201
|
Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc Natl Acad Sci U S A 2018; 115:E8746-E8754. [PMID: 30150401 DOI: 10.1073/pnas.1806933115] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Axon degeneration is a prominent event in many neurodegenerative disorders. Axon injury stimulates an intrinsic self-destruction program that culminates in activation of the prodegeneration factor SARM1 and local dismantling of damaged axon segments. In healthy axons, SARM1 activity is restrained by constant delivery of the axon survival factor NMNAT2. Elevating NMNAT2 is neuroprotective, while loss of NMNAT2 evokes SARM1-dependent axon degeneration. As a gatekeeper of axon survival, NMNAT2 abundance is an important regulatory node in neuronal health, highlighting the need to understand the mechanisms behind NMNAT2 protein homeostasis. We demonstrate that pharmacological inhibition of the MAP3Ks dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK) elevates NMNAT2 abundance and strongly protects axons from injury-induced degeneration. We discover that MAPK signaling selectively promotes degradation of palmitoylated NMNAT2, as well as palmitoylated SCG10. Conversely, nonpalmitoylated NMNAT2 is degraded by the Phr1/Skp1a/Fbxo45 ligase complex. Combined inactivation of both pathways leads to synergistic accumulation of NMNAT2 in axons and dramatically enhanced protection against pathological axon degeneration. Hence, the subcellular localization of distinct pools of NMNAT2 enables differential regulation of NMNAT2 abundance to control axon survival.
Collapse
|
202
|
Asghari Adib E, Smithson LJ, Collins CA. An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 2018; 53:110-119. [PMID: 30053694 DOI: 10.1016/j.conb.2018.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023]
Abstract
Signaling through the dual leucine zipper-bearing kinase (DLK) is required for injured neurons to initiate new axonal growth; however, activation of this kinase also leads to neuronal degeneration and death in multiple models of injury and neurodegenerative diseases. This has spurred current consideration of DLK as a candidate therapeutic target, and raises a vital question: in what context is DLK a friend or foe to neurons? Here, we review our current understanding of DLK's function and mechanisms in regulating both regenerative and degenerative responses to axonal damage and stress in the nervous system.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Laura J Smithson
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Catherine A Collins
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
203
|
Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE. The Molecular Interplay between Axon Degeneration and Regeneration. Dev Neurobiol 2018; 78:978-990. [PMID: 30022605 DOI: 10.1002/dneu.22627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Neurons face a series of morphological and molecular changes following trauma and in the progression of neurodegenerative disease. In neurons capable of mounting a spontaneous regenerative response, including invertebrate neurons and mammalian neurons of the peripheral nervous system (PNS), axons regenerate from the proximal side of the injury and degenerate on the distal side. Studies of Wallerian degeneration slow (WldS /Ola) mice have revealed that a level of coordination between the processes of axon regeneration and degeneration occurs during successful repair. Here, we explore how shared cellular and molecular pathways that regulate both axon regeneration and degeneration coordinate the two distinct outcomes in the proximal and distal axon segments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Mardja Bueno
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Victoria Julian
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Sienna Drake
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Alexandra B Byrne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alyson E Fournier
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
204
|
Stassart RM, Möbius W, Nave KA, Edgar JM. The Axon-Myelin Unit in Development and Degenerative Disease. Front Neurosci 2018; 12:467. [PMID: 30050403 PMCID: PMC6050401 DOI: 10.3389/fnins.2018.00467] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are electrically excitable, cable-like neuronal processes that relay information between neurons within the nervous system and between neurons and peripheral target tissues. In the central and peripheral nervous systems, most axons over a critical diameter are enwrapped by myelin, which reduces internodal membrane capacitance and facilitates rapid conduction of electrical impulses. The spirally wrapped myelin sheath, which is an evolutionary specialisation of vertebrates, is produced by oligodendrocytes and Schwann cells; in most mammals myelination occurs during postnatal development and after axons have established connection with their targets. Myelin covers the vast majority of the axonal surface, influencing the axon's physical shape, the localisation of molecules on its membrane and the composition of the extracellular fluid (in the periaxonal space) that immerses it. Moreover, myelinating cells play a fundamental role in axonal support, at least in part by providing metabolic substrates to the underlying axon to fuel its energy requirements. The unique architecture of the myelinated axon, which is crucial to its function as a conduit over long distances, renders it particularly susceptible to injury and confers specific survival and maintenance requirements. In this review we will describe the normal morphology, ultrastructure and function of myelinated axons, and discuss how these change following disease, injury or experimental perturbation, with a particular focus on the role the myelinating cell plays in shaping and supporting the axon.
Collapse
Affiliation(s)
- Ruth M. Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Julia M. Edgar
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
205
|
Chang HY, Sang TK, Chiang AS. Untangling the Tauopathy for Alzheimer's disease and parkinsonism. J Biomed Sci 2018; 25:54. [PMID: 29991349 PMCID: PMC6038292 DOI: 10.1186/s12929-018-0457-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Tau is a microtubule-associated protein that mainly localizes to the axon to stabilize axonal microtubule structure and neuronal connectivity. Tau pathology is one of the most common proteinopathies that associates with age-dependent neurodegenerative diseases including Alzheimer's disease (AD), and various Parkinsonism. Tau protein undergoes a plethora of intra-molecular modifications and some altered forms promote the production of toxic oligomeric tau and paired helical filaments, and through which further assemble into neurofibrillary tangles, also known as tauopathy. In this review, we will discuss the recent advances of the tauopathy research, primarily focusing on its association with the early axonal manifestation of axonal transport defect, axonal mitochondrial stress, autophagic vesicle accumulation and the proceeding of axon destruction, and the pathogenic Tau spreading across the synapse. Two alternative strategies either by targeting tau protein itself or by improving the age-related physiological decline are currently racing to find the hopeful treatment for tauopathy. Undoubtedly, more studies are needed to combat this devastating condition that has already affected millions of people in our aging population.
Collapse
Affiliation(s)
- Hui-Yun Chang
- Department of Medical Science, Institute of Systems Neuroscience, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
- Brain Research Center, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Tzu-Kang Sang
- Department of Life Science, Institute of Biotechnology, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
- Brain Research Center, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Ann-Shyn Chiang
- Department of Medical Science, Institute of Systems Neuroscience, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
- Department of Life Science, Institute of Biotechnology, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
- Brain Research Center, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| |
Collapse
|
206
|
Sasaki Y. Metabolic aspects of neuronal degeneration: From a NAD + point of view. Neurosci Res 2018; 139:9-20. [PMID: 30006197 DOI: 10.1016/j.neures.2018.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022]
Abstract
Cellular metabolism maintains the life of cells, allowing energy production required for building cellular constituents and maintaining homeostasis under constantly changing external environments. Neuronal cells maintain their structure and function for the entire life of organisms and the loss of neurons, with limited neurogenesis in adults, directly causes loss of complexity in the neuronal networks. The nervous system organizes the neurons by placing cell bodies containing nuclei of similar types of neurons in discrete regions. Accordingly, axons must travel great distances to connect different types of neurons and peripheral organs. The enormous surface area of neurons makes them high-energy demanding to keep their membrane potential. Distal axon survival is dependent on axonal transport that is another energy demanding process. All of these factors make metabolic stress a potential risk factor for neuronal death and neuronal degeneration often associated with metabolic diseases. This review discusses recent findings on metabolic dysregulations under neuronal degeneration and pathways protecting neurons in these conditions.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University in St. Louis, Couch Biomedical Research Building, 4515 McKinley Ave., Saint Louis, MO, 63110, United States
| |
Collapse
|
207
|
Wang Y, Song M, Song F. Neuronal autophagy and axon degeneration. Cell Mol Life Sci 2018; 75:2389-2406. [PMID: 29675785 PMCID: PMC11105516 DOI: 10.1007/s00018-018-2812-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023]
Abstract
Axon degeneration is a pathophysiological process of axonal dying and breakdown, which is characterized by several morphological features including the accumulation of axoplasmic organelles, disassembly of microtubules, and fragmentation of the axonal cytoskeleton. Autophagy, a highly conserved lysosomal-degradation machinery responsible for the control of cellular protein quality, is widely believed to be essential for the maintenance of axonal homeostasis in neurons. In recent years, more and more evidence suggests that dysfunctional autophagy is associated with axonal degeneration in many neurodegenerative diseases. Here, we review the core machinery of autophagy in neuronal cells, and provide several major steps that interfere with autophagy flux in neurodegenerative conditions. Furthermore, this review highlights the potential role of neuronal autophagy in axon degeneration, and presents some possible molecular mechanisms by which dysfunctional autophagy leads to axon degeneration in pathological conditions.
