201
|
Berg AL, Rowson-Hodel A, Hu M, Keeling M, Wu H, VanderVorst K, Chen JJ, Hatakeyama J, Jilek J, Dreyer CA, Wheeler MR, Yu AM, Li Y, Carraway KL. The Cationic Amphiphilic Drug Hexamethylene Amiloride Eradicates Bulk Breast Cancer Cells and Therapy-Resistant Subpopulations with Similar Efficiencies. Cancers (Basel) 2022; 14:cancers14040949. [PMID: 35205696 PMCID: PMC8869814 DOI: 10.3390/cancers14040949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/07/2022] Open
Abstract
The resistance of cancer cell subpopulations, including cancer stem cell (CSC) populations, to apoptosis-inducing chemotherapeutic agents is a key barrier to improved outcomes for cancer patients. The cationic amphiphilic drug hexamethylene amiloride (HMA) has been previously demonstrated to efficiently kill bulk breast cancer cells independent of tumor subtype or species but acts poorly toward non-transformed cells derived from multiple tissues. Here, we demonstrate that HMA is similarly cytotoxic toward breast CSC-related subpopulations that are resistant to conventional chemotherapeutic agents, but poorly cytotoxic toward normal mammary stem cells. HMA inhibits the sphere-forming capacity of FACS-sorted human and mouse mammary CSC-related cells in vitro, specifically kills tumor but not normal mammary organoids ex vivo, and inhibits metastatic outgrowth in vivo, consistent with CSC suppression. Moreover, HMA inhibits viability and sphere formation by lung, colon, pancreatic, brain, liver, prostate, and bladder tumor cell lines, suggesting that its effects may be applicable to multiple malignancies. Our observations expose a key vulnerability intrinsic to cancer stem cells and point to novel strategies for the exploitation of cationic amphiphilic drugs in cancer treatment.
Collapse
Affiliation(s)
- Anastasia L. Berg
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ashley Rowson-Hodel
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Michelle Hu
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Michael Keeling
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hao Wu
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jenny J. Chen
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Joseph Jilek
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Courtney A. Dreyer
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Madelyn R. Wheeler
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, University of California, Sacramento, CA 95817, USA; (A.L.B.); (A.R.-H.); (M.H.); (M.K.); (H.W.); (K.V.); (J.J.C.); (J.H.); (J.J.); (C.A.D.); (M.R.W.); (A.-M.Y.); (Y.L.)
- Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Correspondence:
| |
Collapse
|
202
|
Analysis of corticosteroid and antiepileptic drug treatment effects on heme biosynthesis mRNA expression in lower-grade gliomas: potential implications for 5-ALA metabolization. Photodiagnosis Photodyn Ther 2022; 38:102755. [PMID: 35149260 DOI: 10.1016/j.pdpdt.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Intraoperative visualization of gliomas with 5-aminolevulinic acid (5-ALA) induced fluorescence constitutes a powerful technique. While visible fluorescence is typically observed in high-grade gliomas, fluorescence is considerably less common in lower-grade gliomas (LGGs) WHO grade II&III. Whereas the exact mechanisms determining fluorescence in LGGs are not fully understood, metabolization of non-fluorescent 5-ALA to fluorescent Protoporphyrin IX by specific heme biosynthesis enzymes/transporters has been identified as relevant mechanism influencing fluorescence behavior. Furthermore, recent in-vitro studies have suggested preoperative treatment with corticosteroids and anti-epileptic drugs (AED) as potential factors influencing 5-ALA induced fluorescence. METHODS The goal of this study was thus to investigate the effect of preoperative corticosteroid/AED treatment on heme biosynthesis mRNA expression in a clinically relevant patient population. For this purpose, we analyzed the mRNA expression levels of specific heme biosynthesis factors including ALAD, HMBS, UROS, UROD, CPOX, PPOX, FECH, ABCB6, ACG2, SLC15A1 and SLC15A2, ABCB1, ABCB10 in a cohort of LGGs from "The Cancer Genome Atlas". RESULTS Altogether, 403 patients with available data on preoperative corticosteroid/AED treatment and heme biosynthesis mRNA expression were identified. Regarding corticosteroid treatment, no significant differences in expression of any of the 11 investigated heme biosynthesis factors were found. In contrast, a marginal yet statistically significant increase in SLC15A1 levels and decrease in ABCB6 levels were observed in patients with preoperative AED treatment. CONCLUSION While no significant differences in heme biosynthesis mRNA expression were observed according to preoperative corticosteroid treatment, changes in SLC15A1 as well as ABCB6 expression were detected in patients treated with AED. However, since these alterations were minor and have opposing effects on 5-ALA metabolization, our findings do not support a distinct effect of AED and corticosteroid treatment on heme biosynthesis regulation in LGGs.
Collapse
|
203
|
Bueno-Martínez E, Lara-Almunia M, Rodríguez-Arias C, Otero-Rodríguez A, Garfias-Arjona S, González-Sarmiento R. Polymorphisms in autophagy genes are genetic susceptibility factors in glioblastoma development. BMC Cancer 2022; 22:146. [PMID: 35123435 PMCID: PMC8818195 DOI: 10.1186/s12885-022-09214-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma is the most aggressive and common malignant primary brain tumor in adults. Many genetic, epigenetic and genomic mutations have been identified in this tumor, but no driving cause has been identified yet for glioblastoma pathogenesis. Autophagy has proved to be deregulated in different diseases such as cancer where it has a dual role, acting as a tumor suppression mechanism during the first steps of tumor development and promoting cancer cells survival in stablished tumors. Methods Here, we aimed to assess the potential association between several candidate polymorphisms in autophagy genes (ATG2B rs3759601, ATG16L1 rs2241880, ATG10 rs1864183, ATG5 rs2245214, NOD2 rs2066844 and rs2066845) and glioblastoma susceptibility. Results Our results showed a significant correlation between ATG2B rs3759601, ATG10 rs1864183 and NOD2 rs2066844 variants and higher risk to suffer glioblastoma. In addition, the relationship between the different clinical features listed in glioblastoma patients and candidate gene polymorphisms was also investigated, finding that ATG10 rs1864183 might be a promising prognosis factor for this tumor. Conclusions This is the first report evaluating the role of different variants in autophagy genes in modulating glioblastoma risk and our results emphasize the importance of autophagy in glioblastoma development. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09214-y.
Collapse
|
204
|
Batalov AI, Afandiev RM, Zakharova NE, Pogosbekyan EL, Shulgina AA, Kobyakov GL, Potapov AA, Pronin IN. 3D pseudo-continuous arterial spin labeling-MRI (3D PCASL-MRI) in the differential diagnosis between glioblastomas and primary central nervous system lymphomas. Neuroradiology 2022; 64:1539-1545. [PMID: 35112216 DOI: 10.1007/s00234-021-02888-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of the study was to compare the parameters of blood flow in glioblastomas and primary central nervous system lymphomas (PCNSLs), measured by pseudo-continuous arterial spin labeling MRI (3D PCASL), and to determine the informativeness of this method in the differential diagnosis between these lesions. METHODS The study included MRI data of 139 patients with PCNSL (n = 21) and glioblastomas (n = 118), performed in the Burdenko Neurosurgical Center. No patients received chemotherapy, hormone therapy, or radiation therapy prior to MRI. On the 3D PCASL perfusion map, the absolute and normalized values of tumor blood flow were calculated in the glioblastoma and PCNSL groups (maxTBFmean and nTBF). RESULTS MaxTBFmean and nTBF in the glioblastoma group were significantly higher than those in the PCNSL group: 168.9 ml/100 g/min versus 65.6 and 9.3 versus 3.7, respectively (p < 0.001). Arterial spin labeling perfusion had high sensitivity (86% for maxTBFmean, 95% for nTBF) and specificity (77% for maxTBFmean, 73% for nTBF) in the differential diagnosis between PCNSL and glioblastomas. Blood flow thresholds were 98.9 ml/100 g/min using absolute blood flow values and 6.1 using normalized values, AUC > 0.88. CONCLUSION The inclusion of 3D PCASL in the standard MRI protocol can increase the specificity of the differential diagnosis between glioblastomas and PCNSL.
Collapse
Affiliation(s)
- A I Batalov
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - R M Afandiev
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation.
| | - N E Zakharova
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - E L Pogosbekyan
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A A Shulgina
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - G L Kobyakov
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A A Potapov
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - I N Pronin
- Federal State Autonomous Institution N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
205
|
Zhang Y, Lim D, Yao Y, Dong C, Feng Z. Global research trends in radiotherapy for gliomas: a systematic bibliometric analysis. World Neurosurg 2022; 161:e355-e362. [DOI: 10.1016/j.wneu.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
206
|
Yang T, Hu Y, Miao J, Chen J, Liu J, Cheng Y, Gao X. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharm Sin B 2022; 12:2658-2671. [PMID: 35755286 PMCID: PMC9214068 DOI: 10.1016/j.apsb.2022.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is a primary aggressive brain tumor with high recurrence rate. The poor efficiency of chemotherapeutic drugs crossing the blood‒brain barrier (BBB) is well-known as one of the main challenges for anti-glioma therapy. Moreover, massive infiltrated tumor-associated macrophages (TAMs) in glioma further thwart the drug efficacy. Herein, a therapeutic nanosystem (SPP-ARV-825) is constructed by incorporating the BRD4-degrading proteolytic targeting chimera (PROTAC) ARV-825 into the complex micelle (SPP) composed of substance P (SP) peptide-modified poly(ethylene glycol)-poly(d,l-lactic acid)(SP-PEG-PDLLA) and methoxy poly(ethylene glycol)-poly(d,l-lactic acid) (mPEG-PDLLA, PP), which could penetrate BBB and target brain tumor. Subsequently, released drug engenders antitumor effect via attenuating cells proliferation, inducing cells apoptosis and suppressing M2 macrophages polarization through the inhibition of IRF4 promoter transcription and phosphorylation of STAT6, STAT3 and AKT. Taken together, our work demonstrates the versatile role and therapeutic efficacy of SPP-ARV-825 micelle against glioma, which may provide a novel strategy for glioma therapy in future.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Junming Miao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiagang Liu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- Corresponding author. Tel.: +86 28 85422136, fax +86 28 85502796.
| |
Collapse
|
207
|
Glycosylated paclitaxel mixed nanomicelles: Increasing drug brain accumulation and enhancing its in vitro antitumoral activity in glioblastoma cell lines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
208
|
Moslah W, Aissaoui-Zid D, Aboudou S, Abdelkafi-Koubaa Z, Potier-Cartereau M, Lemettre A, ELBini-Dhouib I, Marrakchi N, Gigmes D, Vandier C, Luis J, Mabrouk K, Srairi-Abid N. Strengthening Anti-Glioblastoma Effect by Multi-Branched Dendrimers Design of a Scorpion Venom Tetrapeptide. Molecules 2022; 27:molecules27030806. [PMID: 35164071 PMCID: PMC8838298 DOI: 10.3390/molecules27030806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is the most aggressive and invasive form of central nervous system tumors due to the complexity of the intracellular mechanisms and molecular alterations involved in its progression. Unfortunately, current therapies are unable to stop its neoplastic development. In this context, we previously identified and characterized AaTs-1, a tetrapeptide (IWKS) from Androctonus autralis scorpion venom, which displayed an anti-proliferative effect against U87 cells with an IC50 value of 0.57 mM. This peptide affects the MAPK pathway, enhancing the expression of p53 and altering the cytosolic calcium concentration balance, likely via FPRL-1 receptor modulation. In this work, we designed and synthesized new dendrimers multi-branched molecules based on the sequence of AaTs-1 and showed that the di-branched (AaTs-1-2B), tetra-branched (AaTs-1-4B) and octo-branched (AaTs-1-8B) dendrimers displayed 10- to 25-fold higher effects on the proliferation of U87 cells than AaTs-1. We also found that the effects of the newly designed molecules are mediated by the enhancement of the ERK1/2 and AKT phosphorylated forms and by the increase in p53 expression. Unlike AaTs-1, AaTs-1-8B and especially AaTs-1-4B affected the migration of the U87 cells. Thus, the multi-branched peptide synthesis strategy allowed us to make molecules more active than the linear peptide against the proliferation of U87 glioblastoma cells.
