201
|
Sreejit G, Abdel Latif A, Murphy AJ, Nagareddy PR. Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacol Res 2020; 161:105212. [PMID: 32991974 DOI: 10.1016/j.phrs.2020.105212] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Elevated neutrophil count is associated with higher risk of major adverse cardiac events including myocardial infarction and early development of heart failure. Neutrophils contribute to cardiac damage through a number of mechanisms, including attraction of other immune cells and release of inflammatory mediators. Recently, a number of independent studies have reported a causal role for neutrophil-derived alarmins (i.e. S100A8/A9) in inducing inflammation and cardiac injury following myocardial infarction (MI). Furthermore, a positive correlation between serum S100A8/A9 levels and major adverse cardiac events (MACE) in MI patients was also observed implying that targeting neutrophils or their inflammatory cargo could be beneficial in reducing heart failure. However, contradictory to this idea, neutrophils and neutrophil-derived S100A8/A9 also seem to play a vital role in the resolution of inflammation. Thus, a better understanding of how neutrophils balance these seemingly contrasting functions would allow us to develop effective therapies that preserve the inflammation-resolving function while restricting the damage caused by inflammation. In this review, we specifically discuss the mechanisms behind neutrophil-derived S100A8/A9 in promoting inflammation and resolution in the context of MI. We also provide a perspective on how neutrophils could be potentially targeted to ameliorate cardiac inflammation and the ensuing damage.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmed Abdel Latif
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
202
|
Hemshekhar M, Piyadasa H, Mostafa D, Chow LNY, Halayko AJ, Mookherjee N. Cathelicidin and Calprotectin Are Disparately Altered in Murine Models of Inflammatory Arthritis and Airway Inflammation. Front Immunol 2020; 11:1932. [PMID: 32973796 PMCID: PMC7468387 DOI: 10.3389/fimmu.2020.01932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Cationic host defense peptides (CHDP) are immunomodulatory molecules that control infections and contribute to immune homeostasis. CHDP such as cathelicidin and calprotectin expression is altered in the arthritic synovium, and in the lungs of asthma and COPD patients. Recent studies suggest a link between airway inflammation and the immunopathology of arthritis. Therefore, in this study we compared the abundance of mouse cathelicidin (CRAMP), defensins, and calprotectin subunits (S100A8 and S100A9) in murine models of collagen-induced arthritis (CIA) and allergen house dust mite (HDM)-challenged airway inflammation. CRAMP, S100A8, and S100A9 abundance were significantly elevated in the joint tissues of CIA mice, whereas these were decreased in the lung tissues of HDM-challenged mice, compared to naïve. We further compared the effects of administration of two different synthetic immunomodulatory peptides, IG-19 and IDR-1002, on cathelicidin and calprotectin abundance in the two models. Administration of IG-19, which controls disease progression and inflammation in CIA mice, significantly decreased CRAMP, S100A8, and S100A9 levels to baseline in the joints of the CIA mice, which correlated with the decrease in cellular influx in the joints. However, administration of IDR-1002, which suppresses HDM-induced airway inflammation, did not prevent the decrease in the levels of cathelicidin and calprotectin in the lungs of HDM-challenged mice. Cathelicidin and calprotectin levels did not correlate with leukocyte accumulation in the lungs of the HDM-challenged mice. Results of this study suggest that endogenous cathelicidin and calprotectin abundance are disparately altered, and may be differentially regulated, within local tissues in airway inflammation compared to arthritis.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Hadeesha Piyadasa
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Dina Mostafa
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Leola N Y Chow
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
203
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
204
|
Protective Effects of MitoTEMPO on Nonalcoholic Fatty Liver Disease via Regulating Myeloid-Derived Suppressor Cells and Inflammation in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9329427. [PMID: 32802885 PMCID: PMC7414374 DOI: 10.1155/2020/9329427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
MitoTEMPO, a mitochondrial antioxidant, has protective effects on liver-related diseases. However, the role of MitoTEMPO on nonalcoholic fatty liver disease (NAFLD) and its possible mechanisms are largely unknown. Here, we investigated the effects of MitoTEMPO on NAFLD using high fat diet- (HFD-) induced obese mice as animal models. MitoTEMPO was intraperitoneally injected into HFD mice. Liver morphological changes were observed by H&E and Oil Red O staining, and the frequency of MDSCs in peripheral blood was analyzed by flow cytometry. Moreover, real-time quantitative PCR, western blot, and immunohistochemistry were conducted to detect the mRNA and protein expressions in the liver tissues. The results showed that the hepatic steatosis in liver tissues of HFD mice injected with MitoTEMPO was significantly ameliorated. Additionally, MitoTEMPO reduced the frequency of CD11b+Gr-1+ MDSCs in peripheral circulation and decreased Gr-1+ cell accumulation in the livers. Further studies demonstrated that MitoTEMPO administration suppressed the mRNA and protein expressions of MDSC-associated proinflammatory mediators, such as monocyte chemoattractant protein-1 (MCP-1), S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9). Our results suggest that MitoTEMPO appears to be a potential chemical compound affecting certain immune cells and further ameliorates inflammation in obese-associated NAFLD.
Collapse
|
205
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
206
|
Li K, Chen G, Luo H, Li J, Liu A, Yang C, Wang J, Xu J, Gao S, Chen P, Jiang Y. MRP8/14 mediates macrophage efferocytosis through RAGE and Gas6/MFG-E8, and induces polarization via TLR4-dependent pathway. J Cell Physiol 2020; 236:1375-1390. [PMID: 33128793 DOI: 10.1002/jcp.29944] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/25/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Myeloid-related protein 8/14 (MRP8/14) participates in various inflammatory responses, however, its effect on macrophage efferocytosis remains unclear. Here, we demonstrate that MRP8/14 significantly inhibits the efferocytosis of apoptotic thymocytes by mouse bone marrow-derived macrophages (BMDMs), which later proves to be associated with the receptor for advanced glycation end products (RAGE) or for reducing the expression of growth arrest-specific protein 6 and milk fat globule epidermal growth factor 8, independent of RAGE. Furthermore, MRP8/14 promotes polarization of BMDMs from the M2 - to M1 -like phenotype by upregulating expression of M1 -related surface receptor proteins and signature M1 -marker genes and by downregulating signature M2 -marker gene expression, which depends on Toll-like receptor 4 and p38 mitogen-activated protein kinase/nuclear factor κB pathways. Thus, we report a significant inhibitory effect of MRP8/14 on macrophage efferocytosis and MRP8/14-mediated phenotypic polarization, which may be helpful in developing novel therapeutic strategies leading to inflammation resolution.
Collapse
Affiliation(s)
- Kangxin Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guiming Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianhang Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aihua Liu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia Xu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shenghan Gao
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
207
|
Association Between Serum S100A8/S100A9 Heterodimer and Pulmonary Function in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 2020; 198:645-652. [PMID: 32661658 DOI: 10.1007/s00408-020-00376-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Many studies have indicated that S100A8 and S100A9 may be involved in the development and progression of chronic obstructive pulmonary disease (COPD). However, there has been no clinical study analyzing the role of the serum S100A8/S100A9 heterodimer in COPD patients. The aim of this study was to analyze the correlation of the serum S100A8/S100A9 heterodimer with pulmonary function in COPD patients during acute exacerbation (AE-COPD) based on a cross-sectional study. METHODS A total of 131 AE-COPD patients and matched healthy subjects were recruited. Pulmonary function, arterial blood gas values, and serum inflammatory cytokines were measured. RESULTS Serum S100A8/S100A9 was increased in AE-COPD patients. AE-COPD patients were ranked into different grades based on FEV1%. Serum S100A8/S100A9 was higher in Grade 4 than in Grade 1-2 and Grade 3 patients with AE-COPD. Univariate regression analysis found that serum S100A8/S100A9 was negatively correlated with FEV1% in AE-COPD patients. Furthermore, serum S100A8/S100A9 was positively associated with MCP-1 in AE-COPD patients. Further stratified analysis revealed that serum S100A8/S100A9 was negatively associated with FEV1/FVC in Grade 3 (OR 0.629, P < 0.05) and in Grade 4 (OR 0.347, P < 0.05). In addition, there was a positive relationship between serum S100A8/S100A9 and PaCO2 in Grade 3 (OR 1.532, P < 0.05) and Grade 4 (OR 1.925, P < 0.01). CONCLUSION S100A8/S100A9 was negatively associated with pulmonary function in AE-COPD patients, indicating that the serum S100A8/S100A9 heterodimer may be involved in the progression of AE-COPD, and may be a relevant serum biomarker in the diagnosis for AE-COPD.
Collapse
|
208
|
Leite Dantas R, Bettenworth D, Varga G, Weinhage T, Wami HT, Dobrindt U, Roth J, Vogl T, Ludwig S, Wixler V. Spontaneous onset of TNFα-triggered colonic inflammation depends on functional T lymphocytes, S100A8/A9 alarmins, and MHC H-2 haplotype. J Pathol 2020; 251:388-399. [PMID: 32449525 DOI: 10.1002/path.5473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
Recently, we established a doxycycline-inducible human tumor necrosis factor alpha (TNFα)-transgenic mouse line, ihTNFtg. Non-induced young and elderly mice showed low but constitutive expression of hTNFα due to promoter leakiness. The persistently present hTNFα stimulated endogenous pro-inflammatory mouse mS100A8/A9 alarmins. Secreted mS100A8/A9 in turn induced the expression and release of mouse mTNFα. The continuous upregulation of pro-inflammatory mTNFα and mS100A8/A9 proteins, due to their mutual expression dependency, gradually led to increased levels in colon tissue and blood. This finally exceeded the threshold levels tolerated by the healthy organism, leading to the onset of intestinal inflammation. Here, recombinant hTNFα functioned as an initial trigger for the development of chronic inflammation. Crossing ihTNFtg mice with S100A9KO mice lacking active S100A8/A9 alarmins or with Rag1KO mice lacking T and B lymphocytes completely abrogated the development of colonic inflammation, despite the still leaky hTNFα promoter. Furthermore, both the intensity of the immune response and the strength of immunosuppressive Treg induction was found to depend on the major histocompatibility complex (MHC) genetic composition. In summary, the onset of intestinal inflammation in elderly mice depends on at least four factors that have to be present simultaneously: TNFα upregulation, S100A8/A9 protein expression, functional T lymphocytes and genetic composition, with the MHC haplotype being of central importance. Only joint action of these factors leads to chronic intestinal inflammation, while absence of any of these determinants abrogates the development of the autoimmune disorder. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rafael Leite Dantas
- Institute of Molecular Virology, Westfaelische Wilhelms University, Muenster, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Muenster, Muenster, Germany
| | - Georg Varga
- Pediatric Rheumatology and Immunology, Westfaelische Wilhelms University, Muenster, Germany
| | - Toni Weinhage
- Pediatric Rheumatology and Immunology, Westfaelische Wilhelms University, Muenster, Germany
| | | | - Ulrich Dobrindt
- Institute of Hygiene, Westfaelische Wilhelms University, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, Westfaelische Wilhelms University, Muenster, Germany
| | - Thomas Vogl
- Institute of Immunology, Westfaelische Wilhelms University, Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology, Westfaelische Wilhelms University, Muenster, Germany
| | - Viktor Wixler
- Institute of Molecular Virology, Westfaelische Wilhelms University, Muenster, Germany
| |
Collapse
|
209
|
Bouvier D, Giguère Y, Blanchon L, Bujold E, Pereira B, Bernard N, Gallot D, Sapin V, Forest JC. Study of sRAGE, HMGB1, AGE, and S100A8/A9 Concentrations in Plasma and in Serum-Extracted Extracellular Vesicles of Pregnant Women With Preterm Premature Rupture of Membranes. Front Physiol 2020; 11:609. [PMID: 32655405 PMCID: PMC7324632 DOI: 10.3389/fphys.2020.00609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Preterm premature rupture of membranes (PPROM), defined as rupture of fetal membranes prior to 37 weeks of gestation, complicates approximately 2–4% of pregnancies and is responsible for 40% of all spontaneous preterm births. PPROM arises from complex pathophysiological pathways with a key actor: inflammation. Sterile inflammation is a feature of senescence-associated fetal membrane maturity. During specific steps of sterile inflammation, cells also release highly inflammatory damage-associated molecular pattern markers (DAMPs), such as high-mobility group box 1 (HMGB1) or S100A8/A9, known to link and activate the receptor for advanced glycation end products (RAGE). The objective of this study was to measure longitudinally during pregnancy concentrations of the soluble form of RAGE (sRAGE) and its main ligands (AGE, HMGB1, S100A8/A9) in blood specimens. We studied 246 pregnant women (82 with PPROM and 164 matched control pregnant women without complications) from a cohort of 7,866 pregnant women recruited in the first trimester and followed during pregnancy until delivery. sRAGE, AGE, HMGB1, and S100A8/A9 concentrations were measured in plasma and in serum-extracted extracellular vesicles from first trimester (T1), second trimester (T2), and delivery (D). In plasma, we observed, in both PPROM and control groups, (i) a significant increase of HMGB1 concentrations between T1 vs. T2, T1 vs. D, but not between T2 vs. D; (ii) a significant decrease of sRAGE concentrations between T1 and T2 and a significant increase between T2 and D; (iii) a significant decrease of AGE from T1 to D; (iv) no significant variation of S100A8/A9 between trimesters. In intergroup comparisons (PPROM vs. control group), there were no significant differences in time variation taking into account the matching effects. There was a correlation between plasma and serum-extracted extracellular vesicle concentrations of sRAGE, AGE, HMGB1, and S100A8/A9. Our results suggest that the rupture of fetal membranes (physiological or premature) is accompanied by a variation in plasma concentrations of sRAGE, HMGB1, and AGE. The study of RAGE and its main ligands in extracellular vesicles did not give additional insight into the pathophysiological process conducting to PPROM.