Collapse
Affiliation(s)
- Yu Wang
- Department of Toxicology, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Mingxue Song
- School of Public Health, Fujian Medical University, 1 Xueyuan Road, Fuzhou, 350108, Fujian, People's Republic of China
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
208
|
Draper ACE, Piercy RJ. Pathological classification of equine recurrent laryngeal neuropathy. J Vet Intern Med 2018; 32:1397-1409. [PMID: 29691904 PMCID: PMC6060325 DOI: 10.1111/jvim.15142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Abstract
Recurrent Laryngeal Neuropathy (RLN) is a highly prevalent and predominantly left-sided, degenerative disorder of the recurrent laryngeal nerves (RLn) of tall horses, that causes inspiratory stridor at exercise because of intrinsic laryngeal muscle paresis. The associated laryngeal dysfunction and exercise intolerance in athletic horses commonly leads to surgical intervention, retirement or euthanasia with associated financial and welfare implications. Despite speculation, there is a lack of consensus and conflicting evidence supporting the primary classification of RLN, as either a distal ("dying back") axonopathy or as a primary myelinopathy and as either a (bilateral) mononeuropathy or a polyneuropathy; this uncertainty hinders etiological and pathophysiological research. In this review, we discuss the neuropathological changes and electrophysiological deficits reported in the RLn of affected horses, and the evidence for correct classification of the disorder. In so doing, we summarize and reveal the limitations of much historical research on RLN and propose future directions that might best help identify the etiology and pathophysiology of this enigmatic disorder.
Collapse
Affiliation(s)
- Alexandra C. E. Draper
- Comparative Neuromuscular Disease LaboratoryDepartment is Clinical Science and Services, Royal Veterinary CollegeLondonUnited Kingdom
| | - Richard J. Piercy
- Comparative Neuromuscular Disease LaboratoryDepartment is Clinical Science and Services, Royal Veterinary CollegeLondonUnited Kingdom
| |
Collapse
|
209
|
Pehar M, Harlan BA, Killoy KM, Vargas MR. Nicotinamide Adenine Dinucleotide Metabolism and Neurodegeneration. Antioxid Redox Signal 2018; 28:1652-1668. [PMID: 28548540 PMCID: PMC5962335 DOI: 10.1089/ars.2017.7145] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling processes, which involve the cleavage of NAD+ coupled to posttranslational modifications of proteins or the production of second messengers. Either as a primary cause or as a secondary component of the pathogenic process, mitochondrial dysfunction and oxidative stress are prominent features of several neurodegenerative diseases. Activation of NAD+-dependent signaling pathways has a major effect in the capacity of the cell to modulate mitochondrial function and counteract the deleterious effects of increased oxidative stress. Recent Advances: Progress in the understanding of the biological functions and compartmentalization of NAD+-synthesizing and NAD+-consuming enzymes have led to the emergence of NAD+ metabolism as a major therapeutic target for age-related diseases. CRITICAL ISSUES Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases (PARPs), ADP-ribosyl cyclases (CD38/CD157) and sirtuins. Two main strategies to increase NAD+ availability have arisen. These strategies are based on the utilization of NAD+ intermediates/precursors or the inhibition of the NAD+-consuming enzymes, PARPs and CD38. An increase in endogenous sirtuin activity seems to mediate the protective effect that enhancing NAD+ availability confers in several models of neurodegeneration and age-related diseases. FUTURE DIRECTIONS A growing body of evidence suggests the beneficial role of enhancing NAD+ availability in models of neurodegeneration. The challenge ahead is to establish the value and safety of the long-term use of these strategies for the treatment of neurodegenerative diseases. Antioxid. Redox Signal. 28, 1652-1668.
Collapse
Affiliation(s)
- Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Benjamin A Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Kelby M Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Marcelo R Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
210
|
Fricker RA, Green EL, Jenkins SI, Griffin SM. The Influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res 2018; 11:1178646918776658. [PMID: 29844677 PMCID: PMC5966847 DOI: 10.1177/1178646918776658] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B3 (niacin), has long been associated with neuronal development, survival, and function in the central nervous system (CNS), being implicated in both neuronal death and neuroprotection. Here, we summarise a body of research investigating the role of nicotinamide in neuronal health within the CNS, with a focus on studies that have shown a neuroprotective effect. Nicotinamide appears to play a role in protecting neurons from traumatic injury, ischaemia, and stroke, as well as being implicated in 3 key neurodegenerative conditions: Alzheimer’s, Parkinson’s, and Huntington’s diseases. A key factor is the bioavailability of nicotinamide, with low concentrations leading to neurological deficits and dementia and high levels potentially causing neurotoxicity. Finally, nicotinamide’s potential mechanisms of action are discussed, including the general maintenance of cellular energy levels and the more specific inhibition of molecules such as the nicotinamide adenine dinucleotide-dependent deacetylase, sirtuin 1 (SIRT1).
Collapse
Affiliation(s)
- Rosemary A Fricker
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Emma L Green
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Stuart I Jenkins
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| | - Síle M Griffin
- School of Medicine and Institute for Science and Technology in Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
211
|
Distinct homeostatic modulations stabilize reduced postsynaptic receptivity in response to presynaptic DLK signaling. Nat Commun 2018; 9:1856. [PMID: 29748610 PMCID: PMC5945772 DOI: 10.1038/s41467-018-04270-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/16/2018] [Indexed: 11/08/2022] Open
Abstract
Synapses are constructed with the stability to last a lifetime, yet sufficiently flexible to adapt during injury. Although fundamental pathways that mediate intrinsic responses to neuronal injury have been defined, less is known about how synaptic partners adapt. We have investigated responses in the postsynaptic cell to presynaptic activation of the injury-related Dual Leucine Zipper Kinase pathway at the Drosophila neuromuscular junction. We find that the postsynaptic compartment reduces neurotransmitter receptor levels, thus depressing synaptic strength. Interestingly, this diminished state is stabilized through distinct modulations to two postsynaptic homeostatic signaling systems. First, a retrograde response normally triggered by reduced receptor levels is silenced, preventing a compensatory enhancement in presynaptic neurotransmitter release. However, when global presynaptic release is attenuated, a postsynaptic receptor scaling mechanism persists to adaptively stabilize this diminished neurotransmission state. Thus, the homeostatic set point of synaptic strength is recalibrated to a reduced state as synapses acclimate to injury.
Collapse
|
212
|
Turkiew E, Falconer D, Reed N, Höke A. Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J Peripher Nerv Syst 2018; 22:162-171. [PMID: 28485482 DOI: 10.1111/jns.12219] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
Abstract
Distal axon degeneration seen in many peripheral neuropathies is likely to share common molecular mechanisms with Wallerian degeneration. Although several studies in mouse models of peripheral neuropathy showed prevention of axon degeneration in the slow Wallerian degeneration (Wlds) mouse, the role of a recently identified player in Wallerian degeneration, Sarm1, has not been explored extensively. In this study, we show that mice lacking the Sarm1 gene are resistant to distal axonal degeneration in a model of chemotherapy induced peripheral neuropathy caused by paclitaxel and a model of high fat diet induced putative metabolic neuropathy. This study extends the role of Sarm1 to axon degeneration seen in peripheral neuropathies and identifies it as a likely target for therapeutic development.
Collapse
Affiliation(s)
- Elliot Turkiew
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Debbie Falconer
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicole Reed
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ahmet Höke
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
213
|
Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development. Development 2018; 145:145/9/dev156018. [DOI: 10.1242/dev.156018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT
The membrane receptor Toll and the related Toll-like receptors (TLRs) are best known for their universal function in innate immunity. However, Toll/TLRs were initially discovered in a developmental context, and recent studies have revealed that Toll/TLRs carry out previously unanticipated functions in development, regulating cell fate, cell number, neural circuit connectivity and synaptogenesis. Furthermore, knowledge of their molecular mechanisms of action is expanding and has highlighted that Toll/TLRs function beyond the canonical NF-κB pathway to regulate cell-to-cell communication and signalling at the synapse. Here, we provide an overview of Toll/TLR signalling and discuss how this signalling pathway regulates various aspects of development across species.
