201
|
Chemello F, Wang Z, Li H, McAnally JR, Liu N, Bassel-Duby R, Olson EN. Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2020; 117:29691-29701. [PMID: 33148801 PMCID: PMC7703557 DOI: 10.1073/pnas.2018391117] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disorder characterized by cycles of degeneration and regeneration of multinucleated myofibers and pathological activation of a variety of other muscle-associated cell types. The extent to which different nuclei within the shared cytoplasm of a myofiber may display transcriptional diversity and whether individual nuclei within a multinucleated myofiber might respond differentially to DMD pathogenesis is unknown. Similarly, the potential transcriptional diversity among nonmuscle cell types within dystrophic muscle has not been explored. Here, we describe the creation of a mouse model of DMD caused by deletion of exon 51 of the dystrophin gene, which represents a prevalent disease-causing mutation in humans. To understand the transcriptional abnormalities and heterogeneity associated with myofiber nuclei, as well as other mononucleated cell types that contribute to the muscle pathology associated with DMD, we performed single-nucleus transcriptomics of skeletal muscle of mice with dystrophin exon 51 deletion. Our results reveal distinctive and previously unrecognized myonuclear subtypes within dystrophic myofibers and uncover degenerative and regenerative transcriptional pathways underlying DMD pathogenesis. Our findings provide insights into the molecular underpinnings of DMD, controlled by the transcriptional activity of different types of muscle and nonmuscle nuclei.
Collapse
Affiliation(s)
- Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhaoning Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
202
|
Li J, Xing S, Zhao G, Zheng M, Yang X, Sun J, Wen J, Liu R. Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing. BMC Genomics 2020; 21:752. [PMID: 33129271 PMCID: PMC7603756 DOI: 10.1186/s12864-020-07136-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The development of skeletal muscle is closely related to the efficiency of meat production and meat quality. Chicken skeletal muscle development depends on myogenesis and adipogenesis and occurs in two phases-hyperplasia and hypertrophy. However, cell profiles corresponding to the two-phase muscle development have yet to be determined. Single-cell RNA-sequencing (scRNA-seq) can elucidate the cell subpopulations in tissue and capture the gene expression of individual cells, which can provide new insights into the myogenesis and intramuscular adipogenesis. RESULTS Ten cell clusters at the post-hatching developmental stage at Day 5 and seven cell clusters at the late developmental stage at Day 100 were identified in chicken breast muscles by scRNA-seq. Five myocyte-related clusters and two adipocyte clusters were identified at Day 5, and one myocyte cluster and one adipocyte cluster were identified at Day 100. The pattern of cell clustering varied between the two stages. The cell clusters showed clear boundaries at the terminal differentiation stage at Day 100; by contrast, cell differentiation was not complete at Day 5. APOA1 and COL1A1 were selected from up-regulated genes in the adipocyte cluster and found to be co-expressed with the ADIPOQ adipocyte marker gene in breast muscles by RNA in situ hybridization. CONCLUSIONS This study is the first to describe the heterogeneity of chicken skeletal muscle at two developmental stages. The genes APOA1 and COL1A1 were identified as biomarkers for chicken intramuscular fat cells.
Collapse
Affiliation(s)
- Jinghui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, 100193 P. R. China
| | - Siyuan Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, 100193 P. R. China
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, 100193 P. R. China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, 100193 P. R. China
| | - Xinting Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, 100193 P. R. China
| | - Jiahong Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, 100193 P. R. China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, 100193 P. R. China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences; State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Beijing, 100193 P. R. China
| |
Collapse
|
203
|
García-Prat L, Perdiguero E, Alonso-Martín S, Dell'Orso S, Ravichandran S, Brooks SR, Juan AH, Campanario S, Jiang K, Hong X, Ortet L, Ruiz-Bonilla V, Flández M, Moiseeva V, Rebollo E, Jardí M, Sun HW, Musarò A, Sandri M, Del Sol A, Sartorelli V, Muñoz-Cánoves P. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat Cell Biol 2020; 22:1307-1318. [PMID: 33106654 DOI: 10.1038/s41556-020-00593-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.
Collapse
Affiliation(s)
- Laura García-Prat
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Eusebio Perdiguero
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Sonia Alonso-Martín
- Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain.,Neurosciences Area, Biodonostia Health Research Institute, Donostia-San Sebastián, San Sebastián, Spain
| | - Stefania Dell'Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH Bethesda, Bethesda, MD, USA
| | - Srikanth Ravichandran
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, NIAMS, NIH Bethesda, Bethesda, MD, USA
| | - Aster H Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH Bethesda, Bethesda, MD, USA
| | - Silvia Campanario
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH Bethesda, Bethesda, MD, USA
| | - Xiaotong Hong
- Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| | - Laura Ortet
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Vanessa Ruiz-Bonilla
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Marta Flández
- Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain.,Grupo de Investigación en Oncología Clínico Traslacional, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Victoria Moiseeva
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Elena Rebollo
- Molecular Imaging Platform, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Mercè Jardí
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, NIAMS, NIH Bethesda, Bethesda, MD, USA
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Marco Sandri
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,CIC bioGUNE, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH Bethesda, Bethesda, MD, USA.
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain. .,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
204
|
Dos Santos M, Backer S, Saintpierre B, Izac B, Andrieu M, Letourneur F, Relaix F, Sotiropoulos A, Maire P. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun 2020; 11:5102. [PMID: 33037211 PMCID: PMC7547110 DOI: 10.1038/s41467-020-18789-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.
Collapse
Affiliation(s)
| | - Stéphanie Backer
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | | | - Brigitte Izac
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Frederic Relaix
- Université Paris-Est Creteil, INSERM U955 IMRB., 94000, Creteil, France
| | | | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France.
| |
Collapse
|
205
|
Cho DS, Schmitt RE, Dasgupta A, Ducharme AM, Doles JD. Single-cell deconstruction of post-sepsis skeletal muscle and adipose tissue microenvironments. J Cachexia Sarcopenia Muscle 2020; 11:1351-1363. [PMID: 32643301 PMCID: PMC7567136 DOI: 10.1002/jcsm.12596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Persistent loss of skeletal muscle mass and function as well as altered fat metabolism are frequently observed in severe sepsis survivors. Studies examining sepsis-associated tissue dysfunction from the perspective of the tissue microenvironment are scarce. In this study, we comprehensively assessed transcriptional changes in muscle and fat at single-cell resolution following experimental sepsis induction. METHODS Skeletal muscle and visceral white adipose tissue from control mice or mice 1 day or 1 month following faecal slurry-induced sepsis were used. Single cells were mechanically and enzymatically prepared from whole tissue, and viable cells were further isolated by fluorescence activated cell sorting. Droplet-based single-cell RNA-sequencing (scRNA-seq; 10× Genomics) was used to generate single-cell gene expression profiles of thousands of muscle and fat-resident cells. Bioinformatics analyses were performed to identify and compare individual cell populations in both tissues. RESULTS In skeletal muscle, scRNA-seq analysis classified 1438 single cells into myocytes, endothelial cells, fibroblasts, mesenchymal stem cells, macrophages, neutrophils, T-cells, B-cells, and dendritic cells. In adipose tissue, scRNA-seq analysis classified 2281 single cells into adipose stem cells, preadipocytes, endothelial cells, fibroblasts, macrophages, dendritic cells, B-cells, T-cells, NK cells, and gamma delta T-cells. One day post-sepsis, the proportion of most non-immune cell populations was decreased, while immune cell populations, particularly neutrophils and macrophages, were highly enriched. Proportional changes of endothelial cells, neutrophils, and macrophages were validated using faecal slurry and cecal ligation and puncture models. At 1 month post-sepsis, we observed persistent enrichment/depletion of cell populations and further uncovered a cell-type and tissue-specific ability to return to a baseline transcriptomic state. Differential gene expression analyses revealed key genes and pathways altered in post-sepsis muscle and fat and highlighted the engagement of infection/inflammation and tissue damage signalling. Finally, regulator analysis identified gonadotropin-releasing hormone and Bay 11-7082 as targets/compounds that we show can reduce sepsis-associated loss of lean or fat mass. CONCLUSIONS These data demonstrate persistent post-sepsis muscle and adipose tissue disruption at the single-cell level and highlight opportunities to combat long-term post-sepsis tissue wasting using bioinformatics-guided therapeutic interventions.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | - Rebecca E. Schmitt
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | | | - Jason D. Doles
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| |
Collapse
|
206
|
Gheller BJ, Blum JE, Fong EHH, Malysheva OV, Cosgrove BD, Thalacker-Mercer AE. A defined N6-methyladenosine (m 6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions. Cell Death Discov 2020; 6:95. [PMID: 33083017 PMCID: PMC7524727 DOI: 10.1038/s41420-020-00328-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/01/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
Muscle-specific adult stem cells (MuSCs) are required for skeletal muscle regeneration. To ensure efficient skeletal muscle regeneration after injury, MuSCs must undergo state transitions as they are activated from quiescence, give rise to a population of proliferating myoblasts, and continue either to terminal differentiation, to repair or replace damaged myofibers, or self-renewal to repopulate the quiescent population. Changes in MuSC/myoblast state are accompanied by dramatic shifts in their transcriptional profile. Previous reports in other adult stem cell systems have identified alterations in the most abundant internal mRNA modification, N6-methyladenosine (m6A), conferred by its active writer, METTL3, to regulate cell state transitions through alterations in the transcriptional profile of these cells. Our objective was to determine if m6A-modification deposition via METTL3 is a regulator of MuSC/myoblast state transitions in vitro and in vivo. Using liquid chromatography/mass spectrometry we identified that global m6A levels increase during the early stages of skeletal muscle regeneration, in vivo, and decline when C2C12 myoblasts transition from proliferation to differentiation, in vitro. Using m6A-specific RNA-sequencing (MeRIP-seq), a distinct profile of m6A-modification was identified, distinguishing proliferating from differentiating C2C12 myoblasts. RNAi studies show that reducing levels of METTL3, the active m6A methyltransferase, reduced global m6A levels and forced C2C12 myoblasts to prematurely differentiate. Reducing levels of METTL3 in primary mouse MuSCs prior to transplantation enhanced their engraftment capacity upon primary transplantation, however their capacity for serial transplantation was lost. In conclusion, METTL3 regulates m6A levels in MuSCs/myoblasts and controls the transition of MuSCs/myoblasts to different cell states. Furthermore, the first transcriptome wide map of m6A-modifications in proliferating and differentiating C2C12 myoblasts is provided and reveals a number of genes that may regulate MuSC/myoblast state transitions which had not been previously identified.