Collapse
Affiliation(s)
- Damien Bouvier
- Biochemistry and Molecular Genetic Department, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, Clermont-Ferrand, France.,Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Yves Giguère
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Loïc Blanchon
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Bujold
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, QC, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Bruno Pereira
- Biostatistics Unit Direction de la Recherche Clinique et des Innovations (DRCI), Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, Clermont-Ferrand, France
| | - Nathalie Bernard
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, QC, Canada
| | - Denis Gallot
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France.,Department of Obstetrics and Gynecology, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, Centre Hospitalier Universitaire (CHU) Clermont-Ferrand, Clermont-Ferrand, France.,Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Claude Forest
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
210
|
Golubinskaya V, Puttonen H, Fyhr IM, Rydbeck H, Hellström A, Jacobsson B, Nilsson H, Mallard C, Sävman K. Expression of S100A Alarmins in Cord Blood Monocytes Is Highly Associated With Chorioamnionitis and Fetal Inflammation in Preterm Infants. Front Immunol 2020; 11:1194. [PMID: 32612607 PMCID: PMC7308505 DOI: 10.3389/fimmu.2020.01194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Preterm infants exposed to chorioamnionitis and with a fetal inflammatory response are at risk for neonatal morbidity and adverse outcome. Alarmins S100A8, S100A9, and S100A12 are expressed by myeloid cells and have been associated with inflammatory activation and monocyte modulation. Aim: To study S100A alarmin expression in cord blood monocytes from term healthy and preterm infants and relate results to clinical findings, inflammatory biomarkers and alarmin protein levels, as well as pathways identified by differentially regulated monocyte genes. Methods: Cord blood CD14+ monocytes were isolated from healthy term (n = 10) and preterm infants (<30 weeks gestational age, n = 33) by MACS technology. Monocyte RNA was sequenced and gene expression was analyzed by Principal Component Analysis and hierarchical clustering. Pathways were identified by Ingenuity Pathway Analysis. Inflammatory proteins were measured by Multiplex ELISA, and plasma S100A proteins by mass spectrometry. Histological chorioamnionitis (HCA) and fetal inflammatory response syndrome (FIRS) were diagnosed by placenta histological examination. Results: S100A8, S100A9, and S100A12 gene expression was significantly increased and with a wider range in preterm vs. term infants. High S100A8 and S100A9 gene expression (n = 17) within the preterm group was strongly associated with spontaneous onset of delivery, HCA, FIRS and elevated inflammatory proteins in cord blood, while low expression (n = 16) was associated with impaired fetal growth and physician-initiated delivery. S100A8 and S100A9 protein levels were significantly lower in preterm vs. term infants, but within the preterm group high S100A gene expression, spontaneous onset of labor, HCA and FIRS were associated with elevated protein levels. One thousand nine hundred genes were differentially expressed in preterm infants with high vs. low S100A alarmin expression. Analysis of 124 genes differentially expressed in S100A high as well as FIRS and HCA groups identified 18 common pathways and S100A alarmins represented major hubs in network analyses. Conclusion: High expression of S100A alarmins in cord blood monocytes identifies a distinct clinical risk group of preterm infants exposed to chorioamnionitis and with a fetal inflammatory response. Gene and pathway analyses suggest that high S100A alarmin expression also affects monocyte function. The connection with monocyte phenotype and inflammation-stimulated S100A expression in other cell types (e.g., neutrophils) warrants further investigation.
Collapse
Affiliation(s)
- Veronika Golubinskaya
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Henri Puttonen
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ing-Marie Fyhr
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Halfdan Rydbeck
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Holger Nilsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Karin Sävman
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.,Department of Neonatology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
211
|
Mossel DM, Moganti K, Riabov V, Weiss C, Kopf S, Cordero J, Dobreva G, Rots MG, Klüter H, Harmsen MC, Kzhyshkowska J. Epigenetic Regulation of S100A9 and S100A12 Expression in Monocyte-Macrophage System in Hyperglycemic Conditions. Front Immunol 2020; 11:1071. [PMID: 32582175 PMCID: PMC7280556 DOI: 10.3389/fimmu.2020.01071] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The number of diabetic patients in Europe and world-wide is growing. Diabetes confers a 2-fold higher risk for vascular disease. Lack of insulin production (Type 1 diabetes, T1D) or lack of insulin responsiveness (Type 2 diabetes, T2D) causes systemic metabolic changes such as hyperglycemia (HG) which contribute to the pathology of diabetes. Monocytes and macrophages are key innate immune cells that control inflammatory reactions associated with diabetic vascular complications. Inflammatory programming of macrophages is regulated and maintained by epigenetic mechanisms, in particular histone modifications. The aim of our study was to identify the epigenetic mechanisms involved in the hyperglycemia-mediated macrophage activation. Using Affymetrix microarray profiling and RT-qPCR we identified that hyperglycemia increased the expression of S100A9 and S100A12 in primary human macrophages. Expression of S100A12 was sustained after glucose levels were normalized. Glucose augmented the response of macrophages to Toll-like receptor (TLR)-ligands Palmatic acid (PA) and Lipopolysaccharide (LPS) i.e., pro-inflammatory stimulation. The abundance of activating histone Histone 3 Lysine 4 methylation marks (H3K4me1, H3K4me3) and general acetylation on histone 3 (AceH3) with the promoters of these genes was analyzed by chromatin immunoprecipitation. Hyperglycemia increased acetylation of histones bound to the promoters of S100A9 and S100A12 in M1 macrophages. In contrast, hyperglycemia caused a reduction in total H3 which correlated with the increased expression of both S100 genes. The inhibition of histone methyltransferases SET domain-containing protein (SET)7/9 and SET and MYND domain-containing protein (SMYD)3 showed that these specifically regulated S100A12 expression. We conclude that hyperglycemia upregulates expression of S100A9, S100A12 via epigenetic regulation and induces an activating histone code on the respective gene promoters in M1 macrophages. Mechanistically, this regulation relies on action of histone methyltransferases SMYD3 and SET7/9. The results define an important role for epigenetic regulation in macrophage mediated inflammation in diabetic conditions.
Collapse
Affiliation(s)
- Dieuwertje M Mossel
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Kondaiah Moganti
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,Department of Dermatology, University of Münster, Münster, Germany
| | - Vladimir Riabov
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Medicine I: Endocrinology and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Julio Cordero
- Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marianne G Rots
- Department Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harald Klüter
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Martin C Harmsen
- Department Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Julia Kzhyshkowska
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
212
|
Müller I, Vogl T, Kühl U, Krannich A, Banks A, Trippel T, Noutsias M, Maisel AS, van Linthout S, Tschöpe C. Serum alarmin S100A8/S100A9 levels and its potential role as biomarker in myocarditis. ESC Heart Fail 2020; 7:1442-1451. [PMID: 32462801 PMCID: PMC7373886 DOI: 10.1002/ehf2.12760] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
Aims The alarmin S100A8/S100A9 (S100A8/A9) is released by activated monocytes/macrophages and neutrophils in the setting lymphocytic myocarditis (MC). We recently demonstrated its therapeutic potential in experimental acute MC. Now, we investigated the diagnostic relevance of S100A8/A9 serum levels in patients with suspected acute and chronic MC and in patients with heart failure without cardiac inflammation. Methods and Results Serum S100A8/A9 levels were analysed in patients with a recent onset of MC [≤ 30 days, n = 32; ejection fraction (EF): 45.4 ± 12.9%], dilated cardiomyopathy patients with inflammation (n = 112; EF: 29.0 ± 11.4%), or without inflammation (n = 58; EF: 26.6 ± 9.3%), and controls (n = 25; EF: 68.5 ± 4.6%), by using specific ELISAs. Blood samples were collected at Time Point 1 (T1), where also endomyocardial biopsies (EMBs) were withdrawn. Patients with a recent onset of MC showed a 4.6‐fold increase in serum S100A8/A9 levels vs. controls (MC: 1948 ± 1670 ng/mL vs. controls: 426 ± 307 ng/mL; P < 0.0001). Serum S100A8/A9 correlated with the disease activity, represented by EMB‐derived counts of inflammatory cells (CD3: r = 0.486, P = 0.0047, lymphocyte function‐associated antigen‐1: r = 0.558, P = 0.0009, macrophage‐1 antigen: r = 0.434, P = 0.013), the EMB mRNA levels of S100A8, S100A9 (r = 0.541, P = 0.002), and left ventricular ejection fraction (LVEF: r = 0.498, P = 0.0043). EMB immunofluorescence co‐stainings display macrophages/monocytes and neutrophils as the main source of S100A8 and S100A9 in recent onset MC. The diagnostic value of serum alarmin levels (cut‐off 583 ng/mL) was characterized by a specificity of 92%, a sensitivity of 90.6%, positive predictive value of 93.5%, negative predictive value of 88.5%, and an accuracy of 0.949 (95% confidence interval [0.89–1]). In a subgroup of MC patients, S100A8/A9 serum levels and EMBs at T1 (n = 12) and a follow‐up visit (T2, n = 12, mean follow‐up 8.5 months) were available. A fall of serum S100A8/A9 (T1: 2208 ± 1843 ng/mL vs. T2: 888.8 ± 513.7 ng/mL; P = 0.00052) was associated with a reduced cardiac inflammation (CD3 T1: 70.02 ± 107.4 cells per square millimetre vs. T2: 59.18 ± 182.5 cells per square millimetre; P = 0.0342, lymphocyte function‐associated antigen‐1 T1: 133.5 ± 187.1 cells per square millimetre vs. T2: 74.12 ± 190.5 cells per square millimetre; P = 0.0186, and macrophage‐1 antigen T1: 132.6 ± 129.5 cells per square millimetre vs. T2: 54.41 ± 65.16 cells per square millimetre; P = 0.0015). Serum S100A8/A9 levels were only slightly increased in patients within the chronic phase of MC and in heart failure patients without inflammation vs. controls. Conclusions Serum S100A8/A9 might serve as an additional tool in the diagnostic workup of suspected acute MC patients.