Collapse
Affiliation(s)
- Niki Anthoney
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
214
|
Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: A Reappraisal of Pathology and Mechanisms with High-Resolution Anatomical Methods. J Neurosci 2018; 38:4031-4047. [PMID: 29567804 DOI: 10.1523/jneurosci.2343-17.2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/21/2018] [Accepted: 03/15/2018] [Indexed: 11/21/2022] Open
Abstract
Traumatic axonal injury (TAI) is a common neuropathology in traumatic brain injury and is featured by primary injury to axons. Here, we generated TAI with impact acceleration of the head in male Thy1-eYFP-H transgenic mice in which specific populations of neurons and their axons are labeled with yellow fluorescent protein. This model results in axonal lesions in multiple axonal tracts along with blood-brain barrier disruption and neuroinflammation. The corticospinal tract, a prototypical long tract, is severely affected and is the focus of this study. Using optimized CLARITY at single-axon resolution, we visualized the entire corticospinal tract volume from the pons to the cervical spinal cord in 3D and counted the total number of axonal lesions and their progression over time. Our results divulged the presence of progressive traumatic axonopathy that was maximal at the pyramidal decussation. The perikarya of injured corticospinal neurons atrophied, but there was no evidence of neuronal cell death. We also used CLARITY at single-axon resolution to explore the role of the NMNAT2-SARM1 axonal self-destruction pathway in traumatic axonopathy. When we interfered with this pathway by genetically ablating SARM1 or by pharmacological strategies designed to increase levels of Nicotinamide (Nam), a feedback inhibitor of SARM1, we found a significant reduction in the number of axonal lesions early after injury. Our findings show that high-resolution neuroanatomical strategies reveal important features of TAI with biological implications, especially the progressive axonopathic nature of TAI and the role of the NMNAT2-SARM1 pathway in the early stages of axonopathy.SIGNIFICANCE STATEMENT In the first systematic application of novel high-resolution neuroanatomical tools in neuropathology, we combined CLARITY with 2-photon microscopy, optimized for detection of single axonal lesions, to reconstruct the injured mouse brainstem in a model of traumatic axonal injury (TAI) that is a common pathology associated with traumatic brain injury. The 3D reconstruction of the corticospinal tract at single-axon resolution allowed for a more advanced level of qualitative and quantitative understanding of TAI. Using this model, we showed that TAI is an axonopathy with a prominent role of the NMNAT2-SARM1 molecular pathway, that is also implicated in peripheral neuropathy. Our results indicate that high-resolution anatomical models of TAI afford a level of detail and sensitivity that is ideal for testing novel molecular and biomechanical hypotheses.
Collapse
|
215
|
Röderer P, Klatt L, John F, Theis V, Winklhofer KF, Theiss C, Matschke V. Increased ROS Level in Spinal Cord of Wobbler Mice due to Nmnat2 Downregulation. Mol Neurobiol 2018; 55:8414-8424. [PMID: 29549647 DOI: 10.1007/s12035-018-0999-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis is a devastating motor neuron disease and to this day not curable. While 5-10% of patients inherit the disease (familiar ALS), up to 95% of patients are diagnosed with the sporadic form (sALS). ALS is characterized by the degeneration of upper motor neurons in the cerebral cortex and of lower motor neurons in the brainstem and spinal cord. The wobbler mouse resembles almost all phenotypical hallmarks of human sALS patients and is therefore an excellent motor neuron disease model. The motor neuron disease of the wobbler mouse develops over a time course of around 40 days and can be divided into three phases: p0, presymptomatic; p20, early clinical; and p40, stable clinical phase. Recent findings suggest an essential implication of the NAD+-producing enzyme Nmnat2 in neurodegeneration as well as maintenance of healthy axons. Here, we were able to show a significant downregulation of both gene and protein expression of Nmnat2 in the spinal cord of the wobbler mice at the stable clinical phase. The product of the enzyme NAD+ is also significantly reduced, and the values of the reactive oxygen species are significantly increased in the spinal cord of the wobbler mouse at p40. Thus, the deregulated expression of Nmnat2 appears to have a great influence on the cellular stress in the spinal cord of wobbler mice.
Collapse
Affiliation(s)
- Pascal Röderer
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lara Klatt
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Felix John
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Verena Theis
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Department of Molecular Cell Biology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Veronika Matschke
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany. .,Institute of Anatomy, Department of Cytology, Ruhr University Bochum, Universitätsstr. 150, Building MA 5/52, 44780, Bochum, Germany.
| |
Collapse
|
216
|
Yoshino J, Baur JA, Imai SI. NAD + Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab 2018; 27:513-528. [PMID: 29249689 PMCID: PMC5842119 DOI: 10.1016/j.cmet.2017.11.002] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Research on the biology of NAD+ has been gaining momentum, providing many critical insights into the pathogenesis of age-associated functional decline and diseases. In particular, two key NAD+ intermediates, nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), have been extensively studied over the past several years. Supplementing these NAD+ intermediates has shown preventive and therapeutic effects, ameliorating age-associated pathophysiologies and disease conditions. Although the pharmacokinetics and metabolic fates of NMN and NR are still under intensive investigation, these NAD+ intermediates can exhibit distinct behavior, and their fates appear to depend on the tissue distribution and expression levels of NAD+ biosynthetic enzymes, nucleotidases, and presumptive transporters for each. A comprehensive concept that connects NAD+ metabolism to the control of aging and longevity in mammals has been proposed, and the stage is now set to test whether these exciting preclinical results can be translated to improve human health.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, 12-114 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-5160, USA.
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Japan Agency for Medical Research and Development, Project for Elucidating and Controlling Mechanisms of Aging and Longevity, Tokyo, Japan.
| |
Collapse
|
217
|
Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following Peripheral Nerve Injury. Neuroscience 2018; 375:34-48. [PMID: 29438804 DOI: 10.1016/j.neuroscience.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/04/2023]
Abstract
Adult mammalian peripheral neurons have an intrinsic regrowth capacity in response to axonal injury. The induction of calcium ion (Ca2+) oscillations at an injured site is critical for the regulation of regenerative responses. In polarized neurons, distal axonal segments contain a well-developed endoplasmic reticulum (ER) network that is responsible for Ca2+ homeostasis. Although these characteristics implicate the relevance among injury-induced Ca2+ dynamics, axonal ER-derived signaling, and regenerative responses propagated along the axons, the details are not fully understood. In the present study, we found that Ca2+ release from the axonal ER was accelerated in response to injury. Additionally, axonal injury-dependent Ca2+ release from the ER activated unfolded protein response (UPR) signaling at injured sites. Inhibition of axonal UPR signaling led to fragmentation of the axonal ER and disrupted growth cone formation, suggesting that activation of axonal UPR branches following axonal injury promotes regeneration via regulation of ER reconstruction and formation of growth cones. Our studies revealed that local activation of axonal UPR signaling by injury-induced Ca2+ release from the ER is critical for regeneration. These findings provide a new concept for the link between injury-induced signaling at a distant location and regulation of organelle and cytoskeletal formation in the orchestration of axonal regeneration.
Collapse
|
218
|
TIR Domain Proteins Are an Ancient Family of NAD +-Consuming Enzymes. Curr Biol 2018; 28:421-430.e4. [PMID: 29395922 DOI: 10.1016/j.cub.2017.12.024] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022]
Abstract
The Toll/interleukin-1 receptor (TIR) domain is the signature signaling domain of Toll-like receptors (TLRs) and their adaptors, serving as a scaffold for the assembly of protein complexes for innate immune signaling [1, 2]. TIR domain proteins are also expressed in plants, where they mediate disease resistance [3, 4], and in bacteria, where they have been associated with virulence [5-9]. In pursuing our work on axon degeneration [10], we made the surprising discovery that the TIR domain of SARM1 (sterile alpha and TIR motif containing 1), a TLR adaptor protein, has enzymatic activity [11]. Upon axon injury, the SARM1 TIR domain cleaves nicotinamide adenine dinucleotide (NAD+), destroying this essential metabolic co-factor to trigger axon destruction [11, 12]. Whereas current studies of TIR domains focus on their scaffolding function, our findings with SARM1 inspired us to ask whether this enzymatic activity is the primordial function of the TIR domain. Here we show that ancestral prokaryotic TIR domains constitute a new family of NADase enzymes. Using purified proteins from a cell-free translation system, we find that TIR domain proteins from both bacteria and archaea cleave NAD+ into nicotinamide and ADP-ribose (ADPR), with catalytic cleavage executed by a conserved glutamic acid. A subset of bacterial and archaeal TIR domains generates a non-canonical variant cyclic ADPR (cADPR) molecule, and the full-length TIR domain protein from pathogenic Staphylococcus aureus induces NAD+ loss in mammalian cells. These findings suggest that the primordial function of the TIR domain is the enzymatic cleavage of NAD+ and establish TIR domain proteins as a new class of metabolic regulatory enzymes.
