201
|
Yuan J, Li J, Yang Y, Tan C, Zhu Y, Hu L, Qi Y, Lu ZJ. Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:814-827. [PMID: 29265542 DOI: 10.1111/tpj.13804] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 05/22/2023]
Abstract
Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be involved in many biological processes of plants; however, a systematic study on transcriptional and, in particular, post-transcriptional regulation of stress-responsive lncRNAs in Oryza sativa (rice) is lacking. We sequenced three types of RNA libraries (poly(A)+, poly(A)- and nuclear RNAs) under four abiotic stresses (cold, heat, drought and salt). Based on an integrative bioinformatics approach and ~200 high-throughput data sets, ~170 of which have been published, we revealed over 7000 lncRNAs, nearly half of which were identified for the first time. Notably, we found that the majority of the ~500 poly(A) lncRNAs that were differentially expressed under stress were significantly downregulated, but approximately 25% were found to have upregulated non-poly(A) forms. Moreover, hundreds of lncRNAs with downregulated polyadenylation (DPA) tend to be highly conserved, show significant nuclear retention and are co-expressed with protein-coding genes that function under stress. Remarkably, these DPA lncRNAs are significantly enriched in quantitative trait loci (QTLs) for stress tolerance or development, suggesting their potential important roles in rice growth under various stresses. In particular, we observed substantially accumulated DPA lncRNAs in plants exposed to drought and salt, which is consistent with the severe reduction of RNA 3'-end processing factors under these conditions. Taken together, the results of this study reveal that polyadenylation and subcellular localization of many rice lncRNAs are likely to be regulated at the post-transcriptional level. Our findings strongly suggest that many upregulated/downregulated lncRNAs previously identified by traditional RNA-seq analyses need to be carefully reviewed to assess the influence of post-transcriptional modification.
Collapse
Affiliation(s)
- Jiapei Yuan
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingrui Li
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chang Tan
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yumin Zhu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Long Hu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yijun Qi
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
202
|
van Wonterghem M, Thieffry A, Boyd M, Bornholdt J, Brodersen P. A new class of genic nuclear RNA species in Arabidopsis. FEBS Lett 2018; 592:631-643. [PMID: 29355922 DOI: 10.1002/1873-3468.12981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/01/2018] [Accepted: 01/16/2018] [Indexed: 11/07/2022]
Abstract
Targeting of ArabidopsisPHABULOSA (PHB) mRNA by miR166 has been implicated in gene body methylation at the PHB locus. We report that the PHB locus produces an array of stable nuclear RNA species that are neither polyadenylated nor capped. Their biogenesis requires neither RNA polymerases IV/V nor miR166-guided cleavage. The PHB RNAs are insensitive to mutation of nuclear RNA decay pathways and are conserved in several Brassicaceae species, suggesting functional relevance. Similar RNA species are also produced by another body-methylated locus encoding the miR414 target eIF2. Our data reveal the existence of a new class of genic nuclear RNA species.
Collapse
Affiliation(s)
| | - Axel Thieffry
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Mette Boyd
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
203
|
Kinoshita N, Arenas-Huertero C, Chua NH. Visualizing nuclear-localized RNA using transient expression system in plants. Genes Cells 2018; 23:105-111. [PMID: 29271544 DOI: 10.1111/gtc.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 12/24/2022]
Abstract
By modifying the existing cytosolic RNA visualization tool pioneered by Schönberger, Hammes, and Dresselhaus (2012), we developed a method to visualize nuclear-localized RNA. Our method uses (i) an RNA component that consists of an RNA of interest that is fused to a bacteriophage-derived MS2 sequence; and (ii) GFP fused to MS2 coat protein (MSCP), which binds specifically to MS2 as is also the case in the method for cytosolic RNA visualization. The nuclear localization sequence (NLS) at the C-terminal of MSCP-GFP tethers the probe to the nucleus. To reduce background signals in the nucleus, we replaced the NLS with a nuclear export sequence (NES) that anchors the MSCP-GFP probe in the cytosol. Our nuclear RNA visualization method differs from previous methods in two aspects: (i) We used an NES to reduce nuclear background signal so that the MSCP-GFP probe localizes in the cytosol by default; (ii) We added mCherry as a visual marker in the RNA component to increase its efficient usage in a transient system.
Collapse
Affiliation(s)
- Natsuko Kinoshita
- Lab of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | - Nam-Hai Chua
- Lab of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
204
|
Mermaz B, Liu F, Song J. RNA Immunoprecipitation Protocol to Identify Protein-RNA Interactions in Arabidopsis thaliana. Methods Mol Biol 2018; 1675:331-343. [PMID: 29052200 DOI: 10.1007/978-1-4939-7318-7_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of RNA-binding proteins in the regulation of epigenetic processes has received increasing attention in the past decades. In particular noncoding RNAs have been shown to play a role in chromatin loop formation, recruitment of chromatin modifiers and RNA-dependent DNA methylation. In plants, the identification of specific RNA-protein interactions is now rising, facilitated by the development of specific approaches for plant tissues. Here, we present a simple one-day RNA immunoprecipitation (RIP) protocol adapted for Arabidopsis, suited for the identification of RNAs that are associated with a protein-of-interest in planta.
Collapse
Affiliation(s)
- Benoit Mermaz
- Department of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
| | - Fuquan Liu
- School of Biological Sciences, Queen's University Belfast, BT9 7BL, Belfast, Northern Ireland, UK
| | - Jie Song
- Department of Life Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
| |
Collapse
|
205
|
Grob S, Cavalli G. Technical Review: A Hitchhiker's Guide to Chromosome Conformation Capture. Methods Mol Biol 2018; 1675:233-246. [PMID: 29052195 DOI: 10.1007/978-1-4939-7318-7_14] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of chromosome conformation capture (3C) technologies boosted the field of 3D-genome research and significantly enhanced the available toolset to study chromosomal architecture. 3C technologies not only offer increased resolution compared to the previously dominant cytological approaches but also allow the simultaneous study of genome-wide 3D chromatin contacts, thereby enabling a candidate-free perspective on 3D-genome architecture. Since its introduction in 2002, 3C technologies evolved rapidly and now constitute a collection of tools, each with their strengths and pitfalls with respect to specific research questions. This chapter aims at guiding 3C novices through the labyrinth of potential applications of the various family members, hopefully providing a valuable basis for choosing the appropriate strategy for different research questions.
Collapse
Affiliation(s)
- Stefan Grob
- Institute of Human Genetics, Centre National de la Recherche UMR9002, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, Centre National de la Recherche UMR9002, Montpellier, France
| |
Collapse
|
206
|
Abstract
Our understanding of the epigenetic mechanisms that regulate gene expression has been largely increased in recent years by the development and refinement of different techniques. This has revealed that gene transcription is highly influenced by epigenetic mechanisms, i.e., those that do not involve changes in the genome sequence, but rather in nuclear architecture, chromosome conformation and histone and DNA modifications. Our understanding of how these different levels of epigenetic regulation interact with each other and with classical transcription-factor based gene regulation to influence gene transcription has just started to emerge. This review discusses the latest advances in unraveling the complex interactions between different types of epigenetic regulation and transcription factor activity, with special attention to the approaches that can be used to study these interactions.
