201
|
Jiang CY, Fujita T, Kumamoto E. Developmental change and sexual difference in synaptic modulation produced by oxytocin in rat substantia gelatinosa neurons. Biochem Biophys Rep 2016; 7:206-213. [PMID: 28955908 PMCID: PMC5613344 DOI: 10.1016/j.bbrep.2016.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that oxytocin produces an inward current at a holding potential of −70 mV without a change in glutamatergic excitatory transmission in adult male rat spinal lamina II (substantia gelatinosa; SG) neurons that play a pivotal role in regulating nociceptive transmission. Oxytocin also enhanced GABAergic and glycinergic spontaneous inhibitory transmissions in a manner sensitive to a voltage-gated Na+-channel blocker tetrodotoxin. These actions were mediated by oxytocin-receptor activation. Such a result was different from that obtained by other investigators in young male rat superficial dorsal horn neurons in which an oxytocin-receptor agonist enhanced glutamatergic and GABAergic but not glycinergic spontaneous transmissions. In order to know a developmental change and also sexual difference in the actions of oxytocin, we examined its effect on spontaneous synaptic transmission in adult female and young male rat SG neurons by using the whole-cell patch-clamp technique in spinal cord slices. In adult female rats, oxytocin produced an inward current at −70 mV without a change in excitatory transmission. GABAergic and glycinergic transmissions were enhanced by oxytocin, the duration of which enhancement was much shorter than in adult male rats. In young (11–21 postnatal days) male rats, oxytocin produced not only an inward but also outward current at −70 mV, and presynaptically inhibited or facilitated excitatory transmission, depending on the neurons tested; both GABAergic and glycinergic transmissions were enhanced by oxytocin. The inhibitory transmission enhancements in adult female and young male rats were sensitive to tetrodotoxin. Although the data may not be enough to be estimated, it is suggested that synaptic modulation by oxytocin in SG neurons, i.e., cellular mechanism for its antinociceptive action, exhibits a developmental change and sexual difference. Oxytocin modulated synaptic transmission in spinal dorsal horn neurons. The synaptic modulation produced by oxytocin exhibited a developmental change. The synaptic modulation produced by oxytocin exhibited a sexual difference.
Collapse
Affiliation(s)
- Chang-Yu Jiang
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Eiichi Kumamoto
- Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
202
|
Theofanopoulou C. Implications of Oxytocin in Human Linguistic Cognition: From Genome to Phenome. Front Neurosci 2016; 10:271. [PMID: 27378840 PMCID: PMC4906233 DOI: 10.3389/fnins.2016.00271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/31/2016] [Indexed: 11/18/2022] Open
Abstract
The neurohormone oxytocin (OXT) has been found to mediate the regulation of complex socioemotional cognition in multiple ways both in humans and other animals. Recent studies have investigated the effects of OXT in different levels of analysis (from genetic to behavioral) chiefly targeting its impact on the social component and only indirectly indicating its implications in other components of our socio-interactive abilities. This article aims at shedding light onto how OXT might be modulating the multimodality that characterizes our higher-order linguistic abilities (vocal-auditory-attentional-memory-social systems). Based on evidence coming from genetic, EEG, fMRI, and behavioral studies, I attempt to establish the promises of this perspective with the goal of stressing the need for neuropeptide treatments to enter clinical practice.
Collapse
|
203
|
Abstract
Hippocampal area CA2 has several features that distinguish it from CA1 and CA3, including a unique gene expression profile, failure to display long-term potentiation and relative resistance to cell death. A recent increase in interest in the CA2 region, combined with the development of new methods to define and manipulate its neurons, has led to some exciting new discoveries on the properties of CA2 neurons and their role in behaviour. Here, we review these findings and call attention to the idea that the definition of area CA2 ought to be revised in light of gene expression data.
Collapse
|
204
|
Unternaehrer E, Bolten M, Nast I, Staehli S, Meyer AH, Dempster E, Hellhammer DH, Lieb R, Meinlschmidt G. Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation. Soc Cogn Affect Neurosci 2016; 11:1460-70. [PMID: 27107296 DOI: 10.1093/scan/nsw051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 04/10/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate whether maternal adversities and cortisol levels during pregnancy predict cord blood DNA methylation of the oxytocin receptor (OXTR). We collected cord blood of 39 babies born to mothers participating in a cross-sectional study (N = 100) conducted in Basel, Switzerland (2007-10). Mothers completed the Inventory of Life Events (second trimester: T2), the Edinburgh Postnatal Depression Scale (EPDS, third trimester: T3), the Trier Inventory of Chronic Stress (TICS-K, 1-3 weeks postpartum) and provided saliva samples (T2, T3) for maternal cortisol profiles, as computed by the area under the curve with respect to ground (AUCg) or increase (AUCi) for the cortisol awakening response (CAR) and for diurnal cortisol profiles (DAY). OXTR DNA methylation was quantified using Sequenom EpiTYPER. The number of stressful life events (P = 0.032), EPDS score (P = 0.007) and cortisol AUCgs at T2 (CAR: P = 0.020; DAY: P = 0.024) were negatively associated with OXTR DNA methylation. Our findings suggest that distinct prenatal adversities predict decreased DNA methylation in a gene that is relevant for childbirth, maternal behavior and wellbeing of mother and offspring. If a reduced OXTR methylation increases OXTR expression, our findings could suggest an epigenetic adaptation to an adverse early environment.
Collapse
Affiliation(s)
- Eva Unternaehrer
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Douglas Mental Health University Institute, McGill University, 6875 La Salle Boulevard, Montreal, QC H4H 1R3, Canada
| | - Margarete Bolten
- University of Basel, Child and Adolescent Psychiatric Hospital, 4058 Basel, Switzerland Ludwig-Maximilians-University Munich, Department of Psychology, 80802 Munich, Germany
| | - Irina Nast
- University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Zurich University of Applied Sciences, School of Health Professions, 8401 Winterthur, Switzerland
| | - Simon Staehli
- University of Trier, Institute of Psychobiology, 54296 Trier, Germany
| | - Andrea H Meyer
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland
| | - Emma Dempster
- University of Exeter Medical School, Exeter EX1 2LU, UK
| | | | - Roselind Lieb
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland
| | - Gunther Meinlschmidt
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Ruhr-University Bochum, Faculty of Medicine, Universitaetsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
205
|
Oettl LL, Ravi N, Schneider M, Scheller MF, Schneider P, Mitre M, da Silva Gouveia M, Froemke RC, Chao MV, Young WS, Meyer-Lindenberg A, Grinevich V, Shusterman R, Kelsch W. Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing. Neuron 2016; 90:609-21. [PMID: 27112498 DOI: 10.1016/j.neuron.2016.03.033] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
Oxytocin promotes social interactions and recognition of conspecifics that rely on olfaction in most species. The circuit mechanisms through which oxytocin modifies olfactory processing are incompletely understood. Here, we observed that optogenetically induced oxytocin release enhanced olfactory exploration and same-sex recognition of adult rats. Consistent with oxytocin's function in the anterior olfactory cortex, particularly in social cue processing, region-selective receptor deletion impaired social recognition but left odor discrimination and recognition intact outside a social context. Oxytocin transiently increased the drive of the anterior olfactory cortex projecting to olfactory bulb interneurons. Cortical top-down recruitment of interneurons dynamically enhanced the inhibitory input to olfactory bulb projection neurons and increased the signal-to-noise of their output. In summary, oxytocin generates states for optimized information extraction in an early cortical top-down network that is required for social interactions with potential implications for sensory processing deficits in autism spectrum disorders.