Collapse
|
219
|
Common and Divergent Mechanisms in Developmental Neuronal Remodeling and Dying Back Neurodegeneration. Curr Biol 2017; 26:R628-R639. [PMID: 27404258 DOI: 10.1016/j.cub.2016.05.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell death is an inherent process that is required for the proper wiring of the nervous system. Studies over the last four decades have shown that, in a parallel developmental pathway, axons and dendrites are eliminated without the death of the neuron. This developmentally regulated 'axonal death' results in neuronal remodeling, which is an essential mechanism to sculpt neuronal networks in both vertebrates and invertebrates. Studies across various organisms have demonstrated that a conserved strategy in the formation of adult neuronal circuitry often involves generating too many connections, most of which are later eliminated with high temporal and spatial resolution. Can neuronal remodeling be regarded as developmentally and spatially regulated neurodegeneration? It has been previously speculated that injury-induced degeneration (Wallerian degeneration) shares some molecular features with 'dying back' neurodegenerative diseases. In this opinion piece, we examine the similarities and differences between the mechanisms regulating neuronal remodeling and those being perturbed in dying back neurodegenerative diseases. We focus primarily on amyotrophic lateral sclerosis and peripheral neuropathies and highlight possible shared pathways and mechanisms. While mechanistic data are only just beginning to emerge, and despite the inherent differences between disease-oriented and developmental processes, we believe that some of the similarities between these developmental and disease-initiated degeneration processes warrant closer collaborations and crosstalk between these different fields.
Collapse
|
220
|
Wang L, Koutelou E, Hirsch C, McCarthy R, Schibler A, Lin K, Lu Y, Jeter C, Shen J, Barton MC, Dent SYR. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports 2017; 10:287-299. [PMID: 29249668 PMCID: PMC5768892 DOI: 10.1016/j.stemcr.2017.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF) signaling pathway in early embryoid bodies (EBs). Gcn5-/- EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.
Collapse
Affiliation(s)
- Li Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Calley Hirsch
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ryan McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Andria Schibler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
221
|
Linderman JA, Kobayashi M, Rayannavar V, Fak JJ, Darnell RB, Chao MV, Wilson AC, Mohr I. Immune Escape via a Transient Gene Expression Program Enables Productive Replication of a Latent Pathogen. Cell Rep 2017; 18:1312-1323. [PMID: 28147283 DOI: 10.1016/j.celrep.2017.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 12/28/2022] Open
Abstract
How type I and II interferons prevent periodic reemergence of latent pathogens in tissues of diverse cell types remains unknown. Using homogeneous neuron cultures latently infected with herpes simplex virus 1, we show that extrinsic type I or II interferon acts directly on neurons to induce unique gene expression signatures and inhibit the reactivation-specific burst of viral genome-wide transcription called phase I. Surprisingly, interferons suppressed reactivation only during a limited period early in phase I preceding productive virus growth. Sensitivity to type II interferon was selectively lost if viral ICP0, which normally accumulates later in phase I, was expressed before reactivation. Thus, interferons suppress reactivation by preventing initial expression of latent genomes but are ineffective once phase I viral proteins accumulate, limiting interferon action. This demonstrates that inducible reactivation from latency is only transiently sensitive to interferon. Moreover, it illustrates how latent pathogens escape host immune control to periodically replicate by rapidly deploying an interferon-resistant state.
Collapse
Affiliation(s)
- Jessica A Linderman
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Vinayak Rayannavar
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology & Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., Box 226, New York, NY 10065, USA
| | - Moses V Chao
- Department of Cell Biology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Physiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Neuroscience, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Kimmel Center for Biology & Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center at NYU Medical Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center at NYU Medical Center, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA.
| |
Collapse
|
222
|
Jiang L, Tang Z. Expression and regulation of the ERK1/2 and p38 MAPK signaling pathways in periodontal tissue remodeling of orthodontic tooth movement. Mol Med Rep 2017; 17:1499-1506. [PMID: 29138812 PMCID: PMC5780090 DOI: 10.3892/mmr.2017.8021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/03/2017] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to investigate the expression and regulation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) signaling pathways in periodontal tissue remodeling of orthodontic tooth movement. Sprague Dawley rats with orthodontic tooth movement were generated. After tension stress for 1, 3, 5, 7 and 14 days, the protein and mRNA expression levels of ERK1/2 and p38 in periodontal tissue were determined by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), respectively. Primary human periodontal ligament cells (hPDLCs) were separated and characterized. Following exposure to centrifugal force for 1, 2, 6, 8 and 12 h, the protein expression levels of ERK1/2 and p38 MAPK, and the mRNA expression levels of ERK1/2, p38 and osteogenesis associated-genes [including alkaline phosphatase (ALP), osteopontin (OPN), collagen I (Col I), osteocalcin (OCN) and bone sialoprotein (BSP)] were measured. The protein expression levels of ERK1/2 and p38 MAPK in periodontal tissue and hPDLCs treated with stress were similar to those in the control groups. However, compared with the control, the phosphorylation and mRNA expression levels of the genes encoding ERK1/2 and p38 MAPK in orthodontic periodontal tissue and forced hPDLCs were elevated. These increases reached a peak at 5 days for orthodontic periodontal tissue and at 6 h for forced hPDLCs. In forced hPDLCs, the mRNA expression levels of ALP, OPN, Col I, OCN and BSP were notably and continuously upregulated in a time-dependent manner. In addition, hPDLCs were treated with the ERK1/2 inhibitor, PD098059, and the p38 MAPK inhibitor, SB203580, and the mRNA expression levels of the osteogenesis associated-genes were then measured using RT-qPCR. Following treatment with the ERK1/2 inhibitor and p38 MAPK inhibitor, the mRNA expression levels of ALP, OPN, Col I, OCN and BSP were significantly downregulated. In conclusion, ERK1/2 and p38 MAPK signaling pathways may be positively and closely associated with periodontal tissue remodeling of orthodontic tooth movement.
Collapse
Affiliation(s)
- Liping Jiang
- Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Tang
- Department of Orthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
223
|
LoCoco PM, Risinger AL, Smith HR, Chavera TS, Berg KA, Clarke WP. Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy. eLife 2017; 6:e29626. [PMID: 29125463 PMCID: PMC5701795 DOI: 10.7554/elife.29626] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here, we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Peter M LoCoco
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - April L Risinger
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Hudson R Smith
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Teresa S Chavera
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Kelly A Berg
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - William P Clarke
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioUnited States
| |
Collapse
|
224
|
Kurowska Z, Kordower JH, Stoessl AJ, Burke RE, Brundin P, Yue Z, Brady ST, Milbrandt J, Trapp BD, Sherer TB, Medicetty S. Is Axonal Degeneration a Key Early Event in Parkinson's Disease? JOURNAL OF PARKINSONS DISEASE 2017; 6:703-707. [PMID: 27497486 DOI: 10.3233/jpd-160881] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent research suggests that in Parkinson's disease the long, thin and unmyelinated axons of dopaminergic neurons degenerate early in the disease process. We organized a workshop entitled 'Axonal Pathology in Parkinson's disease', on March 23rd, 2016, in Cleveland, Ohio with the goals of summarizing the state-of-the-art and defining key gaps in knowledge. A group of eight research leaders discussed new developments in clinical pathology, functional imaging, animal models, and mechanisms of degeneration including neuroinflammation, autophagy and axonal transport deficits. While the workshop focused on PD, comparisons were made to other neurological conditions where axonal degeneration is well recognized.