Collapse
Affiliation(s)
- Irene Müller
- Berlin Institute of Health (BIH) & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Thomas Vogl
- Department of Immunology, University of Münster, Münster, Germany
| | - Uwe Kühl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Alexander Krannich
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tobias Trippel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Michel Noutsias
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alan S Maisel
- FACC, University of California San Diego, San Diego, CA, USA
| | - Sophie van Linthout
- Berlin Institute of Health (BIH) & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| |
Collapse
|
213
|
Marinković G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S, Schiopu A. S100A9 Links Inflammation and Repair in Myocardial Infarction. Circ Res 2020; 127:664-676. [PMID: 32434457 DOI: 10.1161/circresaha.120.315865] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE The alarmin S100A9 has been identified as a potential therapeutic target in myocardial infarction. Short-term S100A9 blockade during the inflammatory phase post-myocardial infarction inhibits systemic and cardiac inflammation and improves cardiac function long term. OBJECTIVE To evaluate the impact of S100A9 blockade on postischemic cardiac repair. METHODS AND RESULTS We assessed cardiac function, hematopoietic response, and myeloid phagocyte dynamics in WT (wild type) C57BL/6 mice with permanent coronary artery ligation, treated with the specific S100A9 blocker ABR-238901 for 7 or 21 days. In contrast to the beneficial effects of short-term therapy, extended S100A9 blockade led to progressive deterioration of cardiac function and left ventricle dilation. The treatment reduced the proliferation of Lin-Sca-1+c-Kit+ hematopoietic stem and progenitor cells in the bone marrow and the production of proreparatory CD150+CD48-CCR2+ hematopoietic stem cells. Monocyte trafficking from the spleen to the myocardium and subsequent phenotype switching to reparatory Ly6CloMerTKhi macrophages was also impaired, leading to inefficient efferocytosis, accumulation of apoptotic cardiomyocytes, and a larger myocardial scar. The transcription factor Nur77 (Nr4a1 [nuclear receptor subfamily 4 group A member 1]) mediates the transition from inflammatory Ly6Chi monocytes to reparatory Ly6Clo macrophages. S100A9 upregulated the levels and activity of Nur77 in monocytes and macrophages in vitro and in Ly6Chi/int monocytes in vivo, and S100A9 blockade antagonized these effects. Finally, the presence of reparatory macrophages in the myocardium was also impaired in S100A9-/- mice with permanent myocardial ischemia, leading to depressed cardiac function long term. CONCLUSIONS We show that S100A9 plays an important role in both the inflammatory and the reparatory immune responses to myocardial infarction. Long-term S100A9 blockade negatively impacts cardiac recovery and counterbalances the beneficial effects of short-term therapy. These results define a therapeutic window targeting the inflammatory phase for optimal effects of S100A9 blockade as potential immunomodulatory treatment in acute myocardial infarction.
Collapse
Affiliation(s)
- Goran Marinković
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (G.M., I.G., J.N., A.S.)
| | - Duco Steven Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, the Netherlands (D.S.K., V.d.W., C.J.d.V.)
| | - Lisa de Camp
- DeVos Cardiovascular Research Program, Van Andel Institute, Grand Rapids, MI (L.d.C., N.G., S.J.)
| | | | - Naomi Graber
- DeVos Cardiovascular Research Program, Van Andel Institute, Grand Rapids, MI (L.d.C., N.G., S.J.)
| | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, the Netherlands (D.S.K., V.d.W., C.J.d.V.)
| | - Carlie Jacoba de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, the Netherlands (D.S.K., V.d.W., C.J.d.V.)
| | - Isabel Goncalves
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (G.M., I.G., J.N., A.S.).,Department of Cardiology, Skane University Hospital, Sweden (I.G.)
| | - Jan Nilsson
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (G.M., I.G., J.N., A.S.)
| | - Stefan Jovinge
- DeVos Cardiovascular Research Program, Van Andel Institute, Grand Rapids, MI (L.d.C., N.G., S.J.).,DeVos Cardiovascular Research Program, Fredrik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI (S.J.).,Cardiovascular Institute, Stanford University, CA (S.J.)
| | - Alexandru Schiopu
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (G.M., I.G., J.N., A.S.).,University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Romania (A.S.).,Department of Internal Medicine, Skane University Hospital, Sweden (A.S.)
| |
Collapse
|
214
|
Ruscica M, Corsini A, Ferri N, Banach M, Sirtori CR. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res 2020; 159:104916. [PMID: 32445957 PMCID: PMC7238995 DOI: 10.1016/j.phrs.2020.104916] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Inflammation is an obligatory marker of arterial disease, both stemming from the inflammatory activity of cholesterol itself and from well-established molecular mechanisms. Raised progenitor cell recruitment after major events and clonal hematopoiesis related mechanisms have provided an improved understanding of factors regulating inflammatory phenomena. Trials with inflammation antagonists have led to an extensive evaluation of biomarkers such as the high sensitivity C reactive protein (hsCRP), not exerting a causative role, but frequently indicative of the individual cardiovascular (CV) risk. Aim of this review is to provide indication on the anti-inflammatory profile of agents of general use in CV prevention, i.e. affecting lipids, blood pressure, diabetes as well nutraceuticals such as n-3 fatty acids. A crucial issue in the evaluation of the benefit of the anti-inflammatory activity is the frequent discordance between a beneficial activity on a major risk factor and associated changes of hsCRP, as in the case of statins vs PCSK9 antagonists. In hypertension, angiotensin converting enzyme inhibitors exert an optimal anti-inflammatory activity, vs the case of sartans. The remarkable preventive activity of SLGT-2 inhibitors in heart failure is not associated with a clear anti-inflammatory mechanism. Finally, icosapent ethyl has been shown to reduce the CV risk in hypertriglyceridemia, with a 27 % reduction of hsCRP. The inflammation-based approach to arterial disease has considerably gained from an improved understanding of the clinical diagnostic strategy and from a better knowledge on the mode of action of numerous agents, including nutraceuticals.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milano, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Cesare R Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
215
|
Calprotectin as a New Sensitive Marker of Neutrophilic Inflammation in Patients with Bronchiolitis Obliterans. Mediators Inflamm 2020; 2020:4641585. [PMID: 32410855 PMCID: PMC7211255 DOI: 10.1155/2020/4641585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/10/2020] [Accepted: 04/04/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Bronchiolitis obliterans (BO) is a chronic disease in which persistent inflammation leads to obstruction and obliteration of the small airways. The aim of this study was to evaluate the value of calprotectin as an inflammatory marker in induced sputum. Methods Twenty-eight patients suffering from BO and 18 healthy controls were examined. Lung function was measured by spirometry, body plethysmography, and lung clearance index (LCI). The induced sputum was obtained, cell counts were performed, and cytokines were measured using cytometric bead array (CBA). Calprotectin was quantified in the sputum and serum samples using commercially available sandwich ELISA. Results Spirometry parameters including forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and maximum expiratory flow rate at 25% vital capacity (MEF25) were significantly lower in BO patients than in healthy controls, whereas the reserve volume (RV), RV to total lung capacity ratio (RV/TLC), and LCI were significantly increased. In sputum, calprotectin levels, neutrophils, and IL-8 were significantly elevated. Calprotectin levels correlated strongly with IL-8 and other biomarkers, neutrophils FEV1 and MEF25. In serum, calprotectin was significantly diminished in BO patients compared to controls. Conclusion Lung function is severely impaired in BO patients. Calprotectin is significantly elevated in the sputum of BO patients and reflects ongoing neutrophilic inflammation.
Collapse
|
216
|
Identifying effector molecules, cells, and cytokines of innate immunity in OA. Osteoarthritis Cartilage 2020; 28:532-543. [PMID: 32044352 DOI: 10.1016/j.joca.2020.01.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory changes are observed in affected joints of osteoarthritis (OA) patients and are thought to be involved in the pathology that develops along OA progression. This narrative review provides an overview of the various cell types that are present in the joint during OA and which alarmins, cytokines, chemokines, growth factors, and other mediators they produce. Moreover, the involvement of more systemic processes like inflammaging and its associated cellular senescence in the context of OA are discussed.
Collapse
|
217
|
Wang C, Kou Y, Han Y, Li X. Early Serum Calprotectin (S100A8/A9) Predicts Delayed Cerebral Ischemia and Outcomes after Aneurysmal Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2020; 29:104770. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.104770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/17/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
|
218
|
Kubis-Kubiak A, Dyba A, Piwowar A. The Interplay between Diabetes and Alzheimer's Disease-In the Hunt for Biomarkers. Int J Mol Sci 2020; 21:ijms21082744. [PMID: 32326589 PMCID: PMC7215807 DOI: 10.3390/ijms21082744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
- Correspondence:
| | - Aleksandra Dyba
- Students Science Club of the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| |
Collapse
|
219
|
Jasim H, Ernberg M, Carlsson A, Gerdle B, Ghafouri B. Protein Signature in Saliva of Temporomandibular Disorders Myalgia. Int J Mol Sci 2020; 21:ijms21072569. [PMID: 32272779 PMCID: PMC7177369 DOI: 10.3390/ijms21072569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
In the last years, several attempts have been made to study specific biological markers of temporomandibular disorders (TMD). So far, no laboratory tests have been appropriately validated for the diagnosis and prognosis of these disorders. This study aimed to investigate the proteomic profile of the whole stimulated saliva of TMD myalgia patients in order to evaluate potential diagnostic and/or prognostic salivary candidate proteins which could be useful for the management of TMD. Twenty patients diagnosed with TMD myalgia according to the validated Diagnostic Criteria for TMD (DC/TMD) and 20 matched healthy pain-free controls were enrolled. Saliva samples were collected in the morning. Comparative proteomic analysis was performed with two-dimensional gel electrophoresis followed by identification with liquid chromatography–tandem mass spectrometry. Statistical analysis of the quantitative proteomics data revealed that 20 proteins were significantly altered in patients compared to controls. Among these proteins, 12 showed significantly increased levels, and 8 showed significantly decreased levels in patients with TMD myalgia compared to controls. The identified proteins are involved in metabolic processes, immune response, and stress response. This proteomic study shows that the salivary protein profile can discriminate patients with TMD myalgia from healthy subjects, but the protein signature has no correlation with the clinical features of TMD myalgia. Additional studies are needed to validate our observations in additional sample sets and to continue assessing the utility of saliva as a suitable sample for studying processes related to TMD myalgia.