Collapse
Affiliation(s)
- Marian Bemer
- Department of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| |
Collapse
|
207
|
Ma K, Shi W, Xu M, Liu J, Zhang F. Genome-Wide Identification and Characterization of Long Non-Coding RNA in Wheat Roots in Response to Ca 2+ Channel Blocker. FRONTIERS IN PLANT SCIENCE 2018; 9:244. [PMID: 29559983 PMCID: PMC5845709 DOI: 10.3389/fpls.2018.00244] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/12/2018] [Indexed: 05/12/2023]
Abstract
It remains unclear whether plant lncRNAs are responsive to Ca2+-channel blocking. When using the Ca2+-channel blocker, LaCl3, to treat germinated wheat seeds for 24 h, we found that both root length and mitosis were inhibited in the LaCl3-treated groups. The effect of the Ca2+-channel blocker was verified in three ways: a [Ca2+]cyt decrease detected using Fluo-3/AM staining, a decrease in the Ca content measured using inductively coupled plasma mass spectrometry, and an inhibition of Ca2+ influx detected using Non-invasive Micro-test Technology. Genome-wide high throughput RNA-seq and bioinformatical methods were used to identify lncRNAs, and found 177 differentially expressed lncRNAs that might be in responsive to Ca2+-channel blocking. Among these, 108 were up-regulated and 69 were down-regulated. The validity of identified lncRNAs data from RNA-seq was verified using qPCR. GO and KEGG analysis indicated that a number of lncRNAs might be involved in diverse biological processes upon Ca2+-channel blocking. Further GO analysis showed that 23 lncRNAs might play roles as transcription factor (TF); Moreover, eight lncRNAs might participate in cell cycle regulation, and their relative expressions were detected using qPCR. This study also provides diverse data on wheat lncRNAs that can deepen our understanding of the function and regulatory mechanism of Ca2+-channel blocking in plants.
Collapse
Affiliation(s)
- Keshi Ma
- College of Life Sciences, Capital Normal University, Beijing, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Wenshuo Shi
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Mengyue Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jiaxi Liu
- College of Life Sciences, Capital Normal University, Beijing, China
- *Correspondence: Jiaxi Liu
| | - Feixiong Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
- Feixiong Zhang
| |
Collapse
|
208
|
Bräutigam K, Cronk Q. DNA Methylation and the Evolution of Developmental Complexity in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1447. [PMID: 30349550 PMCID: PMC6186995 DOI: 10.3389/fpls.2018.01447] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 05/20/2023]
Abstract
All land plants so far examined use DNA methylation to silence transposons (TEs). DNA methylation therefore appears to have been co-opted in evolution from an original function in TE management to a developmental function (gene regulation) in both phenotypic plasticity and in normal development. The significance of DNA methylation to the evolution of developmental complexity in plants lies in its role in the management of developmental pathways. As such it is more important in fine tuning the presence, absence, and placement of organs rather than having a central role in the evolution of new organs. Nevertheless, its importance should not be underestimated as it contributes considerably to the range of phenotypic expression and complexity available to plants: the subject of the emerging field of epi-evodevo. Furthermore, changes in DNA methylation can function as a "soft" mutation that may be important in the early stages of major evolutionary novelty.
Collapse
Affiliation(s)
- Katharina Bräutigam
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Quentin Cronk
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Quentin Cronk,
| |
Collapse
|
209
|
Li Y, Kumar S, Qian W. Active DNA demethylation: mechanism and role in plant development. PLANT CELL REPORTS 2018; 37:77-85. [PMID: 29026973 PMCID: PMC5758694 DOI: 10.1007/s00299-017-2215-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 05/18/2023]
Abstract
Active DNA demethylation (enzymatic removal of methylated cytosine) regulates many plant developmental processes. In Arabidopsis, active DNA demethylation entails the base excision repair pathway initiated by the Repressor of silencing 1/Demeter family of bifunctional DNA glycosylases. In this review, we first present an introduction to the recent advances in our understanding about the mechanisms of active DNA demethylation. We then focus on the role of active DNA demethylation in diverse developmental processes in various plant species, including the regulation of seed development, pollen tube formation, stomatal development, fruit ripening, and nodule development. Finally, we discuss future directions of research in the area of active DNA demethylation.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
210
|
Berry S, Rosa S, Howard M, Bühler M, Dean C. Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression. Genes Dev 2017; 31:2115-2120. [PMID: 29212661 PMCID: PMC5749160 DOI: 10.1101/gad.305227.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022]
Abstract
In this study, Berry et al. investigated the functions of the different domains of LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in Arabidopsis. They show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region and show that both the hinge region and H3K27me3 recognition facilitate LHP1 localization and H3K27me3 maintenance. Epigenetic maintenance of gene repression is essential for development. Polycomb complexes are central to this memory, but many aspects of the underlying mechanism remain unclear. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binds Polycomb-deposited H3K27me3 and is required for repression of many Polycomb target genes in Arabidopsis. Here we show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region. By independently perturbing the RNA-binding hinge region and H3K27me3 (trimethylation of histone H3 at Lys27) recognition, we found that both facilitate LHP1 localization and H3K27me3 maintenance. Disruption of the RNA-binding hinge region also prevented formation of subnuclear foci, structures potentially important for epigenetic repression.
Collapse
Affiliation(s)
- Scott Berry
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stefanie Rosa
- Institute of Biochemistry and Biology, University of Potsdam, DE-14476 Potsdam-Golm, Germany
| | | | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | |
Collapse
|
211
|
Henriques R, Wang H, Liu J, Boix M, Huang LF, Chua NH. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering. THE NEW PHYTOLOGIST 2017; 216:854-867. [PMID: 28758689 DOI: 10.1111/nph.14703] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/12/2017] [Indexed: 05/19/2023]
Abstract
Circadian rhythms of gene expression are generated by the combinatorial action of transcriptional and translational feedback loops as well as chromatin remodelling events. Recently, long noncoding RNAs (lncRNAs) that are natural antisense transcripts (NATs) to transcripts encoding central oscillator components were proposed as modulators of core clock function in mammals (Per) and fungi (frq/qrf). Although oscillating lncRNAs exist in plants, their functional characterization is at an initial stage. By screening an Arabidopsis thaliana lncRNA custom-made array we identified CDF5 LONG NONCODING RNA (FLORE), a circadian-regulated lncRNA that is a NAT of CDF5. Quantitative real-time RT-PCR confirmed the circadian regulation of FLORE, whereas GUS-staining and flowering time evaluation were used to determine its biological function. FLORE and CDF5 antiphasic expression reflects mutual inhibition in a similar way to frq/qrf. Moreover, whereas the CDF5 protein delays flowering by directly repressing FT transcription, FLORE promotes it by repressing several CDFs (CDF1, CDF3, CDF5) and increasing FT transcript levels, indicating both cis and trans function. We propose that the CDF5/FLORE NAT pair constitutes an additional circadian regulatory module with conserved (mutual inhibition) and unique (function in trans) features, able to fine-tune its own circadian oscillation, and consequently, adjust the onset of flowering to favourable environmental conditions.
Collapse
Affiliation(s)
- Rossana Henriques
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Huan Wang
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| | - Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Marc Boix
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Li-Fang Huang
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065-6399, USA
| |
Collapse
|
212
|
Affiliation(s)
- Jérémie Bazin
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris Diderot, Université Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris Diderot, Université Paris-Saclay, Batiment 630, 91405, Orsay, France
| |
Collapse
|
213
|
Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci U S A 2017; 114:E10018-E10027. [PMID: 29087317 PMCID: PMC5699049 DOI: 10.1073/pnas.1708433114] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Noncoding RNAs are an underexplored reservoir of regulatory molecules in eukaryotes. We analyzed the environmental response of roots to phosphorus (Pi) nutrition to understand how a change in availability of an essential element is managed. Pi availability influenced translational regulation mediated by small upstream ORFs on protein-coding mRNAs. Discovery, classification, and evaluation of long noncoding RNAs (lncRNAs) associated with translating ribosomes uncovered diverse new examples of translational regulation. These included Pi-regulated small peptide synthesis, ribosome-coupled phased small interfering RNA production, and the translational regulation of natural antisense RNAs and other regulatory RNAs. This study demonstrates that translational control contributes to the stability and activity of regulatory RNAs, providing an avenue for manipulation of traits. Eukaryotic transcriptomes contain a major non–protein-coding component that includes precursors of small RNAs as well as long noncoding RNA (lncRNAs). Here, we utilized the mapping of ribosome footprints on RNAs to explore translational regulation of coding and noncoding RNAs in roots of Arabidopsis thaliana shifted from replete to deficient phosphorous (Pi) nutrition. Homodirectional changes in steady-state mRNA abundance and translation were observed for all but 265 annotated protein-coding genes. Of the translationally regulated mRNAs, 30% had one or more upstream ORF (uORF) that influenced the number of ribosomes on the principal protein-coding region. Nearly one-half of the 2,382 lncRNAs detected had ribosome footprints, including 56 with significantly altered translation under Pi-limited nutrition. The prediction of translated small ORFs (sORFs) by quantitation of translation termination and peptidic analysis identified lncRNAs that produce peptides, including several deeply evolutionarily conserved and significantly Pi-regulated lncRNAs. Furthermore, we discovered that natural antisense transcripts (NATs) frequently have actively translated sORFs, including five with low-Pi up-regulation that correlated with enhanced translation of the sense protein-coding mRNA. The data also confirmed translation of miRNA target mimics and lncRNAs that produce trans-acting or phased small-interfering RNA (tasiRNA/phasiRNAs). Mutational analyses of the positionally conserved sORF of TAS3a linked its translation with tasiRNA biogenesis. Altogether, this systematic analysis of ribosome-associated mRNAs and lncRNAs demonstrates that nutrient availability and translational regulation controls protein and small peptide-encoding mRNAs as well as a diverse cadre of regulatory RNAs.