Collapse
Affiliation(s)
- Zuzanna Kurowska
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Renovo Neural Inc., Cleveland, OH, USA
| | - Jeffrey H Kordower
- Research Center for Brain Repair, Rush University Medical Center, Chicago, IL, USA.,Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia and Vancouver Coastal Health, BC, Canada
| | - Robert E Burke
- Departments of Neurology and Pathology & Cell Biology, Columbia University Medical Center, New York City, NY, USA
| | - Patrik Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Renovo Neural Inc., Cleveland, OH, USA
| | - Todd B Sherer
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | | |
Collapse
|
225
|
Abstract
SARM1 is a key regulator of axonal degeneration. However, SARM1 mechanism of action is not clear. In this issue of Neuron, Essuman et al. (2017) reveal an intrinsic NADase activity in the SARM1-TIR domain that is required for axonal degeneration.
Collapse
|
226
|
Orem BC, Pelisch N, Williams J, Nally JM, Stirling DP. Intracellular calcium release through IP 3 R or RyR contributes to secondary axonal degeneration. Neurobiol Dis 2017; 106:235-243. [DOI: 10.1016/j.nbd.2017.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/28/2017] [Accepted: 07/10/2017] [Indexed: 11/27/2022] Open
|
227
|
Li J, Zhang YV, Asghari Adib E, Stanchev DT, Xiong X, Klinedinst S, Soppina P, Jahn TR, Hume RI, Rasse TM, Collins CA. Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. eLife 2017; 6:e24271. [PMID: 28925357 PMCID: PMC5605197 DOI: 10.7554/elife.24271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
The kinesin-3 family member Unc-104/KIF1A is required for axonal transport of many presynaptic components to synapses, and mutation of this gene results in synaptic dysfunction in mice, flies and worms. Our studies at the Drosophila neuromuscular junction indicate that many synaptic defects in unc-104-null mutants are mediated independently of Unc-104's transport function, via the Wallenda (Wnd)/DLK MAP kinase axonal damage signaling pathway. Wnd signaling becomes activated when Unc-104's function is disrupted, and leads to impairment of synaptic structure and function by restraining the expression level of active zone (AZ) and synaptic vesicle (SV) components. This action concomitantly suppresses the buildup of synaptic proteins in neuronal cell bodies, hence may play an adaptive role to stresses that impair axonal transport. Wnd signaling also becomes activated when pre-synaptic proteins are over-expressed, suggesting the existence of a feedback circuit to match synaptic protein levels to the transport capacity of the axon.
Collapse
Affiliation(s)
- Jiaxing Li
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Yao V Zhang
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate School of Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Elham Asghari Adib
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Doychin T Stanchev
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate School of Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Xin Xiong
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Susan Klinedinst
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Pushpanjali Soppina
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Thomas Robert Jahn
- CHS Research Group Proteostasis in Neurodegenerative DiseaseDKFZ Deutsches KrebsforschungszentrumHeidelbergGermany
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| | - Tobias M Rasse
- Junior Research Group Synaptic PlasticityHertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
- CHS Research Group Proteostasis in Neurodegenerative DiseaseDKFZ Deutsches KrebsforschungszentrumHeidelbergGermany
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
228
|
Feinberg K, Kolaj A, Wu C, Grinshtein N, Krieger JR, Moran MF, Rubin LL, Miller FD, Kaplan DR. A neuroprotective agent that inactivates prodegenerative TrkA and preserves mitochondria. J Cell Biol 2017; 216:3655-3675. [PMID: 28877995 PMCID: PMC5674898 DOI: 10.1083/jcb.201705085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022] Open
Abstract
The pan-kinase inhibitor foretinib is identified as a potent suppressor of sympathetic, sensory, and motor neuron axon degeneration, acting in part by inhibiting the activity of the unliganded TrkA/nerve growth factor receptor and by preserving mitochondria in die-back and Wallerian degeneration models. Axon degeneration is an early event and pathological in neurodegenerative conditions and nerve injuries. To discover agents that suppress neuronal death and axonal degeneration, we performed drug screens on primary rodent neurons and identified the pan-kinase inhibitor foretinib, which potently rescued sympathetic, sensory, and motor wt and SOD1 mutant neurons from trophic factor withdrawal-induced degeneration. By using primary sympathetic neurons grown in mass cultures and Campenot chambers, we show that foretinib protected neurons by suppressing both known degenerative pathways and a new pathway involving unliganded TrkA and transcriptional regulation of the proapoptotic BH3 family members BimEL, Harakiri,and Puma, culminating in preservation of mitochondria in the degenerative setting. Foretinib delayed chemotherapy-induced and Wallerian axonal degeneration in culture by preventing axotomy-induced local energy deficit and preserving mitochondria, and peripheral Wallerian degeneration in vivo. These findings identify a new axon degeneration pathway and a potentially clinically useful therapeutic drug.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Adelaida Kolaj
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chen Wu
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Natalie Grinshtein
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jonathan R Krieger
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
229
|
Fukuda Y, Li Y, Segal RA. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2017; 11:481. [PMID: 28912674 PMCID: PMC5583221 DOI: 10.3389/fnins.2017.00481] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chemotherapeutic agents cause many short and long term toxic side effects to peripheral nervous system (PNS) that drastically alter quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and enduring disorder caused by several anti-neoplastic agents. CIPN typically presents with neuropathic pain, numbness of distal extremities, and/or oversensitivity to thermal or mechanical stimuli. This adverse side effect often requires a reduction in chemotherapy dosage or even discontinuation of treatment. Currently there are no effective treatment options for CIPN. While the underlying mechanisms for CIPN are not understood, current data identify a “dying back” axon degeneration of distal nerve endings as the major pathology in this disorder. Therefore, mechanistic understanding of axon degeneration will provide insights into the pathway and molecular players responsible for CIPN. Here, we review recent findings that expand our understanding of the pathogenesis of CIPN and discuss pathways that may be shared with the axonal degeneration that occurs during developmental axon pruning and during injury-induced Wallerian degeneration. These mechanistic insights provide new avenues for development of therapies to prevent or treat CIPN.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Yihang Li
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| |
Collapse
|
230
|
Vaur P, Brugg B, Mericskay M, Li Z, Schmidt MS, Vivien D, Orset C, Jacotot E, Brenner C, Duplus E. Nicotinamide riboside, a form of vitamin B 3, protects against excitotoxicity-induced axonal degeneration. FASEB J 2017; 31:5440-5452. [PMID: 28842432 DOI: 10.1096/fj.201700221rr] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/31/2017] [Indexed: 11/11/2022]
Abstract
NAD+ depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD+ was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD+ to NR prompted us to probe the effects of NAD+ and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD+ reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD+ Moreover, the stronger effect of NR compared to NAD+ depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD+ and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD+ in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD+ homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration.
Collapse
Affiliation(s)
- Pauline Vaur
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Bernard Brugg
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Mathias Mericskay
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Unité Signalisation et Physiopathologie Cardiovasculaire, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Zhenlin Li
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France.,Equipe de Recherche Labellisée (ERL) U1164, INSERM, Université Paris-Saclay, Université Paris Sud, Châtenay-Malabry, France
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Denis Vivien
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Cyrille Orset
- Unité INSERM 1237, GIP Cycéron, Centre Hospitalier Universitaire de Caen, Université Caen Normandie, Caen, France
| | - Etienne Jacotot
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Eric Duplus
- Unité Mixte de Recherche (UMR) Adaptation Biologique et Vieillissement (UMR 8256), Institut Biologie Paris Seine, Centre National de la Recherche Scientifique (CNRS), INSERM, Université Pierre et Marie Curie (UPMC), Sorbonne Universités, Paris, France;
| |
Collapse
|
231
|
Neukomm LJ, Burdett TC, Seeds AM, Hampel S, Coutinho-Budd JC, Farley JE, Wong J, Karadeniz YB, Osterloh JM, Sheehan AE, Freeman MR. Axon Death Pathways Converge on Axundead to Promote Functional and Structural Axon Disassembly. Neuron 2017; 95:78-91.e5. [PMID: 28683272 DOI: 10.1016/j.neuron.2017.06.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/25/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
Axon degeneration is a hallmark of neurodegenerative disease and neural injury. Axotomy activates an intrinsic pro-degenerative axon death signaling cascade involving loss of the NAD+ biosynthetic enzyme Nmnat/Nmnat2 in axons, activation of dSarm/Sarm1, and subsequent Sarm-dependent depletion of NAD+. Here we identify Axundead (Axed) as a mediator of axon death. axed mutants suppress axon death in several types of axons for the lifespan of the fly and block the pro-degenerative effects of activated dSarm in vivo. Neurodegeneration induced by loss of the sole fly Nmnat ortholog is also fully blocked by axed, but not dsarm, mutants. Thus, pro-degenerative pathways activated by dSarm signaling or Nmnat elimination ultimately converge on Axed. Remarkably, severed axons morphologically preserved by axon death pathway mutations remain integrated in circuits and able to elicit complex behaviors after stimulation, indicating that blockade of axon death signaling results in long-term functional preservation of axons.