Collapse
Affiliation(s)
- Hajer Jasim
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), SE 14104 Huddinge, Sweden
- Correspondence: ; Tel.: +468-524-880-42
| | - Malin Ernberg
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), SE 14104 Huddinge, Sweden
| | - Anders Carlsson
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| |
Collapse
|
220
|
Di Ceglie I, Kruisbergen NNL, van den Bosch MHJ, van Lent PLEM. Fc-gamma receptors and S100A8/A9 cause bone erosion during rheumatoid arthritis. Do they act as partners in crime? Rheumatology (Oxford) 2020; 58:1331-1343. [PMID: 31180451 DOI: 10.1093/rheumatology/kez218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone erosion is one of the central hallmarks of RA and is caused by excessive differentiation and activation of osteoclasts. Presence of autoantibodies in seropositive arthritis is associated with radiographic disease progression. ICs, formed by autoantibodies and their antigens, activate Fcγ-receptor signalling in immune cells, and as such stimulate inflammation-mediated bone erosion. Interestingly, ICs can also directly activate osteoclasts by binding to FcγRs on their surface. Next to autoantibodies, high levels of alarmins, among which is S100A8/A9, are typical for RA and they can further activate the immune system but also directly promote osteoclast function. Therefore, IC-activated FcγRs and S100A8/A9 might act as partners in crime to stimulate inflammation and osteoclasts differentiation and function, thereby stimulating bone erosion. This review discusses the separate roles of ICs, FcγRs and alarmins in bone erosion and sheds new light on the possible interplay between them, which could fuel bone erosion.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nik N L Kruisbergen
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
221
|
Kasper M, Walscheid K, Laffer B, Bauer D, Busch M, Loser K, Vogl T, Langmann T, Ganser G, Rath T, Heiligenhaus A. Phenotype of Innate Immune Cells in Uveitis Associated with Axial Spondyloarthritis- and Juvenile Idiopathic Arthritis-associated Uveitis. Ocul Immunol Inflamm 2020; 29:1080-1089. [PMID: 32160102 DOI: 10.1080/09273948.2020.1715449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: To analyze circulating immune cells in patients with anterior uveitis (AU) associated to axial spondyloarthritis (SpA), or juvenile idiopathic arthritis (JIA).Methods: Venous blood samples were collected from healthy controls (n = 16), and either SpA (n = 19) or JIA (n = 23) patients with associated anterior uveitis (AU) during active flare, or after ≥3 months of inactivity. Frequencies of CD56+, MHC-I+, and S100A9+ monocytes, CCR7+ dendritic cells, CD56+dim natural killer (NK) cells and CD3+CD56bright T-cells were analyzed via flow cytometry. Serum S100A8/A9 levels were determined via ELISA.Results: SpA patients showed a reduced frequency of CD56+dim NK cells during uveitis activity, a constitutively activated monocyte phenotype, and elevated S100A8/A9 serum levels. In contrast, JIAU patients showed elevated frequencies of CD56+ monocytes and CCR7+ DC.Conclusion: Phenotype of peripheral immune cells differ between patients, probably contributing to different courses of acute onset AU in SpA and insidious onset AU in JIAU patients.Abbreviations: AU: anterior uveitis, AR: arthritis, JIA: juvenile idiopathic arthritis, SpA: axial spondyloarthritis.
Collapse
Affiliation(s)
- Maren Kasper
- Department of Ophthalmology, Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Karoline Walscheid
- Department of Ophthalmology, Ophtha-Lab at St. Franziskus Hospital, Münster, Germany.,University of Duisburg-Essen, Essen, Germany
| | - Björn Laffer
- Department of Ophthalmology, Ophtha-Lab at St. Franziskus Hospital, Münster, Germany.,University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Department of Ophthalmology, Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Martin Busch
- Department of Ophthalmology, Ophtha-Lab at St. Franziskus Hospital, Münster, Germany
| | - Karin Loser
- Department of Dermatology, Experimental Dermatology and Immunobiology of the Skin University of Münster, Münster, Germany
| | - Thomas Vogl
- Department of Immunology, University of Münster, Münster, Germany
| | - Thomas Langmann
- Experimental Immunology of the Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Gerd Ganser
- Department of Pediatric Rheumatology, St. Josef-Stift Sendenhorst, Sendenhorst, Germany
| | - Thomas Rath
- Department of Nephrology, Immunology and Osteology of St. Franziskus Hospital, Münster, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology, Ophtha-Lab at St. Franziskus Hospital, Münster, Germany.,University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
222
|
Havelka A, Sejersen K, Venge P, Pauksens K, Larsson A. Calprotectin, a new biomarker for diagnosis of acute respiratory infections. Sci Rep 2020; 10:4208. [PMID: 32144345 PMCID: PMC7060262 DOI: 10.1038/s41598-020-61094-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections require early diagnosis and adequate treatment. With the antibiotic overuse and increment in antibiotic resistance there is an increased need to accurately distinguish between bacterial and viral infections. We investigated the diagnostic performance of calprotectin in respiratory tract infections and compared it with the performance of heparin binding protein (HBP) and procalcitonin (PCT). Biomarkers were analyzed in patients with viral respiratory infections and patients with bacterial pneumonia, mycoplasma pneumonia and streptococcal tonsillitis (n = 135). Results were compared with values obtained from 144 healthy controls. All biomarkers were elevated in bacterial and viral infections compared to healthy controls. Calprotectin was significantly increased in patients with bacterial infections; bacterial pneumonia, mycoplasma pneumonia and streptococcal tonsillitis compared with viral infections. PCT was significantly elevated in patients with bacterial pneumonia compared to viral infections but not in streptococcal tonsillitis or mycoplasma caused infections. HBP was not able to distinguish between bacterial and viral causes of infections. The overall clinical performance of calprotectin in the distinction between bacterial and viral respiratory infections, including mycoplasma was greater than performance of PCT and HBP. Rapid determination of calprotectin may improve the management of respiratory tract infections and allow more precise diagnosis and selective use of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Havelka
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden.,Gentian Diagnostics AB, Stockholm, Sweden
| | - Kristina Sejersen
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Per Venge
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Karlis Pauksens
- Department of Medical Sciences, Infectious Disease, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
223
|
Frohberger SJ, Fercoq F, Neumann AL, Surendar J, Stamminger W, Ehrens A, Karunakaran I, Remion E, Vogl T, Hoerauf A, Martin C, Hübner MP. S100A8/S100A9 deficiency increases neutrophil activation and protective immune responses against invading infective L3 larvae of the filarial nematode Litomosoides sigmodontis. PLoS Negl Trop Dis 2020; 14:e0008119. [PMID: 32107497 PMCID: PMC7064255 DOI: 10.1371/journal.pntd.0008119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/10/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are essentially involved in protective immune responses against invading infective larvae of filarial nematodes. The present study investigated the impact of S100A8/S100A9 on protective immune responses against the rodent filarial nematode Litomosoides sigmodontis. S100A9 forms with S100A8 the heterodimer calprotectin, which is expressed by circulating neutrophils and monocytes and mitigates or amplifies tissue damage as well as inflammation depending on the immune environment. Mice deficient for S100A8/A9 had a significantly reduced worm burden in comparison to wildtype (WT) animals 12 days after infection (dpi) with infective L3 larvae, either by the vector or subcutaneous inoculation, the latter suggesting that circumventing natural immune responses within the epidermis and dermis do not alter the phenotype. Nevertheless, upon intradermal injection of L3 larvae, increased total numbers of neutrophils, eosinophils and macrophages were observed within the skin of S100A8/A9-/- mice. Furthermore, upon infection the bronchoalveolar and thoracic cavity lavage of S100A8/A9-/- mice showed increased concentrations of CXCL-1, CXCL-2, CXCL-5, as well as elastase in comparison to the WT controls. Neutrophils from S100A8/A9-/- mice exhibited an increased in vitro activation and reduced L3 larval motility more effectively in vitro compared to WT neutrophils. The depletion of neutrophils from S100A8/A9-/- mice prior to L. sigmodontis infection until 5dpi abrogated the protective effect and led to an increased worm burden, indicating that neutrophils mediate enhanced protective immune responses against invading L3 larvae in S100A8/A9-/- mice. Interestingly, complete circumvention of protective immune responses in the skin and the lymphatics by intravenous injection of L3 larvae reversed the phenotype and resulted in an increased worm burden in S100A8/A9-/- mice. In summary, our results reveal that lack of S100A8/S100A9 triggers L3-induced inflammatory responses, increasing chemokine levels, granulocyte recruitment as well as neutrophil activation and therefore impairs larval migration and susceptibility for filarial infection.
Collapse
Affiliation(s)
- Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Estelle Remion
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Thomas Vogl
- Institute of Immunology, University Hospital of Münster, Münster, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
224
|
S100A9 Increases IL-6 and RANKL Expressions through MAPKs and STAT3 Signaling Pathways in Osteocyte-Like Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7149408. [PMID: 32149126 PMCID: PMC7053464 DOI: 10.1155/2020/7149408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 02/02/2023]
Abstract
Objective Calprotectin is a heterocomplex of S100A8 and S100A9 and is mainly secreted from neutrophils, monocytes, and chondrocytes in inflammatory condition. Calprotectin binds to RAGE and TLR4 and induces the expression of proinflammatory chemokines and cytokines in various cells. Periodontitis is a chronic inflammatory disease that leads to gingival inflammation and alveolar bone resorption. Calprotectin levels in gingival crevicular fluid of periodontitis patients are higher than healthy patients. In the present study, the effects of S100A8 and S100A9 on the expressions of proinflammatory cytokines and bone metabolism-related factors in mouse osteocyte-like cells (MLO-Y4-A2) were investigated. Design MLO-Y4-A2 cells were treated with S100A8 and S100A9, and the expressions of RAGE, TLR4, RANKL, and several inflammatory cytokines were analyzed by PCR and Western blotting or ELISA methods. To investigate the intracellular signaling pathways, phosphorylation of MAPK and STAT3 was determined by Western blotting, and chemical specific inhibitors and siRNAs were used. Results Expressions of IL-6 and RANKL were increased by treatment with S100A9 but not S100A8. However, both S100A8 and S100A9 did not change expression of IL-1β, IL-8, and TNF-α. Although RAGE and TLR4 expressions were not upregulated by S100A9 treatment, transfection of siRNA for RAGE and TLR4 significantly decreased IL-6 and RANKL expressions. In addition, S100A9 activated p38, ERK, and STAT3 signaling pathways, and inhibitors for these factors significantly decreased S100A9-induced IL-6 and RANKL expressions. Conclusions These results indicated that S100A9 induces IL-6 and RANKL production via engagement with RAGE and TLR4 signalings in osteocytes and suggested that S100A9 may play important roles in the periodontal alveolar bone destruction.
Collapse
|
225
|
Iking J, Klose J, Staniszewska M, Fendler WP, Herrmann K, Rischpler C. Imaging inflammation after myocardial infarction: implications for prognosis and therapeutic guidance. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:35-50. [PMID: 32077669 DOI: 10.23736/s1824-4785.20.03232-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation after myocardial infarction (MI) has been in the focus of cardiovascular research for several years as it influences the remodeling process of the ischemic heart and thereby critically determines the clinical outcome of the patient. Today, it is well appreciated that inflammation is a crucial necessity for the initiation of the natural wound healing process; however, excessive inflammation can have detrimental effects and might result in adverse ventricular remodeling which is associated with an increased risk of heart failure. Newly emerged imaging techniques facilitate the non-invasive assessment of immune cell infiltration into the ischemic myocardium and can provide greater insight into the underlying complex and dynamic repair mechanisms. Molecular imaging of inflammation in the context of MI may help with stratification of patients at high risk of adverse ventricular remodeling post-MI which may be of diagnostic, therapeutic, and prognostic value. Novel radiopharmaceuticals may additionally provide a way to combine patient monitoring and therapy. In spite of great advances in recent years in the field of imaging sciences, clinicians still need to overcome some obstacles to a wider implementation of inflammation imaging post-MI. This review focuses on inflammation as a molecular imaging target and its potential implication in prognosis and therapeutic guidance.