Collapse
Affiliation(s)
| | - Jamie E. Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
| | | | - Olga V. Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
| | | | - Anna E. Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
207
|
Verbrugge SAJ, Gehlert S, Stadhouders LEM, Jacko D, Aussieker T, M. J. de Wit G, Vogel ISP, Offringa C, Schönfelder M, Jaspers RT, Wackerhage H. PKM2 Determines Myofiber Hypertrophy In Vitro and Increases in Response to Resistance Exercise in Human Skeletal Muscle. Int J Mol Sci 2020; 21:E7062. [PMID: 32992783 PMCID: PMC7583908 DOI: 10.3390/ijms21197062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Nearly 100 years ago, Otto Warburg investigated the metabolism of growing tissues and discovered that tumors reprogram their metabolism. It is poorly understood whether and how hypertrophying muscle, another growing tissue, reprograms its metabolism too. Here, we studied pyruvate kinase muscle (PKM), which can be spliced into two isoforms (PKM1, PKM2). This is of interest, because PKM2 redirects glycolytic flux towards biosynthetic pathways, which might contribute to muscle hypertrophy too. We first investigated whether resistance exercise changes PKM isoform expression in growing human skeletal muscle and found that PKM2 abundance increases after six weeks of resistance training, whereas PKM1 decreases. Second, we determined that Pkm2 expression is higher in fast compared to slow fiber types in rat skeletal muscle. Third, by inducing hypertrophy in differentiated C2C12 cells and by selectively silencing Pkm1 and/or Pkm2 with siRNA, we found that PKM2 limits myotube growth. We conclude that PKM2 contributes to hypertrophy in C2C12 myotubes and indicates a changed metabolic environment within hypertrophying human skeletal muscle fibers. PKM2 is preferentially expressed in fast muscle fibers and may partly contribute to the increased potential for hypertrophy in fast fibers.
Collapse
Affiliation(s)
- Sander A. J. Verbrugge
- Department for Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München/Munich, Germany; (S.A.J.V.); (M.S.)
| | - Sebastian Gehlert
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (T.A.)
| | - Lian E. M. Stadhouders
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Daniel Jacko
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (T.A.)
| | - Thorben Aussieker
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; (D.J.); (T.A.)
| | - Gerard M. J. de Wit
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Ilse S. P. Vogel
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Carla Offringa
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Martin Schönfelder
- Department for Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München/Munich, Germany; (S.A.J.V.); (M.S.)
| | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (L.E.M.S.); (G.M.J.d.W.); (I.S.P.V.); (C.O.)
| | - Henning Wackerhage
- Department for Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München/Munich, Germany; (S.A.J.V.); (M.S.)
| |
Collapse
|
208
|
Scott RW, Arostegui M, Schweitzer R, Rossi FMV, Underhill TM. Hic1 Defines Quiescent Mesenchymal Progenitor Subpopulations with Distinct Functions and Fates in Skeletal Muscle Regeneration. Cell Stem Cell 2020; 25:797-813.e9. [PMID: 31809738 DOI: 10.1016/j.stem.2019.11.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/10/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023]
Abstract
Many adult tissues contain resident stem cells, such as the Pax7+ satellite cells within skeletal muscle, that regenerate parenchymal elements following damage. Tissue-resident mesenchymal progenitors (MPs) also participate in regeneration, although their function and fate in this process are unclear. Here, we identify Hypermethylated in cancer 1 (Hic1) as a marker of MPs in skeletal muscle and further show that Hic1 deletion leads to MP hyperplasia. Single-cell RNA-seq and ATAC-seq analysis of Hic1+ MPs in skeletal muscle shows multiple subpopulations, which we further show have distinct functions and lineage potential. Hic1+ MPs orchestrate multiple aspects of skeletal muscle regeneration by providing stage-specific immunomodulation and trophic and mechanical support. During muscle regeneration, Hic1+ derivatives directly contribute to several mesenchymal compartments including Col22a1-expressing cells within the myotendinous junction. Collectively, these findings demonstrate that HIC1 regulates MP quiescence and identifies MP subpopulations with transient and enduring roles in muscle regeneration.
Collapse
Affiliation(s)
- R Wilder Scott
- Department of Cellular and Physiological Sciences, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; School of Biomedical Engineering and the Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Martin Arostegui
- Department of Cellular and Physiological Sciences, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Fabio M V Rossi
- Department of Medical Genetics, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; School of Biomedical Engineering and the Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; School of Biomedical Engineering and the Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
209
|
The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nat Commun 2020; 11:4510. [PMID: 32908143 PMCID: PMC7481251 DOI: 10.1038/s41467-020-18140-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
With human median lifespan extending into the 80s in many developed countries, the societal burden of age-related muscle loss (sarcopenia) is increasing. mTORC1 promotes skeletal muscle hypertrophy, but also drives organismal aging. Here, we address the question of whether mTORC1 activation or suppression is beneficial for skeletal muscle aging. We demonstrate that chronic mTORC1 inhibition with rapamycin is overwhelmingly, but not entirely, positive for aging mouse skeletal muscle, while genetic, muscle fiber-specific activation of mTORC1 is sufficient to induce molecular signatures of sarcopenia. Through integration of comprehensive physiological and extensive gene expression profiling in young and old mice, and following genetic activation or pharmacological inhibition of mTORC1, we establish the phenotypically-backed, mTORC1-focused, multi-muscle gene expression atlas, SarcoAtlas (https://sarcoatlas.scicore.unibas.ch/), as a user-friendly gene discovery tool. We uncover inter-muscle divergence in the primary drivers of sarcopenia and identify the neuromuscular junction as a focal point of mTORC1-driven muscle aging.
Collapse
|
210
|
Niu X, Subramanian A, Hwang TH, Schilling TF, Galloway JL. Tendon Cell Regeneration Is Mediated by Attachment Site-Resident Progenitors and BMP Signaling. Curr Biol 2020; 30:3277-3292.e5. [PMID: 32649909 PMCID: PMC7484193 DOI: 10.1016/j.cub.2020.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The musculoskeletal system is a striking example of how cell identity and position is coordinated across multiple tissues to ensure function. However, it is unclear upon tissue loss, such as complete loss of cells of a central musculoskeletal connecting tendon, whether neighboring tissues harbor progenitors capable of mediating regeneration. Here, using a zebrafish model, we genetically ablate all embryonic tendon cells and find complete regeneration of tendon structure and pattern. We identify two regenerative progenitor populations, sox10+ perichondrial cells surrounding cartilage and nkx2.5+ cells surrounding muscle. Surprisingly, laser ablation of sox10+ cells, but not nkx2.5+ cells, increases tendon progenitor number in the perichondrium, suggesting a mechanism to regulate attachment location. We find BMP signaling is active in regenerating progenitor cells and is necessary and sufficient for generating new scxa+ cells. Our work shows that muscle and cartilage connective tissues harbor progenitor cells capable of fully regenerating tendons, and this process is regulated by BMP signaling.
Collapse
Affiliation(s)
- Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tyler H Hwang
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
211
|
Kendal AR, Layton T, Al-Mossawi H, Appleton L, Dakin S, Brown R, Loizou C, Rogers M, Sharp R, Carr A. Multi-omic single cell analysis resolves novel stromal cell populations in healthy and diseased human tendon. Sci Rep 2020; 10:13939. [PMID: 32883960 PMCID: PMC7471282 DOI: 10.1038/s41598-020-70786-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Tendinopathy accounts for over 30% of primary care consultations and represents a growing healthcare challenge in an active and increasingly ageing population. Recognising critical cells involved in tendinopathy is essential in developing therapeutics to meet this challenge. Tendon cells are heterogenous and sparsely distributed in a dense collagen matrix; limiting previous methods to investigate cell characteristics ex vivo. We applied next generation CITE-sequencing; combining surface proteomics with in-depth, unbiased gene expression analysis of > 6400 single cells ex vivo from 11 chronically tendinopathic and 8 healthy human tendons. Immunohistochemistry validated the single cell findings. For the first time we show that human tendon harbours at least five distinct COL1A1/2 expressing tenocyte populations in addition to endothelial cells, T-cells, and monocytes. These consist of KRT7/SCX+ cells expressing microfibril associated genes, PTX3+ cells co-expressing high levels of pro-inflammatory markers, APOD+ fibro–adipogenic progenitors, TPPP3/PRG4+ chondrogenic cells, and ITGA7+ smooth muscle-mesenchymal cells. Surface proteomic analysis identified markers by which these sub-classes could be isolated and targeted in future. Chronic tendinopathy was associated with increased expression of pro-inflammatory markers PTX3, CXCL1, CXCL6, CXCL8, and PDPN by microfibril associated tenocytes. Diseased endothelium had increased expression of chemokine and alarmin genes including IL33.