Collapse
Affiliation(s)
- Wassim Moslah
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
- Institut de Neurophysiopathologie (INP), UMR 7051-CNRS, Faculté de Médecine, Aix-Marseille Université, 27 bd Jean Moulin, 13385 Marseille, France;
- Correspondence: (W.M.); (N.S.-A.)
| | - Dorra Aissaoui-Zid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Soioulata Aboudou
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Marie Potier-Cartereau
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - Aude Lemettre
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - Ines ELBini-Dhouib
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Naziha Marrakchi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
| | - Didier Gigmes
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Christophe Vandier
- N2C UMR 1069, INSERM, Faculté des Sciences et Techniques, Université de Tours, 37032 Tours, France; (M.P.-C.); (A.L.); (C.V.)
| | - José Luis
- Institut de Neurophysiopathologie (INP), UMR 7051-CNRS, Faculté de Médecine, Aix-Marseille Université, 27 bd Jean Moulin, 13385 Marseille, France;
| | - Kamel Mabrouk
- Institut de Chimie Radicalaire (ICR), Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France; (S.A.); (D.G.); (K.M.)
| | - Najet Srairi-Abid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LBVAT), LR20IPT01, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (D.A.-Z.); (Z.A.-K.); (I.E.-D.); (N.M.)
- Correspondence: (W.M.); (N.S.-A.)
| |
Collapse
|
209
|
Bomba HN, Carey‐Ewend A, Sheets KT, Valdivia A, Goetz M, Findlay IA, Mercer‐Smith A, Kass LE, Khagi S, Hingtgen SD. Use of
FLOSEAL
® as a scaffold and its impact on induced neural stem cell phenotype, persistence, and efficacy. Bioeng Transl Med 2022; 7:e10283. [PMID: 35600639 PMCID: PMC9115686 DOI: 10.1002/btm2.10283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023] Open
Abstract
Induced neural stem cells (iNSCs) have emerged as a promising therapeutic platform for glioblastoma (GBM). iNSCs have the innate ability to home to tumor foci, making them ideal carriers for antitumor payloads. However, the in vivo persistence of iNSCs limits their therapeutic potential. We hypothesized that by encapsulating iNSCs in the FDA‐approved, hemostatic matrix FLOSEAL®, we could increase their persistence and, as a result, therapeutic durability. Encapsulated iNSCs persisted for 95 days, whereas iNSCs injected into the brain parenchyma persisted only 2 weeks in mice. Two orthotopic GBM tumor models were used to test the efficacy of encapsulated iNSCs. In the GBM8 tumor model, mice that received therapeutic iNSCs encapsulated in FLOSEAL® survived 30 to 60 days longer than mice that received nonencapsulated cells. However, the U87 tumor model showed no significant differences in survival between these two groups, likely due to the more solid and dense nature of the tumor. Interestingly, the interaction of iNSCs with FLOSEAL® appears to downregulate some markers of proliferation, anti‐apoptosis, migration, and therapy which could also play a role in treatment efficacy and durability. Our results demonstrate that while FLOSEAL® significantly improves iNSC persistence, this alone is insufficient to enhance therapeutic durability.
Collapse
Affiliation(s)
- Hunter N. Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Abigail Carey‐Ewend
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kevin T. Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Morgan Goetz
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Ingrid A. Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Alison Mercer‐Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Lauren E. Kass
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Simon Khagi
- Department of Neurosurgery The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Shawn D. Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Lineberger Comprehensive Cancer Center The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
210
|
In Silico Study to Enhance Delivery Efficiency of Charged Nanoscale Nasal Spray Aerosols to the Olfactory Region Using External Magnetic Fields. Bioengineering (Basel) 2022; 9:bioengineering9010040. [PMID: 35049749 PMCID: PMC8773240 DOI: 10.3390/bioengineering9010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Various factors and challenges are involved in efficiently delivering drugs using nasal sprays to the olfactory region to treat central nervous system diseases. In this study, computational fluid dynamics was used to simulate nasal drug delivery to (1) examine effects on drug deposition when various external magnetic fields are applied to charged particles, (2) comprehensively study effects of multiple parameters (i.e., particle aerodynamic diameter; injection velocity magnitude, angle, and position; magnetic force strength and direction), and (3) determine how to achieve the optimal delivery efficiency to the olfactory epithelium. The Reynolds-averaged Navier–Stokes equations governed airflow, with a realistic inhalation waveform implemented at the nostrils. Particle trajectories were modeled using the one-way coupled Euler–Lagrange model. A current-carrying wire generated a magnetic field to apply force on charged particles and direct them to the olfactory region. Once drug particles reached the olfactory region, their diffusion through mucus to the epithelium was calculated analytically. Particle aerodynamic diameter, injection position, and magnetic field strength were found to be interconnected in their effects on delivery efficiency. Specific combinations of these parameters achieved over 65-fold higher drug delivery efficiency compared with uniform injections with no magnetic fields. The insight gained suggests how to integrate these factors to achieve the optimal efficiency.
Collapse
|
211
|
Peng J, Liang Q, Xu Z, Cai Y, Peng B, Li J, Zhang W, Kang F, Hong Q, Yan Y, Zhang M. Current Understanding of Exosomal MicroRNAs in Glioma Immune Regulation and Therapeutic Responses. Front Immunol 2022; 12:813747. [PMID: 35095909 PMCID: PMC8796999 DOI: 10.3389/fimmu.2021.813747] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Exosomes, the small extracellular vesicles, are released by multiple cell types, including tumor cells, and represent a novel avenue for intercellular communication via transferring diverse biomolecules. Recently, microRNAs (miRNAs) were demonstrated to be enclosed in exosomes and therefore was protected from degradation. Such exosomal miRNAs can be transmitted to recipient cells where they could regulate multiple cancer-associated biological processes. Accumulative evidence suggests that exosomal miRNAs serve essential roles in modifying the glioma immune microenvironment and potentially affecting the malignant behaviors and therapeutic responses. As exosomal miRNAs are detectable in almost all kinds of biofluids and correlated with clinicopathological characteristics of glioma, they might be served as promising biomarkers for gliomas. We reviewed the novel findings regarding the biological functions of exosomal miRNAs during glioma pathogenesis and immune regulation. Furthermore, we elaborated on their potential clinical applications as biomarkers in glioma diagnosis, prognosis and treatment response prediction. Finally, we summarized the accessible databases that can be employed for exosome-associated miRNAs identification and functional exploration of cancers, including glioma.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
212
|
Krapež G, Kouter K, Jovčevska I, Videtič Paska A. Dynamic Intercell Communication between Glioblastoma and Microenvironment through Extracellular Vesicles. Biomedicines 2022; 10:151. [PMID: 35052830 PMCID: PMC8773537 DOI: 10.3390/biomedicines10010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is simultaneously the most common and most aggressive primary brain tumor in the central nervous system, with poor patient survival and scarce treatment options. Most primary glioblastomas reoccur and evolve radio- and chemoresistant properties which make them resistant to further treatments. Based on gene mutations and expression profiles, glioblastoma is relatively well classified; however, research shows that there is more to glioblastoma biology than that defined solely by its genetic component. Specifically, the overall malignancy of the tumor is also influenced by the dynamic communication to its immediate and distant environment, as important messengers to neighboring cells in the tumor microenvironment extracellular vesicles (EVs) have been identified. EVs and their cargo can modulate the immune microenvironment and other physiological processes, and can interact with the host immune system. They are involved in tumor cell survival and metabolism, tumor initiation, progression, and therapy resistance. However, on the other hand EVs are thought to become an effective treatment alternative, since they can cross the blood-brain barrier, are able of specific cell-targeting and can be loaded with various therapeutic molecules.
Collapse
Affiliation(s)
| | | | - Ivana Jovčevska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (G.K.); (K.K.)
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (G.K.); (K.K.)
| |
Collapse
|
213
|
Circular RNA circFGFR1 Functions as an Oncogene in Glioblastoma Cells through Sponging to hsa-miR-224-5p. J Immunol Res 2022; 2022:7990251. [PMID: 35059468 PMCID: PMC8764274 DOI: 10.1155/2022/7990251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, increased studies have shown the important regulatory role of circular RNA (circRNA) in cancer progression and development, including glioblastoma (GBM). However, the function of circRNAs in glioblastoma is still largely unclear. Here, we state that circFGFR1 is elevated in glioma cells, resulting in aggravated glioma aggravated malignancy. The upregulation of circFGFR1 also promotes glioma growth in mouse xenograft models. Furthermore, CXCR4 level in glioma cells is positively correlated with circFGFR1 level, and higher CXCR4 expression is found in circFGFR1 overexpression groups. The effect of circFGFR1 on glioma malignancy is abolished in CXCR4 knockout cells. Then, RIP, RNA pull-down, and luciferase reporter assay results showed that hsa-miR-224-5p directly binds to circFGFR1 and CXCR4 mRNA. The CXCR4 3′-untranslated region (UTR) activated luciferase activity was reduced with hsa-miR-224-5p transfection, while it is reversed when cotransfected with circFGFR1, indicating that circFGFR1 acts as a hsa-miR-244-5p sponge to increase CXCR4 expression. The hsa-miR-224-5p expression is negatively corrected with the glioma malignancy through inhibiting CXCR4 level. Besides, the circFGFR1-induced regulation in glioma malignancy is also abrogated in hsa-miR-224-5p knockout cells. Taken together, our findings suggest that circFGFR1 plays a critical role in the tumorigenic behaviors in glioma cells by upregulating CXCR4 expression via sponging to hsa-miR-224-5p. These findings provide a new perspective on circRNAs during GBM development.