Collapse
Affiliation(s)
- Lukas J Neukomm
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Thomas C Burdett
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew M Seeds
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stefanie Hampel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jaeda C Coutinho-Budd
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan E Farley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jack Wong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yonca B Karadeniz
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeannette M Osterloh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy E Sheehan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
232
|
Tassia MG, Whelan NV, Halanych KM. Toll-like receptor pathway evolution in deuterostomes. Proc Natl Acad Sci U S A 2017; 114:7055-7060. [PMID: 28630328 PMCID: PMC5502590 DOI: 10.1073/pnas.1617722114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Animals have evolved an array of pattern-recognition receptor families essential for recognizing conserved molecular motifs characteristic of pathogenic microbes. One such family is the Toll-like receptors (TLRs). On pathogen binding, TLRs initiate specialized cytokine signaling catered to the class of invading pathogen. This signaling is pivotal for activating adaptive immunity in vertebrates, suggesting a close evolutionary relationship between innate and adaptive immune systems. Despite significant advances toward understanding TLR-facilitated immunity in vertebrates, knowledge of TLR pathway evolution in other deuterostomes is limited. By analyzing genomes and transcriptomes across 37 deuterostome taxa, we shed light on the evolution and diversity of TLR pathway signaling elements. Here, we show that the deuterostome ancestor possessed a molecular toolkit homologous to that which drives canonical MYD88-dependent TLR signaling in contemporary mammalian lineages. We also provide evidence that TLR3-facilitated antiviral signaling predates the origin of its TCAM1 dependence recognized in the vertebrates. SARM1, a negative regulator of TCAM1-dependent pathways in vertebrates, was also found to be present across all major deuterostome lineages despite the apparent absence of TCAM1 in invertebrate deuterostomes. Whether the presence of SARM1 is the result of its role in immunity regulation, neuron physiology, or a function of both is unclear. Additionally, Bayesian phylogenetic analyses corroborate several lineage-specific TLR gene expansions in urchins and cephalochordates. Importantly, our results underscore the need to sample across taxonomic groups to understand evolutionary patterns of the innate immunity foundation on which complex immunological novelties arose.
Collapse
Affiliation(s)
- Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, AL 36849;
| | - Nathan V Whelan
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
- Warm Springs Fish Technology Center, US Fish and Wildlife Service, Warm Springs, GA 31830
| | | |
Collapse
|
233
|
TMEM184b Promotes Axon Degeneration and Neuromuscular Junction Maintenance. J Neurosci 2017; 36:4681-9. [PMID: 27122027 DOI: 10.1523/jneurosci.2893-15.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Complex nervous systems achieve proper connectivity during development and must maintain these connections throughout life. The processes of axon and synaptic maintenance and axon degeneration after injury are jointly controlled by a number of proteins within neurons, including ubiquitin ligases and mitogen activated protein kinases. However, our understanding of these molecular cascades is incomplete. Here we describe the phenotype resulting from mutation of TMEM184b, a protein identified in a screen for axon degeneration mediators. TMEM184b is highly expressed in the mouse nervous system and is found in recycling endosomes in neuronal cell bodies and axons. Disruption of TMEM184b expression results in prolonged maintenance of peripheral axons following nerve injury, demonstrating a role for TMEM184b in axon degeneration. In contrast to this protective phenotype in axons, uninjured mutant mice have anatomical and functional impairments in the peripheral nervous system. Loss of TMEM184b causes swellings at neuromuscular junctions that become more numerous with age, demonstrating that TMEM184b is critical for the maintenance of synaptic architecture. These swellings contain abnormal multivesicular structures similar to those seen in patients with neurodegenerative disorders. Mutant animals also show abnormal sensory terminal morphology. TMEM184b mutant animals are deficient on the inverted screen test, illustrating a role for TMEM184b in sensory-motor function. Overall, we have identified an important function for TMEM184b in peripheral nerve terminal structure, function, and the axon degeneration pathway. SIGNIFICANCE STATEMENT Our work has identified both neuroprotective and neurodegenerative roles for a previously undescribed protein, TMEM184b. TMEM184b mutation causes delayed axon degeneration following peripheral nerve injury, indicating that it participates in the degeneration process. Simultaneously, TMEM184b mutation causes progressive structural abnormalities at neuromuscular synapses and swellings within sensory terminals, and animals with this mutation display profound weakness. Thus, TMEM184b is necessary for normal peripheral nerve terminal morphology and maintenance. Loss of TMEM184b results in accumulation of autophagosomal structures in vivo, fitting with emerging studies that have linked autophagy disruption and neurological disease. Our work recognizes TMEM184b as a new player in the maintenance of the nervous system.
Collapse
|
234
|
Malapati H, Millen SM, J Buchser W. The axon degeneration gene SARM1 is evolutionarily distinct from other TIR domain-containing proteins. Mol Genet Genomics 2017; 292:909-922. [PMID: 28447196 DOI: 10.1007/s00438-017-1320-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Many forms of neurodegenerative disease are characterized by Wallerian degeneration, an active program of axonal destruction. Recently, the important player which enacts Wallerian degeneration was discovered, the multidomain protein SARM1. Since the SARM1 protein has classically been thought of as an innate immune molecule, its role in Wallerian degeneration has raised questions on the evolutionary forces acting on it. Here, we synthesize a picture of SARM1's evolution through various organisms by examining the molecular and genetic changes of SARM1 and the genes around it. Using proteins that possess domains homologous to SARM1, we established distances and Ka/Ks values through 5671 pairwise species-species comparisons. We demonstrate that SARM1 diverged across species in a pattern similar to other SAM domain-containing proteins. This is surprising, because it was expected that SARM1 would behave more like its TIR domain relatives. Going along with this divorce from TIR, we also noted that SARM1's TIR is under stronger purifying selection than the rest of the TIR domain-containing proteins (remaining highly conserved). In addition, SARM1's synteny analysis reveals that the surrounding gene cluster is highly conserved, functioning as a potential nexus of gene functionality across species. Taken together, SARM1 demonstrates a unique evolutionary pattern, separate from the TIR domain protein family.
Collapse
Affiliation(s)
- Harsha Malapati
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - Spencer M Millen
- Neuroscience Program, College of William & Mary, Williamsburg, VA, USA
| | - William J Buchser
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA. .,Neuroscience Program, College of William & Mary, Williamsburg, VA, USA.