Collapse
Affiliation(s)
- Adrian R Kendal
- The Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK. .,Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD, UK.
| | - Thomas Layton
- The Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Hussein Al-Mossawi
- The Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Louise Appleton
- The Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Stephanie Dakin
- The Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Rick Brown
- Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD, UK
| | | | - Mark Rogers
- Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Robert Sharp
- Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD, UK
| | - Andrew Carr
- The Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford, OX3 7LD, UK
| |
Collapse
|
212
|
Transcriptional Changes Involved in Atrophying Muscles during Prolonged Fasting in Rats. Int J Mol Sci 2020; 21:ijms21175984. [PMID: 32825252 PMCID: PMC7503389 DOI: 10.3390/ijms21175984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Food deprivation resulting in muscle atrophy may be detrimental to health. To better understand how muscle mass is regulated during such a nutritional challenge, the current study deciphered muscle responses during phase 2 (P2, protein sparing) and phase 3 (P3, protein mobilization) of prolonged fasting in rats. This was done using transcriptomics analysis and a series of biochemistry measurements. The main findings highlight changes for plasma catabolic and anabolic stimuli, as well as for muscle transcriptome, energy metabolism, and oxidative stress. Changes were generally consistent with the intense use of lipids as fuels during P2. They also reflected increased muscle protein degradation and repressed synthesis, in a more marked manner during P3 than P2 compared to the fed state. Nevertheless, several unexpected changes appeared to be in favor of muscle protein synthesis during fasting, notably at the level of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, transcription and translation processes, and the response to oxidative stress. Such mechanisms might promote protein sparing during P2 and prepare the restoration of the protein compartment during P3 in anticipation of food intake for optimizing the effects of an upcoming refeeding, thereby promoting body maintenance and survival. Future studies should examine relevance of such targets for improving nitrogen balance during catabolic diseases.
Collapse
|
213
|
Muhl L, Genové G, Leptidis S, Liu J, He L, Mocci G, Sun Y, Gustafsson S, Buyandelger B, Chivukula IV, Segerstolpe Å, Raschperger E, Hansson EM, Björkegren JLM, Peng XR, Vanlandewijck M, Lendahl U, Betsholtz C. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat Commun 2020; 11:3953. [PMID: 32769974 PMCID: PMC7414220 DOI: 10.1038/s41467-020-17740-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
Many important cell types in adult vertebrates have a mesenchymal origin, including fibroblasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes. To define and distinguish fibroblasts from vascular mural cells have remained challenging. Here, using single-cell RNA sequencing and tissue imaging, the authors provide a molecular basis for cell type classification and reveal inter- and intra-organ diversity of these cell types.
Collapse
Affiliation(s)
- Lars Muhl
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden. .,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden.
| | - Guillem Genové
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Stefanos Leptidis
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Jianping Liu
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Liqun He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury, Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammerskjölds väg 20, SE-75185, Uppsala, Sweden
| | - Giuseppe Mocci
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammerskjölds väg 20, SE-75185, Uppsala, Sweden
| | - Sonja Gustafsson
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Byambajav Buyandelger
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Indira V Chivukula
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Åsa Segerstolpe
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elisabeth Raschperger
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Emil M Hansson
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden
| | - Johan L M Björkegren
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden.,Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Vanlandewijck
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammerskjölds väg 20, SE-75185, Uppsala, Sweden
| | - Urban Lendahl
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Christer Betsholtz
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157, Huddinge, Sweden. .,Department of Medicine Huddinge, Karolinska Institutet, SE-14157, Huddinge, Sweden. .,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammerskjölds väg 20, SE-75185, Uppsala, Sweden.
| |
Collapse
|
214
|
de Vries NL, Mahfouz A, Koning F, de Miranda NFCC. Unraveling the Complexity of the Cancer Microenvironment With Multidimensional Genomic and Cytometric Technologies. Front Oncol 2020; 10:1254. [PMID: 32793500 PMCID: PMC7390924 DOI: 10.3389/fonc.2020.01254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Cancers are characterized by extensive heterogeneity that occurs intratumorally, between lesions, and across patients. To study cancer as a complex biological system, multidimensional analyses of the tumor microenvironment are paramount. Single-cell technologies such as flow cytometry, mass cytometry, or single-cell RNA-sequencing have revolutionized our ability to characterize individual cells in great detail and, with that, shed light on the complexity of cancer microenvironments. However, a key limitation of these single-cell technologies is the lack of information on spatial context and multicellular interactions. Investigating spatial contexts of cells requires the incorporation of tissue-based techniques such as multiparameter immunofluorescence, imaging mass cytometry, or in situ detection of transcripts. In this Review, we describe the rise of multidimensional single-cell technologies and provide an overview of their strengths and weaknesses. In addition, we discuss the integration of transcriptomic, genomic, epigenomic, proteomic, and spatially-resolved data in the context of human cancers. Lastly, we will deliberate on how the integration of multi-omics data will help to shed light on the complex role of cell types present within the human tumor microenvironment, and how such system-wide approaches may pave the way toward more effective therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Natasja L. de Vries
- Pathology, Leiden University Medical Center, Leiden, Netherlands
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed Mahfouz
- Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Frits Koning
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
215
|
High-Dimensional Single-Cell Quantitative Profiling of Skeletal Muscle Cell Population Dynamics during Regeneration. Cells 2020; 9:cells9071723. [PMID: 32708412 PMCID: PMC7407527 DOI: 10.3390/cells9071723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
The interstitial space surrounding the skeletal muscle fibers is populated by a variety of mononuclear cell types. Upon acute or chronic insult, these cell populations become activated and initiate finely-orchestrated crosstalk that promotes myofiber repair and regeneration. Mass cytometry is a powerful and highly multiplexed technique for profiling single-cells. Herein, it was used to dissect the dynamics of cell populations in the skeletal muscle in physiological and pathological conditions. Here, we characterized an antibody panel that could be used to identify most of the cell populations in the muscle interstitial space. By exploiting the mass cytometry resolution, we provided a comprehensive picture of the dynamics of the major cell populations that sensed and responded to acute damage in wild type mice and in a mouse model of Duchenne muscular dystrophy. In addition, we revealed the intrinsic heterogeneity of many of these cell populations.
Collapse
|
216
|
Ferrandi PJ, Alway SE, Mohamed JS. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J Appl Physiol (1985) 2020; 129:864-867. [PMID: 32673162 PMCID: PMC7832004 DOI: 10.1152/japplphysiol.00321.2020] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Peter J Ferrandi
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Junaith S Mohamed
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
217
|
Doreste B, Torelli S, Morgan J. Irradiation dependent inflammatory response may enhance satellite cell engraftment. Sci Rep 2020; 10:11119. [PMID: 32632224 PMCID: PMC7338540 DOI: 10.1038/s41598-020-68098-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle stem (satellite) cells transplanted into host mouse muscles contribute to muscle regeneration. Irradiation of host muscle enhances donor stem cell engraftment by promoting the proliferation of transplanted donor cells. We hypothesised that, similar to other systems, cells damaged by radiation might be effecting this donor cell proliferation. But we found no difference in the percentage of dying (TUNEL+) cells in immunodeficient dystrophic mouse muscles at the times after the irradiation dose that enhances donor cell engraftment. Similarly, irradiation did not significantly increase the number of TUNEL+ cells in non-dystrophic immunodeficient mouse muscles and it only slightly enhanced donor satellite cell engraftment in this mouse strain, suggesting either that the effector cells are present in greater numbers within dystrophic muscle, or that an innate immune response is required for effective donor cell engraftment. Donor cell engraftment within non-irradiated dystrophic host mouse muscles was not enhanced if they were transplanted with either satellite cells, or myofibres, derived from irradiated dystrophic mouse muscle. But a mixture of cells from irradiated muscle transplanted with donor satellite cells promoted donor cell engraftment in a few instances, suggesting that a rare, yet to be identified, cell type within irradiated dystrophic muscle enhances the donor stem cell-mediated regeneration. The mechanism by which cells within irradiated host muscle promote donor cell engraftment remains elusive.
Collapse
Affiliation(s)
- Bruno Doreste
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N1EH, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
218
|
Zheng G, Xie ZY, Wang P, Wu YF, Shen HY. Recent advances of single-cell RNA sequencing technology in mesenchymal stem cell research. World J Stem Cells 2020; 12:438-447. [PMID: 32742561 PMCID: PMC7360991 DOI: 10.4252/wjsc.v12.i6.438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with great potential for clinical applications. However, little is known about their cell heterogeneity at a single-cell resolution, which severely impedes the development of MSC therapy. In this review, we focus on advances in the identification of novel surface markers and functional subpopulations of MSCs made by single-cell RNA sequencing and discuss their participation in the pathophysiology of stem cells and related diseases. The challenges and future directions of single-cell RNA sequencing in MSCs are also addressed in this review.