Collapse
|
214
|
Wang L, Tan Y, Chen J, Zhu Z, Zhu Y, Sun Q, Dong H, Ai C, He G, Liu Y. CircABCC1 promotes the development of glioma by sponging miR‐591 and modulating high‐mobility group A2. Ann N Y Acad Sci 2022; 1511:107-118. [PMID: 35000195 DOI: 10.1111/nyas.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Lei Wang
- Department of Human Anatomy, Histology and Embryology, and Institute of Neurobiology Health Science Center, Xian Jiaotong University Xi'an Shanxi China
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Ying Tan
- Department of Laboratory Medicine Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Jun Chen
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Ziyu Zhu
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Yuting Zhu
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Qiang Sun
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Hao Dong
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Chunqi Ai
- Department of Mental Health Centre Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Guohou He
- Department of Neurology Affiliated Taihe Hospital of Hubei University of Medicine Shiyan Hubei China
| | - Yong Liu
- Department of Human Anatomy, Histology and Embryology, and Institute of Neurobiology Health Science Center, Xian Jiaotong University Xi'an Shanxi China
| |
Collapse
|
215
|
Gravina GL, Colapietro A, Mancini A, Rossetti A, Martellucci S, Ventura L, Di Franco M, Marampon F, Mattei V, Biordi LA, Otterlei M, Festuccia C. ATX-101, a Peptide Targeting PCNA, Has Antitumor Efficacy Alone or in Combination with Radiotherapy in Murine Models of Human Glioblastoma. Cancers (Basel) 2022; 14:289. [PMID: 35053455 PMCID: PMC8773508 DOI: 10.3390/cancers14020289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cell proliferation requires the orchestrated actions of a myriad of proteins regulating DNA replication, DNA repair and damage tolerance, and cell cycle. Proliferating cell nuclear antigen (PCNA) is a master regulator which interacts with multiple proteins functioning in these processes, and this makes PCNA an attractive target in anticancer therapies. Here, we show that a cell-penetrating peptide containing the AlkB homolog 2 PCNA-interacting motif (APIM), ATX-101, has antitumor activity in a panel of human glioblastoma multiforme (GBM) cell lines and patient-derived glioma-initiating cells (GICs). Their sensitivity to ATX-101 was not related to cellular levels of PCNA, or p53, PTEN, or MGMT status. However, ATX-101 reduced Akt/mTOR and DNA-PKcs signaling, and a correlation between high Akt activation and sensitivity for ATX-101 was found. ATX-101 increased the levels of γH2AX, DNA fragmentation, and apoptosis when combined with radiotherapy (RT). In line with the in vitro results, ATX-101 strongly reduced tumor growth in two subcutaneous xenografts and two orthotopic GBM models, both as a single agent and in combination with RT. The ability of ATX-101 to sensitize cells to RT is promising for further development of this compound for use in GBM.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Cellular Pathology, University of L’Aquila, 67100 L’Aquila, Italy;
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Luca Ventura
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Martina Di Franco
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Medical Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marit Otterlei
- APIM Therapeutics A/S, N-7100 Rissa, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7006 Trondheim, Norway
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| |
Collapse
|
216
|
TMEM60 Promotes the Proliferation and Migration and Inhibits the Apoptosis of Glioma through Modulating AKT Signaling. JOURNAL OF ONCOLOGY 2022; 2022:9913700. [PMID: 35027926 PMCID: PMC8749377 DOI: 10.1155/2022/9913700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
Glioma is a highly fatal malignancy with aggressive proliferation, migration, and invasion metastasis due to aberrant genetic regulation. This work aimed to determine the function of transmembrane protein 60 (TMEM60) during glioma development. The level of TMEM60 in glioma tissues and normal tissues and its correlation with glioma prognosis were checked in The Cancer Genome Atlas (TCGA) database. The levels of TMEM60 in glioma cell lines and normal astrocytes were determined by quantitative real-time PCR and western blotting assay. TMEM60 knockdown and overexpression were conducted, followed by detection of cell viability, migration, invasion, and apoptosis. CCK-8 and colony formation assay were adopted to detect cell viability proliferation. Transwell assay was performed to measure cell migration and invasion. Cell apoptosis was evaluated by flow cytometry. The alternation of key proteins in the PI3K/Akt signaling pathway was measured by western blotting. TMEM60 expression was significantly higher in glioma tissues than that in the healthy control and was correlated with poor overall survival of patients. The protein and mRNA levels of TMEM60 were both elevated in glioma cell lines in comparison with the normal cell lines. Elevated level of TMEM60 led to enhanced proliferation, migration, and invasion and suppressed cell apoptosis. TMEM60 promoted the activation of PI3K/Akt signaling. Our data suggested that TMEM60 plays an oncogenic role in glioma progression via activating the PI3K/Akt signaling pathway.
Collapse
|
217
|
Yang B, Wang X, Dong D, Pan Y, Wu J, Liu J. Existing Drug Repurposing for Glioblastoma to Discover Candidate Drugs as a New a Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210509141735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
Repurposing of drugs has been hypothesized as a means of identifying novel
treatment methods for certain diseases.
Background:
Glioblastoma (GB) is an aggressive type of human cancer; the most effective treatment
for glioblastoma is chemotherapy, whereas, when repurposing drugs, a lot of time and money can be
saved.
Objective:
Repurposing of the existing drug may be used to discover candidate drugs for individualized
treatments of GB.
Method:
We used the bioinformatics method to obtain the candidate drugs. In addition, the drugs
were verified by MTT assay, Transwell® assays, TUNEL staining, and in vivo tumor formation experiments,
as well as statistical analysis.
Result:
We obtained 4 candidate drugs suitable for the treatment of glioma, camptothecin, doxorubicin,
daunorubicin and mitoxantrone, by the expression spectrum data IPAS algorithm analysis and
drug-pathway connectivity analysis. These validation experiments showed that camptothecin was
more effective in treating the GB, such as MTT assay, Transwell® assays, TUNEL staining, and in
vivo tumor formation.
Conclusion:
With regard to personalized treatment, this present study may be used to guide the research
of new drugs via verification experiments and tumor formation. The present study also provides
a guide to systematic, individualized drug discovery for complex diseases and may contribute
to the future application of individualized treatments.
Collapse
Affiliation(s)
- Bo Yang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Xiande Wang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Dong Dong
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Yunqing Pan
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Junhua Wu
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Jianjian Liu
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
218
|
Mehrabian A, Mashreghi M, Dadpour S, Badiee A, Arabi L, Hoda Alavizadeh S, Alia Moosavian S, Reza Jaafari M. Nanocarriers Call the Last Shot in the Treatment of Brain Cancers. Technol Cancer Res Treat 2022; 21:15330338221080974. [PMID: 35253549 PMCID: PMC8905056 DOI: 10.1177/15330338221080974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our brain is protected by physio-biological barriers. The blood–brain barrier (BBB) main mechanism of protection relates to the abundance of tight junctions (TJs) and efflux pumps. Although BBB is crucial for healthy brain protection against toxins, it also leads to failure in a devastating disease like brain cancer. Recently, nanocarriers have been shown to pass through the BBB and improve patients’ survival rates, thus becoming promising treatment strategies. Among nanocarriers, inorganic nanocarriers, solid lipid nanoparticles, liposomes, polymers, micelles, and dendrimers have reached clinical trials after delivering promising results in preclinical investigations. The size of these nanocarriers is between 10 and 1000 nm and is modified by surface attachment of proteins, peptides, antibodies, or surfactants. Multiple research groups have reported transcellular entrance as the main mechanism allowing for these nanocarriers to cross BBB. Transport proteins and transcellular lipophilic pathways exist in BBB for small and lipophilic molecules. Nanocarriers cannot enter via the paracellular route, which is limited to water-soluble agents due to the TJs and their small pore size. There are currently several nanocarriers in clinical trials for the treatment of brain cancer. This article reviews challenges as well as fitting attributes of nanocarriers for brain tumor treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Amin Mehrabian
- School of Pharmacy, Biotechnology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Warwick Medical School, University of Warwick, Coventry, UK
| | - Mohammad Mashreghi
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Dadpour
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- School of Pharmacy, Biotechnology Research Center, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
219
|
Singh M, Jindal D, Agarwal V, Pathak D, Sharma M, Pancham P, Mani S, Rachana. New phase therapeutic pursuits for targeted drug delivery in glioblastoma multiforme. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:866-888. [PMID: 36654821 PMCID: PMC9834280 DOI: 10.37349/etat.2022.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/19/2022] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is known as the most aggressive and prevalent brain tumor with a high mortality rate. It is reported in people who are as young as 10 years old to as old as over 70 years old, exhibiting inter and intra tumor heterogeneity. There are several genomic and proteomic investigations that have been performed to find the unexplored potential targets of the drug against GBM. Therefore, certain effective targets have been taken to further validate the studies embarking on the robustness in the field of medicinal chemistry followed by testing in clinical trials. Also, The Cancer Genome Atlas (TCGA) project has identified certain overexpressed targets involved in the pathogenesis of GBM in three major pathways, i.e., tumor protein 53 (p53), retinoblastoma (RB), and receptor tyrosine kinase (RTK)/rat sarcoma virus (Ras)/phosphoinositide 3-kinase (PI3K) pathways. This review focuses on the compilation of recent developments in the fight against GBM thus, directing future research into the elucidation of pathogenesis and potential cure for GBM. Also, it highlights the potential biomarkers that have undergone extensive research and have promising prognostic and predictive values. Additionally, this manuscript analyses the advent of gene therapy and immunotherapy, unlocking the way to consider treatment approaches other than, or in addition to, conventional chemo-radiation therapies. This review study encompasses all the relevant research studies associated with the pathophysiology, occurrence, diagnostic tools, and therapeutic intervention for GBM. It highlights the evolution of various therapeutic perspectives against GBM from the most conventional form of radiotherapy to the recent advancement of gene/cell/immune therapy. Further, the review focuses on various targeted therapies for GBM including chemotherapy sensitization, radiotherapy, nanoparticles based, immunotherapy, cell therapy, and gene therapy which would offer a comprehensive account for exploring several facets related to GBM prognostics.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India,Correspondence: Manisha Singh, Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India.
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Deepanshi Pathak
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Mansi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Rachana
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| |
Collapse
|
220
|
Wang XS, Yu XJ, Wei K, Wang SX, Liu QK, Wang YG, Li H, Huang C. Mesenchymal stem cells shuttling miR-503 via extracellular vesicles enhance glioma immune escape. Oncoimmunology 2021; 11:1965317. [PMID: 36524211 PMCID: PMC9746628 DOI: 10.1080/2162402x.2021.1965317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glioma is emerging as an aggressive type of glioma characterized by invasive growth pattern and dismal oncologic outcomes. microRNAs (miRNAs) have been attracting research attention in tumorigenesis. Herein, the aim of the current investigation was to explore the functional role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing miR-503 in glioma. The glioma tissues and corresponding normal brain tissues were collected from patients with glioma, followed by quantification of miR-503, kinesin family member 5A (KIF5A) and interleukin-7 (IL-7). EVs were isolated from bone marrow MSCs and identified by transmission electron microscope and nanoparticle tracking analysis. EVs from miR-503 mimic-transfected MSCs, miR-503 agomir,, oe-KIF5A, or sh-IL-7 was delivered into glioma cells to determine their effects on biological behaviors of glioma and T cells as well as the release of immunosuppressive factors. Lastly, a mouse model of glioma was developed to validate the function in vivo. miR-503 was expressed at a high level in glioma tissues while KIF5A was poorly expressed and targeted by miR-503. Furthermore, miR-503 loaded in MSC-EVs or upregulated miR-503 was demonstrated to facilitate glioma cell proliferation, migration and invasion accompanied by promoted release of immunosuppressive factors. Effects of overexpressed KIF5A on T cell behavior modulation were dependent on the IL-7 signaling pathway. Such results were reproduced in mice with glioma. Collectively, the discovery of miR-503 incorporated in MSC-EVs being a regulator that controls immune escape in glioma provides a novel molecular insight that holds promises to develop therapeutic strategies against glioma.
