath, formed by the TssB and TssC proteins, surrounds this tube. This syringe-like machine has been compared to an inverted phage, as both Hcp and VgrG share structural homology with tail components of Caudovirales. Here we solved the crystal structure of a tryptophan-substituted double mutant of Hcp1 from enteroaggregative Escherichia coli and compared it to the structures of other Hcps. Interestingly, we observed that the purified Hcp native protein is unable to form tubes in vitro. To better understand the rationale for observation, we measured the affinity of Hcp1 hexamers with themselves by surface plasmon resonance. The intra-hexamer interaction is weak, with a KD value of 7.2 µM. However, by engineering double cysteine mutants at defined positions, tubes of Hcp1 gathering up to 15 stacked hexamers formed in oxidative conditions. These results, together with those available in the literature regarding TssB and TssC, suggest that assembly of the T6SS tube differs significantly from that of Sipho- or Myoviridae.
Collapse
Affiliation(s)
- Badreddine Douzi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
| | - Silvia Spinelli
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
| | - Stéphanie Blangy
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
| | - Alain Roussel
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
| | - Eric Durand
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
| | - Yannick R. Brunet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique UMR7255, Aix-Marseille Université, Marseille, France
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique UMR7255, Aix-Marseille Université, Marseille, France
| | - Christian Cambillau
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Campus de Luminy, Case 932, Marseille, France
- * E-mail:
| |
Collapse
|
211
|
Tümmler B, Wiehlmann L, Klockgether J, Cramer N. Advances in understanding Pseudomonas. F1000PRIME REPORTS 2014; 6:9. [PMID: 24592321 PMCID: PMC3913036 DOI: 10.12703/p6-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa, the type species of pseudomonads, is an opportunistic pathogen that colonizes a wide range of niches. Current genome sequencing projects are producing previously inconceivable detail about the population biology and evolution of P. aeruginosa. Its pan-genome has a larger genetic repertoire than the human genome, which explains the broad metabolic capabilities of P. aeruginosa and its ubiquitous distribution in aquatic habitats. P. aeruginosa may persist in the airways of individuals with cystic fibrosis for decades. The ongoing whole-genome analyses of serial isolates from cystic fibrosis patients provide the so far singular opportunity to monitor the microevolution of a bacterial pathogen during chronic infection over thousands of generations. Although the evolution in cystic fibrosis lungs is neutral overall, some pathoadaptive mutations are selected during the within-host evolutionary process. Even a single mutation may be sufficient to generate novel complex traits provided that predisposing mutational events have previously occurred in the clonal lineage.
Collapse
|
212
|
Brunet YR, Hénin J, Celia H, Cascales E. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 2014; 15:315-21. [PMID: 24488256 DOI: 10.1002/embr.201337936] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The Type VI secretion system (T6SS) is a widespread macromolecular structure that delivers protein effectors to both eukaryotic and prokaryotic recipient cells. The current model describes the T6SS as an inverted phage tail composed of a sheath-like structure wrapped around a tube assembled by stacked Hcp hexamers. Although recent progress has been made to understand T6SS sheath assembly and dynamics, there is no evidence that Hcp forms tubes in vivo. Here we show that Hcp interacts with TssB, a component of the T6SS sheath. Using a cysteine substitution approach, we demonstrate that Hcp hexamers assemble tubes in an ordered manner with a head-to-tail stacking that are used as a scaffold for polymerization of the TssB/C sheath-like structure. Finally, we show that VgrG but not TssB/C controls the proper assembly of the Hcp tubular structure. These results highlight the conservation in the assembly mechanisms between the T6SS and the bacteriophage tail tube/sheath.