Collapse
Affiliation(s)
- Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Zhong-Yu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Yan-Feng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
| | - Hui-Yong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
219
|
Lavin KM, Ge Y, Sealfon SC, Nair VD, Wilk K, McAdam JS, Windham ST, Kumar PL, McDonald MLN, Bamman MM. Rehabilitative Impact of Exercise Training on Human Skeletal Muscle Transcriptional Programs in Parkinson's Disease. Front Physiol 2020; 11:653. [PMID: 32625117 PMCID: PMC7311784 DOI: 10.3389/fphys.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common motor neurodegenerative disease, and neuromuscular function deficits associated with PD contribute to disability. Targeting these symptoms, our laboratory has previously evaluated 16-week high-intensity resistance exercise as rehabilitative training (RT) in individuals with PD. We reported significant improvements in muscle mass, neuromuscular function (strength, power, and motor unit activation), indices of neuromuscular junction integrity, total and motor scores on the unified Parkinson's disease rating scale (UPDRS), and total and sub-scores on the 39-item PD Quality of Life Questionnaire (PDQ-39), supporting the use of RT to reverse symptoms. Our objective was to identify transcriptional networks that may contribute to RT-induced neuromuscular remodeling in PD. We generated transcriptome-wide skeletal muscle RNA-sequencing in 5 participants with PD [4M/1F, 67 ± 2 years, Hoehn and Yahr stages 2 (n = 3) and 3 (n = 2)] before and after 16-week high intensity RT to identify transcriptional networks that may in part underpin RT-induced neuromuscular remodeling in PD. Following RT, 304 genes were significantly upregulated, notably related to remodeling and nervous system/muscle development. Additionally, 402 genes, primarily negative regulators of muscle adaptation, were downregulated. We applied the recently developed Pathway-Level Information ExtractoR (PLIER) method to reveal coordinated gene programs (as latent variables, LVs) that differed in skeletal muscle among young (YA) and old (OA) healthy adults and PD (n = 12 per cohort) at baseline and in PD pre- vs. post-RT. Notably, one LV associated with angiogenesis, axon guidance, and muscle remodeling was significantly lower in PD than YA at baseline and was significantly increased by exercise. A different LV annotated to denervation, autophagy, and apoptosis was increased in both PD and OA relative to YA and was also reduced by 16-week RT in PD. Thus, this analysis identified two novel skeletal muscle transcriptional programs that are dysregulated by PD and aging, respectively. Notably, RT has a normalizing effect on both programs in individuals with PD. These results identify potential molecular transducers of the RT-induced improvements in neuromuscular remodeling and motor function that may aid in optimizing exercise rehabilitation strategies for individuals with PD.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venugopalan D. Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeremy S. McAdam
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel T. Windham
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preeti Lakshman Kumar
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Merry-Lynn N. McDonald
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham/Atlanta VA Geriatric Research, Education, and Clinical Center, Birmingham, AL, United States
- Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
220
|
Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020; 104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
For decades, limb development has been a paradigm of three-dimensional patterning. Moreover, as the limb muscles and the other tissues of the limb's musculoskeletal system arise from distinct developmental sources, it has been a prime example of integrative morphogenesis and cross-tissue communication. As the limbs grow, all components of the musculoskeletal system (muscles, tendons, connective tissue, nerves) coordinate their growth and differentiation, ultimately giving rise to a functional unit capable of executing elaborate movement. While the molecular mechanisms governing global three-dimensional patterning and formation of the skeletal structures of the limbs has been a matter of intense research, patterning of the soft tissues is less understood. Here, we review the development of limb muscles with an emphasis on their interaction with other tissue types and the instructive roles these tissues play. Furthermore, we discuss the role of adult correlates of these embryonic accessory tissues in muscle regeneration.
Collapse
Affiliation(s)
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
221
|
Belotti E, Lacoste N, Simonet T, Papin C, Padmanabhan K, Scionti I, Gangloff YG, Ramos L, Dalkara D, Hamiche A, Dimitrov S, Schaeffer L. H2A.Z is dispensable for both basal and activated transcription in post-mitotic mouse muscles. Nucleic Acids Res 2020; 48:4601-4613. [PMID: 32266374 PMCID: PMC7229818 DOI: 10.1093/nar/gkaa157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/06/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.
Collapse
Affiliation(s)
- Edwige Belotti
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Thomas Simonet
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Kiran Padmanabhan
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 32-34 Avenue Tony Garnier, 69007 Lyon, France
| | - Isabella Scionti
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Yann-Gaël Gangloff
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
| | - Lorrie Ramos
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Defne Dalkara
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Laurent Schaeffer
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, INSERM U1217, CNRS UMR5310, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
222
|
Kuriki M, Sato F, Arai HN, Sogabe M, Kaneko M, Kiyonari H, Kawakami K, Yoshimoto Y, Shukunami C, Sehara-Fujisawa A. Transient and lineage-restricted requirement of Ebf3 for sternum ossification. Development 2020; 147:147/9/dev186239. [PMID: 32398354 PMCID: PMC7240299 DOI: 10.1242/dev.186239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Osteoblasts arise from bone-surrounding connective tissue containing tenocytes and fibroblasts. Lineages of these cell populations and mechanisms of their differentiation are not well understood. Screening enhancer-trap lines of zebrafish allowed us to identify Ebf3 as a transcription factor marking tenocytes and connective tissue cells in skeletal muscle of embryos. Knockout of Ebf3 in mice had no effect on chondrogenesis but led to sternum ossification defects as a result of defective generation of Runx2+ pre-osteoblasts. Conditional and temporal Ebf3 knockout mice revealed requirements of Ebf3 in the lateral plate mesenchyme cells (LPMs), especially in tendon/muscle connective tissue cells, and a stage-specific Ebf3 requirement at embryonic day 9.5-10.5. Upregulated expression of connective tissue markers, such as Egr1/2 and Osr1, increased number of Islet1+ mesenchyme cells, and downregulation of gene expression of the Runx2 regulator Shox2 in Ebf3-deleted thoracic LPMs suggest crucial roles of Ebf3 in the onset of lateral plate mesoderm differentiation towards osteoblasts forming sternum tissues. Highlighted Article: Analysis of conditional and temporal knockout mice reveals roles of Ebf3 in the differentiation of lateral plate mesenchymal cells towards pre-osteoblasts during sternum ossification at the boundary of the lateral and somitic mesoderm.
Collapse
Affiliation(s)
- Mao Kuriki
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Fuminori Sato
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroyuki N Arai
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Maina Sogabe
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.,Department of Muscle Aging and Regenerative Medicine, Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
223
|
Xi H, Langerman J, Sabri S, Chien P, Young CS, Younesi S, Hicks M, Gonzalez K, Fujiwara W, Marzi J, Liebscher S, Spencer M, Van Handel B, Evseenko D, Schenke-Layland K, Plath K, Pyle AD. A Human Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells. Cell Stem Cell 2020; 27:158-176.e10. [PMID: 32396864 PMCID: PMC7367475 DOI: 10.1016/j.stem.2020.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
The developmental trajectory of human skeletal myogenesis and the transition between progenitor and stem cell states are unclear. We used single-cell RNA sequencing to profile human skeletal muscle tissues from embryonic, fetal, and postnatal stages. In silico, we identified myogenic as well as other cell types and constructed a "roadmap" of human skeletal muscle ontogeny across development. In a similar fashion, we also profiled the heterogeneous cell cultures generated from multiple human pluripotent stem cell (hPSC) myogenic differentiation protocols and mapped hPSC-derived myogenic progenitors to an embryonic-to-fetal transition period. We found differentially enriched biological processes and discovered co-regulated gene networks and transcription factors present at distinct myogenic stages. This work serves as a resource for advancing our knowledge of human myogenesis. It also provides a tool for a better understanding of hPSC-derived myogenic progenitors for translational applications in skeletal muscle-based regenerative medicine.
Collapse
Affiliation(s)
- Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Langerman
- Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shan Sabri
- Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peggie Chien
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Courtney S Young
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shahab Younesi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Gonzalez
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wakana Fujiwara
- Department of Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Marzi
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Simone Liebscher
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melissa Spencer
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kathrin Plath
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
224
|
Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ 2020; 27:2921-2941. [PMID: 32382110 DOI: 10.1038/s41418-020-0551-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022] Open
Abstract
Fibro/Adipogenic Progenitors (FAPs) are muscle-interstitial progenitors mediating pro-myogenic signals that are critical for muscle homeostasis and regeneration. In myopathies, the autocrine/paracrine constraints controlling FAP adipogenesis are released causing fat infiltrates. Here, by combining pharmacological screening, high-dimensional mass cytometry and in silico network modeling with the integration of single-cell/bulk RNA sequencing data, we highlighted the canonical WNT/GSK/β-catenin signaling as a crucial pathway modulating FAP adipogenesis triggered by insulin signaling. Consistently, pharmacological blockade of GSK3, by the LY2090314 inhibitor, stabilizes β-catenin and represses PPARγ expression abrogating FAP adipogenesis ex vivo while limiting fatty degeneration in vivo. Furthermore, GSK3 inhibition improves the FAP pro-myogenic role by efficiently stimulating, via follistatin secretion, muscle satellite cell (MuSC) differentiation into mature myotubes. Combining, publicly available single-cell RNAseq datasets, we characterize FAPs as the main source of WNT ligands inferring their potential in mediating autocrine/paracrine responses in the muscle niche. Lastly, we identify WNT5a, whose expression is impaired in dystrophic FAPs, as a crucial WNT ligand able to restrain the detrimental adipogenic differentiation drift of these cells through the positive modulation of the β-catenin signaling.