Collapse
Affiliation(s)
- Xiao-Song Wang
- Department Of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, China,Department Of Neurosurgery, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Xiao-Jun Yu
- Department Of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University Of Science And Technology, Wuhan, China
| | - Kang Wei
- Department Of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University Of Science And Technology, Wuhan, China
| | - Shan-Xi Wang
- Department Of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University Of Science And Technology, Wuhan, China
| | - Qi-Kun Liu
- Department Of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University Of Science And Technology, Wuhan, China
| | - Ying-Guang Wang
- Department Of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University Of Science And Technology, Wuhan, China
| | - Han Li
- Department Of Surgery, The First Hospital of Qiqihar, Qiqihar, China,Department Of Surgery, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Cheng Huang
- Department Of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, China,Department Of Neurosurgery, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China,CONTACT Cheng Huang Department Of Neurosurgery, The First Hospital of Qiqihar & Affiliated Qiqihar Hospital, Southern Medical University, No. 700, Bukui South Street, Longsha District, Qiqihar161000, Heilongjiang Province, China
| |
Collapse
|
221
|
Wang Y, Xie T, Liu H, Yu X. LncRNA HLA-F-AS1 Enhances the Migration, Invasion and Apoptosis of Glioblastoma Cells by Targeting lncRNA MEG3. Cancer Manag Res 2021; 13:9139-9145. [PMID: 34934358 PMCID: PMC8678538 DOI: 10.2147/cmar.s322351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies revealed the oncogenic role of long non-coding RNA (lncRNA) HLA-F-AS1 in colon cancer and breast cancer, while its role in other cancers is unclear. We predicted the direct interaction between HLA-F-AS1 and MEG3, which is a tumor suppressor lncRNA. We then assessed the interaction between HLA-F-AS1 and MEG3 in glioblastoma (GBM). Methods The expression levels of HLA-F-AS1 and MEG3 in GBM and paired non-tumor tissues from 60 GBM patients were analyzed by RT-qPCR. Overexpression of HLA-F-AS1 and MEG3 was achieved in GBM cells to explore the interaction between them. The direct interaction between them was confirmed by RNA pull-down assay. The roles of HLA-F-AS1 and MEG3 in cell invasion, migration and apoptosis were explored by Transwell assays and cell apoptosis assay. Results HLA-F-AS1 was highly expressed, and MEG3 was downregulated in GBM. Overexpression of HLA-F-AS1 reduced the expression levels of MEG3 while overexpression of MEG3 did not alter the expression of HLA-F-AS1. HLA-F-AS1 increased cell migration and invasion, but decreased cell apoptosis. MEG3 played opposite roles and reduced the effects of HLA-F-AS1 on cell behaviors. Conclusion HLA-F-AS1 may sponge MEG3 in GBM cells to promote cell invasion and migration, and to suppress cell apoptosis.
Collapse
Affiliation(s)
- Yanhua Wang
- Department of Neurosurgery, Hanchuan People's Hospital, Hanchuan City, People's Republic of China
| | - Teng Xie
- Department of Neurosurgery, Hanchuan People's Hospital, Hanchuan City, People's Republic of China
| | - Huaming Liu
- Department of Neurosurgery, Hanchuan People's Hospital, Hanchuan City, People's Republic of China
| | - Xiaoping Yu
- Department of Neurosurgery, Hanchuan People's Hospital, Hanchuan City, People's Republic of China
| |
Collapse
|
222
|
Zhang C, Wu J, Liu W, Zheng X, Zhang W, Lee CS, Wang P. A novel hypocrellin-based assembly for sonodynamic therapy against glioblastoma. J Mater Chem B 2021; 10:57-63. [PMID: 34842264 DOI: 10.1039/d1tb01886h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The non-invasive treatment of glioblastoma (GBM) is of great significance and can greatly reduce the complications of craniotomy. Sonodynamic therapy (SDT) is an emerging tumor therapeutic strategy that overcomes some fatal flaws of photodynamic therapy (PDT). Different from PDT, SDT has deep tissue penetration and can be applied in the non-invasive treatment of deep-seated tumors. However, effective sonosensitizers that can be used for SDT of GBM are still very rare. Herein, we have prepared a suitable assembly based on a hypocrellin derivative (CTHB) with good biocompatibility. Excitedly, the hypocrellin-based assembly (CTHB NPs) can effectively produce reactive oxygen species under ultrasound stimulation. The inherent fluorescence and photoacoustic imaging characteristics of the CTHB NPs are conducive to the precise positioning of the tumors. It has been proved both in subcutaneous and in intracranial tumor models that CTHB NPs can be used as an effective sonosensitizer to inhibit tumor growth under ultrasound irradiation. This hypocrellin-based assembly has a good clinical prospect in the non-invasive treatment of GBM.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, People's Republic of China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
223
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
224
|
Ji YR, Cheng CC, Lee AL, Shieh JCC, Wu HJ, Huang APH, Hsu YH, Young TH. Poly(allylguanidine)-Coated Surfaces Regulate TGF-β in Glioblastoma Cells to Induce Apoptosis via NF-κB Pathway Activation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59400-59410. [PMID: 34846137 DOI: 10.1021/acsami.1c21027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polycationic biomaterials are currently widely applied in neuronal cell cultures to promote cell adhesion and viability. However, polycations generally have cytotoxic properties that limit their application in the field of biomaterials. In this study, we examined the use of a novel polycation poly(allylguanidine) (PAG), which contains a guanidine group in the side chain and a structure similar to poly(allylamine hydrochloride) (PAH), an example of another commonly used polycation. Our findings showed that exposure to PAG induced apoptosis in glioblastoma (GBM) cells, while exposure to PAH induced necrosis. Compared to control groups, the PAG coating significantly limited the proliferation of GBM8901 in vitro and in vivo. Furthermore, GBM8901 cells exposed to the PAG coating exhibited increased levels of phospho-p65 and phosphor-IκB, implying that GBM8901 cells underwent apoptotic cell death via the NF-κB pathway by the regulation of TGF-β. This result was further confirmed to be consistent with the experimental results from western blot protein analysis and apoptosis/necrosis assays. These findings indicate that the polycation PAG has the potential to not only suppress the proliferation of GBM8901 cancer cells but also improve the neural viability and promote the differentiation of neural stem/precursor cells into mature neurons. In conclusion, biomaterials such as PAG act as extremely potent options for applications in the treatment of pathological conditions such as brain cancer.
Collapse
Affiliation(s)
- You-Ren Ji
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Chia Cheng
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - An-Li Lee
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
- Division of Plastic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | | | - Hsin-Ju Wu
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Abel Po-Hao Huang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yi-Hua Hsu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
- Department of Biomedical Engineering, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
225
|
Guo X, Piao H. Research Progress of circRNAs in Glioblastoma. Front Cell Dev Biol 2021; 9:791892. [PMID: 34881248 PMCID: PMC8645988 DOI: 10.3389/fcell.2021.791892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded covalently closed non-coding RNAs without a 5' cap structure or 3' terminal poly (A) tail, which are expressed in a variety of tissues and cells with conserved, stable and specific characteristics. Glioblastoma (GBM) is the most aggressive and lethal tumor in the central nervous system, characterized by high recurrence and mortality rates. The specific expression of circRNAs in GBM has demonstrated their potential to become new biomarkers for the development of GBM. The specific expression of circRNAs in GBM has shown their potential as new biomarkers for GBM cell proliferation, apoptosis, migration and invasion, which provides new ideas for GBM treatment. In this paper, we will review the biological properties and functions of circRNAs and their biological roles and clinical applications in GBM.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
226
|
Eisenhut F, Engelhorn T, Arinrad S, Brandner S, Coras R, Putz F, Fietkau R, Doerfler A, Schmidt MA. A Comparison of Single- and Multiparametric MRI Models for Differentiation of Recurrent Glioblastoma from Treatment-Related Change. Diagnostics (Basel) 2021; 11:diagnostics11122281. [PMID: 34943518 PMCID: PMC8700236 DOI: 10.3390/diagnostics11122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
To evaluate single- and multiparametric MRI models to differentiate recurrent glioblastoma (GBM) and treatment-related changes (TRC) in clinical routine imaging. Selective and unselective apparent diffusion coefficient (ADC) and minimum, mean, and maximum cerebral blood volume (CBV) measurements in the lesion were performed. Minimum, mean, and maximum ratiosCBV (CBVlesion to CBVhealthy white matter) were computed. All data were tested for lesion discrimination. A multiparametric model was compiled via multiple logistic regression using data demonstrating significant difference between GBM and TRC and tested for its diagnostic strength in an independent patient cohort. A total of 34 patients (17 patients with recurrent GBM and 17 patients with TRC) were included. ADC measurements showed no significant difference between both entities. All CBV and ratiosCBV measurements were significantly higher in patients with recurrent GBM than TRC. A minimum CBV of 8.5, mean CBV of 116.5, maximum CBV of 327 and ratioCBV minimum of 0.17, ratioCBV mean of 2.26 and ratioCBV maximum of 3.82 were computed as optimal cut-off values. By integrating these parameters in a multiparametric model and testing it in an independent patient cohort, 9 of 10 patients, i.e., 90%, were classified correctly. The multiparametric model further improves radiological discrimination of GBM from TRC in comparison to single-parameter approaches and enables reliable identification of recurrent tumors.
Collapse
Affiliation(s)
- Felix Eisenhut
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (T.E.); (A.D.); (M.A.S.)
- Correspondence: ; Tel.: +49-913185-44838
| | - Tobias Engelhorn
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (T.E.); (A.D.); (M.A.S.)
| | - Soheil Arinrad
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (S.A.); (S.B.)
| | - Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (S.A.); (S.B.)
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany;
| | - Florian Putz
- Department of Radiation Oncology, University Hospital Erlangen, Universitaetsstrasse 27, 91054 Erlangen, Germany; (F.P.); (R.F.)
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Universitaetsstrasse 27, 91054 Erlangen, Germany; (F.P.); (R.F.)
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (T.E.); (A.D.); (M.A.S.)
| | - Manuel A. Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (T.E.); (A.D.); (M.A.S.)
| |
Collapse
|
227
|
Tanigawa S, Fujita M, Moyama C, Ando S, Ii H, Kojima Y, Fujishita T, Aoki M, Takeuchi H, Yamanaka T, Takahashi Y, Hashimoto N, Nakata S. Inhibition of Gli2 suppresses tumorigenicity in glioblastoma stem cells derived from a de novo murine brain cancer model. Cancer Gene Ther 2021; 28:1339-1352. [PMID: 33414520 DOI: 10.1038/s41417-020-00282-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023]
Abstract
The prognosis of glioblastoma remains poor despite intensive research efforts. Glioblastoma stem cells (GSCs) contribute to tumorigenesis, invasive capacity, and therapy resistance. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), a stem cell marker, is involved in the maintenance of GSCs, although the properties of Lgr5-positive GSCs remain unclear. Here, the Sleeping-Beauty transposon-induced glioblastoma model was used in Lgr5-GFP knock-in mice identify GFP-positive cells in neurosphere cultures from mouse glioblastoma tissues. Global gene expression analysis showed that Gli2 was highly expressed in GFP-positive GSCs. Gli2 knockdown using lentiviral-mediated shRNA downregulated Hedgehog-related and Wnt signaling pathway-related genes, including Lgr5; suppressed tumor cell proliferation and invasion capacity; and induced apoptosis. Pharmacological Gli inhibition with GANT61 suppressed tumor cell proliferation. Silencing Gli2 suppressed the tumorigenicity of GSCs in an orthotopic transplantation model in vivo. These findings suggest that Gli2 affects the Hedgehog and Wnt pathways and plays an important role in GSC maintenance, suggesting Gli2 as a therapeutic target for glioblastoma treatment.