Collapse
|
214
|
Yu C, Qu Z, Zhang Y, Zhang X, Lan T, Adelson DL, Wang D, Zhu Y. Seed weight differences between wild and domesticated soybeans are associated with specific changes in gene expression. PLANT CELL REPORTS 2017; 36:1417-1426. [PMID: 28653111 DOI: 10.1007/s00299-017-2165-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Our study systematically explored potential genes and molecular pathways as candidates for differences in seed weight resulting from soybean domestication. In addition, potential contributions of lncRNAs to seed weight were also investigated. Soybeans have a long history of domestication in China, and there are several significant phenotypic differences between cultivated and wild soybeans, for example, seeds of cultivars are generally larger and heavier than those from wild accessions. We analyzed seed transcriptomes from thirteen soybean samples, including six landraces and seven wild accessions using strand-specific RNA sequencing. Differentially expressed genes related to seed weight were identified, and some of their homologs were associated with seed development in Arabidopsis. We also identified 1251 long intergenic noncoding RNAs (lincRNAs), 243 intronic RNAs and 81 antisense lncRNAs de novo from these soybean transcriptomes. We then profiled the expression patterns of lncRNAs in cultivated and wild soybean seeds, and found that transcript levels of a number of lncRNAs were sample-specific. Moreover, gene transcript and lincRNA co-expression network analysis showed that some soybean lincRNAs might have functional roles as they were hubs of co-expression modules. In conclusion, this study systematically explored potential genes and molecular pathways as candidates for differences in seed weight resulting from soybean domestication, and will provide a useful future resource for molecular breeding of soybeans.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, China
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zhipeng Qu
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yueting Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xifeng Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tingting Lan
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - David L Adelson
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Youlin Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi, China.
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
215
|
Abstract
Many essential processes in biology share a common fundamental step-establishing physical contact between distant segments of DNA. How fast this step is accomplished sets the "speed limit" for the larger-scale processes it enables, whether the process is antibody production by the immune system or tissue differentiation in a developing embryo. This naturally leads us to ask, How long does it take for DNA segments that are strung out over millions of base pairs along the chromatin fiber to find each other in the crowded cell? This question, fundamental to biology, can be recognized as the physics problem of the first-passage time, or the waiting time for the first encounter. Here, we review a number of approaches to revealing the physical principles by which cells solve, with astonishing efficiency, the first-passage problem for remote genomic interactions.
Collapse
Affiliation(s)
- Yaojun Zhang
- Department of Physics, University of California at San Diego, La Jolla, California 92093; .,Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544
| | - Olga K Dudko
- Department of Physics, University of California at San Diego, La Jolla, California 92093;
| |
Collapse
|
216
|
Abstract
The maize endosperm consists of three major compartmentalized cell types: the starchy endosperm (SE), the basal endosperm transfer cell layer (BETL), and the aleurone cell layer (AL). Differential genetic programs are activated in each cell type to construct functionally and structurally distinct cells. To compare gene expression patterns involved in maize endosperm cell differentiation, we isolated transcripts from cryo-dissected endosperm specimens enriched with BETL, AL, or SE at 8, 12, and 16 days after pollination (DAP). We performed transcriptome profiling of coding and long noncoding transcripts in the three cell types during differentiation and identified clusters of the transcripts exhibiting spatio-temporal specificities. Our analysis uncovered that the BETL at 12 DAP undergoes the most dynamic transcriptional regulation for both coding and long noncoding transcripts. In addition, our transcriptome analysis revealed spatio-temporal regulatory networks of transcription factors, imprinted genes, and loci marked with histone H3 trimethylated at lysine 27. Our study suggests that various regulatory mechanisms contribute to the genetic networks specific to the functions and structures of the cell types of the endosperm.
Collapse
|
217
|
Jégu T, Veluchamy A, Ramirez-Prado JS, Rizzi-Paillet C, Perez M, Lhomme A, Latrasse D, Coleno E, Vicaire S, Legras S, Jost B, Rougée M, Barneche F, Bergounioux C, Crespi M, Mahfouz MM, Hirt H, Raynaud C, Benhamed M. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biol 2017; 18:114. [PMID: 28619072 PMCID: PMC5471679 DOI: 10.1186/s13059-017-1246-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Plant adaptive responses to changing environments involve complex molecular interplays between intrinsic and external signals. Whilst much is known on the signaling components mediating diurnal, light, and temperature controls on plant development, their influence on chromatin-based transcriptional controls remains poorly explored. RESULTS In this study we show that a SWI/SNF chromatin remodeler subunit, BAF60, represses seedling growth by modulating DNA accessibility of hypocotyl cell size regulatory genes. BAF60 binds nucleosome-free regions of multiple G box-containing genes, opposing in cis the promoting effect of the photomorphogenic and thermomorphogenic regulator Phytochrome Interacting Factor 4 (PIF4) on hypocotyl elongation. Furthermore, BAF60 expression level is regulated in response to light and daily rhythms. CONCLUSIONS These results unveil a short path between a chromatin remodeler and a signaling component to fine-tune plant morphogenesis in response to environmental conditions.
Collapse
Affiliation(s)
- Teddy Jégu
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Present address: Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Present address: Department of Genetics, Harvard Medical School, Boston, MA, 02114, USA
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Juan S Ramirez-Prado
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Charley Rizzi-Paillet
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Magalie Perez
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Anaïs Lhomme
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - David Latrasse
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Emeline Coleno
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Serge Vicaire
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400, Illkirch, France
| | - Stéphanie Legras
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400, Illkirch, France
| | - Bernard Jost
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400, Illkirch, France
| | - Martin Rougée
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Fredy Barneche
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, F-75005, Paris, France
| | - Catherine Bergounioux
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Martin Crespi
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Cécile Raynaud
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Moussa Benhamed
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France.
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
218
|
Shafiq S, Chen C, Yang J, Cheng L, Ma F, Widemann E, Sun Q. DNA Topoisomerase 1 Prevents R-loop Accumulation to Modulate Auxin-Regulated Root Development in Rice. MOLECULAR PLANT 2017; 10:821-833. [PMID: 28412545 DOI: 10.1016/j.molp.2017.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/02/2017] [Accepted: 04/03/2017] [Indexed: 05/21/2023]
Abstract
R-loop structures (RNA:DNA hybrids) have important functions in many biological processes, including transcriptional regulation and genome instability among diverse organisms. DNA topoisomerase 1 (TOP1), an essential manipulator of DNA topology during RNA transcription and DNA replication processes, can prevent R-loop accumulation by removing the positive and negative DNA supercoiling that is made by RNA polymerases during transcription. TOP1 is required for plant development, but little is known about its function in preventing co-transcriptional R-loop accumulation in various biological processes in plants. Here we show that knockdown of OsTOP1 strongly affects rice development, causing defects in root architecture and gravitropism, which are the consequences of misregulation of auxin signaling and transporter genes. We found that R-loops are naturally formed at rice auxin-related gene loci, and overaccumulate when OsTOP1 is knocked down or OsTOP1 protein activity is inhibited. OsTOP1 therefore sets the accurate expression levels of auxin-related genes by preventing the overaccumulation of inherent R-loops. Our data reveal R-loops as important factors in polar auxin transport and plant root development, and highlight that OsTOP1 functions as a key to link transcriptional R-loops with plant hormone signaling, provide new insights into transcriptional regulation of hormone signaling in plants.