Collapse
|
225
|
Kimmel JC, Hwang AB, Scaramozza A, Marshall WF, Brack AS. Aging induces aberrant state transition kinetics in murine muscle stem cells. Development 2020; 147:dev183855. [PMID: 32198156 PMCID: PMC7225128 DOI: 10.1242/dev.183855] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
Murine muscle stem cells (MuSCs) experience a transition from quiescence to activation that is required for regeneration, but it remains unknown if the trajectory and dynamics of activation change with age. Here, we use time-lapse imaging and single cell RNA-seq to measure activation trajectories and rates in young and aged MuSCs. We find that the activation trajectory is conserved in aged cells, and we develop effective machine-learning classifiers for cell age. Using cell-behavior analysis and RNA velocity, we find that activation kinetics are delayed in aged MuSCs, suggesting that changes in stem cell dynamics may contribute to impaired stem cell function with age. Intriguingly, we also find that stem cell activation appears to be a random walk-like process, with frequent reversals, rather than a continuous linear progression. These results support a view of the aged stem cell phenotype as a combination of differences in the location of stable cell states and differences in transition rates between them.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
- Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94143, USA
- Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ara B Hwang
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Annarita Scaramozza
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Wallace F Marshall
- Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94143, USA
- Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew S Brack
- Eli and Edythe Broad Center for Regenerative Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| |
Collapse
|
226
|
Oprescu SN, Yue F, Qiu J, Brito LF, Kuang S. Temporal Dynamics and Heterogeneity of Cell Populations during Skeletal Muscle Regeneration. iScience 2020; 23:100993. [PMID: 32248062 PMCID: PMC7125354 DOI: 10.1016/j.isci.2020.100993] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mammalian skeletal muscle possesses a unique ability to regenerate, which is primarily mediated by a population of resident muscle stem cells (MuSCs) and requires a concerted response from other supporting cell populations. Previous targeted analysis has described the involvement of various specific populations in regeneration, but an unbiased and simultaneous evaluation of all cell populations has been limited. Therefore, we used single-cell RNA-sequencing to uncover gene expression signatures of over 53,000 individual cells during skeletal muscle regeneration. Cells clustered into 25 populations and subpopulations, including a subpopulation of immune gene enriched myoblasts (immunomyoblasts) and subpopulations of fibro-adipogenic progenitors. Our analyses also uncovered striking spatiotemporal dynamics in gene expression, population composition, and cell-cell interaction during muscle regeneration. These findings provide insights into the cellular and molecular underpinning of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Biological Sciences, Purdue University, 915 W State St, West Lafayette, IN 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, 270 S Russell St, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, 270 S Russell St, West Lafayette, IN 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S Russell St, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, 915 W State St, West Lafayette, IN 47907, USA; Department of Animal Sciences, Purdue University, 270 S Russell St, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, 201 S University St, West Lafayette, IN 47907, USA.
| |
Collapse
|
227
|
Stepien DM, Hwang C, Marini S, Pagani CA, Sorkin M, Visser ND, Huber AK, Edwards NJ, Loder SJ, Vasquez K, Aguilar CA, Kumar R, Mascharak S, Longaker MT, Li J, Levi B. Tuning Macrophage Phenotype to Mitigate Skeletal Muscle Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2203-2215. [PMID: 32161098 PMCID: PMC8080967 DOI: 10.4049/jimmunol.1900814] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-β1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of Tgfb1 abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages. Similarly, a murine TGFBRII-Fc ligand trap administered after injury significantly reduced muscle fibrosis and improved muscle regeneration. This study ultimately demonstrates that infiltrating myeloid cell TGF-β1 is responsible for the development of traumatic muscle fibrosis, and its blockade offers a promising therapeutic target for preventing muscle fibrosis after ischemic injury.
Collapse
Affiliation(s)
- David M Stepien
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Charles Hwang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Simone Marini
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Chase A Pagani
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Michael Sorkin
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Noelle D Visser
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Amanda K Huber
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Nicole J Edwards
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Shawn J Loder
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Kaetlin Vasquez
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Carlos A Aguilar
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
- Biomedical Engineering Department, Biointerfaces Institute and Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| | - Ravi Kumar
- Acceleron Pharmaceuticals, Cambridge MA 02139
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA 94305; and
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA 94305; and
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - Jun Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
228
|
Strenzke M, Alberton P, Aszodi A, Docheva D, Haas E, Kammerlander C, Böcker W, Saller MM. Tenogenic Contribution to Skeletal Muscle Regeneration: The Secretome of Scleraxis Overexpressing Mesenchymal Stem Cells Enhances Myogenic Differentiation In Vitro. Int J Mol Sci 2020; 21:E1965. [PMID: 32183051 PMCID: PMC7139530 DOI: 10.3390/ijms21061965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/07/2023] Open
Abstract
Integrity of the musculoskeletal system is essential for the transfer of muscular contraction force to the associated bones. Tendons and skeletal muscles intertwine, but on a cellular level, the myotendinous junctions (MTJs) display a sharp transition zone with a highly specific molecular adaption. The function of MTJs could go beyond a mere structural role and might include homeostasis of this musculoskeletal tissue compound, thus also being involved in skeletal muscle regeneration. Repair processes recapitulate several developmental mechanisms, and as myotendinous interaction does occur already during development, MTJs could likewise contribute to muscle regeneration. Recent studies identified tendon-related, scleraxis-expressing cells that reside in close proximity to the MTJs and the muscle belly. As the muscle-specific function of these scleraxis positive cells is unknown, we compared the influence of two immortalized mesenchymal stem cell (MSC) lines-differing only by the overexpression of scleraxis-on myoblasts morphology, metabolism, migration, fusion, and alignment. Our results revealed a significant increase in myoblast fusion and metabolic activity when exposed to the secretome derived from scleraxis-overexpressing MSCs. However, we found no significant changes in myoblast migration and myofiber alignment. Further analysis of differentially expressed genes between native MSCs and scleraxis-overexpressing MSCs by RNA sequencing unraveled potential candidate genes, i.e., extracellular matrix (ECM) proteins, transmembrane receptors, or proteases that might enhance myoblast fusion. Our results suggest that musculotendinous interaction is essential for the development and healing of skeletal muscles.
Collapse
Affiliation(s)
- Maximilian Strenzke
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany;
| | - Elisabeth Haas
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University (LMU), Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Christian Kammerlander
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| | - Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany; (M.S.); (P.A.); (A.A.); (E.H.); (C.K.); (W.B.)
| |
Collapse
|
229
|
Raz Y, Akker EB, Roest T, Riaz M, Rest O, Suchiman HED, Lakenberg N, Stassen SA, Putten M, Feskens EJM, Reinders MJT, Goeman J, Beekman M, Raz V, Slagboom PE. A data‐driven methodology reveals novel myofiber clusters in older human muscles. FASEB J 2020; 34:5525-5537. [DOI: 10.1096/fj.201902350r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yotam Raz
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Erik B. Akker
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
- Leiden Computational Biology Center Leiden University Medical Center Leiden the Netherlands
- The Delft Bioinformatics Lab Delft University of Technology Delft the Netherlands
| | - Tijmen Roest
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Muhammad Riaz
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | - Ondine Rest
- Division of Human Nutrition Wageningen University & Research Wageningen the Netherlands
| | - H. Eka D. Suchiman
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Nico Lakenberg
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Stefanie A. Stassen
- Section of Gerontology and Geriatrics Leiden University Medical Center Leiden the Netherlands
| | - Maaike Putten
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition Wageningen University & Research Wageningen the Netherlands
| | - Marcel J. T. Reinders
- Leiden Computational Biology Center Leiden University Medical Center Leiden the Netherlands
- The Delft Bioinformatics Lab Delft University of Technology Delft the Netherlands
| | - Jelle Goeman
- Department of Medical Statistics Leiden University Medical Center Leiden the Netherlands
| | - Marian Beekman
- Section of Molecular Epidemiology Leiden University Medical Center Leiden the Netherlands
| | - Vered Raz
- Department of Human Genetics Leiden University Medical Center Leiden the Netherlands
| | | |
Collapse
|
230
|
Blackburn DM, Lazure F, Soleimani VD. RNA Sequencing of Single Myofibers from Mus musculus. Bio Protoc 2020; 10:e3525. [PMID: 33654749 DOI: 10.21769/bioprotoc.3525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 11/02/2022] Open
Abstract
Whole transcriptome analysis is a key method in biology that allows researchers to determine the effect a condition has on gene regulation. One difficulty in RNA sequencing of muscle is that traditional methods are performed on the whole muscle, but this captures non-myogenic cells that are part of the muscle. In order to analyze only the transcriptome of myofibers we combine single myofiber isolation with SMART-Seq to provide high resolution genome wide expression of a single myofiber.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7 Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Cote-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7 Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Cote-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7 Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Cote-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| |
Collapse
|
231
|
Etienne J, Liu C, Skinner CM, Conboy MJ, Conboy IM. Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skelet Muscle 2020; 10:4. [PMID: 32033591 PMCID: PMC7007696 DOI: 10.1186/s13395-020-0222-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is among the most age-sensitive tissues in mammal organisms. Significant changes in its resident stem cells (i.e., satellite cells, SCs), differentiated cells (i.e., myofibers), and extracellular matrix cause a decline in tissue homeostasis, function, and regenerative capacity. Based on the conservation of aging across tissues and taking advantage of the relatively well-characterization of the myofibers and associated SCs, skeletal muscle emerged as an experimental system to study the decline in function and maintenance of old tissues and to explore rejuvenation strategies. In this review, we summarize the approaches for understanding the aging process and for assaying the success of rejuvenation that use skeletal muscle as the experimental system of choice. We further discuss (and exemplify with studies of skeletal muscle) how conflicting results might be due to variations in the techniques of stem cell isolation, differences in the assays of functional rejuvenation, or deciding on the numbers of replicates and experimental cohorts.