Collapse
Affiliation(s)
- Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Miriam Schneider
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Max F Scheller
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Peggy Schneider
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Mariela Mitre
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Miriam da Silva Gouveia
- Schaller Research Group on Neuropeptides, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Moses V Chao
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; Schaller Research Group on Neuropeptides, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Roman Shusterman
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| |
Collapse
|
206
|
Leng G, Russell JA. The Peptide Oxytocin Antagonist F-792, When Given Systemically, Does Not Act Centrally in Lactating Rats. J Neuroendocrinol 2016; 28. [PMID: 26497634 PMCID: PMC4982133 DOI: 10.1111/jne.12331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 12/24/2022]
Abstract
Oxytocin secreted by nerve terminals in the posterior pituitary has important actions for ensuring a successful outcome of pregnancy: it stimulates uterine contractions that lead to birth and it is essential in the milk-ejection reflex, enabling milk to be expelled from the mammary glands into the mouths of suckling young. Oxytocin also has important actions in the brain: released from dendrites of neurones that innervate the posterior pituitary, oxytocin auto-excites the neurones to fire action potentials in co-ordinated bursts, causing secretion of pulses of oxytocin. Central oxytocin actions are blocked by an oxytocin antagonist given into the brain and, consequently, milk transfer stops. Systemic peptide oxytocin antagonist (atosiban) treatment is used clinically in management of pre-term labour, a major obstetric problem. Hence, it is important to know whether an oxytocin antagonist given peripherally can enter the brain and interfere with central oxytocin actions. In the present study, we tested F792, a peptide oxytocin antagonist. In urethane-anaesthetised suckled rats, we show that the mammary gland responsiveness to oxytocin is blocked by i.v. injections of 7 μg/kg of F792, and the milk-ejection reflex is blocked when F792 is given directly into the brain at a dose of 0.2 μg. To critically test whether F792 given systemically can enter the brain, we recorded the suckling- and oxytocin-induced burst-firing of individual antidromically identified oxytocin neurones in the paraventricular nucleus. Given systemically at 100 μg/kg i.v., F792 acted only peripherally, blocking the milk-ejecting actions of oxytocin, but not the burst-firing of oxytocin neurones during suckling (n = 5 neurones in five rats). Hence, this peptide oxytocin antagonist does not enter the brain from the circulation to interfere with an essential oxytocin function in the brain. Furthermore, the functions of oxytocin in the brain evidently cannot be explored with a systemic peptide antagonist.
Collapse
Affiliation(s)
- G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - J A Russell
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
207
|
|
208
|
Padurariu M, Prepelita R, Ciobica A, Dobrin R, Timofte D, Stefanescu C, Chirita R. Short Review on the Aggressive Behaviour: Genetical, Biological Aspects and Oxytocin Relevance. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.56431/p-iavles] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this mini-review we were interested in describing the main genetic, biological and mechanistic aspects of the aggressive behaviour in human patients and animal models. It seems that violent behaviour and impulsive traits present a multifactorial substrate, which is determined by genetic and non-genetic factors. Thus, aggressivity is regulated by brain regions such as the amygdala, which controls neural circuits for triggering defensive, aggressive or avoidant behaviour. Moreover, other brain structures such as the anterior cingulate cortex and prefrontal cortex regions could modulate circuits involved in aggression. Regarding the genetic aspects, we could mention the mutations in the monoamine oxidase or the polymorphisms of the genes involved in the metabolism of serotonin, such as tryptophan hydroxylase. Also, besides the low levels of serotonin metabolites, which seem to be associated with impulsive and aggressive traits, there are good evidences that deficiencies in glutamate transmission, as well as testosterone, vasopressin, hypochloesterolemia or oxytocin modifications could be related to the aggressive behaviour. Regarding oxytocin we present here in the last chapter the controversial results from the current literature regarding the various effects exhibited by oxytocin administration on the aggressive behavior, considering the increased interest in understanding the role of oxytocin on the main neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Romeo Dobrin
- "Gr. T. Popa” University of Medicine and Pharmacy
| | | | | | | |
Collapse
|
209
|
Padurariu M, Prepelita R, Ciobica A, Dobrin R, Timofte D, Stefanescu C, Chirita R. Short Review on the Aggressive Behaviour: Genetical, Biological Aspects and Oxytocin Relevance. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.18052/www.scipress.com/ilns.52.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this mini-review we were interested in describing the main genetic, biological and mechanistic aspects of the aggressive behaviour in human patients and animal models. It seems that violent behaviour and impulsive traits present a multifactorial substrate, which is determined by genetic and non-genetic factors. Thus, aggressivity is regulated by brain regions such as the amygdala, which controls neural circuits for triggering defensive, aggressive or avoidant behaviour. Moreover, other brain structures such as the anterior cingulate cortex and prefrontal cortex regions could modulate circuits involved in aggression. Regarding the genetic aspects, we could mention the mutations in the monoamine oxidase or the polymorphisms of the genes involved in the metabolism of serotonin, such as tryptophan hydroxylase. Also, besides the low levels of serotonin metabolites, which seem to be associated with impulsive and aggressive traits, there are good evidences that deficiencies in glutamate transmission, as well as testosterone, vasopressin, hypochloesterolemia or oxytocin modifications could be related to the aggressive behaviour. Regarding oxytocin we present here in the last chapter the controversial results from the current literature regarding the various effects exhibited by oxytocin administration on the aggressive behavior, considering the increased interest in understanding the role of oxytocin on the main neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Romeo Dobrin
- "Gr. T. Popa” University of Medicine and Pharmacy
| | | | | | | |
Collapse
|
210
|
Johnson ZV, Walum H, Jamal YA, Xiao Y, Keebaugh AC, Inoue K, Young LJ. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles. Horm Behav 2016; 79:8-17. [PMID: 26643557 PMCID: PMC4768463 DOI: 10.1016/j.yhbeh.2015.11.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
Abstract
Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network.
Collapse
Affiliation(s)
- Zachary V Johnson
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30329, USA.
| | - Hasse Walum
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30329, USA.
| | - Yaseen A Jamal
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Yao Xiao
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Alaine C Keebaugh
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30329, USA.
| | - Larry J Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
211
|
Struck AW, Bennett MR, Shepherd SA, Law BJC, Zhuo Y, Wong LS, Micklefield J. An Enzyme Cascade for Selective Modification of Tyrosine Residues in Structurally Diverse Peptides and Proteins. J Am Chem Soc 2016; 138:3038-45. [DOI: 10.1021/jacs.5b10928] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anna-Winona Struck
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Matthew R. Bennett
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Sarah A. Shepherd
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Brian J. C. Law
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Ying Zhuo
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Lu Shin Wong
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
212
|
Abstract
The neuropeptide oxytocin plays a role in reward, stress, social affiliation, learning, and memory processes. As such, there is increasing interest in oxytocin as a potential treatment for addictions. The endogenous oxytocin system is itself altered by short- or long-term exposure to drugs of abuse. A large number of preclinical studies in rodents have investigated the effect of oxytocin administration on various drug-induced behaviors to determine whether oxytocin can reverse the neuroadaptations occurring with repeated drug and alcohol use. In addition, the mechanisms by which oxytocin acts to modify the behavioral response to drugs of abuse are beginning to be understood. More recently, a few small clinical studies have been conducted in cocaine, cannabis, and alcohol dependence. This review summarizes the preclinical as well as clinical literature to date on the oxytocin system and its relevance to drug and alcohol addiction.
Collapse
|
213
|
Caldwell HK, Albers HE. Oxytocin, Vasopressin, and the Motivational Forces that Drive Social Behaviors. Curr Top Behav Neurosci 2016; 27:51-103. [PMID: 26472550 DOI: 10.1007/7854_2015_390] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to engage in social behaviors is influenced by past experience and internal state, but also depends on the behavior of other animals. Across species, the oxytocin (Oxt) and vasopressin (Avp) systems have consistently been linked to the modulation of motivated social behaviors. However, how they interact with other systems, such as the mesolimbic dopamine system, remains understudied. Further, while the neurobiological mechanisms that regulate prosocial/cooperative behaviors have been extensively examined, far less is understood about competitive behaviors, particularly in females. In this chapter, we highlight the specific contributions of Oxt and Avp to several cooperative and competitive behaviors and discuss their relevance to the concept of social motivation across species, including humans. Further, we discuss the implications for neuropsychiatric diseases and suggest future areas of investigation.
Collapse
|
214
|
The Effect of Oxytocin on Social and Non-Social Behaviour and Striatal Protein Expression in C57BL/6N Mice. PLoS One 2015; 10:e0145638. [PMID: 26716999 PMCID: PMC4696826 DOI: 10.1371/journal.pone.0145638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Oxytocin has been suggested as a promising new treatment for neurodevelopmental disorders. However, important gaps remain in our understanding of its mode of action, in particular, to what extent oxytocin modulates social and non-social behaviours and whether its effects are generalizable across both sexes. Here we investigated the effects of a range of oxytocin doses on social and non-social behaviours in C57BL/6N mice of both sexes. As the striatum modulates social and non-social behaviours, and is implicated in neurodevelopmental disorders, we also conducted a pilot exploration of changes in striatal protein expression elicited by oxytocin. Oxytocin increased prepulse inhibition of startle but attenuated the recognition memory in male C57BL/6N mice. It increased social interaction time and suppressed the amphetamine locomotor response in both sexes. The striatum proteome following oxytocin exposure could be clearly discriminated from saline controls. With the caveat that these results are preliminary, oxytocin appeared to alter individual protein expression in directions similar to conventional anti-psychotics. The proteins affected by oxytocin could be broadly categorized as those that modulate glutamatergic, GABAergic or dopaminergic signalling and those that mediate cytoskeleton dynamics. Our results here encourage further research into the clinical application of this peptide hormone, which may potentially extend treatment options across a spectrum of neurodevelopmental conditions.