Collapse
Affiliation(s)
- Sarfraz Shafiq
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Permanent affiliation: Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Cheng
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fei Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Emilie Widemann
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianwen Sun
- Center for Plant Biology and Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
219
|
Long-range control of gene expression via RNA-directed DNA methylation. PLoS Genet 2017; 13:e1006749. [PMID: 28475589 PMCID: PMC5438180 DOI: 10.1371/journal.pgen.1006749] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 05/19/2017] [Accepted: 04/07/2017] [Indexed: 01/14/2023] Open
Abstract
RNA-mediated transcriptional silencing, in plants known as RNA-directed DNA methylation (RdDM), is a conserved process where small interfering RNA (siRNA) and long non-coding RNA (lncRNA) help establish repressive chromatin modifications. This process represses transposons and affects the expression of protein-coding genes. We found that in Arabidopsis thaliana AGO4 binding sites are often located distant from genes differentially expressed in ago4. Using Hi-C to compare interactions between genotypes, we show that RdDM-targeted loci have the potential to engage in chromosomal interactions, but these interactions are inhibited in wild-type conditions. In mutants defective in RdDM, the frequency of chromosomal interactions at RdDM targets is increased. This includes increased frequency of interactions between Pol V methylated sites and distal genes that are repressed by RdDM. We propose a model, where RdDM prevents the formation of chromosomal interactions between genes and their distant regulatory elements.
Collapse
|
220
|
Nejat N, Mantri N. Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit Rev Biotechnol 2017; 38:93-105. [PMID: 28423944 DOI: 10.1080/07388551.2017.1312270] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Spectacular progress in high-throughput transcriptome sequencing and expression profiling using next-generation sequencing technologies have recently revolutionized molecular biology and allowed massive advances in identifying the genomic regions and molecular mechanisms underlying transcriptional regulation of growth, development, and stress response. Through recent research, non-coding RNAs, in particular long non-coding RNAs, have emerged as key regulators of transcription in eukaryotes. Long non-coding RNAs are vastly heterogeneous groups of RNAs that execute a broad range of essential roles in various biological processes at the epigenetic, transcriptional, and post-transcriptional levels. They modulate transcription through diverse mechanisms. Recently, numerous lncRNAs have been identified to be associated with defense responses to biotic and abiotic stresses. These have been suggested to perform indispensable roles in plant immunity and adaptation to environmental conditions. However, only a few lncRNAs have been functionally characterized in plants. In this paper, we summarize the present knowledge of lncRNAs, review the recent advances in understanding regulatory functions of lncRNAs, and highlight the emerging roles of lncRNAs in regulating immune responses in plants.
Collapse
Affiliation(s)
- Naghmeh Nejat
- a School of Science, Health Innovations Research Institute, RMIT University , Melbourne , Victoria , Australia
| | - Nitin Mantri
- a School of Science, Health Innovations Research Institute, RMIT University , Melbourne , Victoria , Australia
| |
Collapse
|
221
|
Bi X, Cheng YJ, Hu B, Ma X, Wu R, Wang JW, Liu C. Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res 2017; 27:1162-1173. [PMID: 28385710 PMCID: PMC5495068 DOI: 10.1101/gr.215186.116] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
The nuclear space is not a homogeneous biochemical environment. Many studies have demonstrated that the transcriptional activity of a gene is linked to its positioning within the nuclear space. Following the discovery of lamin-associated domains (LADs), which are transcriptionally repressed chromatin regions, the nonrandom positioning of chromatin at the nuclear periphery and its biological relevance have been studied extensively in animals. However, it remains unknown whether comparable chromatin organizations exist in plants. Here, using a strategy using restriction enzyme-mediated chromatin immunoprecipitation, we present genome-wide identification of nonrandom domain organization of chromatin at the peripheral zone of Arabidopsis thaliana nuclei. We show that in various tissues, 10%-20% of the regions on the chromosome arms are anchored at the nuclear periphery, and these regions largely overlap between different tissues. Unlike LADs in animals, the identified domains in plants are not gene-poor or A/T-rich. These domains are enriched with silenced protein-coding genes, transposable element genes, and heterochromatic marks, which collectively define a repressed environment. In addition, these domains strongly correlate with our genome-wide chromatin interaction data set (Hi-C) by largely explaining the patterns of chromatin compartments, revealed on Hi-C maps. Moreover, our results reveal a spatial compartment of different DNA methylation pathways that regulate silencing of transposable elements, where the CHH methylation of transposable elements located at the nuclear periphery and in the interior are preferentially mediated by CMT2 and DRM methyltransferases, respectively. Taken together, the results demonstrate functional partitioning of the Arabidopsis genome in the nuclear space.
Collapse
Affiliation(s)
- Xiuli Bi
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Ying-Juan Cheng
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai 200032, People's Republic of China.,University of Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Bo Hu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Xiaoli Ma
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Rui Wu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Shanghai Institutes for Biological Sciences (SIBS), Shanghai 200032, People's Republic of China
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
222
|
Wang D, Qu Z, Yang L, Zhang Q, Liu ZH, Do T, Adelson DL, Wang ZY, Searle I, Zhu JK. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:133-146. [PMID: 28106309 PMCID: PMC5514416 DOI: 10.1111/tpj.13481] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/01/2017] [Accepted: 01/05/2017] [Indexed: 05/20/2023]
Abstract
Noncoding RNAs have been extensively described in plant and animal transcriptomes by using high-throughput sequencing technology. Of these noncoding RNAs, a growing number of long intergenic noncoding RNAs (lincRNAs) have been described in multicellular organisms, however the origins and functions of many lincRNAs remain to be explored. In many eukaryotic genomes, transposable elements (TEs) are widely distributed and often account for large fractions of plant and animal genomes yet the contribution of TEs to lincRNAs is largely unknown. By using strand-specific RNA-sequencing, we profiled the expression patterns of lincRNAs in Arabidopsis, rice and maize, and identified 47 611 and 398 TE-associated lincRNAs (TE-lincRNAs), respectively. TE-lincRNAs were more often derived from retrotransposons than DNA transposons and as retrotransposon copy number in both rice and maize genomes so did TE-lincRNAs. We validated the expression of these TE-lincRNAs by strand-specific RT-PCR and also demonstrated tissue-specific transcription and stress-induced TE-lincRNAs either after salt, abscisic acid (ABA) or cold treatments. For Arabidopsis TE-lincRNA11195, mutants had reduced sensitivity to ABA as demonstrated by longer roots and higher shoot biomass when compared to wild-type. Finally, by altering the chromatin state in the Arabidopsis chromatin remodelling mutant ddm1, unique lincRNAs including TE-lincRNAs were generated from the preceding untranscribed regions and interestingly inherited in a wild-type background in subsequent generations. Our findings not only demonstrate that TE-associated lincRNAs play important roles in plant abiotic stress responses but lincRNAs and TE-lincRNAs might act as an adaptive reservoir in eukaryotes.