Collapse
Affiliation(s)
- Janette Iking
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany.,Department of Cardiology I for Coronary and Peripheral Vascular Disease, and Heart Failure, University Hospital Münster, Münster, Germany
| | - Jasmin Klose
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | | | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
226
|
Role of S100 proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
The S100 family of proteins contains 25 known members that share a high degree of sequence and structural similarity. However, only a limited number of family members have been characterized in depth, and the roles of other members are likely undervalued. Their importance should not be underestimated however, as S100 family members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflammation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100 target protein interactions that underpin the mechanistic basis to their function, and discuss potential intervention strategies targeting S100 proteins in both preclinical and clinical situations.
Collapse
|
227
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
228
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
229
|
Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. S100 proteins in obesity: liaisons dangereuses. Cell Mol Life Sci 2020; 77:129-147. [PMID: 31363816 PMCID: PMC11104817 DOI: 10.1007/s00018-019-03257-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Obesity is an endemic pathophysiological condition and a comorbidity associated with hypercholesterolemia, hypertension, cardiovascular disease, type 2 diabetes mellitus, and cancer. The adipose tissue of obese subjects shows hypertrophic adipocytes, adipocyte hyperplasia, and chronic low-grade inflammation. S100 proteins are Ca2+-binding proteins exclusively expressed in vertebrates in a cell-specific manner. They have been implicated in the regulation of a variety of functions acting as intracellular Ca2+ sensors transducing the Ca2+ signal and extracellular factors affecting cellular activity via ligation of a battery of membrane receptors. Certain S100 proteins, namely S100A4, the S100A8/S100A9 heterodimer and S100B, have been implicated in the pathophysiology of obesity-promoting macrophage-based inflammation via toll-like receptor 4 and/or receptor for advanced glycation end-products ligation. Also, serum levels of S100A4, S100A8/S100A9, S100A12, and S100B correlate with insulin resistance/type 2 diabetes, metabolic risk score, and fat cell size. Yet, secreted S100B appears to exert neurotrophic effects on sympathetic fibers in brown adipose tissue contributing to the larger sympathetic innervation of this latter relative to white adipose tissue. In the present review we first briefly introduce S100 proteins and then critically examine their role(s) in adipose tissue and obesity.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
| |
Collapse
|
230
|
Zandstra J, van de Geer A, Tanck MWT, van Stijn-Bringas Dimitriades D, Aarts CEM, Dietz SM, van Bruggen R, Schweintzger NA, Zenz W, Emonts M, Zavadska D, Pokorn M, Usuf E, Moll HA, Schlapbach LJ, Carrol ED, Paulus S, Tsolia M, Fink C, Yeung S, Shimizu C, Tremoulet A, Galassini R, Wright VJ, Martinón-Torres F, Herberg J, Burns J, Levin M, Kuijpers TW. Biomarkers for the Discrimination of Acute Kawasaki Disease From Infections in Childhood. Front Pediatr 2020; 8:355. [PMID: 32775314 PMCID: PMC7388698 DOI: 10.3389/fped.2020.00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Kawasaki disease (KD) is a vasculitis of early childhood mimicking several infectious diseases. Differentiation between KD and infectious diseases is essential as KD's most important complication-the development of coronary artery aneurysms (CAA)-can be largely avoided by timely treatment with intravenous immunoglobulins (IVIG). Currently, KD diagnosis is only based on clinical criteria. The aim of this study was to evaluate whether routine C-reactive protein (CRP) and additional inflammatory parameters myeloid-related protein 8/14 (MRP8/14 or S100A8/9) and human neutrophil-derived elastase (HNE) could distinguish KD from infectious diseases. Methods and Results: The cross-sectional study included KD patients and children with proven infections as well as febrile controls. Patients were recruited between July 2006 and December 2018 in Europe and USA. MRP8/14, CRP, and HNE were assessed for their discriminatory ability by multiple logistic regression analysis with backward selection and receiver operator characteristic (ROC) curves. In the discovery cohort, the combination of MRP8/14+CRP discriminated KD patients (n = 48) from patients with infection (n = 105), with area under the ROC curve (AUC) of 0.88. The HNE values did not improve discrimination. The first validation cohort confirmed the predictive value of MRP8/14+CRP to discriminate acute KD patients (n = 26) from those with infections (n = 150), with an AUC of 0.78. The second validation cohort of acute KD patients (n = 25) and febrile controls (n = 50) showed an AUC of 0.72, which improved to 0.84 when HNE was included. Conclusion: When used in combination, the plasma markers MRP8/14, CRP, and HNE may assist in the discrimination of KD from both proven and suspected infection.
Collapse
Affiliation(s)
- Judith Zandstra
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Annemarie van de Geer
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Michael W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Diana van Stijn-Bringas Dimitriades
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Cathelijn E M Aarts
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sanne M Dietz
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nina A Schweintzger
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Werner Zenz
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Marieke Emonts
- Pediatric Infectious Diseases and Immunology Department, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Dace Zavadska
- Department of Pediatrics, Riga Stradins University, Riga, Latvia
| | - Marko Pokorn
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Effua Usuf
- Medical Research Council Unit the Gambia (MRCG) at LSHTM, Serrekunda, Gambia
| | - Henriette A Moll
- Department of General Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Luregn J Schlapbach
- Pediatric Intensive Care Unit, Lady Cilento Children's Hospital, Pediatric Critical Care Research Group, Brisbane, QLD, Australia
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection and Global Health, Liverpool, United Kingdom
| | - Stephane Paulus
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection and Global Health, Liverpool, United Kingdom
| | - Maria Tsolia
- Second Department of Pediatrics, P. & A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Colin Fink
- Micropathology Ltd., University of Warwick, Warwick, United Kingdom
| | - Shunmay Yeung
- Department of Clinical Research, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Adriana Tremoulet
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Rachel Galassini
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Victoria J Wright
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, University of Santiago, Santiago de Compostela, Spain
| | - Jethro Herberg
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jane Burns
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Michael Levin
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
231
|
Genome-wide synthetic lethal CRISPR screen identifies FIS1 as a genetic interactor of ALS-linked C9ORF72. Brain Res 2019; 1728:146601. [PMID: 31843624 PMCID: PMC7539795 DOI: 10.1016/j.brainres.2019.146601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Mutations in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis (ALS). Both toxic gain of function and loss of function pathogenic mechanisms have been proposed. Accruing evidence from mouse knockout studies point to a role for C9ORF72 as a regulator of immune function. To provide further insight into its cellular function, we performed a genome-wide synthetic lethal CRISPR screen in human myeloid cells lacking C9ORF72. We discovered a strong synthetic lethal genetic interaction between C9ORF72 and FIS1, which encodes a mitochondrial membrane protein involved in mitochondrial fission and mitophagy. Mass spectrometry experiments revealed that in C9ORF72 knockout cells, FIS1 strongly bound to a class of immune regulators that activate the receptor for advanced glycation end (RAGE) products and trigger inflammatory cascades. These findings present a novel genetic interactor for C9ORF72 and suggest a compensatory role for FIS1 in suppressing inflammatory signaling in the absence of C9ORF72.
Collapse
|
232
|
Martins S, Garcia D, Farinha R, Guimarães JT. Comparison of a rapid test and an automated method for faecal calprotectin measurement. Pract Lab Med 2019; 17:e00133. [PMID: 31649985 PMCID: PMC6804501 DOI: 10.1016/j.plabm.2019.e00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sandra Martins
- Clinical Pathology Department, São João University Hospital Centre, Porto, Portugal
- EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
- Corresponding author. Clinical Pathology Department, São João Hospital Centre, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - David Garcia
- Clinical Pathology Department, São João University Hospital Centre, Porto, Portugal
| | - Rui Farinha
- Clinical Pathology Department, São João University Hospital Centre, Porto, Portugal
- EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
| | - João Tiago Guimarães
- Clinical Pathology Department, São João University Hospital Centre, Porto, Portugal
- EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
233
|
Deshayes S, Fellahi S, Bastard JP, Launay JM, Callebert J, Fraisse T, Buob D, Boffa JJ, Giurgea I, Dupont C, Jegou S, Straube M, Karras A, Aouba A, Grateau G, Sokol H, Georgin-Lavialle S. Specific changes in faecal microbiota are associated with familial Mediterranean fever. Ann Rheum Dis 2019; 78:1398-1404. [PMID: 31377728 DOI: 10.1136/annrheumdis-2019-215258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Familial Mediterranean fever (FMF) can be complicated by AA amyloidosis (AAA), though it remains unclear why only some patients develop amyloidosis. We examined the gut microbiota composition and inflammatory markers in patients with FMF complicated or not by AAA. METHODS We analysed the gut microbiota of 34 patients with FMF without AAA, 7 patients with FMF with AAA, 19 patients with AAA of another origin, and 26 controls using 16S ribosomal RNA gene sequencing with the Illumina MiSeq platform. Associations between bacterial taxa and clinical phenotypes were evaluated using multivariate association with linear models statistical method. Blood levels of interleukin (IL)-1β, IL-6, tumour necrosis factor-α and adipokines were assessed by ELISA; indoleamine 2,3-dioxygenase (IDO) activity was determined by high-performance liquid chromatography. RESULTS Compared with healthy subjects, specific changes in faecal microbiota were observed in FMF and AAA groups. Several operational taxonomic units (OTUs) were associated with FMF. Moreover, two OTUs were over-represented in FMF-related AAA compared with FMF without AAA. Additionally, higher adiponectin levels and IDO activity were observed in FMF-related AAA compared with FMF without AAA (p<0.05). CONCLUSION The presence of specific changes in faecal microbiota in FMF and in FMF-related AAA suggests that intestinal microorganisms may play a role in the pathogenesis of these diseases. These findings may offer an opportunity to use techniques for gut microbiota manipulation.