Collapse
|
215
|
Bankard J. Training Emotion Cultivates Morality: How Loving-Kindness Meditation Hones Compassion and Increases Prosocial Behavior. JOURNAL OF RELIGION AND HEALTH 2015; 54:2324-2343. [PMID: 25633082 DOI: 10.1007/s10943-014-9999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Traditional moral philosophy has long focused on rationality, principled thinking, and good old-fashioned willpower, but recent evidence strongly suggests that moral judgments and prosocial behavior are more heavily influenced by emotion and intuition. As the evidence mounts, rational traditions emphasizing deliberative analysis and conscious decision making are called into question. The first section highlights some compelling evidence supporting the primacy of affective states in motivating moral judgments and behavior. The real challenge is finding a way to align intuition with desired behavior. In cool reflective states, one may desire to be a kind and loving person. But when it is time to act, the moment is often accompanied by strong affect-laden intuitions. I argue that if affective states are the primary motivators of behavior, then moral sentiments must be trained through habituation in order to increase prosocial behavior. The second section provides empirical evidence linking emotional training with increased prosociality. To highlight this connection, focus is placed on the relationship between habitual meditation training, compassion, and prosocial behavior. Recent studies by Antoine Lutz, Richard Davidson, Susanne Leiberg, and others show that various meditation practices can dramatically affect the human person at various levels, i.e., increased physical health, neural restructuring, regulation and development of emotions, and increased helping behavior, to name a few. The current article focuses on the impact the habit of loving-kindness meditation (LKM) has on compassion and prosocial behavior. Recent studies strongly support the conclusion that LKM training hones compassion and ultimately leads to an increase in compassionate behavior.
Collapse
|
216
|
Yuan TF, Hou G. Commentary: Oxytocin Enables Maternal Behavior by Balancing Cortical Inhibition. Front Behav Neurosci 2015; 9:311. [PMID: 26635561 PMCID: PMC4649022 DOI: 10.3389/fnbeh.2015.00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/02/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ti-Fei Yuan
- School of Psychology, Nanjing Normal University Nanjing, China
| | - Gonglin Hou
- Department of Psychology, Zhejiang Sci-Tech University Nanjing, China
| |
Collapse
|
217
|
Bello-Morales R, Delgado-García JM. The social neuroscience and the theory of integrative levels. Front Integr Neurosci 2015; 9:54. [PMID: 26578909 PMCID: PMC4625076 DOI: 10.3389/fnint.2015.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/09/2015] [Indexed: 01/10/2023] Open
Abstract
The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be contemplated not as the result of mixing or summing social and biological influences, but as emergent phenomena that should be described with its own laws. Finally, following the integrative levels view, influences upward, from biology to social level, and downward, from social level to biology, might not be equivalent, since the bottom-up processes are emergent and the downward causation (DC) is not.
Collapse
|
218
|
Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong H, Lam HA, Peles E, Maidment NT, Murphy NP, Yang XW, Golshani P, Geschwind DH. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med 2015; 7:271ra8. [PMID: 25609168 DOI: 10.1126/scitranslmed.3010257] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mouse models of neuropsychiatric diseases provide a platform for mechanistic understanding and development of new therapies. We previously demonstrated that knockout of the mouse homolog of CNTNAP2 (contactin-associated protein-like 2), in which mutations cause cortical dysplasia and focal epilepsy (CDFE) syndrome, displays many features that parallel those of the human disorder. Because CDFE has high penetrance for autism spectrum disorder (ASD), we performed an in vivo screen for drugs that ameliorate abnormal social behavior in Cntnap2 mutant mice and found that acute administration of the neuropeptide oxytocin improved social deficits. We found a decrease in the number of oxytocin immunoreactive neurons in the paraventricular nucleus (PVN) of the hypothalamus in mutant mice and an overall decrease in brain oxytocin levels. Administration of a selective melanocortin receptor 4 agonist, which causes endogenous oxytocin release, also acutely rescued the social deficits, an effect blocked by an oxytocin antagonist. We confirmed that oxytocin neurons mediated the behavioral improvement by activating endogenous oxytocin neurons in the paraventricular hypothalamus with Designer Receptors Exclusively Activated by Designer Drugs (DREADD). Last, we showed that chronic early postnatal treatment with oxytocin led to more lasting behavioral recovery and restored oxytocin immunoreactivity in the PVN. These data demonstrate dysregulation of the oxytocin system in Cntnap2 knockout mice and suggest that there may be critical developmental windows for optimal treatment to rectify this deficit.
Collapse
Affiliation(s)
- Olga Peñagarikano
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron Gordon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hongmei Dong
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hoa A Lam
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nigel T Maidment
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Niall P Murphy
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peyman Golshani
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095, USA. West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. Center for Autism Research and Treatment and Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA. Center for Neurobehavioral Genetics, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
219
|
A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature 2015; 525:519-22. [PMID: 26375004 DOI: 10.1038/nature15378] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/31/2015] [Indexed: 11/08/2022]
Abstract
It is commonly assumed, but has rarely been demonstrated, that sex differences in behaviour arise from sexual dimorphism in the underlying neural circuits. Parental care is a complex stereotypic behaviour towards offspring that is shared by numerous species. Mice display profound sex differences in offspring-directed behaviours. At their first encounter, virgin females behave maternally towards alien pups while males will usually ignore the pups or attack them. Here we show that tyrosine hydroxylase (TH)-expressing neurons in the anteroventral periventricular nucleus (AVPV) of the mouse hypothalamus are more numerous in mothers than in virgin females and males, and govern parental behaviours in a sex-specific manner. In females, ablating the AVPV TH(+) neurons impairs maternal behaviour whereas optogenetic stimulation or increased TH expression in these cells enhance maternal care. In males, however, this same neuronal cluster has no effect on parental care but rather suppresses inter-male aggression. Furthermore, optogenetic activation or increased TH expression in the AVPV TH(+) neurons of female mice increases circulating oxytocin, whereas their ablation reduces oxytocin levels. Finally, we show that AVPV TH(+) neurons relay a monosynaptic input to oxytocin-expressing neurons in the paraventricular nucleus. Our findings uncover a previously unknown role for this neuronal population in the control of maternal care and oxytocin secretion, and provide evidence for a causal relationship between sexual dimorphism in the adult brain and sex differences in parental behaviour.
Collapse
|
220
|
Choe HK, Reed MD, Benavidez N, Montgomery D, Soares N, Yim YS, Choi GB. Oxytocin Mediates Entrainment of Sensory Stimuli to Social Cues of Opposing Valence. Neuron 2015; 87:152-63. [PMID: 26139372 DOI: 10.1016/j.neuron.2015.06.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/29/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
Meaningful social interactions modify behavioral responses to sensory stimuli. The neural mechanisms underlying the entrainment of neutral sensory stimuli to salient social cues to produce social learning remain unknown. We used odor-driven behavioral paradigms to ask if oxytocin, a neuropeptide implicated in various social behaviors, plays a crucial role in the formation of learned associations between odor and socially significant cues. Through genetic, optogenetic, and pharmacological manipulations, we show that oxytocin receptor signaling is crucial for entrainment of odor to social cues but is dispensable for entrainment to nonsocial cues. Furthermore, we demonstrate that oxytocin directly impacts the piriform, the olfactory sensory cortex, to mediate social learning. Lastly, we provide evidence that oxytocin plays a role in both appetitive and aversive social learning. These results suggest that oxytocin conveys saliency of social stimuli to sensory representations in the piriform cortex during odor-driven social learning.
Collapse
Affiliation(s)
- Han Kyoung Choe
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Douglas Reed
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nora Benavidez
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Montgomery
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Natalie Soares
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yeong Shin Yim
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gloria B Choi
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
221
|
Effects of Intranasal Oxytocin on Aggressive Responding in Antisocial Personality Disorder. PSYCHOLOGICAL RECORD 2015; 65:691-703. [PMID: 27022201 DOI: 10.1007/s40732-015-0139-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The oxytocin receptor is important in several domains of social behavior, and administration of oxytocin modulates social responding in several mammalian species, including humans. Oxytocin has both therapeutic and scientific potential for elucidating the neural and behavioral mechanisms governing social behavior. In the present study, operationally-defined aggressive behavior of six males with Antisocial Personality Disorder (ASPD) was measured following acute intranasal oxytocin dosing (12, 24, and 48 international units) and placebo, using a well-validated laboratory task of human aggression (Point-Subtraction Aggression Paradigm, or PSAP). The PSAP provides participants with concurrently available monetary-earning and operationally-defined aggressive response options, maintained by fixed ratio schedules of consequences. Shifts in response rates and inter-response time (IRT) distributions were observed on the aggressive response option following oxytocin doses, relative to placebo. Few changes were observed in monetary-reinforced responding. However, across participants the direction and magnitude of changes in aggressive responding were not systematically related to dose. No trends were observed between psychometric or physiological data and oxytocin dosing or aggressive behavior. While this report is to our knowledge the first to examine the acute effects of oxytocin in this population at high risk for violence and other forms of antisocial behavior, several limitations in the experimental design and the results cast the study as a preliminary report. Strategies for more extensive future projects are discussed.