Collapse
Affiliation(s)
- Dong Wang
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhipeng Qu
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lan Yang
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qingzhu Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhi-Hong Liu
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Trung Do
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - David L. Adelson
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhen-Yu Wang
- Hainan Key laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Iain Searle
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- For correspondence: or
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- For correspondence: or
| |
Collapse
|
223
|
Grob S, Grossniklaus U. Chromosome conformation capture-based studies reveal novel features of plant nuclear architecture. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:149-157. [PMID: 28411415 DOI: 10.1016/j.pbi.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Nuclear genome organization has recently received increasing attention due to its manifold functions in basic nuclear processes, such as replication, transcription, and the maintenance of genome integrity. Using technologies based on chromosome conformation capture, such as Hi-C, we now have the possibility to study the three-dimensional organization of the genome at unprecedented resolution, shedding light onto a previously unexplored level of nuclear architecture. In plants, research in this field is still in its infancy but a number of publications provided first insights into basic principles of nuclear genome organization and the factors that influence it. Apart from general aspects, newly discovered three-dimensional conformations, such as the KNOT, raise special interest on how nuclear organization may influence the function of the genome in previously unexpected ways.
Collapse
Affiliation(s)
- Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
224
|
Vernalization-Triggered Intragenic Chromatin Loop Formation by Long Noncoding RNAs. Dev Cell 2017; 40:302-312.e4. [PMID: 28132848 DOI: 10.1016/j.devcel.2016.12.021] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) affect gene regulation through structural and regulatory interactions with associated proteins. The Polycomb complex often binds to lncRNAs in eukaryotes, and an lncRNA, COLDAIR, associates with Polycomb to mediate silencing of the floral repressor FLOWERING LOCUS C (FLC) during the process of vernalization in Arabidopsis. Here, we identified an additional Polycomb-binding lncRNA, COLDWRAP. COLDWRAP is derived from the repressed promoter of FLC and is necessary for the establishment of the stable repressed state of FLC by vernalization. Both COLDAIR and COLDWRAP are required to form a repressive intragenic chromatin loop at the FLC locus by vernalization. Our results indicate that vernalization-mediated Polycomb silencing is coordinated by lncRNAs in a cooperative manner to form a stable repressive chromatin structure.
Collapse
|
225
|
Abstract
The eukaryotic genomes are pervasively transcribed. In addition to protein-coding RNAs, thousands of long noncoding RNAs (lncRNAs) modulate key molecular and biological processes. Most lncRNAs are found in the nucleus and associate with chromatin, but lncRNAs can function in both nuclear and cytoplasmic compartments. Emerging work has found that many lncRNAs regulate gene expression and can affect genome stability and nuclear domain organization both in plant and in the animal kingdom. Here, we describe the major plant lncRNAs and how they act, with a focus on research in Arabidopsis thaliana and our emerging understanding of lncRNA functions in serving as molecular sponges and decoys, functioning in regulation of transcription and silencing, particularly in RNA-directed DNA methylation, and in epigenetic regulation of flowering time.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
| |
Collapse
|
226
|
Abstract
Plants must adapt to multiple biotic and abiotic stresses ; thus, sensing and responding to environmental signals is imperative for their survival. Moreover, understanding these responses is imperative for efforts to improve plant yield and consistency. Regulation of transcript levels is a key aspect of the plant response to environmental signals. Long noncoding RNAs (lncRNAs) have gained widespread attention in recent years with the advance of high-throughput sequencing technologies. As important biological regulators, lncRNAs have been implicated in a wide range of developmental processes and diseases in animals. However, knowledge of the role that lncRNAs play in plant stress tolerance remains limited. Here, we review recent studies on the identification, characteristics, classification, and biological functions of lncRNAs in response to various stresses, including bacterial pathogens, excess light, drought, salinity, hypoxia, extreme temperatures, and nitrogen/phosphate deficiency. We also discuss possible directions for future research.
Collapse
|
227
|
Xiao J, Lee US, Wagner D. Tug of war: adding and removing histone lysine methylation in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:41-53. [PMID: 27614255 DOI: 10.1016/j.pbi.2016.08.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 05/17/2023]
Abstract
Histone lysine methylation plays a fundamental role in the epigenetic regulation of gene expression in multicellular eukaryotes, including plants. It shapes plant developmental and growth programs as well as responses to the environment. The methylation status of certain amino-acids, in particular of the histone 3 (H3) lysine tails, is dynamically controlled by opposite acting histone methyltransferase 'writers' and histone demethylase 'erasers'. The methylation status is interpreted by a third set of proteins, the histone modification 'readers', which specifically bind to a methylated amino-acid on the H3 tail. Histone methylation writers, readers, and erasers themselves are regulated by intrinsic or extrinsic stimuli; this forms a feedback loop that contributes to development and environmental adaptation in Arabidopsis and other plants. Recent studies have expanded our knowledge regarding the biological roles and dynamic regulation of histone methylation. In this review, we will discuss recent advances in understanding the regulation and roles of histone methylation in plants and animals.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Un-Sa Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
228
|
Satgé C, Moreau S, Sallet E, Lefort G, Auriac MC, Remblière C, Cottret L, Gallardo K, Noirot C, Jardinaud MF, Gamas P. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. NATURE PLANTS 2016; 2:16166. [PMID: 27797357 DOI: 10.1038/nplants.2016.166] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/28/2016] [Indexed: 05/25/2023]
Abstract
The legume-Rhizobium symbiosis leads to the formation of a new organ, the root nodule, involving coordinated and massive induction of specific genes. Several genes controlling DNA methylation are spatially regulated within the Medicago truncatula nodule, notably the demethylase gene, DEMETER (DME), which is mostly expressed in the differentiation zone. Here, we show that MtDME is essential for nodule development and regulates the expression of 1,425 genes, some of which are critical for plant and bacterial cell differentiation. Bisulphite sequencing coupled to genomic capture enabled the identification of 474 regions that are differentially methylated during nodule development, including nodule-specific cysteine-rich peptide genes. Decreasing DME expression by RNA interference led to hypermethylation and concomitant downregulation of 400 genes, most of them associated with nodule differentiation. Massive reprogramming of gene expression through DNA demethylation is a new epigenetic mechanism controlling a key stage of indeterminate nodule organogenesis during symbiotic interactions.
Collapse
Affiliation(s)
- Carine Satgé
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Sandra Moreau
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Erika Sallet
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Gaëlle Lefort
- MIAT, Université de Toulouse, Plate-forme Bio-informatique Genotoul, INRA, Castanet-Tolosan, France
| | | | - Céline Remblière
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Karine Gallardo
- INRA, UMR 1347 Agroécologie, BP 86510, Dijon F-21000, France
| | - Céline Noirot
- MIAT, Université de Toulouse, Plate-forme Bio-informatique Genotoul, INRA, Castanet-Tolosan, France
| | - Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
- INPT-Université de Toulouse, ENSAT, Avenue de l'Agrobiopole, Castanet-Tolosan, France
| | - Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| |
Collapse
|
229
|
Ramirez-Prado JS, Rodriguez-Granados NY, Ariel F, Raynaud C, Benhamed M. Chromatin architecture: A new dimension in the dynamic control of gene expression. PLANT SIGNALING & BEHAVIOR 2016; 11:e1232224. [PMID: 27611230 PMCID: PMC5117090 DOI: 10.1080/15592324.2016.1232224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
As the most recent evidence of eukaryotic cell complexity, genome architecture has astounded the scientific community and prompted a variety of technical and cognitive challenges. Several technologies have emerged and evidenced the integration of chromatin packaging and topology, epigenetic processes, and transcription for the pertinent regulation of gene expression. In the present addendum we present and discuss some of our recent research, directed toward the holistic comprehension of the processes by which plants respond to environmental and developmental stimuli. We propose that the study of genome topology and genomic interactions is essential for the understanding of the molecular mechanisms behind a phenotype. Even though our knowledge and understanding of genome architecture and hierarchy has improved substantially in the last few years -in Arabidopsis and other eukaryotes -, there is still a long way ahead in this relatively new field of study. For this, it is necessary to take advantage of the high resolution of the emerging available techniques, and perform integrative approaches with which it will be possible to depict the role of chromatin architecture in the regulation of transcription and ultimately, physiological processes.