Collapse
Affiliation(s)
- Samuel Deshayes
- Service de Médecine Interne, Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
- Service de Médecine Interne, Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoires (CEREMAIA), Sorbonne Université, Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
- Service de Gastroentérologie, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Inserm, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Soraya Fellahi
- UF Biomarqueurs Inflammatoires et Métaboliques, Service de Biochimie, Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
- Centre de Recherche Saint-Antoine, IHU ICAN, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS 938, Paris, France
| | - Jean-Philippe Bastard
- UF Biomarqueurs Inflammatoires et Métaboliques, Service de Biochimie, Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
- Centre de Recherche Saint-Antoine, IHU ICAN, Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS 938, Paris, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM UMR S942, Assistance Publique des Hôpitaux de Paris, Hôpital Lariboisière, Paris, France
| | - Jacques Callebert
- Service de Biochimie, INSERM UMR S942, Assistance Publique des Hôpitaux de Paris, Hôpital Lariboisière, Paris, France
| | - Thibault Fraisse
- Service de Médecine Interne, Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoires (CEREMAIA), Sorbonne Université, Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - David Buob
- Service d'Anatomopathologie, Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Jean-Jacques Boffa
- INSERM 1155, Sorbonne Université, AP-HP, Hôpital Tenon, F-75020 Paris, France
| | - Irina Giurgea
- Service de Génétique Médicale, Assistance Publique des Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - Charlotte Dupont
- INSERM équipe Lipodystrophies génétiques et acquises. Service de biologiede la reproduction-CECOS, Sorbonne Université, Saint Antoine Research Center, AP-HP, Hôpital Tenon, F-75020 Paris, France
| | - Sarah Jegou
- Service de Gastroentérologie, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Inserm, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Marjolène Straube
- Service de Gastroentérologie, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Inserm, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Alexandre Karras
- Service de Néphrologie, Assistance Publique des Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Achille Aouba
- Service de Médecine Interne, Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - Gilles Grateau
- Service de Médecine Interne, Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoires (CEREMAIA), Sorbonne Université, Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Harry Sokol
- Service de Gastroentérologie, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Inserm, AP-HP, Hôpital Saint-Antoine, F-75012 Paris, France
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Service de Gastroentérologie, Assistance Publique des Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, France
| | - Sophie Georgin-Lavialle
- Service de Médecine Interne, Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoires (CEREMAIA), Sorbonne Université, Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Paris, France
| |
Collapse
|
234
|
Wan N, Li D, Zhou Z, Shao Y, Zheng S, Wang S. Comprehensive RNA-Sequencing Analysis in Peripheral Blood Cells Reveals Differential Expression Signatures with Biomarker Potential for Idiopathic Membranous Nephropathy. DNA Cell Biol 2019; 38:1223-1232. [PMID: 31566423 DOI: 10.1089/dna.2019.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, the clinical course of idiopathic membranous nephropathy (iMN) remains unclear and lacks direct and effective diagnostic methods. To better understand the host gene expression changes involved in the iMN process and identify the potential signatures for clinical diagnosis, we performed a whole genome-wide transcriptome profile of peripheral blood cells (PBC) from patients with iMN and healthy controls (HCs). A total of 188 differentially expressed genes (DEGs) were detected in patients with iMN versus HCs. Gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that these DEGs were mainly correlated with protein targeting, ion homeostasis GO terms, and ribosome and phagosome pathways. The top 10 differentially expressed protein-coding genes with >2-fold changes and high expression levels were validated using quantitative real-time PCR, and showed high consistency with the high-throughput sequencing results. HLA-C, S100A8, and FTH1 genes were selected for further validation and showed the most significant difference between the iMN and HC group, indicating that they could be used as potential clinical diagnostic biomarkers. Our results provide novel potential diagnostic signatures for iMN and have important implications for better understanding the pathogenesis of iMN.
Collapse
Affiliation(s)
- Nan Wan
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Dingchen Li
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Zhe Zhou
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yong Shao
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Sihan Zheng
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
235
|
Myeloid related protein 8/14 is a new candidate biomarker and therapeutic target for abdominal aortic aneurysm. Biomed Pharmacother 2019; 118:109229. [DOI: 10.1016/j.biopha.2019.109229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
|
236
|
Huang M, Wu R, Chen L, Peng Q, Li S, Zhang Y, Zhou L, Duan L. S100A9 Regulates MDSCs-Mediated Immune Suppression via the RAGE and TLR4 Signaling Pathways in Colorectal Carcinoma. Front Immunol 2019; 10:2243. [PMID: 31620141 PMCID: PMC6759487 DOI: 10.3389/fimmu.2019.02243] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a major component of the immunosuppressive tumor microenvironment (TME) and have been recognized as a contributing factor to inflammation-related cancers. However, the molecular mechanisms of MDSCs accumulation and activation remain elusive. We previously showed that the proinflammatory molecule S100A9 in TME exerts a tumor-promoting effect in colorectal carcinoma (CRC). In this report, we investigated the effect and molecular mechanisms of S100A9 on the accumulation and immunosuppressive function of MDSCs in CRC. Elevated S100A9 and MDSCs were found in tumor tissue and peripheral blood from CRC patients. Circulating S100A9 and MDSCs were positively associated to each other, and both S100A9 and MDSCs were correlated to neoplastic progression. Using a CRC cell line LoVo-induced MDSCs model, we found that S100A9 stimulated chemotaxis and activation but not viability of MDSCs. Mechanistic studies demonstrated that activation of RAGE-mediated p38 MAPK and TLR4-mediated NF-κB signaling pathways were involved in S100A9-induced chemotaxis and MDSCs activation, respectively. Furthermore, ROC analysis showed that combination detection of S100A9 and MDSCs was superior to individual detection of these two factors for diagnosing CRC patients with advanced staging and lymphatic metastasis, which yielded an area under the ROC curve (AUC) of 0.92 with 86.7% sensitivity and 86.4% specificity, and an AUC of 0.82 with 75% sensitivity and 77.1% specificity, respectively. Collectively, our study suggests that the S100A9 plays a pivotal role in immunosuppressive TME by stimulating MDSCs chemotaxis and activation, and combination detection of S100A9 and MDSCs may serve as a potential marker for diagnosis of CRC progression.
Collapse
Affiliation(s)
- Mao Huang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Rui Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Chen
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shue Li
- Department of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
237
|
Li Y, Chen B, Yang X, Zhang C, Jiao Y, Li P, Liu Y, Li Z, Qiao B, Bond Lau W, Ma XL, Du J. S100a8/a9 Signaling Causes Mitochondrial Dysfunction and Cardiomyocyte Death in Response to Ischemic/Reperfusion Injury. Circulation 2019; 140:751-764. [DOI: 10.1161/circulationaha.118.039262] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background:
Myocardial ischemia-reperfusion (MI/R) injury is a significant clinical problem without effective therapy. Unbiased omics approaches may reveal key MI/R mediators to initiate MI/R injury.
Methods:
We used a dynamic transcriptome analysis of mouse heart exposed to various MI/R periods to identify S100a8/a9 as an early mediator. Using loss/gain-of-function approaches to understand the role of S100a8/a9 in MI/R injury, we explored the mechanisms through transcriptome and functional experiment. Dynamic serum S100a8/a9 levels were measured in patients with acute myocardial infarction before and after percutaneous coronary intervention. Patients were prospectively followed for the occurrence of major adverse cardiovascular events.
Results:
S100a8/a9 was identified as the most significantly upregulated gene during the early reperfusion stage. Knockout of S100a9 markedly decreased cardiomyocyte death and improved heart function, whereas hematopoietic overexpression of S100a9 exacerbated MI/R injury. Transcriptome/functional studies revealed that S100a8/a9 caused mitochondrial respiratory dysfunction in cardiomyocytes. Mechanistically, S100a8/a9 downregulated NDUF gene expression with subsequent mitochondrial complex I inhibition via Toll-like receptor 4/Erk–mediated Pparg coactivator 1 alpha/nuclear respiratory factor 1 signaling suppression. Administration of S100a9 neutralizing antibody significantly reduced MI/R injury and improved cardiac function. Finally, we demonstrated that serum S100a8/a9 levels were significantly increased 1 day after percutaneous coronary intervention in patients with acute myocardial infarction, and elevated S100a8/a9 levels were associated with the incidence of major adverse cardiovascular events.
Conclusions:
Our study identified S100a8/a9 as a master regulator causing cardiomyocyte death in the early stage of MI/R injury via the suppression of mitochondrial function. Targeting S100a8/a9-intiated signaling may represent a novel therapeutic intervention against MI/R injury.
Clinical Trial Registration:
URL:
https://www.clinicaltrials.gov
. Unique identifier: NCT03752515
Collapse
Affiliation(s)
- Yulin Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Boya Chen
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Xinying Yang
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Congcong Zhang
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Yao Jiao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Yan Liu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Zhenya Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Bokang Qiao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-l.M.)
| | - Xin-liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-l.M.)
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y. Li, B.C., Z.Y., C.Z., Y.J., P.L., Y. Liu, Z.L., B.Q., J.D.)
| |
Collapse
|
238
|
Wei L, Liu M, Xiong H. Role of Calprotectin as a Biomarker in Periodontal Disease. Mediators Inflamm 2019; 2019:3515026. [PMID: 31530995 PMCID: PMC6721252 DOI: 10.1155/2019/3515026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022] Open
Abstract
Periodontal disease (PD) is a common infectious and inflammatory disease characterised by inflammation of tissues surrounding and supporting the teeth and destruction of the associated alveolar bone, eventually resulting in tooth loss. This disease is caused by periodontopathic bacteria in plaque biofilm and resultant innate and adaptive immune responses in periodontal tissues. Calprotectin (CLP) is a calcium-binding protein of the S-100 protein family and is found to be induced by activated granulocytes, monocytes, and epithelial cells. CLP has been shown to play an important role in numerous inflammatory diseases and disorders. Increasing evidence indicates that CLP is involved in the progression of PD, and its levels may be associated with disease severity and outcome of periodontal treatments. This review will summarise recent studies regarding the presence, regulation, and function of CLP in PD. The findings indicate that CLP may be an effective biomarker for diagnosis and treatment for the PD.
Collapse
Affiliation(s)
- Lili Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingwen Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haofei Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
239
|
Marinković G, Grauen Larsen H, Yndigegn T, Szabo IA, Mares RG, de Camp L, Weiland M, Tomas L, Goncalves I, Nilsson J, Jovinge S, Schiopu A. Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade improves cardiac function after myocardial infarction. Eur Heart J 2019; 40:2713-2723. [DOI: 10.1093/eurheartj/ehz461] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/20/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
Neutrophils have both detrimental and beneficial effects in myocardial infarction (MI), but little is known about the underlying pathways. S100A8/A9 is a pro-inflammatory alarmin abundantly expressed in neutrophils that is rapidly released in the myocardium and circulation after myocardial ischaemia. We investigated the role of S100A8/A9 in the innate immune response to MI.
Methods and results
In 524 patients with acute coronary syndrome (ACS), we found that high plasma S100A8/A9 at the time of the acute event was associated with lower left ventricular ejection fraction (EF) at 1-year and increased hospitalization for heart failure (HF) during follow-up. In wild-type C57BL/6 mice with MI induced by permanent coronary artery ligation, treatment with the S100A9 blocker ABR-238901 during the inflammatory phase of the immune response inhibited haematopoietic stem cell proliferation and myeloid cell egression from the bone marrow. The treatment reduced the numbers of neutrophils and monocytes/macrophages in the myocardium, promoted an anti-inflammatory environment, and significantly improved cardiac function compared with MI controls. To mimic the clinical scenario, we further confirmed the effects of the treatment in a mouse model of ischaemia/reperfusion. Compared with untreated mice, 3-day ABR-238901 treatment significantly improved left ventricular EF (48% vs. 35%, P = 0.002) and cardiac output (15.7 vs. 11.1 mL/min, P = 0.002) by Day 21 post-MI.
Conclusion
Short-term S100A9 blockade inhibits inflammation and improves cardiac function in murine models of MI. As an excessive S100A8/A9 release is linked to incident HF, S100A9 blockade might represent a feasible strategy to improve prognosis in ACS patients.