Collapse
Affiliation(s)
- Seisuke Tanigawa
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science, Kyoto, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Chiami Moyama
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shota Ando
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiromi Ii
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasushi Kojima
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Teruaki Fujishita
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Masahiro Aoki
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hayato Takeuchi
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science, Kyoto, Japan
| | - Takumi Yamanaka
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science, Kyoto, Japan
| | - Yoshinobu Takahashi
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science, Kyoto, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Kyoto Prefectural University Graduate School of Medical Science, Kyoto, Japan
| | - Susumu Nakata
- Department of Clinical Oncology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
228
|
Zhang L, Jia R, Li H, Yu H, Ren K, Jia S, Li Y, Wang Q. Insight into the Double-Edged Role of Ferroptosis in Disease. Biomolecules 2021; 11:1790. [PMID: 34944434 PMCID: PMC8699194 DOI: 10.3390/biom11121790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Ferroptosis, a newly described type of iron-dependent programmed cell death that is distinct from apoptosis, necroptosis, and other types of cell death, is involved in lipid peroxidation (LP), reactive oxygen species (ROS) production, and mitochondrial dysfunction. Accumulating evidence has highlighted vital roles for ferroptosis in multiple diseases, including acute kidney injury, cancer, hepatic fibrosis, Parkinson's disease, and Alzheimer's disease. Therefore, ferroptosis has become one of the research hotspots for disease treatment and attracted extensive attention in recent years. This review mainly summarizes the relationship between ferroptosis and various diseases classified by the system, including the urinary system, digestive system, respiratory system, nervous system. In addition, the role and molecular mechanism of multiple inhibitors and inducers for ferroptosis are further elucidated. A deeper understanding of the relationship between ferroptosis and multiple diseases may provide new strategies for researching diseases and drug development based on ferroptosis.
Collapse
Affiliation(s)
- Lei Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Ruohan Jia
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Huizhen Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China; (L.Z.); (R.J.); (H.L.)
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Huarun Yu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Keke Ren
- School of Clinical Medicine, Henan University, Kaifeng 475004, China; (H.Y.); (K.R.)
| | - Shuangshuang Jia
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| |
Collapse
|
229
|
EFNB1 Acts as a Novel Prognosis Marker in Glioblastoma through Bioinformatics Methods and Experimental Validation. JOURNAL OF ONCOLOGY 2021; 2021:4701680. [PMID: 34824583 PMCID: PMC8610726 DOI: 10.1155/2021/4701680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Purpose Ephrin B1 (EFNB1), the Eph-associated receptor tyrosine kinase ligand, is suggested to have an important function in neurodevelopment. However, its contribution to glioblastoma multiforme (GBM) remains uncertain. This study aimed to determine the prognostic power and immune implication of EFNB1 in GBM. Methods We first identified differentially coexpressed genes within GBM relative to noncarcinoma samples from GEO and TCGA databases by WGCNA. The STRING online database and the maximum cluster centrality (MCC) algorithm in Cytoscape software were used to design for predicting protein-protein interactions (PPI) and calculating pivot nodes, respectively. The expression of hub genes in cancer and noncancer tissues was verified by an online tool gene expression profile interactive analysis (GEPIA). Thereafter, the TISIDB online tool with Cox correlation regression method was employed to screen for immunomodulators associated with EFNB1 and to model the risk associated with immunomodulators. Results Altogether 201 differentially expressed genes (DEGs) were discovered. After that, 10 hub genes (CALB2, EFNB1, ENO2, EPHB4, NES, OBSCN, RAB9B, RPL23A, STMN2, and THY1) were incorporated to construct the PPI network. As revealed by survival analysis, EFNB1 upregulation predicted poor overall survival (OS) for GBM cases. Furthermore, we developed a prognostic risk signature according to the EFNB1-associated immunomodulators. Kaplan-Meier survival analysis and receiver operating characteristic method were adopted for analysis, which revealed that our signature showed favorable accuracy of prognosis prediction. Finally, EFNB1 inhibition was found to block cell proliferation and migration in GBM cells. Conclusion The above results indicate that EFNB1 participates in cancer immunity and progression, which is the candidate biomarker for GBM.
Collapse
|
230
|
Rabha B, Bharadwaj KK, Pati S, Choudhury BK, Sarkar T, Kari ZA, Edinur HA, Baishya D, Atanase LI. Development of Polymer-Based Nanoformulations for Glioblastoma Brain Cancer Therapy and Diagnosis: An Update. Polymers (Basel) 2021; 13:polym13234114. [PMID: 34883617 PMCID: PMC8659151 DOI: 10.3390/polym13234114] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Brain cancers, mainly high-grade gliomas/glioblastoma, are characterized by uncontrolled proliferation and recurrence with an extremely poor prognosis. Despite various conventional treatment strategies, viz., resection, chemotherapy, and radiotherapy, the outcomes are still inefficient against glioblastoma. The blood–brain barrier is one of the major issues that affect the effective delivery of drugs to the brain for glioblastoma therapy. Various studies have been undergone in order to find novel therapeutic strategies for effective glioblastoma treatment. The advent of nanodiagnostics, i.e., imaging combined with therapies termed as nanotheranostics, can improve the therapeutic efficacy by determining the extent of tumour distribution prior to surgery as well as the response to a treatment regimen after surgery. Polymer nanoparticles gain tremendous attention due to their versatile nature for modification that allows precise targeting, diagnosis, and drug delivery to the brain with minimal adverse side effects. This review addresses the advancements of polymer nanoparticles in drug delivery, diagnosis, and therapy against brain cancer. The mechanisms of drug delivery to the brain of these systems and their future directions are also briefly discussed.
Collapse
Affiliation(s)
- Bijuli Rabha
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
| | - Kaushik Kumar Bharadwaj
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
| | - Siddhartha Pati
- Skills Innovation & Academic Network (SIAN) Institute-Association for Biodiversity Conservation and Research (ABC), Balasore 756001, India;
- NatNov Bioscience Private Limited, Balasore, 756001, India
| | | | - Tanmay Sarkar
- Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda 732102, India;
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli 17600, Malaysia;
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Debabrat Baishya
- Department of Bioengineering & Technology, GUIST, Gauhati University, Guwahati 781014, India; (B.R.); (K.K.B.)
- Correspondence: (D.B.); (L.I.A.)
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Correspondence: (D.B.); (L.I.A.)
| |
Collapse
|
231
|
Yang L, Du C, Chen H, Diao Z. Downregulation of Williams syndrome transcription factor (WSTF) suppresses glioblastoma cell growth and invasion by inhibiting PI3K/AKT signal pathway. Eur J Histochem 2021; 65. [PMID: 34784707 PMCID: PMC8611414 DOI: 10.4081/ejh.2021.3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022] Open
Abstract
Williams syndrome transcription factor (WSTF) participates in diverse cellular processes, including tumor cell proliferation and migration. However, the function of WSTF in glioblastoma (GBM) remains unknown. Data from the Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) datasets showed that WSTF was upregulated in GBM tissues. Moreover, WSTF was also increased in the GBM cells. pcDNA-mediated over-expression of WSTF contributed to cell proliferation and invasion of GBM cells, while GBM cell proliferation and invasion were suppressed by shRNA-mediated silencing of WSTF. Additionally, GBM cell apoptosis was reduced by over-expression of WSTF accompanied by decrease in Bax and cleaved caspase-3, while promoted by silencing of WSTF with increase in Bax and cleaved caspase-3. Protein expression of AKT phosphorylation was enhanced by WSTF over-expression while reduced by WSTF silencing. Inhibitor of phosphatidylinositol 3 kinase attenuated WSTF over-expression-induced increase in GBM cell proliferation and invasion. In conclusion, WSTF contributed to GBM cell growth and invasion through activation of PI3K/AKT pathway.
Collapse
Affiliation(s)
- Liyuan Yang
- Department of Neurosurgery, The People's Hospital of Yaan, Sichuan.
| | - Chunfu Du
- Department of Neurosurgery, The People's Hospital of Yaan, Sichuan.
| | - Hui Chen
- Department of Neurosurgery, The People's Hospital of Yaan, Sichuan.
| | - Zhengwen Diao
- Department of Neurosurgery, The People's Hospital of Yaan, Sichuan.
| |
Collapse
|
232
|
Formulation of Boron Encapsulated Smart Nanocapsules for Targeted Drug Delivery to the Brain. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug delivery through the Blood–Brain Barrier (BBB) represents a significant challenge. Despite the current strategies to circumvent the BBB, nanotechnology offers unprecedented opportunities for combining selective delivery, improved bioavailability, drug protection, and enhanced pharmacokinetics profiles. Chitosan nanocarriers allow for a more efficacious strategy at the cellular and sub-cellular levels. Boron Neutron Capture Therapy (BNCT) is a targeted chemo-radiotherapeutic technique that allows the selective depletion of cancer cells by means of selective tagging of cancer cells with 10B, followed by irradiation with low-energy neutrons. Consequently, the combination of a polymer-based nanodelivery system enclosing an effective BNCT pharmacophore can potentially lead to the selective delivery of the load to cancer cells beyond the BBB. In this work, synthesized novel boronated agents based on carborane-functionalized Delocalized Lipophilic Cations (DLCs) are assessed for safety and selective targeting of tumour cells. The compounds are then encapsulated in nanocarriers constituted by chitosan to promote permeability through the BBB. Additionally, chitosan was used in combination with polypyrrole to form a smart composite nanocapsule, which is expected to release its drug load with variations in pH. Results indicate the achievement of more selective boron delivery to cells via carboranyl DLCs. Finally, preliminary cell studies indicate no toxicity was detected in chitosan nanocapsules, further enhancing its viability as a potential delivery vehicle in the BNCT of brain tumours.
Collapse
|
233
|
Molecular Investigation of Human Cytomegalovirus and Epstein-Barr virus in Glioblastoma Brain Tumor: A Case-Control Study in Iran. IRANIAN BIOMEDICAL JOURNAL 2021; 25:426-33. [PMID: 34696577 DOI: 10.52547/ibj.25.6.426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Glioblastoma multiforme is the most invasive and lethal form of brain cancer with unclear etiology. Our study aimed to investigate the molecular prevalence of human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) infections in patients with glioblastoma multiforme (GBM). Methods This case-control study was conducted on 42 FFPE brain tumor samples from GBM patients and 42 brain autopsies from subjects without neurological disorders. The presence of EBV and HCMV DNA was determined, using PCR and nested-PCR assays, respectively. Results HCMV DNA was detected in 3 out of 42 (7.1%) of GBM samples and was absent from the control group (p = 0.07). Importantly, EBV DNA was detected in 9 out of 42 (21.4%) brain tissue specimens of GBM subjects, but again in none of the control group (p = 0.001). Conclusion Our findings indicate that infection with EBV is associated with GBM.
Collapse
|
234
|
Fang H, Shi R, Chen D, Qu Y, Wu Q, Yang X, Lu X, Zhang CW, Li L, Lim KL. Intramolecular charge transfer enhancing strategy based MAO-A specific two-photon fluorescent probes for glioma cell/tissue imaging. Chem Commun (Camb) 2021; 57:11260-11263. [PMID: 34636370 DOI: 10.1039/d1cc04744b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MAO-A promotes the proliferation of human glioma cells. Herein, we report a series of MAO-A specific two-photon small molecular fluorescent probes (A1-5) based on an intramolecular charge transfer enhancing strategy. The activity of endogenous MAO-A can be selectively imaged using A3 as a representative probe in different biological samples including human glioma cells/tissues via two-photon fluorescence microscopy. The study provides new tools for the visual detection of glioma.