Collapse
|
222
|
Leng G, Pineda R, Sabatier N, Ludwig M. 60 YEARS OF NEUROENDOCRINOLOGY: The posterior pituitary, from Geoffrey Harris to our present understanding. J Endocrinol 2015; 226:T173-85. [PMID: 25901040 DOI: 10.1530/joe-15-0087] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 01/12/2023]
Abstract
Geoffrey Harris pioneered our understanding of the posterior pituitary, mainly with experiments that involved the electrical stimulation of the supraoptico-hypophysial tract. In the present essay, we explain how his observations included clues to the pulsatile nature of the oxytocin signal - clues that were followed up by subsequent workers, including his students and their students. These studies ultimately led to our present understanding of the milk-ejection reflex and of the role of oxytocin in parturition. Discoveries of wide significance followed, including: the recognition of the importance of pulsatile hormone secretion; the recognition of the importance of stimulus-secretion coupling mechanisms in interpreting the patterned electrical activity of neurons; the physiological importance of peptide release in the brain; the recognition that peptide release comes substantially from dendrites and can be regulated independently of nerve terminal secretion; and the importance of dynamic morphological changes to neuronal function in the hypothalamus. All of these discoveries followed from the drive to understand the milk-ejection reflex. We also reflect on Harris's observations on vasopressin secretion, on the effects of stress, and on oxytocin secretion during sexual activity.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative PhysiologyUniversity of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH9 8XD, UK
| | - Rafael Pineda
- Centre for Integrative PhysiologyUniversity of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH9 8XD, UK
| | - Nancy Sabatier
- Centre for Integrative PhysiologyUniversity of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH9 8XD, UK
| | - Mike Ludwig
- Centre for Integrative PhysiologyUniversity of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH9 8XD, UK
| |
Collapse
|
223
|
Automated Analysis of Oxytocin by On-Line in-Tube Solid-Phase Microextraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2030382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
224
|
LeClerc S, Easley D. Pharmacological therapies for autism spectrum disorder: a review. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2015; 40:389-397. [PMID: 26045648 PMCID: PMC4450669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Medications are often added to behavioral therapy to help patients with autism spectrum disorder function successfully. This review discusses approved and off-label pharmacotherapeutic options for the various symptoms of the disorder.
Collapse
|
225
|
Ren D, Lu G, Moriyama H, Mustoe AC, Harrison EB, French JA. Genetic diversity in oxytocin ligands and receptors in New World monkeys. PLoS One 2015; 10:e0125775. [PMID: 25938568 PMCID: PMC4418824 DOI: 10.1371/journal.pone.0125775] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/25/2015] [Indexed: 11/23/2022] Open
Abstract
Oxytocin (OXT) is an important neurohypophyseal hormone that influences wide spectrum of reproductive and social processes. Eutherian mammals possess a highly conserved sequence of OXT (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly). However, in this study, we sequenced the coding region for OXT in 22 species covering all New World monkeys (NWM) genera and clades, and characterize five OXT variants, including consensus mammalian Leu8-OXT, major variant Pro8-OXT, and three previously unreported variants: Ala8-OXT, Thr8-OXT, and Phe2-OXT. Pro8-OXT shows clear structural and physicochemical differences from Leu8-OXT. We report multiple predicted amino acid substitutions in the G protein-coupled OXT receptor (OXTR), especially in the critical N-terminus, which is crucial for OXT recognition and binding. Genera with same Pro8-OXT tend to cluster together on a phylogenetic tree based on OXTR sequence, and we demonstrate significant coevolution between OXT and OXTR. NWM species are characterized by high incidence of social monogamy, and we document an association between OXTR phylogeny and social monogamy. Our results demonstrate remarkable genetic diversity in the NWM OXT/OXTR system, which can provide a foundation for molecular, pharmacological, and behavioral studies of the role of OXT signaling in regulating complex social phenotypes.
Collapse
Affiliation(s)
- Dongren Ren
- Callitrichid Research Centre, Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
- Key Laboratory for Animal Biotechnology of Jiangxi Province and Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
- * E-mail:
| | - Guoqing Lu
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, United States of America
| | - Aaryn C. Mustoe
- Callitrichid Research Centre, Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
| | - Emily B. Harrison
- Callitrichid Research Centre, Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
| | - Jeffrey A. French
- Callitrichid Research Centre, Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, United States of America
| |
Collapse
|
226
|
Campbell-Smith EJ, Holmes NM, Lingawi NW, Panayi MC, Westbrook RF. Oxytocin signaling in basolateral and central amygdala nuclei differentially regulates the acquisition, expression, and extinction of context-conditioned fear in rats. ACTA ACUST UNITED AC 2015; 22:247-57. [PMID: 25878137 PMCID: PMC4408769 DOI: 10.1101/lm.036962.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/13/2015] [Indexed: 01/01/2023]
Abstract
The present study investigated how oxytocin (OT) signaling in the central (CeA) and basolateral (BLA) amygdala affects acquisition, expression, and extinction of context-conditioned fear (freezing) in rats. In the first set of experiments, acquisition of fear to a shocked context was impaired by a preconditioning infusion of synthetic OT into the CeA (Experiment 1) or BLA (Experiment 2). In the second set of experiments, expression of context fear was enhanced by a pre- or post-extinction CeA infusion of synthetic OT (Experiments 3–6) or a selective OT receptor agonist, TGOT (Experiment 4). This enhancement of fear was blocked by coadministration of an OT receptor antagonist, OTA (Experiment 5) and context fear was suppressed by administration of the antagonist alone (Experiment 6). In the third set of experiments, expression of context fear was suppressed, not enhanced, by a preextinction BLA infusion of synthetic OT or a selective OT receptor agonist, TGOT (Experiments 7 and 8). This suppression of fear was blocked by coadministration of the OT receptor antagonist, OTA (Experiment 8). Taken together, these findings show that the involvement of the CeA and BLA in expression and extinction of context-conditioned fear is dissociable, and imply a critical role for oxytocin signaling in amygdala-based regulation of aversive learning.
Collapse
Affiliation(s)
- Emma J Campbell-Smith
- School of Psychology, University of New South Wales, New South Wales, 2052, Australia
| | - Nathan M Holmes
- School of Psychology, University of New South Wales, New South Wales, 2052, Australia
| | - Nura W Lingawi
- School of Psychology, University of New South Wales, New South Wales, 2052, Australia
| | - Marios C Panayi
- School of Psychology, University of New South Wales, New South Wales, 2052, Australia
| | - R Frederick Westbrook
- School of Psychology, University of New South Wales, New South Wales, 2052, Australia
| |
Collapse
|
227
|
Merkle FT, Maroof A, Wataya T, Sasai Y, Studer L, Eggan K, Schier AF. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 2015; 142:633-43. [PMID: 25670790 DOI: 10.1242/dev.117978] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases.
Collapse
Affiliation(s)
- Florian T Merkle
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Asif Maroof
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Takafumi Wataya
- Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan Department of Neurosurgery, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
| | - Yoshiki Sasai
- Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
228
|
Wang M, Saudino KJ. Positive affect: phenotypic and etiologic associations with prosocial behaviors and internalizing problems in toddlers. Front Psychol 2015; 6:416. [PMID: 25914668 PMCID: PMC4391446 DOI: 10.3389/fpsyg.2015.00416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/24/2015] [Indexed: 11/21/2022] Open
Abstract
Despite evidence for the associations of positive affect to prosocial behaviors and internalizing problems, relatively little is known about the underlying etiology. The sample comprised over 300 twin pairs at age 3. Positive affect, prosocial behaviors, and internalizing problems were assessed using the Toddler Behavior Assessment Questionnaire (Goldsmith, 1996), the Revised Rutter Parent Scale for Preschool Children (Hogg et al., 1997), and the Child Behavior Checklist for ages 1.5-5 (Achenbach, 1991), respectively. Positive affect correlated positively with prosocial behaviors, and negatively with internalizing problems. Prosocial behaviors were negatively associated with internalizing problems. The relations of positive affect to prosocial behaviors and internalizing problems were due to environmental effects (shared and non-shared). In contrast, the link between prosocial behaviors and internalizing problems was entirely explained by genetic effects. The current study has moved beyond prior emphasis on negative affect and elucidated the less understood etiology underlying the associations between positive affect, prosocial behaviors, and internalizing problems. This study could guide the development of programs for promoting prosocial behaviors and alleviating internalizing problems in children.