Collapse
Affiliation(s)
- Juan Sebastian Ramirez-Prado
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Natalia Yaneth Rodriguez-Granados
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, Orsay, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, Orsay, France
| | - Moussa Benhamed
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment, Orsay, France
| |
Collapse
|
230
|
Wang Z, Schwacke R, Kunze R. DNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent. MOLECULAR PLANT 2016; 9:1142-1155. [PMID: 27150037 DOI: 10.1016/j.molp.2016.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 05/20/2023]
Abstract
Induction and mobilization of transposable elements (TEs) following DNA damage or other stresses has been reported in prokaryotes and eukaryotes. Recently it was discovered that eukaryotic TEs are frequently associated with long non-coding RNAs (lncRNAs), many of which are also upregulated by stress. Yet, it is unknown whether DNA damage-induced transcriptional activation of TEs and lncRNAs occurs sporadically or is a synchronized, genome-wide response. Here we investigated the transcriptome of Arabidopsis wild-type (WT) and ataxia telangiectasia mutated (atm) mutant plants 3 h after induction of DNA damage. In WT, expression of 5.2% of the protein-coding genes is ≥2-fold changed, whereas in atm plants, only 2.6% of these genes are regulated, and the response of genes associated with DNA repair, replication, and cell cycle is largely lost. In contrast, only less than 0.6% of TEs and lncRNAs respond to DNA damage in WT plants, and the regulation of ≥95% of them is ATM-dependent. The ATM-downstream factors BRCA1, DRM1, JMJ30, AGO2, and the ATM-independent AGO4 participate in the regulation of individual TEs and lncRNAs. Remarkably, protein-coding genes located adjacent to DNA damage-responsive TEs and lncRNAs are frequently coexpressed, which is consistent with the hypothesis that TEs and lncRNAs located close to genes commonly function as controlling elements.
Collapse
Affiliation(s)
- Zhenxing Wang
- Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences - DCPS, Freie Universität Berlin, Albrecht-Thaler-Weg 6, 14195 Berlin, Germany
| | - Rainer Schwacke
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425 Jülich, Germany
| | - Reinhard Kunze
- Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences - DCPS, Freie Universität Berlin, Albrecht-Thaler-Weg 6, 14195 Berlin, Germany.
| |
Collapse
|
231
|
Brkljacic J, Grotewold E. Combinatorial control of plant gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:31-40. [PMID: 27427484 DOI: 10.1016/j.bbagrm.2016.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/02/2023]
Abstract
Combinatorial gene regulation provides a mechanism by which relatively small numbers of transcription factors can control the expression of a much larger number of genes with finely tuned temporal and spatial patterns. This is achieved by transcription factors assembling into complexes in a combinatorial fashion, exponentially increasing the number of genes that they can target. Such an arrangement also increases the specificity and affinity for the cis-regulatory sequences required for accurate target gene expression. Superimposed on this transcription factor combinatorial arrangement is the increasing realization that histone modification marks expand the regulatory information, which is interpreted by histone readers and writers that are part of the regulatory apparatus. Here, we review the progress in these areas from the perspective of plant combinatorial gene regulation, providing examples of different regulatory solutions and comparing them to other metazoans. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jelena Brkljacic
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA
| | - Erich Grotewold
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
232
|
Veluchamy A, Jégu T, Ariel F, Latrasse D, Mariappan KG, Kim SK, Crespi M, Hirt H, Bergounioux C, Raynaud C, Benhamed M. LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome. PLoS One 2016; 11:e0158936. [PMID: 27410265 PMCID: PMC4943711 DOI: 10.1371/journal.pone.0158936] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
Precise expression patterns of genes in time and space are essential for proper development of multicellular organisms. Dynamic chromatin conformation and spatial organization of the genome constitute a major step in this regulation to modulate developmental outputs. Polycomb repressive complexes (PRCs) mediate stable or flexible gene repression in response to internal and environmental cues. In Arabidopsis thaliana, LHP1 co-localizes with H3K27me3 epigenetic marks throughout the genome and interacts with PRC1 and PRC2 members as well as with a long noncoding RNA. Here, we show that LHP1 is responsible for the spreading of H3K27me3 towards the 3' end of the gene body. We also identified a subset of LHP1-activated genes and demonstrated that LHP1 shapes local chromatin topology in order to control transcriptional co-regulation. Our work reveals a general role of LHP1 from local to higher conformation levels of chromatin configuration to determine its accessibility to define gene expression patterns.
Collapse
Affiliation(s)
- Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Teddy Jégu
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Federico Ariel
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Kiruthiga Gayathri Mariappan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
- * E-mail:
| |
Collapse
|
233
|
Böhmdorfer G, Wierzbicki AT. Control of Chromatin Structure by Long Noncoding RNA. Trends Cell Biol 2016; 25:623-632. [PMID: 26410408 DOI: 10.1016/j.tcb.2015.07.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/22/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) is a pivotal factor regulating various aspects of genome activity. Genome regulation via DNA methylation and post-translational histone modifications is a well-documented function of lncRNA in plants, fungi, and animals. Here, we summarize evidence showing that lncRNA also controls chromatin structure, including nucleosome positioning and chromosome looping. We focus on data from plant experimental systems, discussed in the context of other eukaryotes. We explain the mechanisms of lncRNA-controlled chromatin remodeling and the implications of the functional interplay between noncoding transcription and several different chromatin remodelers. We propose that the unique properties of RNA make it suitable for controlling chromatin modifications and structure.
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109, USA
| | - Andrzej T Wierzbicki
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109, USA.
| |
Collapse
|
234
|
Wan Q, Guan X, Yang N, Wu H, Pan M, Liu B, Fang L, Yang S, Hu Y, Ye W, Zhang H, Ma P, Chen J, Wang Q, Mei G, Cai C, Yang D, Wang J, Guo W, Zhang W, Chen X, Zhang T. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. THE NEW PHYTOLOGIST 2016; 210:1298-310. [PMID: 26832840 DOI: 10.1111/nph.13860] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/09/2015] [Indexed: 05/18/2023]
Abstract
Natural antisense transcripts (NATs) are commonly observed in eukaryotic genomes, but only a limited number of such genes have been identified as being involved in gene regulation in plants. In this research, we investigated the function of small RNA derived from a NAT in fiber cell development. Using a map-based cloning strategy for the first time in tetraploid cotton, we cloned a naked seed mutant gene (N1 ) encoding a MYBMIXTA-like transcription factor 3 (MML3)/GhMYB25-like in chromosome A12, GhMML3_A12, that is associated with fuzz fiber development. The extremely low expression of GhMML3_A12 in N1 is associated with NAT production, driven by its 3' antisense promoter, as indicated by the promoter-driven histochemical staining assay. In addition, small RNA deep sequencing analysis suggested that the bidirectional transcriptions of GhMML3_A12 form double-stranded RNAs and generate 21-22 nt small RNAs. Therefore, in a fiber-specific manner, small RNA derived from the GhMML3_A12 locus can mediate GhMML3_A12 mRNA self-cleavage and result in the production of naked seeds followed by lint fiber inhibition in N1 plants. The present research reports the first observation of gene-mediated NATs and siRNA directly controlling fiber development in cotton.
Collapse
Affiliation(s)
- Qun Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nannan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaitong Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengqiao Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingliang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouping Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiyong Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaofu Mei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Donglei Yang
- National Laboratory of Plant Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawei Wang
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, National Plant Gene Research Center, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R&D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
235
|
Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 2016; 5:13546. [PMID: 27242129 PMCID: PMC4887212 DOI: 10.7554/elife.13546] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring.