Collapse
Affiliation(s)
- Goran Marinković
- Department of Clinical Sciences Malmö, Lund University, CRC 91:12, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Helena Grauen Larsen
- Department of Cardiology, Skane University Hospital Malmö, Carl-Bertil Laurells gata 9, SE-214 28 Malmö, Sweden
| | - Troels Yndigegn
- Department of Cardiology, Skane University Hospital Malmö, Carl-Bertil Laurells gata 9, SE-214 28 Malmö, Sweden
| | - Istvan Adorjan Szabo
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Gheorghe Marinescu str. 38, 540139 Targu-Mures, Romania
| | - Razvan Gheorghita Mares
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Gheorghe Marinescu str. 38, 540139 Targu-Mures, Romania
| | - Lisa de Camp
- DeVos Cardiovascular Research Program, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Matthew Weiland
- DeVos Cardiovascular Research Program, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Lukas Tomas
- Department of Clinical Sciences Malmö, Lund University, CRC 91:12, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Lund University, CRC 91:12, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
- Department of Cardiology, Skane University Hospital Malmö, Carl-Bertil Laurells gata 9, SE-214 28 Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, CRC 91:12, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Stefan Jovinge
- DeVos Cardiovascular Research Program, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
- DeVos Cardiovascular Research Program, Fredrik Meijer Heart & Vascular Institute, Spectrum Health, 100 Michigan Street NE, Grand Rapids, MI 49503, USA
- Cardiovascular Institute, Stanford Medical School, 265 Campus Drive, Stanford, CA 94305, USA
| | - Alexandru Schiopu
- Department of Clinical Sciences Malmö, Lund University, CRC 91:12, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
- Department of Cardiology, Skane University Hospital Malmö, Carl-Bertil Laurells gata 9, SE-214 28 Malmö, Sweden
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Gheorghe Marinescu str. 38, 540139 Targu-Mures, Romania
| |
Collapse
|
240
|
Sheng X, Sun X, Li F, Wang J, Ma J. Linear growth failure induced by systemic inflammation inhibiting IGF-1/IGFBP axis in rats with asymptomatic colitis. BMC Gastroenterol 2019; 19:96. [PMID: 31221091 PMCID: PMC6585116 DOI: 10.1186/s12876-019-1023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
Background Children in poor areas show significant growth retardation that does not improve with an adequate supply of energy and nutrients, which may be related to asymptomatic intestinal infection caused by poor sanitation. Our objective was to explore the mechanism of intestinal inflammation inhibiting growth in the setting of asymptomatic colitis. Methods Forty-eight 3-week-old Wistar rats were randomly divided into three groups: the control group, colitis group (with asymptomatic colitis induced by 2.5% trinitrobenzenesulphonic acid) and pair-fed group (daily food intake matched to the pair in the colitis group). The linear growth was assessed, and the plasma levels of hormone and systemic cytokines were detected and compared by independent two-sample t-test or one-way ANOVA among groups. Results At d5, the increases in the body length of the control, colitis and pair-fed groups were 1.65 ± 0.34 cm, 1.10 ± 0.30 cm and 1.38 ± 0.26 cm, respectively, and the increase in the body length in the colitis group was significantly less than that in the control group (P < 0.05). There were significant differences in the levels of hormone and cytokines among three groups (P < 0.05). Compared with the control group, rats in the colitis group exhibited linear growth failure, as well as higher expression of calprotectin, tumour necrosis factor-α, interleukin-6 and insulin-like growth factor binding protein 2, lower insulin-like growth factor-1 and insulin-like growth factor binding protein 3, and lower expression of nuclear factor kappa B in hepatocytes. Conclusions In addition to undernutrition, the systemic inflammatory response caused by asymptomatic colitis may inhibit the linear growth of rats by its influence on the insulin-like growth factor/insulin-like growth factor binding protein axis. Electronic supplementary material The online version of this article (10.1186/s12876-019-1023-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyang Sheng
- Department of Children and Adolescents Health Care, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute for Pediatric Research, MOE-Shanghai Key Laboratory of Children's Environmental Health, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 S. South Chongqing Road, Shanghai, 200025, China
| | - Feng Li
- Department of Children and Adolescents Health Care, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute for Pediatric Research, MOE-Shanghai Key Laboratory of Children's Environmental Health, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Junli Wang
- Department of Children and Adolescents Health Care, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute for Pediatric Research, MOE-Shanghai Key Laboratory of Children's Environmental Health, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jingqiu Ma
- Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
241
|
Hoskin TS, Crowther JM, Cheung J, Epton MJ, Sly PD, Elder PA, Dobson RCJ, Kettle AJ, Dickerhof N. Oxidative cross-linking of calprotectin occurs in vivo, altering its structure and susceptibility to proteolysis. Redox Biol 2019; 24:101202. [PMID: 31015146 PMCID: PMC6477633 DOI: 10.1016/j.redox.2019.101202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/27/2023] Open
Abstract
Calprotectin, the major neutrophil protein, is a critical alarmin that modulates inflammation and plays a role in host immunity by strongly binding trace metals essential for bacterial growth. It has two cysteine residues favourably positioned to act as a redox switch. Whether their oxidation occurs in vivo and affects the function of calprotectin has received little attention. Here we show that in saliva from healthy adults, and in lavage fluid from the lungs of patients with respiratory diseases, a substantial proportion of calprotectin was cross-linked via disulfide bonds between the cysteine residues on its S100A8 and S100A9 subunits. Stimulated human neutrophils released calprotectin and subsequently cross-linked it by myeloperoxidase-dependent production of hypochlorous acid. The myeloperoxidase-derived oxidants hypochlorous acid, taurine chloramine, hypobromous acid, and hypothiocyanous acid, all at 10 μM, cross-linked calprotectin (5 μM) via reversible disulfide bonds. Hypochlorous acid generated A9-A9 and A8-A9 cross links. Hydrogen peroxide (10 μM) did not cross-link the protein. Purified neutrophil calprotectin existed as a non-covalent heterodimer of A8/A9 which was converted to a heterotetramer - (A8/A9)2 - with excess calcium ions. Low level oxidation of calprotectin with hypochlorous acid produced substantial proportions of high order oligomers, whether oxidation occurred before or after addition of calcium ions. At high levels of oxidation the heterodimer could not form tetramers with calcium ions, but prior addition of calcium ions afforded some protection for the heterotetramer. Oxidation and formation of the A8-A9 disulfide cross link enhanced calprotectin's susceptibility to proteolysis by neutrophil proteases. We propose that reversible disulfide cross-linking of calprotectin occurs during inflammation and affects its structure and function. Its increased susceptibility to proteolysis will ultimately result in a loss of function.
Collapse
Affiliation(s)
- Teagan S Hoskin
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| | - Jennifer M Crowther
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jeanette Cheung
- Canterbury Respiratory Research Group, Respiratory Services, Christchurch Hospital, Canterbury District Health Board, New Zealand
| | - Michael J Epton
- Canterbury Respiratory Research Group, Respiratory Services, Christchurch Hospital, Canterbury District Health Board, New Zealand
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Peter A Elder
- Endocrinology and Steroid Laboratory, Canterbury Health Laboratories, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
242
|
Pastaki Khoshbin A, Eskian M, Keshavarz-Fathi M, Rezaei N. Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch Immunol Ther Exp (Warsz) 2019; 67:89-102. [PMID: 30386868 DOI: 10.1007/s00005-018-0531-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial-mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.
Collapse
Affiliation(s)
- Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
243
|
Duvetorp A, Söderman J, Assarsson M, Skarstedt M, Svensson Å, Seifert O. Observational study on Swedish plaque psoriasis patients receiving narrowband-UVB treatment show decreased S100A8/A9 protein and gene expression levels in lesional psoriasis skin but no effect on S100A8/A9 protein levels in serum. PLoS One 2019; 14:e0213344. [PMID: 30865695 PMCID: PMC6415841 DOI: 10.1371/journal.pone.0213344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022] Open
Abstract
S100A8 and S100A9 proteins are highly upregulated in patients with psoriasis and have been proposed as potential biomarkers for psoriasis. The present study was designed to analyze the effect of narrowband ultraviolet B therapy on these proteins. S100A8, S100A9 gene expression and S100A8/A9 heterocomplex protein levels were analyzed in lesional and non-lesional skin before and after narrowband-UVB treatment in patients with chronic plaque type psoriasis. In addition, disease severity was measured by psoriasis area and severity index (PASI) and serum protein levels of S100A8/A9 were repeatedly analyzed. Narrowband-UVB treatment significantly reduced S100A8, S100A9 gene expression and S100A8/A9 protein levels in lesional skin while serum levels showed no significant change. No correlation between PASI and serum S100A8/A9 protein levels was found. These results implicate a role of S100A8/A9 in the anti-inflammatory effect of narrowband-UVB. Serum S100A8/A9 levels do not respond to treatment suggesting that serum S100A8/A9 does not originate from psoriasis skin keratinocytes. Serum S100A8/A9 levels do not correlate with PASI questioning serum S100A8/A9 as a biomarker for psoriasis skin activity. Trial Registration: DRKS 00014817.
Collapse
Affiliation(s)
- Albert Duvetorp
- Department of Dermatology and Venereology, Division of endocrinology, skin, reproductive health and ophthalmology, Skåne University Hospital, Malmö, Sweden
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| | - Jan Söderman
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Laboratory Medicine, Division of Medical Diagnostics, Ryhov County Hospital, Jönköping, Sweden
| | - Malin Assarsson
- Department of Dermatology and Venereology, Division of Medical Health, Ryhov County Hospital, Jönköping, Sweden
| | - Marita Skarstedt
- Laboratory Medicine, Division of Medical Diagnostics, Ryhov County Hospital, Jönköping, Sweden
| | - Åke Svensson
- Department of Dermatology and Venereology, Division of endocrinology, skin, reproductive health and ophthalmology, Skåne University Hospital, Malmö, Sweden
| | - Oliver Seifert
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Dermatology and Venereology, Division of Medical Health, Ryhov County Hospital, Jönköping, Sweden
| |
Collapse
|
244
|
Zheng X, Huo X, Zhang Y, Wang Q, Zhang Y, Xu X. Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:587-596. [PMID: 30597391 DOI: 10.1016/j.envpol.2018.12.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/22/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023]
Abstract
Lead (Pb) and polycyclic aromatic hydrocarbon (PAH) exposure is positively associated with cardiovascular disease (CVD), and the possible potential mechanism may be caused by damage to the endothelium by modulation of inflammatory processes. No comprehensive research shows co-exposure of Pb and PAH on cardiovascular endothelial inflammation in electronic waste (e-waste) exposed populations. Given this, the aim of this study is to provide evidence for a relationship between Pb and PAH co-exposure and cardiovascular endothelial inflammation, in an e-waste-exposed population, to delineate the link between a potential mechanism for CVD and environmental exposure. We recruited 203 preschool children (3-7 years) were enrolled from Guiyu (e-waste-exposed group, n = 105) and Haojiang (reference group, n = 98). Blood Pb levels and urinary PAH metabolites were measured. Percentages of T cells, CD4+ T cells and CD8+ T cells, complete blood counts, endothelial inflammation biomarker (serum S100A8/A9), and other inflammatory biomarkers [serum interleukin (IL)-6, IL-12p70, gamma interferon-inducible protein 10 (IP-10)] levels were evaluated. Blood Pb, total urinary hydroxylated PAH (ΣOHPAH), total hydroxynaphthalene (ΣOHNap) and total hydroxyfluorene (ΣOHFlu) levels, S100A8/A9, IL-6, IL-12p70 and IP-10 concentrations, absolute counts of monocytes, neutrophils, and leukocytes, as well as CD4+ T cell percentages were significantly higher in exposed children. Elevated blood Pb, urinary 2-hydroxynaphthalene (2-OHNap) and ΣOHFlu levels were associated with higher levels of IL-6, IL-12p70, IP-10, CD4+ T cell percentages, neutrophil and monocyte counts. Mediator models indicated that neutrophils exert the significant mediation effect on the relationship between blood Pb levels and S100A8/A9. IL-6 exerts a significant mediation effect on the relationship between blood Pb levels and IP-10, as well as the relationship between urinary ΣOHFlu levels and IP-10. Our results indicate that children with elevated exposure levels of Pb and PAHs have exacerbated vascular endothelial inflammation, which may indicate future CVD risk in e-waste recycling areas.