Collapse
Affiliation(s)
- Manjie Wang
- Psychology, Franklin and Marshall CollegeLancaster, PA, USA
| | - Kimberly J. Saudino
- Developmental Behavior Genetics Lab, Psychology, Boston UniversityBoston, MA, USA
| |
Collapse
|
229
|
Stress, sex, and addiction: potential roles of corticotropin-releasing factor, oxytocin, and arginine-vasopressin. Behav Pharmacol 2015; 25:445-57. [PMID: 24949572 DOI: 10.1097/fbp.0000000000000049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stress sensitivity and sex are predictive factors for the development of neuropsychiatric disorders. Life stresses are not only risk factors for the development of addiction but also are triggers for relapse to drug use. Therefore, it is imperative to elucidate the molecular mechanisms underlying the interactions between stress and drug abuse, as an understanding of this may help in the development of novel and more effective therapeutic approaches to block the clinical manifestations of drug addiction. The development and clinical course of addiction-related disorders do appear to involve neuroadaptations within neurocircuitries that modulate stress responses and are influenced by several neuropeptides. These include corticotropin-releasing factor, the prototypic member of this class, as well as oxytocin and arginine-vasopressin that play important roles in affiliative behaviors. Interestingly, these peptides function to balance emotional behavior, with sexual dimorphism in the oxytocin/arginine-vasopressin systems, a fact that might play an important role in the differential responses of women and men to stressful stimuli and the specific sex-based prevalence of certain addictive disorders. Thus, this review aims to summarize (i) the contribution of sex differences to the function of dopamine systems, and (ii) the behavioral, neurochemical, and anatomical changes in brain stress systems.
Collapse
|
230
|
Oxytocin reduces neural activity in the pain circuitry when seeing pain in others. Neuroimage 2015; 113:217-224. [PMID: 25818690 DOI: 10.1016/j.neuroimage.2015.03.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 12/30/2022] Open
Abstract
Our empathetic abilities allow us to feel the pain of others. This phenomenon of vicarious feeling arises because the neural circuitry of feeling pain and seeing pain in others is shared. The neuropeptide oxytocin (OXT) is considered a robust facilitator of empathy, as intranasal OXT studies have repeatedly been shown to improve cognitive empathy (e.g. mind reading and emotion recognition). However, OXT has not yet been shown to increase neural empathic responses to pain in others, a core aspect of affective empathy. Effects of OXT on empathy for pain are difficult to predict, because OXT evidently has pain-reducing properties. Accordingly, OXT might paradoxically decrease empathy for pain. Here, using functional neuroimaging we show robust activation in the neural circuitry of pain (insula and sensorimotor regions) when subjects observe pain in others. Crucially, this empathy-related activation in the neural circuitry of pain is strongly reduced after intranasal OXT, specifically in the left insula. OXT on the basis of our neuroimaging data thus remarkably decreases empathy for pain, but further research including behavioral measures is necessary to draw definite conclusions.
Collapse
|
231
|
Pagani JH, Williams Avram SK, Cui Z, Song J, Mezey É, Senerth JM, Baumann MH, Young WS. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only. GENES BRAIN AND BEHAVIOR 2015; 14:167-76. [PMID: 25677455 DOI: 10.1111/gbb.12202] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/19/2015] [Indexed: 01/10/2023]
Abstract
Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care.
Collapse
Affiliation(s)
- J H Pagani
- Section on Neural Gene Regulation, National Institute of Mental Health, National Institutes of Health, DHHS, Bethesda
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Zhang Y, Yang Y, Dai R, Wu H, Li C, Guo Q. Oxytocin in the paraventricular nucleus attenuates incision-induced mechanical allodynia. Exp Ther Med 2015; 9:1351-1356. [PMID: 25780434 PMCID: PMC4353795 DOI: 10.3892/etm.2015.2285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/21/2014] [Indexed: 11/23/2022] Open
Abstract
Oxytocin (OT) neurons localized in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) send fibers to the brain and spinal cord. While most previous studies have looked at the role of OT in chronic pain, few have investigated the role of OT in acute pain, particularly postoperative pain. In the present study, the role of OT in incision-induced allodynia was explored for the first time, using a rat incisional pain model. Immunohistochemical staining showed that, compared with the baseline (prior to incision) measurements, the OT content in the PVN was significantly decreased at 0.5, 1.0 and 3.0 h post-incision and returned to the baseline level at 6.0 h post-incision. By contrast, there was no significant difference in the OT content in the SON prior to and subsequent to incision. A dose-dependent inhibition of mechanical hypersensitivity was detected 30 min after intracerebroventricular injection of OT (100, 400 or 600 ng) and lasted for 3.0 h. No significant difference was noted, however, between the intrathecal OT injection group (600 ng) and the control group. In conclusion, the present study provides the first in vivo evidence that OT in the PVN predominantly attenuates incision-induced mechanical allodynia at the supraspinal, rather than the spinal, level. This suggests that OT is involved in supraspinal analgesia for postoperative pain.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ruping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Hui Wu
- Department of Medical Oncology, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Changqi Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
233
|
Mokkonen M, Crespi BJ. Genomic conflicts and sexual antagonism in human health: insights from oxytocin and testosterone. Evol Appl 2015; 8:307-25. [PMID: 25926877 PMCID: PMC4408143 DOI: 10.1111/eva.12244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022] Open
Abstract
We review the hypothesized and observed effects of two of the major forms of genomic conflicts, genomic imprinting and sexual antagonism, on human health. We focus on phenotypes mediated by peptide and steroid hormones (especially oxytocin and testosterone) because such hormones centrally mediate patterns of physical and behavioral resource allocation that underlie both forms of conflict. In early development, a suite of imprinted genes modulates the human oxytocinergic system as predicted from theory, with paternally inherited gene expression associated with higher oxytocin production, and increased solicitation to mothers by infants. This system is predicted to impact health through the incompatibility of paternal-gene and maternal-gene optima and increased vulnerability of imprinted gene systems to genetic and epigenetic changes. Early alterations to oxytocinergic systems have long-term negative impacts on human psychological health, especially through their effects on attachment and social behavior. In contrast to genomic imprinting, which generates maladaptation along an axis of mother–infant attachment, sexual antagonism is predicted from theory to generate maladaptation along an axis of sexual dimorphism, modulated by steroid and peptide hormones. We describe evidence of sexual antagonism from studies of humans and other animals, demonstrating that sexually antagonistic effects on sex-dimorphic phenotypes, including aspects of immunity, life history, psychology, and behavior, are commonly observed and lead to forms of maladaptation that are demonstrated, or expected, to impact human health. Recent epidemiological and psychiatric studies of schizophrenia in particular indicate that it is mediated, in part, by sexually antagonistic alleles. The primary implication of this review is that data collection focused on (i) effects of imprinted genes that modulate the oxytocin system, and (ii) effects of sexually antagonistic alleles on sex-dimorphic, disease-related phenotypes will lead to novel insights into both human health and the evolutionary dynamics of genomic conflicts.
Collapse
Affiliation(s)
- Mikael Mokkonen
- Department of Biological Sciences, Simon Fraser University Burnaby, BC, Canada ; Department of Biological and Environmental Science, University of Jyväskylä Jyväskylä, Finland
| | - Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
234
|
Reddon AR, O'Connor CM, Marsh-Rollo SE, Balshine S, Gozdowska M, Kulczykowska E. Brain nonapeptide levels are related to social status and affiliative behaviour in a cooperatively breeding cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140072. [PMID: 26064593 PMCID: PMC4448801 DOI: 10.1098/rsos.140072] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 01/07/2015] [Indexed: 05/23/2023]
Abstract
The mammalian nonapeptide hormones, vasopressin and oxytocin, are known to be potent regulators of social behaviour. Teleost fishes possess vasopressin and oxytocin homologues known as arginine vasotocin (AVT) and isotocin (IT), respectively. The role of these homologous nonapeptides in mediating social behaviour in fishes has received far less attention. The extraordinarily large number of teleost fish species and the impressive diversity of their social systems provide us with a rich test bed for investigating the role of nonapeptides in regulating social behaviour. Existing studies, mostly focused on AVT, have revealed relationships between the nonapeptides, and both social behaviour and dominance status in fishes. To date, much of the work on endogenous nonapeptides in fish brains has measured genomic or neuroanatomical proxies of nonapeptide production rather than the levels of these molecules in the brain. In this study, we measure biologically available AVT and IT levels in the brains of Neolamprologus pulcher, a cooperatively breeding cichlid fish, using high performance liquid chromatography with fluorescence detection. We found that brain AVT levels were higher in the subordinate than in dominant animals, and levels of IT correlated negatively with the expression of affiliative behaviour. We contrast these results with previous studies, and we discuss the role the nonapeptide hormones may play in the regulation of social behaviour in this highly social animal.