Collapse
Affiliation(s)
- Yannick R Brunet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée CNRS - UMR 7255 Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
213
|
VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 2014; 82:1445-52. [PMID: 24452686 DOI: 10.1128/iai.01368-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The type VI secretion system (T6SS) has emerged as a critical virulence factor for the group of closely related Burkholderia spp. that includes Burkholderia pseudomallei, B. mallei, and B. thailandensis. While the genomes of these bacteria, referred to as the Bptm group, appear to encode several T6SSs, we and others have shown that one of these, type VI secretion system 5 (T6SS-5), is required for virulence in mammalian infection models. Despite its pivotal role in the pathogenesis of the Bptm group, the effector repertoire of T6SS-5 has remained elusive. Here we used quantitative mass spectrometry to compare the secretome of wild-type B. thailandensis to that of a mutant harboring a nonfunctional T6SS-5. This analysis identified VgrG-5 as a novel secreted protein whose export depends on T6SS-5 function. Bioinformatics analysis revealed that VgrG-5 is a specialized VgrG protein that harbors a C-terminal domain (CTD) conserved among Bptm group species. We found that a vgrG-5 ΔCTD mutant is avirulent in mice and is unable to stimulate the fusion of host cells, a hallmark of the Bptm group previously shown to require T6SS-5 function. The singularity of VgrG-5 as a detected T6SS-5 substrate, taken together with the essentiality of its CTD for virulence, suggests that the protein is critical for the effector activity of T6SS-5. Intriguingly, we show that unlike the bacterial-cell-targeting T6SSs characterized so far, T6SS-5 localizes to the bacterial cell pole. We propose a model whereby the CTD of VgrG-5-, propelled by T6SS-5-, plays a key role in inducing membrane fusion, either by the recruitment of other factors or by direct participation.
Collapse
|
214
|
Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 2014; 12:137-48. [PMID: 24384601 DOI: 10.1038/nrmicro3185] [Citation(s) in RCA: 522] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The type VI secretion system (T6SS) mediates interactions between a broad range of Gram-negative bacterial species. Recent studies have led to a substantial increase in the number of characterized T6SS effector proteins and a more complete and nuanced view of the adaptive importance of the system. Although the T6SS is most often implicated in antagonism, in this Review, we consider the case for its involvement in both antagonistic and non-antagonistic behaviours. Clarifying the roles that type VI secretion has in microbial communities will contribute to broader efforts to understand the importance of microbial interactions in maintaining human and environmental health, and will inform efforts to manipulate these interactions for therapeutic or environmental benefit.
Collapse
Affiliation(s)
- Alistair B Russell
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
215
|
Abstract
The bacterial type VI secretion system (T6SS) is an organelle that is structurally and mechanistically analogous to an intracellular membrane-attached contractile phage tail. Recent studies determined that a rapid conformational change in the structure of a sheath protein complex propels T6SS spike and tube components along with antibacterial and antieukaryotic effectors out of predatory T6SS(+) cells and into prey cells. The contracted organelle is then recycled in an ATP-dependent process. T6SS is regulated at transcriptional and posttranslational levels, the latter involving detection of membrane perturbation in some species. In addition to directly targeting eukaryotic cells, the T6SS can also target other bacteria coinfecting a mammalian host, highlighting the importance of the T6SS not only for bacterial survival in environmental ecosystems, but also in the context of infection and disease. This review highlights these and other advances in our understanding of the structure, mechanical function, assembly, and regulation of the T6SS.