Collapse
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Riri Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Ding Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Yunwei Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Cheng-Wu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, P. R. China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 302238, Singapore.
| |
Collapse
|
235
|
Colapietro A, Rossetti A, Mancini A, Martellucci S, Ocone G, Pulcini F, Biordi L, Cristiano L, Mattei V, Delle Monache S, Marampon F, Gravina GL, Festuccia C. Multiple Antitumor Molecular Mechanisms Are Activated by a Fully Synthetic and Stabilized Pharmaceutical Product Delivering the Active Compound Sulforaphane (SFX-01) in Preclinical Model of Human Glioblastoma. Pharmaceuticals (Basel) 2021; 14:1082. [PMID: 34832864 PMCID: PMC8626029 DOI: 10.3390/ph14111082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Frequent relapses and therapeutic resistance make the management of glioblastoma (GBM, grade IV glioma), extremely difficult. Therefore, it is necessary to develop new pharmacological compounds to be used as a single treatment or in combination with current therapies in order to improve their effectiveness and reduce cytotoxicity for non-tumor cells. SFX-01 is a fully synthetic and stabilized pharmaceutical product containing the α-cyclodextrin that delivers the active compound 1-isothiocyanato-4-methyl-sulfinylbutane (SFN) and maintains biological activities of SFN. In this study, we verified whether SFX-01 was active in GBM preclinical models. Our data demonstrate that SFX-01 reduced cell proliferation and increased cell death in GBM cell lines and patient-derived glioma initiating cells (GICs) with a stem cell phenotype. The antiproliferative effects of SFX-01 were associated with a reduction in the stemness of GICs and reversion of neural-to-mesenchymal trans-differentiation (PMT) closely related to epithelial-to-mesenchymal trans-differentiation (EMT) of epithelial tumors. Commonly, PMT reversion decreases the invasive capacity of tumor cells and increases the sensitivity to pharmacological and instrumental therapies. SFX-01 induced caspase-dependent apoptosis, through both mitochondrion-mediated intrinsic and death-receptor-associated extrinsic pathways. Here, we demonstrate the involvement of reactive oxygen species (ROS) through mediating the reduction in the activity of essential molecular pathways, such as PI3K/Akt/mTOR, ERK, and STAT-3. SFX-01 also reduced the in vivo tumor growth of subcutaneous xenografts and increased the disease-free survival (DFS) and overall survival (OS), when tested in orthotopic intracranial GBM models. These effects were associated with reduced expression of HIF1α which, in turn, down-regulates neo-angiogenesis. So, SFX-01 may have potent anti-glioma effects, regulating important aspects of the biology of this neoplasia, such as hypoxia, stemness, and EMT reversion, which are commonly activated in this neoplasia and are responsible for therapeutic resistance and glioma recurrence. SFX-01 deserves to be considered as an emerging anticancer agent for the treatment of GBM. The possible radio- and chemo sensitization potential of SFX-01 should also be evaluated in further preclinical and clinical studies.
Collapse
Affiliation(s)
- Alessandro Colapietro
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Alessandra Rossetti
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Andrea Mancini
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Giuseppe Ocone
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| | - Fanny Pulcini
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Leda Biordi
- Laboratory of Medical Oncology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Loredana Cristiano
- Department of Clinical Medicine, Public Health, Division of Human Anatomy, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (S.M.); (V.M.)
| | - Simona Delle Monache
- Laboratory of Vascular Biology and Stem Cells, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.P.); (S.D.M.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, La Sapienza University of Rome, 00185 Rome, Italy;
| | - Giovanni Luca Gravina
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L’Aquila, 67100 L’Aquila, Italy
| | - Claudio Festuccia
- Laboratory of Radiobiology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.R.); (A.M.); (G.O.); (G.L.G.)
| |
Collapse
|
236
|
Weathers SP, Rood-Breithaupt J, de Groot J, Thomas G, Manfrini M, Penas-Prado M, Puduvalli VK, Zwingelstein C, Yung WKA. Results of a phase I trial to assess the safety of macitentan in combination with temozolomide for the treatment of recurrent glioblastoma. Neurooncol Adv 2021; 3:vdab141. [PMID: 34693288 PMCID: PMC8528265 DOI: 10.1093/noajnl/vdab141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background There is an urgent need for additional therapies to treat recurrent glioblastoma (GBM). Preclinical studies suggest that high dose macitentan, an oral dual endothelin receptor antagonist, enhances the cytotoxic effects of temozolomide (TMZ) in GBM, improving survival. This phase I trial investigated the maximum tolerated dose of macitentan combined with TMZ in patients with recurrent GBM and assessed the safety and tolerability of high dose macitentan in these patients (NCT01499251). Methods Adults with recurrent GBM received ascending doses of macitentan from 30 mg once daily concomitantly with TMZ. Safety and tolerability were assessed in addition to exploratory efficacy and pharmacokinetic endpoints. An ancillary study examined biomarker expression following macitentan treatment prior to surgical resection of recurrent GBM. Results Thirty-eight patients with recurrent GBM were administered macitentan doses up to 300 mg once daily; no dose-limiting toxicities were observed, and a maximum tolerated dose was not determined. All patients experienced at least one treatment-emergent adverse event (TEAE), the majority associated with GBM or TMZ treatment. TEAEs related to macitentan and TMZ were reported for 16 (42.1%) and 26 (68.4%) patients, respectively, with no serious macitentan-related TEAEs. Macitentan concentrations increased with dose, with no plateau in exposure. Substantial heterogeneity was observed in the expression of efficacy biomarkers within tumors. The Kaplan-Meier estimate of median overall survival across all dose groups was 9.4 (95% CI 8.5, 13.4) months. Conclusion High-dose macitentan was well tolerated in recurrent GBM patients concomitantly receiving TMZ. TEAEs were consistent with those seen in patients receiving either drug individually.
Collapse
Affiliation(s)
| | | | - John de Groot
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gail Thomas
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | - Vinay K Puduvalli
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | - W K Alfred Yung
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
237
|
Al Shboul S, Curran OE, Alfaro JA, Lickiss F, Nita E, Kowalski J, Naji F, Nenutil R, Ball KL, Krejcir R, Vojtesek B, Hupp TR, Brennan PM. Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival. Life Sci Alliance 2021; 4:4/12/e202101054. [PMID: 34645618 PMCID: PMC8548209 DOI: 10.26508/lsa.202101054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023] Open
Abstract
BTK is a dominant bioactive kinase expressed within both cancer and immune cells of GBM tissue. Complex cell co-cultures might better model the impact of kinase inhibitors as therapeutics in GBM. Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A “functional proteomics” screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Olimpia E Curran
- Department of Neuropathology, Western General Hospital, Edinburgh, UK.,Cardiff University Hospital, Cellular Pathology, Cardiff, UK
| | - Javier A Alfaro
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Fiona Lickiss
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Erisa Nita
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Faris Naji
- Pamgene International BV, 's-Hertogenbosch, Netherlands
| | - Rudolf Nenutil
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Kathryn L Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted R Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Paul M Brennan
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
238
|
Zhang W, Cai YY, Wang XL, Wang XX, Li Y, Han GY, Chu YJ, Zhang YX, Hao FR. Bone Metastases of Glioblastoma: A Case Report and Review of the Literature. Front Oncol 2021; 11:705455. [PMID: 34646764 PMCID: PMC8504694 DOI: 10.3389/fonc.2021.705455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background Glioblastoma (GBM) is the most common primary intracranial tumor and originates from the small pool of adult neural stem and progenitor cells (NSPCs). According to the World Health Organization (WHO) classification of brain tumors, gliomas are classified into grades I–IV, and GBM is defined as the highest grade (IV). GBM can be disseminated by cerebrospinal fluid (CSF), but extracranial metastasis is rare. Additionally, the pathway and mechanism involved remain unclear. Case Presentation We report a rare case of left temporal lobe GBM with multiple bone metastases and soft tissue metastasis. This 49-year-old right-handed man who was diagnosed with GBM underwent surgery on May 9, 2017, followed by radiochemotherapy in June 2017. On August 13, 2019, local relapse was found. Then, the patient received a second surgery but not radiochemotherapy. In November 2019, the patient was reported to be suffering from low back pain for nearly 1 month. On December 6, 2019, magnetic resonance imaging (MRI) of the thoracolumbar vertebrae and abdominal computed tomography (CT) confirmed metastases on the ninth posterior rib on the right, the third anterior rib on the left, and the T7 and T10 vertebrae and their appendages. CT-guided rib space-occupying puncture biopsy was performed, and GBM was identified by pathology. Conclusion We should pay attention to extracranial metastasis of GBM. Timely detection and early treatment improve overall quality of patients’ life. The extracranial metastasis in this patient may have occurred through the spinal nerve root or intercostal nerve. Further clinical observations are required to clarify the pathway and mechanism involved.
Collapse
Affiliation(s)
- Wei Zhang
- Clinical School, Weifang Medical University, Weifang, China
| | - Yuan-Yuan Cai
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Xiao-Li Wang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Xiao-Xiao Wang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Yang Li
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Gui-Yan Han
- Department of Pathology, Weifang People's Hospital, Weifang, China
| | - Yu-Jing Chu
- Department of Imaging, Weifang People's Hospital, Weifang, China
| | - Yun-Xiang Zhang
- Department of Pathology, Weifang People's Hospital, Weifang, China
| | - Fu-Rong Hao
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China.,Weifang Key Laboratory of Radiophysics and Oncological Radiobiology, Weifang, China
| |
Collapse
|
239
|
Wu X, Wang X, Wang J, Hao Y, Liu F, Wang X, Yang L, Lu Z. The Roles of Exosomes as Future Therapeutic Agents and Diagnostic Tools for Glioma. Front Oncol 2021; 11:733529. [PMID: 34722277 PMCID: PMC8548662 DOI: 10.3389/fonc.2021.733529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Glioma is a common type of tumor originating in the brain. Glioma develops in the gluey supporting cells (glial cells) that surround and support nerve cells. Exosomes are extracellular vesicles that contain microRNAs, messenger RNA, and proteins. Exosomes are the most prominent mediators of intercellular communication, regulating, instructing, and re-educating their surrounding milieu targeting different organs. As exosomes' diameter is in the nano range, the ability to cross the blood-brain barrier, a crucial obstacle in developing therapeutics against brain diseases, including glioma, makes the exosomes a potential candidate for delivering therapeutic agents for targeting malignant glioma. This review communicates the current knowledge of exosomes' significant roles that make them crucial future therapeutic agents and diagnostic tools for glioma.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
240
|
Caruso JP, Shi C, Rail B, Aoun SG, Bagley CA. Aggressively recurring cervical intramedullary anaplastic astrocytoma in a pregnant patient. Surg Neurol Int 2021; 12:466. [PMID: 34621581 PMCID: PMC8492418 DOI: 10.25259/sni_759_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022] Open
Abstract
Background Many patients with spinal juvenile pilocytic astrocytoma can experience prolonged remission after resection. However, some reports suggest that pregnancy may be associated with progression. Case Description The authors provide an image report highlighting a case of rapid and aggressive transformation of an intramedullary astrocytoma of the cervical spine in a pregnant patient. Over the course of 1 year, the lesion progressed from a juvenile pilocytic astrocytoma to an anaplastic astrocytoma. Genetic testing revealed mutations associated with aggressive behavior. Conclusion The case and associated imaging demonstrate the importance of close neurologic monitoring and counseling regarding risk of progression in pregnant patients with spinal gliomas.