Collapse
Affiliation(s)
- Adam R. Reddon
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Constance M. O'Connor
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Susan E. Marsh-Rollo
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Sigal Balshine
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Magdalena Gozdowska
- Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstanców Warszawy 55 Street, 81-712 Sopot, Poland
| | - Ewa Kulczykowska
- Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstanców Warszawy 55 Street, 81-712 Sopot, Poland
| |
Collapse
|
235
|
Kash TL, Pleil KE, Marcinkiewcz CA, Lowery-Gionta EG, Crowley N, Mazzone C, Sugam J, Hardaway JA, McElligott ZA. Neuropeptide regulation of signaling and behavior in the BNST. Mol Cells 2015; 38:1-13. [PMID: 25475545 PMCID: PMC4314126 DOI: 10.14348/molcells.2015.2261] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022] Open
Abstract
Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.
Collapse
Affiliation(s)
- Thomas L. Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Kristen E. Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Catherine A. Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Emily G. Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Nicole Crowley
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Christopher Mazzone
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - J. Andrew Hardaway
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| |
Collapse
|
236
|
Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene: distribution of GABA and non-GABA ErbB4-positive cells in adult mouse brain. J Neurosci 2015; 34:13549-66. [PMID: 25274830 DOI: 10.1523/jneurosci.2021-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to express in excitatory neurons, although recent studies disputed this view. Using mice that express a fluorescent protein under the promoter of the ErbB4 gene, we determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain, and hindbrain. In particular, ErbB4 is expressed in serotoninergic neurons of raphe nuclei but not in norepinephrinergic neurons of the locus ceruleus. In hypothalamus, ErbB4 is present in neurons that express oxytocin. Finally, ErbB4 is expressed in a group of cells in the subcortical areas that are positive for S100 calcium binding protein β. These results identify novel cellular targets of NRG1-ErbB4 signaling.
Collapse
|
237
|
Grinevich V, Desarménien MG, Chini B, Tauber M, Muscatelli F. Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Front Neuroanat 2015; 8:164. [PMID: 25767437 PMCID: PMC4341354 DOI: 10.3389/fnana.2014.00164] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/17/2014] [Indexed: 01/02/2023] Open
Abstract
Oxytocin (OT), the main neuropeptide of sociality, is expressed in neurons exclusively localized in the hypothalamus. During the last decade, a plethora of neuroendocrine, metabolic, autonomic and behavioral effects of OT has been reported. In the urgency to find treatments to syndromes as invalidating as autism, many clinical trials have been launched in which OT is administered to patients, including adolescents and children. However, the impact of OT on the developing brain and in particular on the embryonic and early postnatal maturation of OT neurons, has been only poorly investigated. In the present review we summarize available (although limited) literature on general features of ontogenetic transformation of the OT system, including determination, migration and differentiation of OT neurons. Next, we discuss trajectories of OT receptors (OTR) in the perinatal period. Furthermore, we provide evidence that early alterations, from birth, in the central OT system lead to severe neurodevelopmental diseases such as feeding deficit in infancy and severe defects in social behavior in adulthood, as described in Prader-Willi syndrome (PWS). Our review intends to propose a hypothesis about developmental dynamics of central OT pathways, which are essential for survival right after birth and for the acquisition of social skills later on. A better understanding of the embryonic and early postnatal maturation of the OT system may lead to better OT-based treatments in PWS or autism.
Collapse
Affiliation(s)
- Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center and CellNetwork Cluster of Excellence of the University of Heidelberg Heidelberg, Germany
| | - Michel G Desarménien
- Institute of Functional Genomics, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Montpellier 1, Université Montpellier 2 Montpellier, France
| | - Bice Chini
- Consiglio Nazionale delle Ricerche Institute of Neuroscience Milan, Italy
| | - Maithé Tauber
- Reference Centre for Prader-Willi Syndrome - Department of Pediatric Endocrinology, Hôpital des Enfants Centre Hospitalier Universitaire de Toulouse 330 Toulouse, France ; Institut National de la Santé et de la Recherche Médicale Unité Mixe de Recherche 1043, Paul Sabatier University Toulouse III Toulouse, France
| | - Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée Unité Mixe de Recherche U901, Institut National de la Santé et de la Recherche Médicale, Parc Scientifique de Luminy Marseille, France ; Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée Unité Mixe de Recherche 901 Marseille, France
| |
Collapse
|
238
|
Cho SA, Park SH, Cho JH. The influence of systemically administered oxytocin on the implant-bone interface area: an experimental study in the rabbit. J Adv Prosthodont 2015; 6:505-11. [PMID: 25551011 PMCID: PMC4279050 DOI: 10.4047/jap.2014.6.6.505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/16/2014] [Accepted: 08/05/2014] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The purpose of this study was to assess the effect of systemically administered oxytocin (OT) on the implant-bone interface by using histomorphometric analysis and the removal torque test. MATERIALS AND METHODS A total of 10 adult, New Zealand white, female rabbits were used in this experiment. We placed 2 implants (CSM; CSM Implant, Daegu, South Korea) in each distal femoral metaphysis on both the right and left sides; the implants on both sides were placed 10 mm apart. In each rabbit, 1 implant was prepared for histomorphometric analysis and the other 3 were prepared for the removal torque test (RT). The animals received intramuscular injections of either saline (control group; 0.15 M NaCl) or OT (experimental group; 200 µg/rabbit). The injections were initiated on Day 3 following the implant surgery and were continued for 4 subsequent weeks; the injections were administered twice per day (at a 12-h interval), for 2 days per week. RESULTS While no statistically significant difference was observed between the two groups (P=.787), the control group had stronger removal torque values. The serum OT concentration (ELISA value) was higher in the OT-treated group, although no statistically significant difference was found. Further, the histomorphometric parameter (bone-toimplant contact [BIC], inter-thread bone, and peri-implant bone) values were higher in the experimental group, but the differences were not significant. CONCLUSION We postulate that OT supplementation via intramuscular injection weakly contributes to the bone response at the implant-bone interface in rabbits. Therefore, higher concentrations or more frequent administration of OT may be required for a greater bone response to the implant. Further studies analyzing these aspects are needed.
Collapse
Affiliation(s)
- Sung-Am Cho
- Department of Prosthodontics, School of Dentistry, Kyoungpook National University, Daegu, Republic of Korea
| | - Sang-Hun Park
- Department of Prosthodontics, School of Dentistry, Kyoungpook National University, Daegu, Republic of Korea
| | - Jin-Hyun Cho
- Department of Prosthodontics, School of Dentistry, Kyoungpook National University, Daegu, Republic of Korea
| |
Collapse
|
239
|
Goodin BR, Ness TJ, Robbins MT. Oxytocin - a multifunctional analgesic for chronic deep tissue pain. Curr Pharm Des 2015; 21:906-13. [PMID: 25345612 PMCID: PMC4276444 DOI: 10.2174/1381612820666141027111843] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022]
Abstract
The treatment of chronic pain arising from deep tissues is currently inadequate and there is need for new pharmacological agents to provide analgesia. The endogenous paracrine hormone/neurotransmitter oxytocin is intimately involved in the modulation of multiple physiological and psychological functions. Recent experiments have given clear evidence for a role of oxytocin in the modulation of nociception. The present article reviews the existent human and basic science data related to the direct and indirect effects of oxytocin on pain. Due to its analgesic, anxiolytic, antidepressant and other central nervous system effects, there is strong evidence that oxytocin and other drugs acting through the oxytocin receptor could act as multifunctional analgesics with unique therapeutic value.