Collapse
Affiliation(s)
- Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tao G Dong
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
216
|
Miyata ST, Unterweger D, Rudko SP, Pukatzki S. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog 2013; 9:e1003752. [PMID: 24348240 PMCID: PMC3857813 DOI: 10.1371/journal.ppat.1003752] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 09/23/2013] [Indexed: 11/27/2022] Open
Abstract
The Vibrio cholerae type VI secretion system (T6SS) assembles as a molecular syringe that injects toxic protein effectors into both eukaryotic and prokaryotic cells. We previously reported that the V. cholerae O37 serogroup strain V52 maintains a constitutively active T6SS to kill other Gram-negative bacteria while being immune to attack by kin bacteria. The pandemic O1 El Tor V. cholerae strain C6706 is T6SS-silent under laboratory conditions as it does not produce T6SS structural components and effectors, and fails to kill Escherichia coli prey. Yet, C6706 exhibits full resistance when approached by T6SS-active V52. These findings suggested that an active T6SS is not required for immunity against T6SS-mediated virulence. Here, we describe a dual expression profile of the T6SS immunity protein-encoding genes tsiV1, tsiV2, and tsiV3 that provides pandemic V. cholerae strains with T6SS immunity and allows T6SS-silent strains to maintain immunity against attacks by T6SS-active bacterial neighbors. The dual expression profile allows transcription of the three genes encoding immunity proteins independently of other T6SS proteins encoded within the same operon. One of these immunity proteins, TsiV2, protects against the T6SS effector VasX which is encoded immediately upstream of tsiV2. VasX is a secreted, lipid-binding protein that we previously characterized with respect to T6SS-mediated virulence towards the social amoeba Dictyostelium discoideum. Our data suggest the presence of an internal promoter in the open reading frame of vasX that drives expression of the downstream gene tsiV2. Furthermore, VasX is shown to act in conjunction with VasW, an accessory protein to VasX, to compromise the inner membrane of prokaryotic target cells. The dual regulatory profile of the T6SS immunity protein-encoding genes tsiV1, tsiV2, and tsiV3 permits V. cholerae to tightly control T6SS gene expression while maintaining immunity to T6SS activity. Vibrio cholerae is the causative agent of the diarrheal disease cholera. This bacterium uses the type VI secretion system (T6SS) to kill other bacteria and host cells. The T6SS is a molecular syringe that Gram-negative bacteria use to inject toxic effectors into target cells in a contact-dependent manner. The V. cholerae T6SS secretes at least three distinct effectors, VasX, TseL, and VgrG-3 to confer antimicrobial activity. To protect itself from an oncoming attack by neighboring bacteria, V. cholerae produces three immunity proteins, TsiV1, TsiV2, and TsiV3 that specifically inactivate the activity of their respective effectors. We determined that the genes encoding TsiV1, TsiV2, and TsiV3 are controlled in a dual fashion that ensures expression of these genes at all times. This provides V. cholerae with constant protection from a T6SS attack by nearby close relatives. Thus, the T6SS gene cluster is a toxin/immunity system that can both kill and protect bacterial cells. Here, we characterize the mechanism of one T6SS effector, VasX, that disrupts the inner membrane of susceptible bacteria. The immunity protein TsiV2 protects prokaryotic cells against VasX-mediated toxicity.
Collapse
Affiliation(s)
- Sarah T. Miyata
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Unterweger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sydney P. Rudko
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
217
|
Ma J, Sun M, Bao Y, Pan Z, Zhang W, Lu C, Yao H. Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. INFECTION GENETICS AND EVOLUTION 2013; 20:454-64. [PMID: 24120694 DOI: 10.1016/j.meegid.2013.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 12/24/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) strains frequently cause extra-intestinal infections and significant economic losses. Recent studies revealed that the type VI secretion system (T6SS) is involved in APEC pathogenesis. Here we provide the first evidence of three distinguishable and conserved T6SS loci in APEC genomes. In addition, we present the prevalence and comparative genomic analysis of these three T6SS loci in 472 APEC isolates. The prevalence of T6SS1, T6SS2 and T6SS3 loci were 14.62% (69/472), 2.33% (11/472) and 0.85% (4/472) positive in the APEC collections, respectively, and revealed that >85% of the strains contained T6SS loci which consisted of the virulent phylogenetic groups D and B2. Comprehensive analysis showed prominent characteristics of T6SS1 locus, including wildly prevalence, rich sequence diversity, versatile VgrG islands and excellent expression competence in various E. coli pathotypes. Whereas the T6SS2 locus infatuated with ECOR groups B2 and sequence conservation, of which are only expressed in meningitis E. coli. Regrettably, the T6SS3 locus was encoded in negligible APEC isolates and lacked several key genes. An in-depth analysis about VgrG proteins indicated that their COG4253 and gp27 domain were involved in the transport of putative effector islands and recognition of host cells respectively, which revealed that VgrG proteins played an important role in functions formation of T6SS.
Collapse
Affiliation(s)
- Jiale Ma
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|