Collapse
Affiliation(s)
- James P Caruso
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| | - Chen Shi
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| | - Benjamin Rail
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| | - Salah G Aoun
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| | - Carlos A Bagley
- Departments of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, United States
| |
Collapse
|
241
|
Is It Worth Considering Multicentric High-Grade Glioma a Surgical Disease? Analysis of Our Clinical Experience and Literature Review. ACTA ACUST UNITED AC 2021; 7:523-532. [PMID: 34698304 PMCID: PMC8544720 DOI: 10.3390/tomography7040045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The simultaneous presence of multiple foci of high-grade glioma is a rare condition with a poor prognosis. By definition, if an anatomical connection through white matter bundles cannot be hypothesized, multiple lesions are defined as multicentric glioma (MC); on the other hand, when this connection exists, it is better defined as multifocal glioma (MF). Whether surgery can be advantageous for these patients has not been established yet. The aim of our study was to critically review our experience and to compare it to the existing literature. MATERIALS AND METHODS Retrospective analysis of patients operated on for MC HGG in two Italian institutions was performed. Distinction between MC and MF was achieved through revision of MR FLAIR images. Clinical and radiological preoperative and postoperative data were analyzed through chart revision and phone interviews. The same data were extracted from literature review. Univariate and multivariate analyses were conducted for the literature review only, and the null hypothesis was rejected for a p-value ≥ 0.05. RESULTS Sixteen patients met the inclusion criteria; male predominance and an average age of 66.5 years were detected. Sensory/motor deficit was the main onset symptom both in clinical study and literature review. A tendency to operate on the largest symptomatic lesion was reported and GTR was reached in the majority of cases. GBM was the histological diagnosis in most part of the patients. OS was 8.7 months in our series compared to 7.5 months from the literature review. Age ≤ 70 years, a postoperative KPS ≥ 70, a GTR/STR, a second surgery and adjuvant treatment were shown to be significantly associated with a better prognosis. Pathological examination revealed that MC HGG did not originate by LGG. CONCLUSIONS MC gliomas are rare conditions with high malignancy and a poor prognosis. A maximal safe resection should be attempted whenever possible, especially in younger patients with life-threatening large mass.
Collapse
|
242
|
Greco F, Anastasi F, Pardini LF, Dilillo M, Vannini E, Baroncelli L, Caleo M, McDonnell LA. Longitudinal Bottom-Up Proteomics of Serum, Serum Extracellular Vesicles, and Cerebrospinal Fluid Reveals Candidate Biomarkers for Early Detection of Glioblastoma in a Murine Model. Molecules 2021; 26:5992. [PMID: 34641541 PMCID: PMC8512455 DOI: 10.3390/molecules26195992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is a brain tumor with a poor prognosis and low survival rates. GBM is diagnosed at an advanced stage, so little information is available on the early stage of the disease and few improvements have been made for earlier diagnosis. Longitudinal murine models are a promising platform for biomarker discovery as they allow access to the early stages of the disease. Nevertheless, their use in proteomics has been limited owing to the low sample amount that can be collected at each longitudinal time point. Here we used optimized microproteomics workflows to investigate longitudinal changes in the protein profile of serum, serum small extracellular vesicles (sEVs), and cerebrospinal fluid (CSF) in a GBM murine model. Baseline, pre-symptomatic, and symptomatic tumor stages were determined using non-invasive motor tests. Forty-four proteins displayed significant differences in signal intensities during GBM progression. Dysregulated proteins are involved in cell motility, cell growth, and angiogenesis. Most of the dysregulated proteins already exhibited a difference from baseline at the pre-symptomatic stage of the disease, suggesting that early effects of GBM might be detectable before symptom onset.
Collapse
Affiliation(s)
- Francesco Greco
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| | - Federica Anastasi
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
- NEST Laboratories, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Luca Fidia Pardini
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy
| | - Marialaura Dilillo
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| | - Eleonora Vannini
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- Fondazione Umberto Veronesi, 20122 Milano, Italy
| | - Laura Baroncelli
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- IRCCS Fondazione Stella Maris, 56018 Calambrone, Italy
| | - Matteo Caleo
- CNR, Neuroscience Institute, 56124 Pisa, Italy; (E.V.); (L.B.); (M.C.)
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy
| | - Liam A. McDonnell
- Fondazione Pisana per la Scienza ONLUS, 56017 San Giuliano Terme, Italy; (F.A.); (L.F.P.); (M.D.)
| |
Collapse
|
243
|
Zhao Z, Gao B, Zong X, Gao R. Sevoflurane impedes glioma progression via regulating circ_0000215/miR-1200/NCR3LG1 axis. Metab Brain Dis 2021; 36:2003-2014. [PMID: 34460046 DOI: 10.1007/s11011-021-00817-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022]
Abstract
Sevoflurane has been reported to have anti-tumorigenic effects in glioma. Circ_0000215 was found to play vital functions in the pathological progressions of glioma. However, whether circ_0000215 mediates the inhibitory effects of sevoflurane on glioma cells remains unclear. In vitro assays were performed using cell counting kit-8, flow cytometry, transwell and Western blot assays. The expression levels of circ_0000215, microRNA (miR)-1200 and NCR3LG1 (Natural Killer Cell Cytotoxicity Receptor 3 Ligand 1) were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and/or Western blot. The dual-luciferase reporter assay and pull-down assay were used to investigate the relationship between miR-1200 and circ_0000215 or NCR3LG1. In vivo assay was conducted using xenograft nude mice model. In vitro assays suggested that sevoflurane repressed glioma cell proliferation, metastasis and induced apoptosis as well as hindered tumor growth in vivo, which were reversed by circ_0000215 overexpression. Mechanically, circ_0000215 was confirmed to directly target miR-1200, and NCR3LG1 was a target of miR-1200 in glioma cells. Importantly, circ_0000215 could regulate NCR3LG1 expression via miR-1200. Besides that, rescue assay suggested that circ_0000215 attenuated the inhibitory effects of sevoflurane on glioma cell growth and metastasis, which were reversed by miR-1200 overexpression or NCR3LG1 knockdown. Our study revealed that sevoflurane could suppress glioma tumorigenesis by regulating circ_0000215/miR-1200/NCR3LG1 axis, suggesting a new insight into the therapeutic potential of sevoflurane in glioma treatment.
Collapse
Affiliation(s)
- Zhitao Zhao
- Department of Anesthesiology, Shandong Provincial Third Hospital, Jinan, Shandong, 250031, People's Republic of China
| | - Baofeng Gao
- Department of Anesthesiology, Shandong Provincial Third Hospital, Jinan, Shandong, 250031, People's Republic of China
| | - Xiaoling Zong
- Department of Anesthesiology, Zibo Central Hospital, No.96, South Shanghai Road, Zhangdian District, Zibo City, 255000, Shandong Province, People's Republic of China
| | - Ruiming Gao
- Department of Anesthesiology, Zibo Central Hospital, No.96, South Shanghai Road, Zhangdian District, Zibo City, 255000, Shandong Province, People's Republic of China.
| |
Collapse
|
244
|
Lin XM, Shi XX, Xiong L, Nie JH, Ye HS, Du JZ, Liu J. Construction of IL-13 Receptor α2-Targeting Resveratrol Nanoparticles against Glioblastoma Cells: Therapeutic Efficacy and Molecular Effects. Int J Mol Sci 2021; 22:ijms221910622. [PMID: 34638961 PMCID: PMC8508707 DOI: 10.3390/ijms221910622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common lethal primary brain malignancy without reliable therapeutic drugs. IL-13Rα2 is frequently expressed in GBMs as a molecular marker. Resveratrol (Res) effectively inhibits GBM cell growth but has not been applied in vivo because of its low brain bioavailability when administered systemically. A sustained-release and GBM-targeting resveratrol form may overcome this therapeutic dilemma. To achieve this goal, encapsulated Res 30 ± 4.8 nm IL-13Rα2-targeting nanoparticles (Pep-PP@Res) were constructed. Ultraviolet spectrophotometry revealed prolonged Res release (about 25%) from Pep-PP@Res in 48 h and fluorescent confocal microscopy showed the prolonged intracellular Res retention time of Pep-PP@Res (>24 h) in comparison with that of free Res (<4 h) and PP@Res (<4 h). MTT and EdU cell proliferation assays showed stronger suppressive effects of Pep-PP@Res on rat C6 GBM cells than that of PP@Res (p = 0.024) and Res (p = 0.009) when used twice for 4 h/day. Pep-PP@Res had little toxic effect on normal rat brain cells. The in vivo anti-glioblastoma effects of Res can be distinctly improved in the form of Pep-PP@Res nanoparticles via activating JNK signaling, upregulating proapoptosis gene expression and, finally, resulting in extensive apoptosis. Pep-PP@Res with sustained release and GBM-targeting properties would be suitable for in vivo management of GBMs.
Collapse
Affiliation(s)
- Xiao-Min Lin
- Research Center, South China University of Technology (SCUT) School of Medicine, Guangzhou 510006, China; (X.-M.L.); (L.X.); (J.-H.N.); (H.-S.Y.)
| | - Xiao-Xiao Shi
- Institute of Life Sciences, South China University of Technology (SCUT) School of Medicine, Guangzhou 510006, China; (X.-X.S.); (J.-Z.D.)
| | - Le Xiong
- Research Center, South China University of Technology (SCUT) School of Medicine, Guangzhou 510006, China; (X.-M.L.); (L.X.); (J.-H.N.); (H.-S.Y.)
| | - Jun-Hua Nie
- Research Center, South China University of Technology (SCUT) School of Medicine, Guangzhou 510006, China; (X.-M.L.); (L.X.); (J.-H.N.); (H.-S.Y.)
| | - Hai-Shan Ye
- Research Center, South China University of Technology (SCUT) School of Medicine, Guangzhou 510006, China; (X.-M.L.); (L.X.); (J.-H.N.); (H.-S.Y.)
| | - Jin-Zi Du
- Institute of Life Sciences, South China University of Technology (SCUT) School of Medicine, Guangzhou 510006, China; (X.-X.S.); (J.-Z.D.)
| | - Jia Liu
- Research Center, South China University of Technology (SCUT) School of Medicine, Guangzhou 510006, China; (X.-M.L.); (L.X.); (J.-H.N.); (H.-S.Y.)