Collapse
Affiliation(s)
| | | | - Meredith T Robbins
- Departments of Psychology and Anesthesiology, University of Alabama at Birmingham (UAB), 1300 University Blvd., Campbell Hall, Room 328, Birmingham, AL 35294.
| |
Collapse
|
240
|
Zeglin RJ, DeRaedt MR, Lanthier RP. Does Having Children Moderate the Effect of Child Sexual Abuse on Depression? JOURNAL OF CHILD SEXUAL ABUSE 2015; 24:607-626. [PMID: 26340070 DOI: 10.1080/10538712.2015.1057664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/11/2015] [Indexed: 06/05/2023]
Abstract
Nearly 1 in 5 girls and 1 in 20 boys under the age of 18 will be the victim of child sexual abuse. As adults, these individuals are more likely to report myriad mental illnesses including depression. Testing the hypothesis that having children would moderate the depressive effects of child sexual abuse, the authors used public-use data of the National Longitudinal Study of Adolescent Health Wave IV (n = 5,114; mean age = 29.00 years; SD = 1.78). Results indicate that having children significantly moderates the relationship between child sexual abuse and depression for females. Though the risk of depression is increased for all females with a child sexual abuse history, this increase is less dramatic for mothers. Two potential explanations of this effect are presented: biological and psychosocial. The possible implications for mental health professionals working with mothers with a child sexual abuse history include highlighting the role of their children as possible support.
Collapse
Affiliation(s)
- Robert J Zeglin
- a Department of Counseling and Human Development , The George Washington University , Washington , DC , USA
| | | | | |
Collapse
|
241
|
Rich ME, Caldwell HK. A Role for Oxytocin in the Etiology and Treatment of Schizophrenia. Front Endocrinol (Lausanne) 2015; 6:90. [PMID: 26089815 PMCID: PMC4453483 DOI: 10.3389/fendo.2015.00090] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/15/2015] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder estimated to affect 51 million people worldwide. Several symptom domains characterize schizophrenia, including negative symptoms, such as social withdrawal and anhedonia, cognitive impairments, such as disorganized thinking and impaired memory, and positive symptoms, such as hallucinations and delusions. While schizophrenia is a complex neuropsychiatric disorder with no single "cause," there is evidence that the oxytocin (Oxt) system may be dysregulated in some individuals. Further, treatment with intranasal Oxt reduces some of the heterogeneous symptoms associated with schizophrenia. Since Oxt is known for its modulatory effects on a variety of social and non-social behaviors, it is perhaps not surprising that it may contribute to some aspects of schizophrenia and could also be a useful therapeutic agent. In this review, we highlight what is known about Oxt's contributions to schizophrenia and schizophrenia-related behaviors and discuss its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Megan Elizabeth Rich
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Heather Kingsley Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, Kent, OH, USA
- *Correspondence: Heather Kingsley Caldwell, Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, The School of Biomedical Sciences, Kent State University, PO Box 5190, 121 Cunningham Hall, Kent, OH 44242, USA,
| |
Collapse
|
242
|
Klockars A, Levine AS, Olszewski PK. Central oxytocin and food intake: focus on macronutrient-driven reward. Front Endocrinol (Lausanne) 2015; 6:65. [PMID: 25972841 PMCID: PMC4412129 DOI: 10.3389/fendo.2015.00065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022] Open
Abstract
Centrally acting oxytocin (OT) is known to terminate food consumption in response to excessive stomach distension, increase in salt loading, and presence of toxins. Hypothalamic-hindbrain OT pathways facilitate these aspects of OT-induced hypophagia. However, recent discoveries have implicated OT in modifications of feeding via reward circuits: OT has been found to differentially affect consumption of individual macronutrients in choice and no-choice paradigms. In this mini-review, we focus on presenting and interpreting evidence that defines OT as a key component of mechanisms that reduce eating for pleasure and shape macronutrient preferences. We also provide remarks on challenges in integrating the knowledge on physiological and pathophysiological states in which both OT activity and macronutrient preferences are affected.
Collapse
Affiliation(s)
- Anica Klockars
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Allen Stuart Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Pawel Karol Olszewski
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- *Correspondence: Pawel Karol Olszewski, Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand,
| |
Collapse
|
243
|
Clark-Elford R, Nathan PJ, Auyeung B, Mogg K, Bradley BP, Sule A, Müller U, Dudas RB, Sahakian BJ, Baron-Cohen S. Effects of oxytocin on attention to emotional faces in healthy volunteers and highly socially anxious males. Int J Neuropsychopharmacol 2014; 18:pyu012. [PMID: 25552432 PMCID: PMC4368883 DOI: 10.1093/ijnp/pyu012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evidence suggests that individuals with social anxiety demonstrate vigilance to social threat, whilst the peptide hormone oxytocin is widely accepted as supporting affiliative behaviour in humans. METHODS This study investigated whether oxytocin can affect attentional bias in social anxiety. In a double-blind, randomized, placebo-controlled, within-group study design, 26 healthy and 16 highly socially anxious (HSA) male volunteers (within the HSA group, 10 were diagnosed with generalized social anxiety disorder) were administered 24 IU of oxytocin or placebo to investigate attentional processing in social anxiety. Attentional bias was assessed using the dot-probe paradigm with angry, fearful, happy and neutral face stimuli. RESULTS In the baseline placebo condition, the HSA group showed greater attentional bias for emotional faces than healthy individuals. Oxytocin reduced the difference between HSA and non-socially anxious individuals in attentional bias for emotional faces. Moreover, it appeared to normalize attentional bias in HSA individuals to levels seen in the healthy population in the baseline condition. The biological mechanisms by which oxytocin may be exerting these effects are discussed. CONCLUSIONS These results, coupled with previous research, could indicate a potential therapeutic use of this hormone in treatment for social anxiety.
Collapse
Affiliation(s)
- Rebecca Clark-Elford
- Department of Psychiatry, University of Cambridge, UK (Mrs Clark Elford, Professors Nathan, Mogg, Bradley, Sahakian,and Baron-Cohen, and Drs Auyeung, Sule, Muller, and Dudas ); Cambridge Cognition Ltd, Cambridge, UK (Dr Nathan); School of Psychology and Psychiatry, Monash University, Australia (Dr Nathan); Autism Research Centre, Department of Psychiatry, University of Cambridge, UK (Drs Auyeung and Baron-Cohen); Department of Psychology, University of Edinburgh, UK (Dr Auyeung); South Essex NHS Partnership Trust, UK (Dr Sule); Psychology, University of Southampton, UK (Drs Mogg and Bradley); Cambridgeshire and Peterborough NHS Foundation Trust (CPFT), UK (Drs Müller, Dudas, and Baron-Cohen); MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge (Dr Sahakian).
| | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Evolutionary pattern in the OXT-OXTR system in primates: coevolution and positive selection footprints. Proc Natl Acad Sci U S A 2014; 112:88-93. [PMID: 25535371 DOI: 10.1073/pnas.1419399112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxytocin is a nonapeptide involved in a wide range of physiologic and behavioral functions. Until recently, it was believed that an unmodified oxytocin sequence was present in all placental mammals. This study analyzed oxytocin (OXT) in 29 primate species and the oxytocin receptor (OXTR) in 21 of these species. We report here three novel OXT forms in the New World monkeys, as well as a more extensive distribution of a previously described variant (Leu8Pro). In structural terms, these OXTs share the same three low-energy conformations in solution during molecular dynamic simulations, with subtle differences in their side chains. A consistent signal of positive selection was detected in the Cebidae family, and OXT position 8 showed a statistically significant (P = 0.013) correlation with litter size. Several OXTR changes were identified, some of them promoting gain or loss of putative phosphorylation sites, with possible consequences for receptor internalization and desensitization. OXTR amino acid sites are under positive selection, and intramolecular and intermolecular coevolutionary processes with OXT were also detected. We suggest that some New World monkey OXT-OXTR forms can be correlated to male parental care through the increase of cross-reactivity with its correlated vasopressin system.
Collapse
|
245
|
Song Z, McCann KE, McNeill JK, Larkin TE, Huhman KL, Albers HE. Oxytocin induces social communication by activating arginine-vasopressin V1a receptors and not oxytocin receptors. Psychoneuroendocrinology 2014; 50:14-9. [PMID: 25173438 PMCID: PMC4252597 DOI: 10.1016/j.psyneuen.2014.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Arginine-vasopressin (AVP) and oxytocin (OT) and their receptors are very similar in structure. As a result, at least some of the effects of these peptides may be the result of crosstalk between their canonical receptors. The present study investigated this hypothesis by determining whether the induction of flank marking, a form of social communication in Syrian hamsters, by OT is mediated by the OT receptor or the AVP V1a receptor. Intracerebroventricular (ICV) injections of OT or AVP induced flank marking in a dose-dependent manner although the effects of AVP were approximately 100 times greater than those of OT. Injections of highly selective V1a receptor agonists but not OT receptor agonists induced flank marking, and V1a receptor antagonists but not OT receptor antagonists significantly inhibited the ability of OT to induce flank marking. Lastly, injection of alpha-melanocyte-stimulating hormone (α-MSH), a peptide that stimulates OT but not AVP release, significantly increased odor-induced flank marking, and these effects were blocked by a V1a receptor antagonist. These data demonstrate that OT induces flank marking by activating AVP V1a and not OT receptors, suggesting that the V1a receptor should be considered to be an OT receptor as well as an AVP receptor.