Collapse
Affiliation(s)
- Anjar Wibowo
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gianpiero Marconi
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Julius Durr
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan Price
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jorg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ranjith Papareddy
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hadi Putra
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jorge Kageyama
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jorg Becker
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
236
|
Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res 2016; 26:1057-68. [PMID: 27225844 PMCID: PMC4971768 DOI: 10.1101/gr.204032.116] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022]
Abstract
The three-dimensional packing of the genome plays an important role in regulating gene expression. We have used Hi-C, a genome-wide chromatin conformation capture (3C) method, to analyze Arabidopsis thaliana chromosomes dissected into subkilobase segments, which is required for gene-level resolution in this species with a gene-dense genome. We found that the repressive H3K27me3 histone mark is overrepresented in the promoter regions of genes that are in conformational linkage over long distances. In line with the globally dispersed distribution of RNA polymerase II in A. thaliana nuclear space, actively transcribed genes do not show a strong tendency to associate with each other. In general, there are often contacts between 5' and 3' ends of genes, forming local chromatin loops. Such self-loop structures of genes are more likely to occur in more highly expressed genes, although they can also be found in silent genes. Silent genes with local chromatin loops are highly enriched for the histone variant H3.3 at their 5' and 3' ends but depleted of repressive marks such as heterochromatic histone modifications and DNA methylation in flanking regions. Our results suggest that, different from animals, a major theme of genome folding in A. thaliana is the formation of structural units that correspond to gene bodies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Congmao Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Institute of Digital Agriculture, Zhejiang Academy of Agriculture Sciences, Hangzhou 310029, China
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
237
|
Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis. Sci Rep 2016; 6:26820. [PMID: 27220366 PMCID: PMC4879556 DOI: 10.1038/srep26820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022] Open
Abstract
Cell fate and differentiation in the Arabidopsis root epidermis are genetically defined but remain plastic to environmental signals such as limited availability of inorganic phosphate (Pi). Root hairs of Pi-deficient plants are more frequent and longer than those of plants grown under Pi-replete conditions. To dissect genes involved in Pi deficiency-induced root hair morphogenesis, we constructed a co-expression network of Pi-responsive genes against a customized database that was assembled from experiments in which differentially expressed genes that encode proteins with validated functions in root hair development were over-represented. To further filter out less relevant genes, we combined this procedure with a search for common cis-regulatory elements in the promoters of the selected genes. In addition to well-described players and processes such as auxin signalling and modifications of primary cell walls, we discovered several novel aspects in the biology of root hairs induced by Pi deficiency, including cell cycle control, putative plastid-to-nucleus signalling, pathogen defence, reprogramming of cell wall-related carbohydrate metabolism, and chromatin remodelling. This approach allows the discovery of novel of aspects of a biological process from transcriptional profiles with high sensitivity and accuracy.
Collapse
|
238
|
Rodriguez-Granados NY, Ramirez-Prado JS, Veluchamy A, Latrasse D, Raynaud C, Crespi M, Ariel F, Benhamed M. Put your 3D glasses on: plant chromatin is on show. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3205-21. [PMID: 27129951 DOI: 10.1093/jxb/erw168] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture.
Collapse
Affiliation(s)
- Natalia Y Rodriguez-Granados
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan S Ramirez-Prado
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Federico Ariel
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| |
Collapse
|
239
|
Moreno-Romero J, Jiang H, Santos-González J, Köhler C. Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J 2016; 35:1298-311. [PMID: 27113256 DOI: 10.15252/embj.201593534] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
Parental genomes in the endosperm are marked by differential DNA methylation and are therefore epigenetically distinct. This epigenetic asymmetry is established in the gametes and maintained after fertilization by unknown mechanisms. In this manuscript, we have addressed the key question whether parentally inherited differential DNA methylation affects de novo targeting of chromatin modifiers in the early endosperm. Our data reveal that polycomb-mediated H3 lysine 27 trimethylation (H3K27me3) is preferentially localized to regions that are targeted by the DNA glycosylase DEMETER (DME), mechanistically linking DNA hypomethylation to imprinted gene expression. Our data furthermore suggest an absence of de novo DNA methylation in the early endosperm, providing an explanation how DME-mediated hypomethylation of the maternal genome is maintained after fertilization. Lastly, we show that paternal-specific H3K27me3-marked regions are located at pericentromeric regions, suggesting that H3K27me3 and DNA methylation are not necessarily exclusive marks at pericentromeric regions in the endosperm.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Hua Jiang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center of Plant Biology, Uppsala, Sweden
| |
Collapse
|
240
|
Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, Wu B, Xu R, Liu W, Yan P, Shao W, Lu Z, Li H, Na J, Tang F, Wang J, Zhang YE, Shen X. Divergent lncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells. Cell Stem Cell 2016; 18:637-52. [PMID: 26996597 DOI: 10.1016/j.stem.2016.01.024] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/17/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023]
Abstract
Divergent lncRNAs that are transcribed in the opposite direction to nearby protein-coding genes comprise a significant proportion (∼20%) of total lncRNAs in mammalian genomes. Through genome-wide analysis, we found that the distribution of this lncRNA class strongly correlates with essential developmental regulatory genes. In pluripotent cells, divergent lncRNAs regulate the transcription of nearby genes. As an example, the divergent lncRNA Evx1as promotes transcription of its neighbor gene, EVX1, and regulates mesendodermal differentiation. At a single-cell level, early broad expression of Evx1as is followed by a rapid, high-level transcription of EVX1, supporting the idea that Evx1as plays an upstream role to facilitate EVX1 transcription. Mechanistically, Evx1as RNA binds to regulatory sites on chromatin, promotes an active chromatin state, and interacts with Mediator. Based on our analyses, we propose that the biological function of thousands of uncharacterized lncRNAs of this class may be inferred from the role of their neighboring adjacent genes.
Collapse
Affiliation(s)
- Sai Luo
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - J Yuyang Lu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lichao Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yafei Yin
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Han
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bohou Wu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ronggang Xu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Pixi Yan
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhi Lu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
241
|
Rowley MJ, Corces VG. The three-dimensional genome: principles and roles of long-distance interactions. Curr Opin Cell Biol 2016; 40:8-14. [PMID: 26852111 DOI: 10.1016/j.ceb.2016.01.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/18/2016] [Indexed: 01/01/2023]
Abstract
The linear sequence of eukaryotic genomes is arranged in a specific manner within the three-dimensional nuclear space. Interactions between distant sites partition the genome into domains of highly associating chromatin. Interaction domains are found in many organisms, but their properties and the principles governing their establishment vary between different species. Topologically associating domains (TADs) extending over large genomic regions are found in mammals and Drosophila melanogaster, whereas other types of contact domains exist in lower eukaryotes. Here we review recent studies that explore the mechanisms by which long distance chromatin interactions determine the 3D organization of the genome and the relationship between this organization and the establishment of specific patterns of gene expression.
Collapse
Affiliation(s)
- M Jordan Rowley
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|
242
|
Förderer A, Zhou Y, Turck F. The age of multiplexity: recruitment and interactions of Polycomb complexes in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:169-78. [PMID: 26826786 DOI: 10.1016/j.pbi.2015.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 05/08/2023]
Abstract
Polycomb group (PcG) proteins form distinct complexes that modify chromatin by histone H3 methylation and H2A mono-ubiquitination leading to chromatin compaction and epigenetic repression of target genes. A network of PcG protein complexes, associated partners and antagonistically acting chromatin modifiers is essential to regulate developmental transitions and cell fate in all multicellular eukaryotes. In this review, we discuss insights on the subfunctionalization of PcG complexes and their modes of recruitment to target sites based on data from the model organism Arabidopsis thaliana.
Collapse
Affiliation(s)
- Alexander Förderer
- Max Planck Institute for Plant Breeding Research, Department Plant Developmental Biology, Carl von Linne Weg 10, 50829 Köln, Germany
| | - Yue Zhou
- Max Planck Institute for Plant Breeding Research, Department Plant Developmental Biology, Carl von Linne Weg 10, 50829 Köln, Germany
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Department Plant Developmental Biology, Carl von Linne Weg 10, 50829 Köln, Germany.
| |
Collapse
|
243
|
Yamamuro C, Zhu JK, Yang Z. Epigenetic Modifications and Plant Hormone Action. MOLECULAR PLANT 2016; 9:57-70. [PMID: 26520015 PMCID: PMC5575749 DOI: 10.1016/j.molp.2015.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/27/2015] [Accepted: 10/22/2015] [Indexed: 05/18/2023]
Abstract
The action of phytohormones in plants requires the spatiotemporal regulation of their accumulation and responses at various levels. Recent studies reveal an emerging relationship between the function of phytohormones and epigenetic modifications. In particular, evidence suggests that auxin biosynthesis, transport, and signal transduction is modulated by microRNAs and epigenetic factors such as histone modification, chromatin remodeling, and DNA methylation. Furthermore, some phytohormones have been shown to affect epigenetic modifications. These findings are shedding light on the mode of action of phytohormones and are opening up a new avenue of research on phytohormones as well as on the mechanisms regulating epigenetic modifications.