Collapse
Affiliation(s)
- Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA.
| |
Collapse
|
232
|
Lavin KM, Sealfon SC, McDonald MLN, Roberts BM, Wilk K, Nair VD, Ge Y, Lakshman Kumar P, Windham ST, Bamman MM. Skeletal muscle transcriptional networks linked to type I myofiber grouping in Parkinson's disease. J Appl Physiol (1985) 2020; 128:229-240. [PMID: 31829804 PMCID: PMC7052589 DOI: 10.1152/japplphysiol.00702.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder impacting cognition, movement, and quality of life in >10 million individuals worldwide. We recently characterized and quantified a skeletal muscle pathology in PD represented by exaggerated type I myofiber grouping presumed to result from denervation-reinnervation processes. Our previous findings indicated that impaired neuromuscular junction integrity may be involved in type I grouping, which is associated with excessive motor unit activation during weight-bearing tasks. In this study, we performed transcriptional profiling to test the hypothesis that type I grouping severity would link to distinct gene expression networks. We generated transcriptome-wide poly(A) RNA-Seq data from skeletal muscle of individuals with PD [n = 12 (9 men, 3 women); 67 ± 2 yr], age- and sex-matched older adults (n = 12; 68 ± 2 yr), and sex-matched young adults (n = 12; 30 ± 1 yr). Differentially expressed genes were evaluated across cohorts. Weighted gene correlation network analysis (WGCNA) was performed to identify gene networks most correlated with indicators of abnormal type I grouping. Among coexpression networks mapping to phenotypes pathologically increased in PD muscle, one network was highly significantly correlated to type I myofiber group size and another to percentage of type I myofibers found in groups. Annotation of coexpressed networks revealed that type I grouping is associated with altered expression of genes involved in neural development, postsynaptic signaling, cell cycle regulation and cell survival, protein and energy metabolism, inflammation/immunity, and posttranscriptional regulation (microRNAs). These transcriptomic findings suggest that skeletal muscle may play an active role in signaling to promote myofiber survival, reinnervation, and remodeling, perhaps to an extreme in PD.NEW & NOTEWORTHY Despite our awareness of the impact of Parkinson's disease (PD) on motor function for over two centuries, limited attention has focused on skeletal muscle. We previously identified type I myofiber grouping, a novel indicator of muscle dysfunction in PD, presumably a result of heightened rates of denervation/reinnervation. Using transcriptional profiling to identify networks associated with this phenotype, we provide insight into potential mechanistic roles of skeletal muscle in signaling to promote its survival in PD.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Merry-Lynn N McDonald
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon M Roberts
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Preeti Lakshman Kumar
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
233
|
Feige P, Rudnicki MA. Isolation of satellite cells and transplantation into mice for lineage tracing in muscle. Nat Protoc 2020; 15:1082-1097. [PMID: 31965111 DOI: 10.1038/s41596-019-0278-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/03/2019] [Indexed: 02/03/2023]
Abstract
Limited methods exist to assay the direct effects of therapeutic intervention on muscle stem cell fate, proliferation or differentiation in an in vivo context. Here we provide an optimized protocol for muscle stem cell isolation and transplantation into mice to deconvolute heterogeneity within isolated stem cell populations. Viable and pure cell populations are isolated within 2 h and can then be used for therapeutic intervention or transplantation to uncover the repopulating and differentiation potential in mice, a physiologically relevant in vivo context. Effects can be assessed 9 d after transplantation. This methodology analyzes cell and sort purity prior to transplantation to improve reproducibility and outlines novel blocking steps to improve tissue staining and analysis. Experience with surgical procedures in mice is recommended before attempting this protocol. Our system is widely applicable for exploring stem cell dynamics within muscle and has already been used to study heterogeneity within muscle stem cell populations and efficacy of therapeutic intervention on isolated stem cell populations.
Collapse
Affiliation(s)
- Peter Feige
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
234
|
Abstract
Satellite cells are the main muscle-resident cells responsible for muscle regeneration. Much research has described this population as being heterogeneous, but little is known about the different roles each subpopulation plays. Recent advances in the field have utilized the power of single-cell analysis to better describe and functionally characterize subpopulations of satellite cells as well as other cell groups comprising the muscle tissue. Furthermore, emerging technologies are opening the door to answering as-yet-unresolved questions pertaining to satellite cell heterogeneity and cell fate decisions.
Collapse
Affiliation(s)
- John Saber
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alexander Y.T. Lin
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Michael A. Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
235
|
Rubenstein AB, Smith GR, Raue U, Begue G, Minchev K, Ruf-Zamojski F, Nair VD, Wang X, Zhou L, Zaslavsky E, Trappe TA, Trappe S, Sealfon SC. Single-cell transcriptional profiles in human skeletal muscle. Sci Rep 2020; 10:229. [PMID: 31937892 PMCID: PMC6959232 DOI: 10.1038/s41598-019-57110-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue comprised of muscle fiber and mononuclear cell types that, in addition to movement, influences immunity, metabolism and cognition. We investigated the gene expression patterns of skeletal muscle cells using RNA-seq of subtype-pooled single human muscle fibers and single cell RNA-seq of mononuclear cells from human vastus lateralis, mouse quadriceps, and mouse diaphragm. We identified 11 human skeletal muscle mononuclear cell types, including two fibro-adipogenic progenitor (FAP) cell subtypes. The human FBN1+ FAP cell subtype is novel and a corresponding FBN1+ FAP cell type was also found in single cell RNA-seq analysis in mouse. Transcriptome exercise studies using bulk tissue analysis do not resolve changes in individual cell-type proportion or gene expression. The cell-type gene signatures provide the means to use computational methods to identify cell-type level changes in bulk studies. As an example, we analyzed public transcriptome data from an exercise training study and revealed significant changes in specific mononuclear cell-type proportions related to age, sex, acute exercise and training. Our single-cell expression map of skeletal muscle cell types will further the understanding of the diverse effects of exercise and the pathophysiology of muscle disease.
Collapse
Affiliation(s)
- Aliza B Rubenstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Gregory R Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA
| | - Gwénaëlle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Xingyu Wang
- Department of Neurology, Boston University Medical Center, Boston, MA, 02118, USA
| | - Lan Zhou
- Department of Neurology, Boston University Medical Center, Boston, MA, 02118, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, 47306, USA
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. .,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
| |
Collapse
|
236
|
Goveia J, Rohlenova K, Taverna F, Treps L, Conradi LC, Pircher A, Geldhof V, de Rooij LPMH, Kalucka J, Sokol L, García-Caballero M, Zheng Y, Qian J, Teuwen LA, Khan S, Boeckx B, Wauters E, Decaluwé H, De Leyn P, Vansteenkiste J, Weynand B, Sagaert X, Verbeken E, Wolthuis A, Topal B, Everaerts W, Bohnenberger H, Emmert A, Panovska D, De Smet F, Staal FJT, Mclaughlin RJ, Impens F, Lagani V, Vinckier S, Mazzone M, Schoonjans L, Dewerchin M, Eelen G, Karakach TK, Yang H, Wang J, Bolund L, Lin L, Thienpont B, Li X, Lambrechts D, Luo Y, Carmeliet P. An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer Cell 2020; 37:21-36.e13. [PMID: 31935371 DOI: 10.1016/j.ccell.2019.12.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/30/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneity of lung tumor endothelial cell (TEC) phenotypes across patients, species (human/mouse), and models (in vivo/in vitro) remains poorly inventoried at the single-cell level. We single-cell RNA (scRNA)-sequenced 56,771 endothelial cells from human/mouse (peri)-tumoral lung and cultured human lung TECs, and detected 17 known and 16 previously unrecognized phenotypes, including TECs putatively regulating immune surveillance. We resolved the canonical tip TECs into a known migratory tip and a putative basement-membrane remodeling breach phenotype. Tip TEC signatures correlated with patient survival, and tip/breach TECs were most sensitive to vascular endothelial growth factor blockade. Only tip TECs were congruent across species/models and shared conserved markers. Integrated analysis of the scRNA-sequenced data with orthogonal multi-omics and meta-analysis data across different human tumors, validated by functional analysis, identified collagen modification as a candidate angiogenic pathway.
Collapse
Affiliation(s)
- Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Federico Taverna
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Andreas Pircher
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China
| | - Junbin Qian
- Laboratory of Translational Genetics, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Laure-Anne Teuwen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Shawez Khan
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Els Wauters
- Respiratory Oncology Unit (Respiratory Medicine) and Leuven Lung Cancer Group, University Hospitals Leuven, Leuven 3000, Belgium
| | - Herbert Decaluwé
- Respiratory Oncology Unit (Respiratory Medicine) and Leuven Lung Cancer Group, University Hospitals Leuven, Leuven 3000, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Paul De Leyn
- Respiratory Oncology Unit (Respiratory Medicine) and Leuven Lung Cancer Group, University Hospitals Leuven, Leuven 3000, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Johan Vansteenkiste
- Respiratory Oncology Unit (Respiratory Medicine) and Leuven Lung Cancer Group, University Hospitals Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Xavier Sagaert
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Erik Verbeken
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Albert Wolthuis
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Baki Topal
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven 3000, Belgium
| | - Wouter Everaerts
- Laboratory for Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium; Department of Urology, University Hospitals Leuven, Leuven 3000, Belgium
| | | | - Alexander Emmert
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen 37075, Germany
| | - Dena Panovska
- Laboratory for Precision Cancer Medicine, Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven 3000, Belgium
| | - Frank J T Staal
- Department of Immunology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Rene J Mclaughlin
- Department of Immunology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Francis Impens
- VIB Proteomics Core and VIB Center for Medical Biotechnology, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia; Gnosis Data Analysis PC, Heraklion GR-700 13, Greece
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Tobias K Karakach
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China.