| |
Collapse
|
235
|
Brazill JM, Li C, Zhu Y, Zhai RG. NMNAT: It's an NAD + synthase… It's a chaperone… It's a neuroprotector. Curr Opin Genet Dev 2017; 44:156-162. [PMID: 28445802 DOI: 10.1016/j.gde.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Nicotinamide mononucleotide adenylyl transferases (NMNATs) are a family of highly conserved proteins indispensable for cellular homeostasis. NMNATs are classically known for their enzymatic function of catalyzing NAD+ synthesis, but also have gained a reputation as essential neuronal maintenance factors. NMNAT deficiency has been associated with various human diseases with pronounced consequences on neural tissues, underscoring the importance of the neuronal maintenance and protective roles of these proteins. New mechanistic studies have challenged the role of NMNAT-catalyzed NAD+ production in delaying Wallerian degeneration and have specified new mechanisms of NMNAT's chaperone function critical for neuronal health. Progress in understanding the regulation of NMNAT has uncovered a neuronal stress response with great therapeutic promise for treating various neurodegenerative conditions.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
236
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
237
|
Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J. The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD + Cleavage Activity that Promotes Pathological Axonal Degeneration. Neuron 2017; 93:1334-1343.e5. [PMID: 28334607 PMCID: PMC6284238 DOI: 10.1016/j.neuron.2017.02.022] [Citation(s) in RCA: 439] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 01/08/2023]
Abstract
Axonal degeneration is an early and prominent feature of many neurological disorders. SARM1 is the central executioner of the axonal degeneration pathway that culminates in depletion of axonal NAD+, yet the identity of the underlying NAD+-depleting enzyme(s) is unknown. Here, in a series of experiments using purified proteins from mammalian cells, bacteria, and a cell-free protein translation system, we show that the SARM1-TIR domain itself has intrinsic NADase activity-cleaving NAD+ into ADP-ribose (ADPR), cyclic ADPR, and nicotinamide, with nicotinamide serving as a feedback inhibitor of the enzyme. Using traumatic and vincristine-induced injury models in neurons, we demonstrate that the NADase activity of full-length SARM1 is required in axons to promote axonal NAD+ depletion and axonal degeneration after injury. Hence, the SARM1 enzyme represents a novel therapeutic target for axonopathies. Moreover, the widely utilized TIR domain is a protein motif that can possess enzymatic activity.
Collapse
Affiliation(s)
- Kow Essuman
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daniel W Summers
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
238
|
Gamage KK, Cheng I, Park RE, Karim MS, Edamura K, Hughes C, Spano AJ, Erisir A, Deppmann CD. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons. Curr Biol 2017; 27:890-896. [PMID: 28285993 DOI: 10.1016/j.cub.2017.01.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022]
Abstract
Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6-/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wlds and Sarm1-/- mice, preserved axons in DR6-/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration.
Collapse
Affiliation(s)
- Kanchana K Gamage
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Irene Cheng
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Rachel E Park
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mardeen S Karim
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Kazusa Edamura
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher Hughes
- Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807, USA
| | - Anthony J Spano
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
239
|
NMN Deamidase Delays Wallerian Degeneration and Rescues Axonal Defects Caused by NMNAT2 Deficiency In Vivo. Curr Biol 2017; 27:784-794. [PMID: 28262487 DOI: 10.1016/j.cub.2017.01.070] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/22/2022]
Abstract
Axons require the axonal NAD-synthesizing enzyme NMNAT2 to survive. Injury or genetically induced depletion of NMNAT2 triggers axonal degeneration or defective axon growth. We have previously proposed that axonal NMNAT2 primarily promotes axon survival by maintaining low levels of its substrate NMN rather than generating NAD; however, this is still debated. NMN deamidase, a bacterial enzyme, shares NMN-consuming activity with NMNAT2, but not NAD-synthesizing activity, and it delays axon degeneration in primary neuronal cultures. Here we show that NMN deamidase can also delay axon degeneration in zebrafish larvae and in transgenic mice. Like overexpressed NMNATs, NMN deamidase reduces NMN accumulation in injured mouse sciatic nerves and preserves some axons for up to three weeks, even when expressed at a low level. Remarkably, NMN deamidase also rescues axonal outgrowth and perinatal lethality in a dose-dependent manner in mice lacking NMNAT2. These data further support a pro-degenerative effect of accumulating NMN in axons in vivo. The NMN deamidase mouse will be an important tool to further probe the mechanisms underlying Wallerian degeneration and its prevention.
Collapse
|
240
|
Holland SM, Thomas GM. Roles of palmitoylation in axon growth, degeneration and regeneration. J Neurosci Res 2017; 95:1528-1539. [PMID: 28150429 DOI: 10.1002/jnr.24003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
The protein-lipid modification palmitoylation plays important roles in neurons, but most attention has focused on roles of this modification in the regulation of mature pre- and post-synapses. However, exciting recent findings suggest that palmitoylation is also critical for both the growth and integrity of neuronal axons and plays previously unappreciated roles in conveying axonal anterograde and retrograde signals. Here we review these emerging roles for palmitoylation in the regulation of axons in health and disease. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sabrina M Holland
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair)
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair).,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140
| |
Collapse
|
241
|
Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 2017; 6. [PMID: 28095293 PMCID: PMC5241118 DOI: 10.7554/elife.22540] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI:http://dx.doi.org/10.7554/eLife.22540.001
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States
| | - Daniel W Summers
- Department of Genetics, Washington University Medical School, Saint Louis, United States
| | - Yo Sasaki
- Department of Genetics, Washington University Medical School, Saint Louis, United States
| | - E J Brace
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University Medical School, Saint Louis, United States.,Hope Center for Neurological Disorders, Saint Louis, United States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States.,Hope Center for Neurological Disorders, Saint Louis, United States
| |
Collapse
|
242
|
Wakatsuki S, Tokunaga S, Shibata M, Araki T. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration. J Cell Biol 2017; 216:477-493. [PMID: 28053206 PMCID: PMC5294778 DOI: 10.1083/jcb.201606020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/25/2016] [Accepted: 12/22/2016] [Indexed: 01/07/2023] Open
Abstract
The pathophysiological function and induction mechanism of autophagy in neuronal axons have remained unclear. Wakatsuki et al. show that the GSK3B-mediated phosphorylation of MCL1 leads to its UPS-dependent degradation, which induces axonal autophagy and promotes axonal degeneration. Macroautophagy is a catabolic process, in which portions of cytoplasm or organelles are delivered to lysosomes for degradation. Emerging evidence has indicated a pathological connection between axonal degeneration and autophagy. However, the physiological function and induction mechanism of autophagy in axons remain elusive. We herein show that, through activation of BECLIN1, glycogen synthase kinase 3B (GSK3B)–mediated phosphorylation of BCL2 family member MCL1 induces axonal autophagy and axonal degeneration. Phosphorylated MCL1 is ubiquitinated by the FBXW7 ubiquitin ligase and degraded by the proteasome, thereby releasing BECLIN1 to induce axonal autophagy. Axonal autophagy contributes to local adenosine triphosphate production in degenerating axons and the exposure of phosphatidylserine—an “eat-me” signal for phagocytes—on transected axons and is required for normal recruitment of phagocytes to axonal debris in vivo. These results suggest that GSK3B–MCL1 signaling to regulate autophagy might be important for the successful completion of Wallerian degeneration.
Collapse
Affiliation(s)
- Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shinji Tokunaga
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Megumi Shibata
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
243
|
Abstract
Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD), which occurs after acute axonal injury. In the peripheral nervous system (PNS), WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS), WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs) have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs ‘sense’ axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.
Collapse
Affiliation(s)
- Keit Men Wong
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Elisabetta Babetto
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bogdan Beirowski
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
244
|
Trojian TH, Wang DH, Leddy JJ. Nutritional Supplements for the Treatment and Prevention of Sports-Related Concussion—Evidence Still Lacking. Curr Sports Med Rep 2017; 16:247-255. [DOI: 10.1249/jsr.0000000000000387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
245
|
Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 2016; 139:3092-3108. [PMID: 27797810 PMCID: PMC5840884 DOI: 10.1093/brain/aww251] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022] Open
Abstract
Peripheral polyneuropathy is a common and dose-limiting side effect of many important chemotherapeutic agents. Most such neuropathies are characterized by early axonal degeneration, yet therapies that inhibit this axonal destruction process do not currently exist. Recently, we and others discovered that genetic deletion of SARM1 (sterile alpha and TIR motif containing protein 1) dramatically protects axons from degeneration after axotomy in mice. This finding fuels hope that inhibition of SARM1 or its downstream components can be used therapeutically in patients threatened by axonal loss. However, axon loss in most neuropathies, including chemotherapy-induced peripheral neuropathy, is the result of subacute/chronic processes that may be regulated differently than the acute, one time insult of axotomy. Here we evaluate if genetic deletion of SARM1 decreases axonal degeneration in a mouse model of neuropathy induced by the chemotherapeutic agent vincristine. In wild-type mice, 4 weeks of twice-weekly intraperitoneal injections of 1.5 mg/kg vincristine cause pronounced mechanical and heat hyperalgesia, a significant decrease in tail compound nerve action potential amplitude, loss of intraepidermal nerve fibres and significant degeneration of myelinated axons in both the distal sural nerve and nerves of the toe. Neither the proximal sural nerve nor the motor tibial nerve exhibit axon loss. These findings are consistent with the development of a distal, sensory predominant axonal polyneuropathy that mimics vincristine-induced peripheral polyneuropathy in humans. Using the same regimen of vincristine treatment in SARM1 knockout mice, the development of mechanical and heat hyperalgesia is blocked and the loss in tail compound nerve action potential amplitude is prevented. Moreover, SARM1 knockout mice do not lose unmyelinated fibres in the skin or myelinated axons in the sural nerve and toe after vincristine. Hence, genetic deletion of SARM1 blocks the development of vincristine-induced peripheral polyneuropathy in mice. Our results reveal that subacute/chronic axon loss induced by vincristine occurs via a SARM1 mediated axonal destruction pathway, and that blocking this pathway prevents the development of vincristine-induced peripheral polyneuropathy. These findings, in conjunction with previous studies with axotomy and traumatic brain injury, establish SARM1 as the central determinant of a fundamental axonal degeneration pathway that is activated by diverse insults. We suggest that targeting SARM1 or its downstream effectors may be a viable therapeutic option to prevent vincristine-induced peripheral polyneuropathy and possibly other peripheral polyneuropathies.