Collapse
Affiliation(s)
- Chizuko Yamamuro
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PRC.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
244
|
Kang C, Liu Z. Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics 2015; 16:815. [PMID: 26481460 PMCID: PMC4617481 DOI: 10.1186/s12864-015-2014-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a new class of regulatory molecules with roles in diverse biological processes. While much effort has been invested in the analysis of lncRNAs from established plant models Arabidopsis, maize, and rice, almost nothing is known about lncRNAs from fruit crops, including those in the Rosaceae family. Results Here, we present a genome-scale identification and characterization of lncRNAs from a diploid strawberry, Fragaria vesca, based on rich RNA-seq datasets from 35 different flower and fruit tissues. 5,884 Fve-lncRNAs derived from 3,862 loci were identified. These lncRNAs were carefully cataloged based on expression level and whether or not they contain repetitive sequences or generate small RNAs. About one fourth of them are termed high-confidence lncRNAs (hc-lncRNAs) because they are expressed at a level of FPKM higher than 2 and produce neither small RNAs nor contain repetitive sequence. To identify regulatory interactions between lncRNAs and their potential protein-coding (PC) gene targets, pairs of lncRNAs and PC genes with positively or negatively correlated expression trends were identified based on their expression; these pairs may be candidates of cis- or trans-acting lncRNAs and their targets. Finally, blast searches within plant species indicate that lncRNAs are not well conserved. Conclusions Our study identifies a large number of tissue-specifically expressed lncRNAs in F. vesca, thereby highlighting their potential contributions to strawberry flower and fruit development and paving the way for future functional studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2014-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunying Kang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
245
|
Jégu T, Domenichini S, Blein T, Ariel F, Christ A, Kim SK, Crespi M, Boutet-Mercey S, Mouille G, Bourge M, Hirt H, Bergounioux C, Raynaud C, Benhamed M. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture. PLoS One 2015; 10:e0138276. [PMID: 26457678 PMCID: PMC4601769 DOI: 10.1371/journal.pone.0138276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.
Collapse
Affiliation(s)
- Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Séverine Domenichini
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Thomas Blein
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Federico Ariel
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Aurélie Christ
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Martin Crespi
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | | | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, Versailles, France
| | - Mickaël Bourge
- Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif, CNRS, IFR87, Gif-sur-Yvette, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
- * E-mail:
| |
Collapse
|
246
|
Wang H, Niu QW, Wu HW, Liu J, Ye J, Yu N, Chua NH. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:404-16. [PMID: 26387578 DOI: 10.1111/tpj.13018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/26/2015] [Indexed: 05/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have recently been found to widely exist in eukaryotes and play important roles in key biological processes. To extend our knowledge of lncRNAs in crop plants we performed both non-directional and strand-specific RNA-sequencing experiments to profile non-coding transcriptomes of various rice and maize organs at different developmental stages. Analysis of more than 3 billion reads identified 22 334 long intergenic non-coding RNAs (lincRNAs) and 6673 pairs of sense and natural antisense transcript (NAT). Many lincRNA genes were associated with epigenetic marks. Expression of rice lincRNA genes was significantly correlated with that of nearby protein-coding genes. A set of NAT genes also showed expression correlation with their sense genes. More than 200 rice lincRNA genes had homologous non-coding sequences in the maize genome. Much more lincRNA and NAT genes were derived from conserved genomic regions between the two cereals presenting positional conservation. Protein-coding genes flanking or having a sense-antisense relationship to these conserved lncRNA genes were mainly involved in development and stress responses, suggesting that the associated lncRNAs might have similar functions. Integrating previous genome-wide association studies (GWAS), we found that hundreds of lincRNAs contain trait-associated SNPs (single nucleotide polymorphisms [SNPs]) suggesting their putative contributions to developmental and agriculture traits.
Collapse
Affiliation(s)
- Huan Wang
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Qi-Wen Niu
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Hui-Wen Wu
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Jian Ye
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore City, 117604, Singapore
| | - Niu Yu
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
247
|
Chekanova JA. Long non-coding RNAs and their functions in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:207-16. [PMID: 26342908 DOI: 10.1016/j.pbi.2015.08.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 05/18/2023]
Abstract
Eukaryotic genomes encode thousands of long noncoding RNAs (lncRNAs), which play important roles in essential biological processes. Although lncRNAs function in the nuclear and cytoplasmic compartments, most of them occur in the nucleus, often in association with chromatin. Indeed, many lncRNAs have emerged as key regulators of gene expression and genome stability. Emerging evidence also suggests that lncRNAs may contribute to the organization of nuclear domains. This review briefly summarizes the major types of eukaryotic lncRNAs and provides examples of their mechanisms of action, with focus on plant lncRNAs, mainly in Arabidopsis thaliana, and describes current advances in our understanding of the mechanisms of lncRNA action and the roles of lncRNAs in RNA-dependent DNA methylation and in the regulation of flowering time.
Collapse
Affiliation(s)
- Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
248
|
Burgess DG, Xu J, Freeling M. Advances in understanding cis regulation of the plant gene with an emphasis on comparative genomics. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:141-7. [PMID: 26247124 DOI: 10.1016/j.pbi.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 05/07/2023]
Abstract
The plant gene model remains largely an extrapolation from animals, with the cis functional unit, the gene, cast as a dynamic looping structure. Molecular genetics with model plants continues to make advances; highlighted here are quantitative-occupancy results from the Arabidopsis thaliana (Arabidopsis) Phytochrome-Interacting bHLH transcription Factors (PIF) quartet. Compared to this complex snapshot, results from chromatin occupancy and other Encyclopedia of DNA Elements (ENCODE)-like approaches increase our transcription factor-motif cognate library, but regulation cannot by itself be inferred from binding. Complementary published Arabidopsis conserved noncoding sequence lists are compared, evaluated, merged, and released. Comparative genomic approaches have identified a cis modifier of a gene's expression-hypothetically, a transposon-based 'rheostat'-that works in all cells, times and places.
Collapse
Affiliation(s)
- Diane G Burgess
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, United States.
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, United States
| |
Collapse
|
249
|
Gago-Zachert S. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Res 2015; 212:12-24. [PMID: 26319312 DOI: 10.1016/j.virusres.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Transcriptome deep-sequencing studies performed during the last years confirmed that the vast majority of the RNAs transcribed in higher organisms correspond to several types of non-coding RNAs including long non-coding RNAs (lncRNAs). The study of lncRNAs and the identification of their functions, is still an emerging field in plants but the characterization of some of them indicate that they play an important role in crucial regulatory processes like flowering regulation, and responses to abiotic stress and plant hormones. A second group of lncRNAs present in plants is formed by viroids, exogenous infectious subviral plant pathogens well known since many years. Viroids are composed of circular RNA genomes without protein-coding capacity and subvert enzymatic activities of their hosts to complete its own biological cycle. Different aspects of viroid biology and viroid-host interactions have been elucidated in the last years and some of them are the main topic of this review together with the analysis of the state-of-the-art about the growing field of endogenous lncRNAs in plants.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
250
|
Abstract
Methods that use high-throughput sequencing have begun to reveal features of the three-dimensional structure of genomes at a resolution that goes far beyond that of traditional microscopy. Integration of these methods with other molecular tools has advanced our knowledge of both global and local chromatin packing in plants, and has revealed how patterns of chromatin packing correlate with the genomic and epigenomic landscapes. This update reports recent progress made in this area in plants, and suggests new research directions.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|