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Yonglun Luo
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China; Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao 266555, China.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven 3000, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, China.
| |
Collapse
|
237
|
Gao Y, Zhang T, Zhu J, Xiao D, Zhang M, Sun Y, Li Y, Lin Y, Cai X. Effects of the tetrahedral framework nucleic acids on the skeletal muscle regeneration in vitro and in vivo. MATERIALS CHEMISTRY FRONTIERS 2020. [DOI: 10.1039/d0qm00329h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The challenges associated with muscle degenerative diseases and volumetric muscle loss (VML) emphasizes the prospects of muscle tissue regeneration.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Mei Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yue Sun
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yanjing Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - XiaoXiao Cai
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| |
Collapse
|
238
|
Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, Ding X. A comparison framework and guideline of clustering methods for mass cytometry data. Genome Biol 2019; 20:297. [PMID: 31870419 PMCID: PMC6929440 DOI: 10.1186/s13059-019-1917-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022] Open
Abstract
Background With the expanding applications of mass cytometry in medical research, a wide variety of clustering methods, both semi-supervised and unsupervised, have been developed for data analysis. Selecting the optimal clustering method can accelerate the identification of meaningful cell populations. Result To address this issue, we compared three classes of performance measures, “precision” as external evaluation, “coherence” as internal evaluation, and stability, of nine methods based on six independent benchmark datasets. Seven unsupervised methods (Accense, Xshift, PhenoGraph, FlowSOM, flowMeans, DEPECHE, and kmeans) and two semi-supervised methods (Automated Cell-type Discovery and Classification and linear discriminant analysis (LDA)) are tested on six mass cytometry datasets. We compute and compare all defined performance measures against random subsampling, varying sample sizes, and the number of clusters for each method. LDA reproduces the manual labels most precisely but does not rank top in internal evaluation. PhenoGraph and FlowSOM perform better than other unsupervised tools in precision, coherence, and stability. PhenoGraph and Xshift are more robust when detecting refined sub-clusters, whereas DEPECHE and FlowSOM tend to group similar clusters into meta-clusters. The performances of PhenoGraph, Xshift, and flowMeans are impacted by increased sample size, but FlowSOM is relatively stable as sample size increases. Conclusion All the evaluations including precision, coherence, stability, and clustering resolution should be taken into synthetic consideration when choosing an appropriate tool for cytometry data analysis. Thus, we provide decision guidelines based on these characteristics for the general reader to more easily choose the most suitable clustering tools.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Weichen Song
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Shanghai, 200030, China
| | - Brandon Y Wong
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ting Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Shanghai, 200030, China
| | - Guan Ning Lin
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Shanghai, 200030, China.
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
239
|
Abstract
The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin-dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317-344, 2020.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA.,Department of Biological Chemistry, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
240
|
Blackburn DM, Lazure F, Corchado AH, Perkins TJ, Najafabadi HS, Soleimani VD. High-resolution genome-wide expression analysis of single myofibers using SMART-Seq. J Biol Chem 2019; 294:20097-20108. [PMID: 31753917 DOI: 10.1074/jbc.ra119.011506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue. Individual myofibers that make up muscle tissue exhibit variation in their metabolic and contractile properties. Although biochemical and histological assays are available to study myofiber heterogeneity, efficient methods to analyze the whole transcriptome of individual myofibers are lacking. Here, we report on a single-myofiber RNA-sequencing (smfRNA-Seq) approach to analyze the whole transcriptome of individual myofibers by combining single-fiber isolation with Switching Mechanism at 5' end of RNA Template (SMART) technology. Using smfRNA-Seq, we first determined the genes that are expressed in the whole muscle, including in nonmyogenic cells. We also analyzed the differences in the transcriptome of myofibers from young and old mice to validate the effectiveness of this new method. Our results suggest that aging leads to significant changes in the expression of metabolic genes, such as Nos1, and structural genes, such as Myl1, in myofibers. We conclude that smfRNA-Seq is a powerful tool to study developmental, disease-related, and age-related changes in the gene expression profile of skeletal muscle.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Aldo H Corchado
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada .,Molecular and Regenerative Medicine Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
241
|
Ruparelia AA, Ratnayake D, Currie PD. Stem cells in skeletal muscle growth and regeneration in amniotes and teleosts: Emerging themes. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e365. [PMID: 31743958 DOI: 10.1002/wdev.365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is a contractile, postmitotic tissue that retains the capacity to grow and regenerate throughout life in amniotes and teleost. Both muscle growth and regeneration are regulated by obligate tissue resident muscle stem cells. Given that considerable knowledge exists on the myogenic process, recent studies have focused on examining the molecular markers of muscle stem cells, and on the intrinsic and extrinsic signals regulating their function. From this, two themes emerge: firstly, muscle stem cells display remarkable heterogeneity not only with regards to their gene expression profile, but also with respect to their behavior and function; and secondly, the stem cell niche is a critical regulator of muscle stem cell function during growth and regeneration. Here, we will address the current understanding of these emerging themes with emphasis on the distinct processes used by amniotes and teleost, and discuss the challenges and opportunities in the muscle growth and regeneration fields. This article is characterized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Early Embryonic Development > Development to the Basic Body Plan Vertebrate Organogenesis > Musculoskeletal and Vascular.
Collapse
Affiliation(s)
- Avnika A Ruparelia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.,EMBL Australia, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
242
|
Macrophages fine tune satellite cell fate in dystrophic skeletal muscle of mdx mice. PLoS Genet 2019; 15:e1008408. [PMID: 31626629 PMCID: PMC6821135 DOI: 10.1371/journal.pgen.1008408] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/30/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Satellite cells (SCs) are muscle stem cells that remain quiescent during homeostasis and are activated in response to acute muscle damage or in chronic degenerative conditions such as Duchenne Muscular Dystrophy. The activity of SCs is supported by specialized cells which either reside in the muscle or are recruited in regenerating skeletal muscles, such as for instance macrophages (MΦs). By using a dystrophic mouse model of transient MΦ depletion, we describe a shift in identity of muscle stem cells dependent on the crosstalk between MΦs and SCs. Indeed MΦ depletion determines adipogenic conversion of SCs and exhaustion of the SC pool leading to an exacerbated dystrophic phenotype. The reported data could also provide new insights into therapeutic approaches targeting inflammation in dystrophic muscles. Muscular dystrophies are a heterogenous group of genetic disorders characterized by muscle wasting, leading to loss of mobility and eventually to death due to respiratory or cardiac failure. Duchenne Muscular Dystrophy (DMD) is one of the most severe dystrophies and is caused by the loss of functional dystrophin protein owing to genetic mutations, consequently, the sarcolemma becomes fragile and susceptible to muscle damage induced by contraction. Satellite cells (SCs) are skeletal muscle stem cells that mediate the repair process leading to muscle regeneration. Dystrophic muscles undergo continuous cycles of degeneration and regeneration eventually culminating in myofiber loss and deposition of fibrous and fatty connective tissue. Inflammation is always associated with the muscle regeneration process. Among different types of inflammatory cells, mainly macrophages (MΦs) are present in regenerating skeletal muscles and are involved in the regenerative process both after an acute injury and during pathological conditions such as DMD. We focused on the cross-talk between MΦs and SCs in a mouse model of DMD and highlighted a role of MΦs in preserving the SC identity.
Collapse
|
243
|
Palma A, Cerquone Perpetuini A, Ferrentino F, Fuoco C, Gargioli C, Giuliani G, Iannuccelli M, Licata L, Micarelli E, Paoluzi S, Perfetto L, Petrilli LL, Reggio A, Rosina M, Sacco F, Vumbaca S, Zuccotti A, Castagnoli L, Cesareni G. Myo-REG: A Portal for Signaling Interactions in Muscle Regeneration. Front Physiol 2019; 10:1216. [PMID: 31611808 PMCID: PMC6776608 DOI: 10.3389/fphys.2019.01216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Muscle regeneration is a complex process governed by the interplay between several muscle-resident mononuclear cell populations. Following acute or chronic damage these cell populations are activated, communicate via cell-cell interactions and/or paracrine signals, influencing fate decisions via the activation or repression of internal signaling cascades. These are highly dynamic processes, occurring with distinct temporal and spatial kinetics. The main challenge toward a system level description of the muscle regeneration process is the integration of this plethora of inter- and intra-cellular interactions. We integrated the information on muscle regeneration in a web portal. The scientific content annotated in this portal is organized into two information layers representing relationships between different cell types and intracellular signaling-interactions, respectively. The annotation of the pathways governing the response of each cell type to a variety of stimuli/perturbations occurring during muscle regeneration takes advantage of the information stored in the SIGNOR database. Additional curation efforts have been carried out to increase the coverage of molecular interactions underlying muscle regeneration and to annotate cell-cell interactions. To facilitate the access to information on cell and molecular interactions in the context of muscle regeneration, we have developed Myo-REG, a web portal that captures and integrates published information on skeletal muscle regeneration. The muscle-centered resource we provide is one of a kind in the myology field. A friendly interface allows users to explore, approximately 100 cell interactions or to analyze intracellular pathways related to muscle regeneration. Finally, we discuss how data can be extracted from this portal to support in silico modeling experiments.
Collapse
Affiliation(s)
- Alessandro Palma
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Giulio Giuliani
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elisa Micarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Serena Paoluzi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Livia Perfetto
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Alessio Reggio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Rosina
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Simone Vumbaca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
244
|
Functions and Regulatory Mechanisms of lncRNAs in Skeletal Myogenesis, Muscle Disease and Meat Production. Cells 2019; 8:cells8091107. [PMID: 31546877 PMCID: PMC6769631 DOI: 10.3390/cells8091107] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Myogenesis is a complex biological process, and understanding the regulatory network of skeletal myogenesis will contribute to the treatment of human muscle related diseases and improvement of agricultural animal meat production. Long noncoding RNAs (lncRNAs) serve as regulators in gene expression networks, and participate in various biological processes. Recent studies have identified functional lncRNAs involved in skeletal muscle development and disease. These lncRNAs regulate the proliferation, differentiation, and fusion of myoblasts through multiple mechanisms, such as chromatin modification, transcription regulation, and microRNA sponge activity. In this review, we presented the latest advances regarding the functions and regulatory activities of lncRNAs involved in muscle development, muscle disease, and meat production. Moreover, challenges and future perspectives related to the identification of functional lncRNAs were also discussed.