Collapse
Affiliation(s)
- Stefanie Geisler
- 1 Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ryan A Doan
- 1 Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy Strickland
- 2 Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xin Huang
- 2 Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jeffrey Milbrandt
- 2 Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- 3 Hope Center for Neurological Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Aaron DiAntonio
- 3 Hope Center for Neurological Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- 4 Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
246
|
Ajami M, Pazoki-Toroudi H, Amani H, Nabavi SF, Braidy N, Vacca RA, Atanasov AG, Mocan A, Nabavi SM. Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols. Neurosci Biobehav Rev 2016; 73:39-47. [PMID: 27914941 DOI: 10.1016/j.neubiorev.2016.11.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/26/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022]
Abstract
Searching for effective therapeutic agents to prevent neurodegeneration is a challenging task due to the growing list of neurodegenerative disorders associated with a multitude of inter-related pathways. The induction and inhibition of several different signaling pathways has been shown to slow down and/or attenuate neurodegeneration and decline in cognition and locomotor function. Among these signaling pathways, a new class of enzymes known as sirtuins or silent information regulators of gene transcription has been shown to play important regulatory roles in the ageing process. SIRT1, a nuclear sirtuin, has received particular interest due to its role as a deacetylase for several metabolic and signaling proteins involved in stress response, apoptosis, mitochondrial function, self-renewal, and neuroprotection. A new strategy to treat neurodegenerative diseases is targeted therapy. In this paper, we reviewed up-to-date findings regarding the targeting of SIRT1 by polyphenolic compounds, as a new approach in the search for novel, safe and effective treatments for neurodegenerative diseases. .
Collapse
Affiliation(s)
- Marjan Ajami
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Amani
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia.
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy.
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
247
|
Sasaki Y, Nakagawa T, Mao X, DiAntonio A, Milbrandt J. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD + depletion. eLife 2016; 5. [PMID: 27735788 PMCID: PMC5063586 DOI: 10.7554/elife.19749] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/24/2016] [Indexed: 12/11/2022] Open
Abstract
Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synthesis, NMNAT1 instead blocks the injury-induced, SARM1-dependent NAD+ consumption that is central to axon degeneration.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University School of Medicine, Saint Louis, United States
| | - Takashi Nakagawa
- Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine, Saint Louis, United States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, United States
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
248
|
SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc Natl Acad Sci U S A 2016; 113:E6271-E6280. [PMID: 27671644 DOI: 10.1073/pnas.1601506113] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Axon injury in response to trauma or disease stimulates a self-destruction program that promotes the localized clearance of damaged axon segments. Sterile alpha and Toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) is an evolutionarily conserved executioner of this degeneration cascade, also known as Wallerian degeneration; however, the mechanism of SARM1-dependent neuronal destruction is still obscure. SARM1 possesses a TIR domain that is necessary for SARM1 activity. In other proteins, dimerized TIR domains serve as scaffolds for innate immune signaling. In contrast, dimerization of the SARM1 TIR domain promotes consumption of the essential metabolite NAD+ and induces neuronal destruction. This activity is unique to the SARM1 TIR domain, yet the structural elements that enable this activity are unknown. In this study, we identify fundamental properties of the SARM1 TIR domain that promote NAD+ loss and axon degeneration. Dimerization of the TIR domain from the Caenorhabditis elegans SARM1 ortholog TIR-1 leads to NAD+ loss and neuronal death, indicating these activities are an evolutionarily conserved feature of SARM1 function. Detailed analysis of sequence homology identifies canonical TIR motifs as well as a SARM1-specific (SS) loop that are required for NAD+ loss and axon degeneration. Furthermore, we identify a residue in the SARM1 BB loop that is dispensable for TIR activity yet required for injury-induced activation of full-length SARM1, suggesting that SARM1 function requires multidomain interactions. Indeed, we identify a physical interaction between the autoinhibitory N terminus and the TIR domain of SARM1, revealing a previously unrecognized direct connection between these domains that we propose mediates autoinhibition and activation upon injury.
Collapse
|
249
|
Bramley JC, Collins SVA, Clark KB, Buchser WJ. Avian axons undergo Wallerian degeneration after injury and stress. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:813-822. [PMID: 27614771 DOI: 10.1007/s00359-016-1123-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/20/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
Abstract
The integrity of long axons is essential for neural communication. Unfortunately, relatively minor stress to a neuron can cause extensive loss of this integrity. Axon degeneration is the cell-intrinsic program that actively deconstructs an axon after injury or damage. Although ultrastructural examination has revealed signs of axon degeneration in vivo, the occurrence and progression of axon degeneration in avian species have not yet been documented in vitro. Here, we use a novel cell culture system with primary embryonic zebra finch retinal ganglion cells to interrogate the properties of avian axon degeneration. First, we establish that both axotomy and a chemically induced injury (taxol and vincristine) are sufficient to initiate degeneration. These events are dependent on a late influx of calcium. In addition, as in mammals, the NAD pathway is involved, since a decrease in NMN with FK866 can reduce degeneration. Importantly, these retinal ganglion cell axons were sensitive to a pressure-induced injury, which may mimic the effect of high intraocular pressure associated with glaucoma. We have demonstrated that avian neurons undergo Wallerian degeneration in response to both physical and chemical injury. Subsequent avian studies will investigate whether blocking the degeneration pathway can protect individuals from neurodegenerative disease.
Collapse
Affiliation(s)
- John C Bramley
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - Samantha V A Collins
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - Karen B Clark
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - William J Buchser
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA.
| |
Collapse
|
250
|
Canavier CC, Evans RC, Oster AM, Pissadaki EK, Drion G, Kuznetsov AS, Gutkin BS. Implications of cellular models of dopamine neurons for disease. J Neurophysiol 2016; 116:2815-2830. [PMID: 27582295 DOI: 10.1152/jn.00530.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
This review addresses the present state of single-cell models of the firing pattern of midbrain dopamine neurons and the insights that can be gained from these models into the underlying mechanisms for diseases such as Parkinson's, addiction, and schizophrenia. We will explain the analytical technique of separation of time scales and show how it can produce insights into mechanisms using simplified single-compartment models. We also use morphologically realistic multicompartmental models to address spatially heterogeneous aspects of neural signaling and neural metabolism. Separation of time scale analyses are applied to pacemaking, bursting, and depolarization block in dopamine neurons. Differences in subpopulations with respect to metabolic load are addressed using multicompartmental models.
Collapse
Affiliation(s)
- Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
| | - Rebekah C Evans
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Andrew M Oster
- Department of Mathematics, Eastern Washington University, Cheney, Washington
| | - Eleftheria K Pissadaki
- IBM T.J. Watson Research Center, Yorktown Heights, New York.,Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | - Alexey S Kuznetsov
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana
| | - Boris S Gutkin
- Group for Neural Theory, LNC INSERM U960, Département d'Études Cognitives, École Normale Supérieure PSL Research University, Paris, France.,Center for Cognition and Decision Making, NRU Higher School of Economics, Moscow, Russia; and
| |
Collapse
|