Collapse
Affiliation(s)
- Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9713, GZ, the Netherlands
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
245
|
Nikolakopoulou Z, Hector LR, Creagh-Brown BC, Evans TW, Quinlan GJ, Burke-Gaffney A. Plasma S100A8/A9 heterodimer is an early prognostic marker of acute kidney injury associated with cardiac surgery. Biomark Med 2019; 13:205-218. [PMID: 30810341 DOI: 10.2217/bmm-2018-0238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AIM We investigated whether plasma levels of the inflammation marker S100A8/A9, could predict acute kidney injury (AKI) onset in patients undergoing cardiac surgery necessitating cardiopulmonary bypass (CPB). PATIENTS & METHODS Plasma levels of S100A8/A9 and other neutrophil cytosolic proteins were measured in 39 patients pre- and immediately post-CPB. RESULTS All markers increased significantly post-CPB with S100A8/A9, S100A12 and myeloperoxidase levels significantly higher in patients who developed AKI within 7 days. S100A8/A9 had good prognostic utility for AKI, with an area under the receiver operating characteristic curve of 0.81 (95% CI: 0.676-0.949) and a cut-off value of 10.6 μg/ml (85.7% sensitivity and 75% specificity) irrespective of age. CONCLUSION Plasma S100A8/A9 levels immediately after cardiac surgery, can predict onset of AKI, irrespective of age.
Collapse
Affiliation(s)
- Zacharoula Nikolakopoulou
- Vascular Biology, Cardiovascular Sciences, National Heart & Lung Institute Division, Faculty of Medicine, Imperial College London, London, SW3 6LY, UK
| | - Lauren R Hector
- Vascular Biology, Cardiovascular Sciences, National Heart & Lung Institute Division, Faculty of Medicine, Imperial College London, London, SW3 6LY, UK
| | - Benedict C Creagh-Brown
- Vascular Biology, Cardiovascular Sciences, National Heart & Lung Institute Division, Faculty of Medicine, Imperial College London, London, SW3 6LY, UK
| | - Timothy W Evans
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, SW3 6NP, UK
| | - Gregory J Quinlan
- Vascular Biology, Cardiovascular Sciences, National Heart & Lung Institute Division, Faculty of Medicine, Imperial College London, London, SW3 6LY, UK
| | - Anne Burke-Gaffney
- Vascular Biology, Cardiovascular Sciences, National Heart & Lung Institute Division, Faculty of Medicine, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
246
|
A Non-Peptidic S100A9 Specific Ligand for Optical Imaging of Phagocyte Activity In Vivo. Mol Imaging Biol 2019; 20:407-416. [PMID: 29185197 DOI: 10.1007/s11307-017-1148-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Non-invasive assessment of inflammatory activity in the course of various diseases is a largely unmet clinical challenge. An early feature of inflammation is local secretion of the alarmin S100A8/A9 by activated phagocytes. We here evaluate a novel S100A9-targeted small molecule tracer Cy5.5-CES271 for in vivo optical imaging of inflammatory activity in exemplary disease models. PROCEDURES Dynamics of Cy5.5-CES271 was characterized in a model of irritant contact dermatitis by sequential fluorescence reflectance imaging (FRI) up to 24 h postinjection (p.i.). Specificity of Cy5.5-CES271 binding to S100A9 in vivo was examined by blocking studies and by employing S100A9-/- mice. Finally, S100A9 secretion in acute lung inflammation was assessed by Cy5.5-CES271 and FRI of explanted lungs. RESULTS In ear inflammation, we were able to non-invasively follow the time course of S100A9 expression using Cy5.5-CES271 and FRI over 24 h p.i. (peak activity at 3 h p.i.). Specificity of imaging could be shown by a significant signal reduction after predosing and using S100A9-/- mice. In acute lung injury, local and systemic S100A8/A9 levels increased over time and correlated significantly with FRI signal levels in explanted lungs. CONCLUSIONS Cy5.5-CES271 shows significant accumulation in models of inflammatory diseases and specific binding to S100A9 in vivo. This study, for the first time, demonstrates the potential of a small molecule non-peptidic tracer enabling imaging of S100A9 as a marker of local phagocyte activity in inflammatory scenarios suggesting this compound class for translational attempts.
Collapse
|
247
|
Serum calprotectin and ischemia modified albumin levels as markers of disease activity in Behçet's disease. Postepy Dermatol Alergol 2019; 35:609-613. [PMID: 30618530 PMCID: PMC6320477 DOI: 10.5114/pdia.2017.71269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023] Open
Abstract
Introduction Behçet’s disease (BD) is a complex multisystemic inflammatory disorder which is characterized by recurrent attacks of acute inflammation. As there is no universally recognized pathognomonic laboratory marker of BD, its diagnosis is still based on clinical findings. Aim To evaluate the role of calprotectin and ischemia modified albumin (IMA) as biomarkers in the assessment of disease activity of BD. Material and methods A total of 93 patients with BD and 62 age- and gender-matched healthy controls were included in the study. Disease activity was assessed with the BD Current Activity Form (BDCAF) score. Serum levels of calprotectin, high-sensitivity C-reactive protein (hsCRP) and IMA were measured in the patient and control groups. Results Serum levels of calprotectin, IMA and hsCRP in patients with BD were higher than those of the healthy control group (p < 0.001 for all). No correlations between calprotectin and IMA, hsCRP, erythrocyte sedimentation rate, CRP, or BDCAF score were found. Conclusions As the calprotectin level are increased in BD patients, it could be a candidate biomarker which plays a role in BD pathogenesis.
Collapse
|
248
|
Mantelmacher FD, Zvibel I, Cohen K, Epshtein A, Pasmanik-Chor M, Vogl T, Kuperman Y, Weiss S, Drucker DJ, Varol C, Fishman S. GIP regulates inflammation and body weight by restraining myeloid-cell-derived S100A8/A9. Nat Metab 2019; 1:58-69. [PMID: 32694806 DOI: 10.1038/s42255-018-0001-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/01/2018] [Indexed: 12/25/2022]
Abstract
Enteroendocrine cells relay energy-derived signals to immune cells to signal states of nutrient abundance and control immunometabolism. Emerging data suggest that the gut-derived nutrient-induced incretin glucose-dependent insulinotropic polypeptide (GIP) operates at the interface of metabolism and inflammation. Here we show that high-fat diet (HFD)-fed mice with immune cell-targeted GIP receptor (GIPR) deficiency exhibit greater weight gain, insulin resistance, hepatic steatosis and significant myelopoiesis concomitantly with impaired energy expenditure and inguinal white adipose tissue (WAT) beiging. Expression of the S100 calcium-binding protein S100A8 was increased in the WAT of mice with immune cell-targeted GIPR deficiency and co-deletion of GIPR and the heterodimer S100A8/A9 in immune cells ameliorated the aggravated metabolic and inflammatory phenotype following a HFD. Specific GIPR deletion in myeloid cells identified this lineage as the target of GIP effects. Furthermore, GIP directly downregulated S100A8 expression in adipose tissue macrophages. Collectively, our results identify a myeloid-GIPR-S100A8/A9 signalling axis coupling nutrient signals to the control of inflammation and adaptive thermogenesis.
Collapse
Affiliation(s)
- Fernanda Dana Mantelmacher
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Isabel Zvibel
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Cohen
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alona Epshtein
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Shai Weiss
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sigal Fishman
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
249
|
Ruan G, Xu J, Wang K, Zheng S, Wu J, Ren J, Bian F, Chang B, Zhu Z, Han W, Ding C. Associations between serum S100A8/S100A9 and knee symptoms, joint structures and cartilage enzymes in patients with knee osteoarthritis. Osteoarthritis Cartilage 2019; 27:99-105. [PMID: 30240939 DOI: 10.1016/j.joca.2018.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Animal studies suggest that S100A8/S100A9 may be involved in the pathogenesis of osteoarthritis (OA); however, there has been no clinical study examining the associations between serum S100A8/S100A9 and knee symptoms, joint structures and cartilage degradation enzymes in knee OA patients so far. Therefore, this study was designed to investigate the cross-sectional associations between serum levels of S100A8/S100A9 and the outcomes in patients with knee OA. DESIGN A total of 141 subjects with clinical knee OA were included. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score was used to assess joint symptoms. Magnetic resonance imaging (MRI) was used to measure knee structural abnormalities including cartilage defects. Knee radiography was used to assess joint space narrowing (JSN), osteophytes and the radiographic severity of OA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum levels of S100A8/S100A9, matrix metalloproteinase (MMP)-3, MMP10 and MMP13. RESULTS In multivariable analyses, serum S100A8/S100A9 were positively associated with total WOMAC score (β: 0.111 per 10 ng/ml, P = 0.021), WOMAC weight-bearing pain (β: 0.015 per 10 ng/ml, P = 0.043) and WOMAC physical dysfunction (β: 0.091 per 10 ng/ml, P = 0.010), and had positive associations with total cartilage defects and cartilage defects at lateral femoral, lateral tibial and medial femoral sites (ORs: 1.006-1.008 per 10 ng/ml, all P < 0.05) and serum levels of MMP3 (β: 0.002 per 10 ng/ml, P = 0.032) in patients with clinical knee OA. CONCLUSIONS Serum levels of S100A8/S100A9 were positively associated with increased knee symptoms, cartilage defects and serum cartilage degradation enzymes in patients with knee OA, suggesting that S100A8/S100A9 may have a role to play in knee OA. Future longitudinal studies are required to confirm these findings.
Collapse
Affiliation(s)
- G Ruan
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - J Xu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - K Wang
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - S Zheng
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - J Wu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - J Ren
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - F Bian
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - B Chang
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Z Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - W Han
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - C Ding
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
250
|
van den Bosch MHJ. Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin Exp Immunol 2018; 195:153-166. [PMID: 30421798 DOI: 10.1111/cei.13237] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2018] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease that strongly reduces the quality of life in patients; However, no disease-modifying therapy is available. For a long time, OA was considered a non-inflammatory disease that was the result of 'wear-and-tear' and abnormal mechanics, and therefore many considered the term 'osteoarthritis' a misnomer. However, during the last decades the notion arose that inflammation is not only present in the majority of OA patients but, rather, actively involved in the progression of the disease. Influx of immune cells is observed in the synovium and a plethora of inflammatory mediators is present in tissues and fluids from OA patients. These mediators cause the production of degrading enzymes that break down the cartilage matrix, which is the main hallmark of OA. Alarmins, which belong to the group of danger signals, have been implicated in many inflammatory diseases. They are among the first factors to be released upon cell stress due to, for example, infection, damage and inflammation. They attract and activate cells of the immune system and therefore lie at the base of the inflammatory reaction. In this narrative review, an overview of the history of OA, the evolving concept of inflammation as important factor in the OA pathogenesis, and particularly the central role that alarmins play in the initiation and maintenance of the low-grade inflammatory response in OA, is provided. Moreover, the targeting of alarmins as a promising approach to dampen the inflammation in OA is highlighted.
Collapse
Affiliation(s)
- M H J van den Bosch
- Experimental Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|