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Dalian Medical University, Dalian 610044, China
- Correspondence: or ; Tel.: +20-3938-1176
| |
Collapse
|
245
|
Ji H, Ba Y, Ma S, Hou K, Mi S, Gao X, Jin J, Gong Q, Liu T, Wang F, Liu Z, Li S, Du J, Hu S. Construction of Interferon-Gamma-Related Gene Signature to Characterize the Immune-Inflamed Phenotype of Glioblastoma and Predict Prognosis, Efficacy of Immunotherapy and Radiotherapy. Front Immunol 2021; 12:729359. [PMID: 34566988 PMCID: PMC8461254 DOI: 10.3389/fimmu.2021.729359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon-gamma (IFNG) has profound impacts on tumor-immune interaction and is of great clinical significance for multiple cancers. Exploring the role of IFNG in glioblastoma (GBM) may optimize the current treatment paradigm of this disease. Here, multi-dimensional data of 429 GBM samples were collected. Various bioinformatics algorithms were employed to establish a gene signature that characterizes immunological features, genomic alterations, and clinical characteristics associated with the IFNG response. In this way, a novel IFNG-related gene signature (IFNGrGS, including TGFBI, IL4I1, ACP5, and LUM) has been constructed and validated. Samples with increased IFNGrGS scores were characterized by increased neutrophil and macrophage infiltration and exuberant innate immune responses, while the activated adaptive immune response may be frustrated by multiple immunosuppressive mechanisms. Notably, the IFNG pathway as well as its antagonistic pathways including IL4, IL10, TGF-beta, and VEGF converged on the expression of immune checkpoints. Besides, gene mutations involved in the microenvironment were associated with the IFNGrGS-based stratification, where the heterogeneous prognostic significance of EGFR mutation may be related to the different degrees of IFNG response. Moreover, the IFNGrGS score had solid prognostic value and the potential to screen ICB and radiotherapy sensitive populations. Collectively, our study provided insights into the role of IFNG on the GBM immune microenvironment and offered feasible information for optimizing the treatment of GBM.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yixu Ba
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Kuiyuan Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shan Mi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Qin Gong
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Ting Liu
- Faculty of Pharmacy, Harbin Medical University (DAQING), Daqing, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Zhihui Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Shupeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
246
|
Lan Y, Zhao E, Zhang X, Zhu X, Wan L, A S, Ping Y, Wang Y. Prognostic impact of a lymphocyte activation-associated gene signature in GBM based on transcriptome analysis. PeerJ 2021; 9:e12070. [PMID: 34527446 PMCID: PMC8401751 DOI: 10.7717/peerj.12070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/05/2021] [Indexed: 01/11/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is a highly, malignant tumor of the primary central nervous system. Patients diagnosed with this type of tumor have a poor prognosis. Lymphocyte activation plays important roles in the development of cancers and its therapeutic treatments. Objective We sought to identify an efficient lymphocyte activation-associated gene signature that could predict the progression and prognosis of GBM. Methods We used univariate Cox proportional hazards regression and stepwise regression algorithm to develop a lymphocyte activation-associated gene signature in the training dataset (TCGA, n = 525). Then, the signature was validated in two datasets, including GSE16011 (n = 150) and GSE13041 (n = 191) using the Kaplan Meier method. Univariate and multivariate Cox proportional hazards regression models were used to adjust for clinicopathological factors. Results We identified a lymphocyte activation-associated gene signature (TCF3, IGFBP2, TYRO3 and NOD2) in the training dataset and classified the patients into high-risk and low-risk groups with significant differences in overall survival (median survival 15.33 months vs 12.57 months, HR = 1.55, 95% CI [1.28-1.87], log-rank test P < 0.001). This signature showed similar prognostic values in the other two datasets. Further, univariate and multivariate Cox proportional hazards regression models analysis indicated that the signature was an independent prognostic factor for GBM patients. Moreover, we determined that there were differences in lymphocyte activity between the high- and low-risk groups of GBM patients among all datasets. Furthermore, the lymphocyte activation-associated gene signature could significantly predict the survival of patients with certain features, including IDH-wildtype patients and patients undergoing radiotherapy. In addition, the signature may also improve the prognostic power of age. Conclusions In summary, our results suggested that the lymphocyte activation-associated gene signature is a promising factor for the survival of patients, which is helpful for the prognosis of GBM patients.
Collapse
Affiliation(s)
- Yujia Lan
- Harbin Medical University, College of Bioinformatics Science and Technology, Harbin, China
| | - Erjie Zhao
- Harbin Medical University, College of Bioinformatics Science and Technology, Harbin, China
| | - Xinxin Zhang
- Harbin Medical University, College of Bioinformatics Science and Technology, Harbin, China
| | - Xiaojing Zhu
- Harbin Medical University, College of Bioinformatics Science and Technology, Harbin, China
| | - Linyun Wan
- Harbin Medical University, College of Bioinformatics Science and Technology, Harbin, China
| | - Suru A
- Harbin Medical University, College of Bioinformatics Science and Technology, Harbin, China
| | - Yanyan Ping
- Harbin Medical University, College of Bioinformatics Science and Technology, Harbin, China
| | - Yihan Wang
- Harbin Medical University, College of Bioinformatics Science and Technology, Harbin, China
| |
Collapse
|
247
|
Hill L, Bruns J, Zustiak SP. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids. Acta Biomater 2021; 132:437-447. [PMID: 34010694 DOI: 10.1016/j.actbio.2021.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with median patient survival of 12-15 months. To facilitate treatment development, bioengineered GBM models that adequately recapitulate the in vivo tumor microenvironment are needed. Matrix-encapsulated multicellular spheroids represent such model because they recapitulate solid tumor characteristics, such as dimensionality, cell-cell, and cell-matrix interactions. Yet, there is no consensus as to which matrix properties are key to improving the predictive capacity of spheroid-based drug screening platforms. We used a hydrogel-encapsulated GBM spheroid model, where matrix properties were independently altered to investigate their effect on GBM spheroid characteristics and drug responsiveness. We focused on hydrogel degradability, tuned via enzymatically degradable crosslinkers, and hydrogel adhesiveness, tuned via integrin ligands. We observed increased cellular infiltration of GBM spheroids and increased resistance to temozolomide in degradable, adhesive hydrogels compared to spheroids in non-degradable, non-adhesive hydrogels or to free-floating spheroids. Further, a higher infiltration index was noted for spheroids in adhesive compared to non-adhesive degradable hydrogels. For spheroids in degradable hydrogels, we determined that infiltrating cells were more susceptible to temozolomide compared to cells in the spheroid core. The temozolomide susceptibility of the infiltrating cells was independent of integrin adhesion. We could not attribute differential drug responses to differential cellular proliferation or to limited drug penetration into the hydrogel matrix. Our results suggest that cell-matrix interactions guide GBM spheroid drug responsiveness and that further elucidation of these interactions could enable the engineering of more predictive drug screening platforms. STATEMENT OF SIGNIFICANCE: Glioblastoma multiforme (GBM) multicellular spheroids hold promise for drug screening and development as they better mimic in vivo cellular responses to therapeutics compared to monolayer cultures. Traditional spheroid models lack an external extracellular matrix (ECM) and fail to mimic the mechanical, physical, and biochemical cues seen in the GBM microenvironment. While embedding spheroids in hydrogel matrices has been shown to better recapitulate the tumor microenvironment, there is still limited understanding as to the key matrix properties that govern spheroid responsiveness to drugs. Here we decoupled and independently altered matrix properties such as degradability, via an enzymatically degradable peptide crosslinker, and cell adhesion, via an adhesive ligand, giving further insight into what matrix properties contribute to GBM chemoresistance.
Collapse
|
248
|
Gheidari F, Arefian E, Adegani FJ, Kalhori MR, Seyedjafari E, Kabiri M, Teimoori-Toolabi L, Soleimani M. miR-424 induces apoptosis in glioblastoma cells and targets AKT1 and RAF1 oncogenes from the ERBB signaling pathway. Eur J Pharmacol 2021; 906:174273. [PMID: 34153339 DOI: 10.1016/j.ejphar.2021.174273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma is a lethal and incurable cancer. Tumor suppressor miRNAs are promising gene therapy tools for cancer treatment. In silico, we predicted miR-424 as a tumor suppressor. It had several target genes from the epidermal growth factor receptor (ERBB) signaling pathway that are overactive in most glioblastoma cases. We overexpressed miR-424 by lentiviral transduction of U-251 and U-87 glioblastoma cells confirmed with fluorescent microscopy and real-time quantitative PCR (qRT-PCR). Then the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) proliferation assay and scratch wound migration assay were performed to investigate the miR-424 tumor suppressor effect in glioblastoma. miR-424's effect on glioblastoma apoptosis and cell-cycle arrest was verified using Annexin V- phosphatidylethanolamine (PE) and 7-minoactinomycin D (7-AAD) apoptosis assay and cell-cycle assay. miR-424 predicted target genes mRNA and protein level were measured after miR-424 overexpression in comparison to the control group by qRT-PCR and western blotting, respectively. We confirmed miR-424 direct target genes by dual-luciferase reporter assay. miR-424 overexpression significantly suppressed cell proliferation and migration rate in glioblastoma cells based on the MTT and scratch assays. Flow cytometry results confirmed that miR-424 promotes apoptosis and cell-cycle arrest in glioblastoma cells. Predicted target genes of miR-424 from the ERBB pathway were downregulated by miR-424 overexpression. qRT-PCR and western blotting showed that KRAS, RAF1, MAP2K1, EGFR, PDGFRA, AKT1, and mTOR mRNA expression levels and KRAS, RAF1, MAP2K1, EGFR, and AKT1 protein level, respectively, had significantly decreased as a result of miR-424 overexpression in comparison to the control group. Dual-luciferase reporter assay confirmed that miR-424 directly targets RAF1 and AKT1 oncogenes. Overall, miR-424 acts as tumor suppressor miRNA in glioblastoma cells.
Collapse
Affiliation(s)
- Fatemeh Gheidari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Stem Cell Technology Research Center, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Jamshidi Adegani
- Laboratory for Stem Cell & Regenerative Medicine, Natural and Medicinal Sciences Research Center, University of Nizwa, Nizwa, Oman.
| | - Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Ladan Teimoori-Toolabi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
249
|
Taxifolin Targets PI3K and mTOR and Inhibits Glioblastoma Multiforme. JOURNAL OF ONCOLOGY 2021; 2021:5560915. [PMID: 34462635 PMCID: PMC8403040 DOI: 10.1155/2021/5560915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/31/2021] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM), the most common malignant primary brain tumor, has a very poor prognosis. With increasing knowledge of tumor molecular biology, targeted therapies are becoming increasingly integral to comprehensive GBM treatment strategies. mTOR is a key downstream molecule of the PI3K/Akt signaling pathway, integrating input signals from growth factors, nutrients, and energy sources to regulate cell growth and cell proliferation through multiple cellular responses. mTOR/PI3K dual-targeted therapy has shown promise in managing various cancers. Here, we report that taxifolin, a flavanone commonly found in milk thistle, inhibited mTOR/PI3K, promoted autophagy, and suppressed lipid synthesis in GBM. In silico analysis showed that taxifolin can bind to the rapamycin binding site of mTOR and the catalytic site of PI3K (p110α). In in vitro experiments, taxifolin inhibited mTOR and PI3K activity in five different glioma cell lines. Lastly, we showed that taxifolin suppressed tumors in mice; stimulated expression of autophagy-related genes LC3B-II, Atg7, atg12, and Beclin-1; and inhibited expression of fatty acid synthesis-related genes C/EBPα, PPARγ, FABP4, and FAS. Our observations suggest that taxifolin is potentially a valuable drug for treating GBM.
Collapse
|
250
|
Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: a review. J Nanobiotechnology 2021; 19:255. [PMID: 34425832 PMCID: PMC8381574 DOI: 10.1186/s12951-021-01002-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Although nanomedicine have greatly developed and human life span has been extended, we have witnessed the soared incidence of central nervous system (CNS) diseases including neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), ischemic stroke, and brain tumors, which have severely damaged the quality of life and greatly increased the economic and social burdens. Moreover, partial small molecule drugs and almost all large molecule drugs (such as recombinant protein, therapeutic antibody, and nucleic acid) cannot cross the blood-brain barrier. Therefore, it is especially important to develop a drug delivery system that can effectively deliver therapeutic drugs to the central nervous system for the treatment of central nervous system diseases. Cell penetrating peptides (CPPs) provide a potential strategy for the transport of macromolecules through the blood-brain barrier. This study analyzed and summarized the progress of CPPs in CNS diseases from three aspects: CPPs, the conjugates of CPPs and drug, and CPPs modified nanoparticles to provide scientific basis for the application of CPPs for CNS diseases.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pan Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhe Ma
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dereje Kebebe
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|