Collapse
|
245
|
Biferali B, Proietti D, Mozzetta C, Madaro L. Fibro-Adipogenic Progenitors Cross-Talk in Skeletal Muscle: The Social Network. Front Physiol 2019; 10:1074. [PMID: 31496956 PMCID: PMC6713247 DOI: 10.3389/fphys.2019.01074] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle is composed of a large and heterogeneous assortment of cell populations that interact with each other to maintain muscle homeostasis and orchestrate regeneration. Although satellite cells (SCs) – which are muscle stem cells – are the protagonists of functional muscle repair following damage, several other cells such as inflammatory, vascular, and mesenchymal cells coordinate muscle regeneration in a finely tuned process. Fibro–adipogenic progenitors (FAPs) are a muscle interstitial mesenchymal cell population, which supports SCs differentiation during tissue regeneration. During the first days following muscle injury FAPs undergo massive expansion, which is followed by their macrophage-mediated clearance and the re-establishment of their steady-state pool. It is during this critical time window that FAPs, together with the other cellular components of the muscle stem cell niche, establish a dynamic network of interactions that culminate in muscle repair. A number of different molecules have been recently identified as important mediators of this cross-talk, and its alteration has been associated with different muscle pathologies. In this review, we will focus on the soluble factors that regulate FAPs activity, highlighting their roles in orchestrating the inter-cellular interactions between FAPs and the other cell populations that participate in muscle regeneration.
Collapse
Affiliation(s)
- Beatrice Biferali
- Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Rome, Italy
| | - Daisy Proietti
- IRCCS Santa Lucia Foundation, Rome, Italy.,DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
246
|
Morgan J, Butler-Browne G, Muntoni F, Patel K. 240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25-27 January 2019, Hoofddorp, The Netherlands. Neuromuscul Disord 2019; 29:704-715. [PMID: 31447279 DOI: 10.1016/j.nmd.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Jennifer Morgan
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK.
| | - Gillian Butler-Browne
- Center for Research in Myology, Association Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France
| | - Francesco Muntoni
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, RG6 6AS, UK.
| | | |
Collapse
|
247
|
Feichtinger RG, Mucha BE, Hengel H, Orfi Z, Makowski C, Dort J, D'Anjou G, Nguyen TTM, Buchert R, Juenger H, Freisinger P, Baumeister S, Schoser B, Ahting U, Keimer R, Nguyen CTE, Fabre P, Gauthier J, Miguet M, Lopes F, AlHakeem A, AlHashem A, Tabarki B, Kandaswamy KK, Bauer P, Steinbacher P, Prokisch H, Sturm M, Strom TM, Ellezam B, Mayr JA, Schöls L, Michaud JL, Campeau PM, Haack TB, Dumont NA. Biallelic variants in the transcription factor PAX7 are a new genetic cause of myopathy. Genet Med 2019; 21:2521-2531. [PMID: 31092906 DOI: 10.1038/s41436-019-0532-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/22/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. METHODS Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. RESULTS The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. CONCLUSION These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.
Collapse
Affiliation(s)
- René G Feichtinger
- Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Bettina E Mucha
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Hospital Centre, Montreal, QC, Canada
| | - Holger Hengel
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Zakaria Orfi
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Christine Makowski
- Department for Paediatric and Adolescent Medicine, Schwabing Hospital, Technische Universität München, Munich, Germany
| | - Junio Dort
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Guy D'Anjou
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada.,Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Thi Tuyet Mai Nguyen
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Hendrik Juenger
- Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Peter Freisinger
- Kreiskliniken Reutlingen, Klinik für Kinder- und Jugendmedizin, Klinikum am Steinenberg, Reutlingen, Germany
| | - Sarah Baumeister
- Friedrich-Baur-Institute, Department of Neurology, University Clinics Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, University Clinics Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Uwe Ahting
- Institute of Human Genetics, Technische Universität München, München, Germany
| | | | | | - Paul Fabre
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | | | | | - Fátima Lopes
- CHU Sainte-Justine, Montreal, QC, Canada.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Afnan AlHakeem
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Medical Military City, Military City, Saudi Arabia
| | - Amal AlHashem
- Division of Medical Genetics, Department of Pediatrics, Prince Sultan Medical Military City, Military City, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Medical Military City, Military City, Saudi Arabia
| | | | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centogene AG, Rostock, Germany
| | - Peter Steinbacher
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Ellezam
- Department of Pathology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Johannes A Mayr
- Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada.,Department of Neurosciences, Université de Montréal, Montreal, QC, Canada.,Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada.
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany. .,Institute of Human Genetics, Technische Universität München, München, Germany.
| | - Nicolas A Dumont
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada. .,School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
248
|
Dell'Orso S, Juan AH, Ko KD, Naz F, Perovanovic J, Gutierrez-Cruz G, Feng X, Sartorelli V. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development 2019; 146:dev.174177. [PMID: 30890574 DOI: 10.1242/dev.174177] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
Abstract
Dedicated stem cells ensure postnatal growth, repair and homeostasis of skeletal muscle. Following injury, muscle stem cells (MuSCs) exit from quiescence and divide to reconstitute the stem cell pool and give rise to muscle progenitors. The transcriptomes of pooled MuSCs have provided a rich source of information for describing the genetic programs of distinct static cell states; however, bulk microarray and RNA sequencing provide only averaged gene expression profiles, blurring the heterogeneity and developmental dynamics of asynchronous MuSC populations. Instead, the granularity required to identify distinct cell types, states, and their dynamics can be afforded by single cell analysis. We were able to compare the transcriptomes of thousands of MuSCs and primary myoblasts isolated from homeostatic or regenerating muscles by single cell RNA sequencing. Using computational approaches, we could reconstruct dynamic trajectories and place, in a pseudotemporal manner, the transcriptomes of individual MuSC within these trajectories. This approach allowed for the identification of distinct clusters of MuSCs and primary myoblasts with partially overlapping but distinct transcriptional signatures, as well as the description of metabolic pathways associated with defined MuSC states.
Collapse
Affiliation(s)
- Stefania Dell'Orso
- Genome Technology Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 208292, USA stefania.dell'
| | - Aster H Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 208292, USA
| | - Kyung-Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 208292, USA
| | - Faiza Naz
- Genome Technology Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 208292, USA
| | - Jelena Perovanovic
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 208292, USA
| | - Gustavo Gutierrez-Cruz
- Genome Technology Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 208292, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 208292, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 208292, USA stefania.dell'
| |
Collapse
|
249
|
Taylor DM, Aronow BJ, Tan K, Bernt K, Salomonis N, Greene CS, Frolova A, Henrickson SE, Wells A, Pei L, Jaiswal JK, Whitsett J, Hamilton KE, MacParland SA, Kelsen J, Heuckeroth RO, Potter SS, Vella LA, Terry NA, Ghanem LR, Kennedy BC, Helbig I, Sullivan KE, Castelo-Soccio L, Kreigstein A, Herse F, Nawijn MC, Koppelman GH, Haendel M, Harris NL, Rokita JL, Zhang Y, Regev A, Rozenblatt-Rosen O, Rood JE, Tickle TL, Vento-Tormo R, Alimohamed S, Lek M, Mar JC, Loomes KM, Barrett DM, Uapinyoying P, Beggs AH, Agrawal PB, Chen YW, Muir AB, Garmire LX, Snapper SB, Nazarian J, Seeholzer SH, Fazelinia H, Singh LN, Faryabi RB, Raman P, Dawany N, Xie HM, Devkota B, Diskin SJ, Anderson SA, Rappaport EF, Peranteau W, Wikenheiser-Brokamp KA, Teichmann S, Wallace D, Peng T, Ding YY, Kim MS, Xing Y, Kong SW, Bönnemann CG, Mandl KD, White PS. The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Dev Cell 2019; 49:10-29. [PMID: 30930166 PMCID: PMC6616346 DOI: 10.1016/j.devcel.2019.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Abstract
Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan.
Collapse
Affiliation(s)
- Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Bruce J Aronow
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA.
| | - Kai Tan
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Kathrin Bernt
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Salomonis
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Casey S Greene
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA 19102, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alina Frolova
- Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Kyiv 03143, Ukraine
| | - Sarah E Henrickson
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Institute for Immunology, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Wells
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Liming Pei
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jyoti K Jaiswal
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Jeffrey Whitsett
- Cincinnati Children's Hospital Medical Center, Section of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sonya A MacParland
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Judith Kelsen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert O Heuckeroth
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Steven Potter
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Laura A Vella
- Division of Infectious Diseases, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Natalie A Terry
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Louis R Ghanem
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin C Kennedy
- Division of Neurosurgery, Department of Surgery, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Institute for Immunology, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leslie Castelo-Soccio
- Department of Pediatrics, Section of Dermatology, The Children's Hospital of Philadelphia and University of Pennsylvania Perleman School of Medicine, Philadelphia, PA 19104, USA
| | - Arnold Kreigstein
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Melissa Haendel
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Nomi L Harris
- Environmental Genomics and Systems Biology Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanchao Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Koch Institure of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer E Rood
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Timothy L Tickle
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK
| | - Saif Alimohamed
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David M Barrett
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Prech Uapinyoying
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- The Manton Center for Orphan Disease Research, Divisions of Newborn Medicine and of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yi-Wen Chen
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Amanda B Muir
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lana X Garmire
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javad Nazarian
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Noor Dawany
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongbo Michael Xie
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Batsal Devkota
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sharon J Diskin
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric F Rappaport
- Nucleic Acid PCR Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - William Peranteau
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Divisions of Pathology & Laboratory Medicine and Pulmonary Biology in the Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK; European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK; Cavendish Laboratory, Theory of Condensed Matter, 19 JJ Thomson Ave, Cambridge CB3 1SA, UK
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tao Peng
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yang-Yang Ding
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Man S Kim
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Departments of Biomedical Informatics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kenneth D Mandl
- Computational Health Informatics Program, Boston Children's Hospital, Departments of Biomedical Informatics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter S White
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| |
Collapse
|