Collapse
Affiliation(s)
- Zhimin Song
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Katharine E McCann
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - John K McNeill
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Tony E Larkin
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Kim L Huhman
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - H Elliott Albers
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
246
|
Sevoflurane-induced down-regulation of hippocampal oxytocin and arginine vasopressin impairs juvenile social behavioral abilities. J Mol Neurosci 2014; 56:70-7. [PMID: 25417719 PMCID: PMC4382529 DOI: 10.1007/s12031-014-0468-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Cumulative evidence indicates that early childhood anesthesia can alter a child's future behavioral performance. Animal researchers have found that sevoflurane, the most commonly used anesthetic for children, can produce damage in the neonatal brains of rodents. To further investigate this phenomenon, we focused on the influence of sevoflurane anesthesia on the development of juvenile social behavioral abilities and the pro-social proteins oxytocin (OT) and arginine vasopressin (AVP) in the neonatal hippocampus. A single 6-h sevoflurane exposure for postnatal day 5 mice resulted in decreased OT and AVP messenger RNA (mRNA) and protein levels in the hippocampus. OT and AVP proteins became sparsely distributed in the dorsal hippocampus after the exposure to sevoflurane. Compared with the air-treated group, mice in the sevoflurane-treated group showed signs of impairment in social recognition memory formation and social discrimination ability. Sevoflurane anesthesia reduces OT and AVP activities in the neonatal hippocampus and impairs social recognition memory formation and social discrimination ability in juvenile mice.
Collapse
|
247
|
Taylor AE, Lee HE, Buisman-Pijlman FTA. Oxytocin treatment in pediatric populations. Front Behav Neurosci 2014; 8:360. [PMID: 25360094 PMCID: PMC4199258 DOI: 10.3389/fnbeh.2014.00360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/29/2014] [Indexed: 12/30/2022] Open
Abstract
The role of endogenous oxytocin as neuromodulator of birth, lactation and social behaviors is well-recognized. Moreover, the use of oxytocin as a facilitator of social and other behaviors is becoming more and more accepted. Many positive effects have been attributed to intranasal oxytocin administration in animals and humans; with current research highlighting encouraging advances in its potential for use in mental health disorders. The new frontier will be investigating the effective use of oxytocin in pediatric populations. Limited animal data is available on this. Large-scale human studies focusing on autism are currently under way, but many other possibilities seem to lie in the future. However, we need to know more about the risks and effects of repeated use on the developing brain and body. This paper will provide an overview of the current understanding of the role of endogenous oxytocin and its related neuropeptide systems in influencing behaviors, in particular attachment, and will review (a) the literature on the use of intranasal oxytocin in young animals, children (age range birth-12 years) and adolescents (age range 13-19 years), (b) the expected benefits and risks based on the current research, and (c) the risks of oxytocin in children with severe psychopathology and early life trauma. The paper will conclude with a clinical perspective on these findings.
Collapse
Affiliation(s)
- Adrienne E Taylor
- Department of Psychological Medicine, Women's and Children's Hospital Adelaide, SA, Australia
| | - Hsu-En Lee
- Department of Psychological Medicine, Women's and Children's Hospital Adelaide, SA, Australia ; School of Medicine, The University of Adelaide Adelaide, SA, Australia
| | - Femke T A Buisman-Pijlman
- Discipline of Pharmacology, Faculty of Health Sciences, School of Medical Sciences, The University of Adelaide Adelaide, SA, Australia
| |
Collapse
|
248
|
Amaral NO, de Oliveira TS, Naves LM, Filgueira FP, Ferreira-Neto ML, Schoorlemmer GHM, de Castro CH, Freiria-Oliveira AH, Xavier CH, Colugnati DB, Rosa DA, Blanch GT, Borges CL, Soares CMA, Reis AAS, Cravo SL, Pedrino GR. Efferent pathways in sodium overload-induced renal vasodilation in rats. PLoS One 2014; 9:e109620. [PMID: 25279805 PMCID: PMC4184892 DOI: 10.1371/journal.pone.0109620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/11/2014] [Indexed: 11/19/2022] Open
Abstract
Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280–350 g) were anesthetized with sodium thiopental (40 mg. kg−1, i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6), OT infusion (0.03 µg • kg−1, i.v.) induced renal vasodilation. Consistent with this result, exvivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg−1 b.wt., i.v.) was infused over 60 s. In sham rats (n = 6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg−1 • h−1, i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.
Collapse
Affiliation(s)
- Nathalia O. Amaral
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiago S. de Oliveira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lara M. Naves
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernando P. Filgueira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcos L. Ferreira-Neto
- Faculty of Physical Education, Biological Sciences Institute, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Carlos H. de Castro
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - André H. Freiria-Oliveira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos H. Xavier
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Diego B. Colugnati
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Daniel A. Rosa
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Graziela T. Blanch
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Clayton L. Borges
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Célia M. A. Soares
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Angela A. S. Reis
- Department of Biochemistry and Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sergio L. Cravo
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo R. Pedrino
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
- * E-mail:
| |
Collapse
|
249
|
Gigliucci V, Leonzino M, Busnelli M, Luchetti A, Palladino VS, D’Amato FR, Chini B. Region specific up-regulation of oxytocin receptors in the opioid oprm1 (-/-) mouse model of autism. Front Pediatr 2014; 2:91. [PMID: 25225634 PMCID: PMC4150055 DOI: 10.3389/fped.2014.00091] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/13/2014] [Indexed: 11/15/2022] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by impaired communication, social impairments, and restricted and repetitive behaviors and interests. Recently, altered motivation and reward processes have been suggested to participate in the physiopathology of ASDs, and μ-opioid receptors (MORs) have been investigated in relation to social reward due to their involvement in the neural circuitry of reward. Mice lacking a functional MOR gene (Oprm1 (-/-) mice) display abnormal social behavior and major autistic-like core symptoms, making them an animal model of autism. The oxytocin (OXT) system is a key regulator of social behavior and co-operates with the opioidergic system in the modulation of social behavior. To better understand the opioid-OXT interplay in the central nervous system, we first determined the expression of the oxytocin receptor (OXTR) in the brain of WT C57BL6/J mice by quantitative autoradiography; we then evaluated OXTR regional alterations in Oprm1 (-/-) mice. Moreover, we tested these mice in a paradigm of social behavior, the male-female social interaction test, and analyzed the effects of acute intranasal OXT treatment on their performance. In autoradiography, Oprm1 (-/-) mice selectively displayed increased OXTR expression in the Medial Anterior Olfactory Nucleus, the Central and Medial Amygdaloid nuclei, and the Nucleus Accumbens. Our behavioral results confirmed that Oprm1 (-/-) male mice displayed social impairments, as indicated by reduced ultrasonic calls, and that these were rescued by a single intranasal administration of OXT. Taken together, our results provide evidence of an interaction between OXT and opioids in socially relevant brain areas and in the modulation of social behavior. Moreover, they suggest that the oxytocinergic system may act as a compensative mechanism to bypass and/or restore alterations in circuits linked to impaired social behavior.
Collapse
Affiliation(s)
| | - Marianna Leonzino
- Institute of Neuroscience, National Research Council, Milan, Italy
- Dipartimento di Biotecnologie e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marta Busnelli
- Institute of Neuroscience, National Research Council, Milan, Italy
- Dipartimento di Biotecnologie e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
| | | | - Francesca R. D’Amato
- Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Bice Chini
- Institute of Neuroscience, National Research Council, Milan, Italy
- Dipartimento di Biotecnologie e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
250
|
Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 2014; 509:325-30. [PMID: 24828191 PMCID: PMC4105201 DOI: 10.1038/nature13307] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 04/02/2014] [Indexed: 11/11/2022]
Abstract
Mice display robust, stereotyped behaviors toward pups: virgin males typically attack pups, while virgin females and sexually experienced males and females display parental care. We show here that virgin males genetically impaired in vomeronasal sensing do not attack pups and are parental. Further, we uncover a subset of galanin-expressing neurons in the medial preoptic area (MPOA) that are specifically activated during male and female parenting, and a different subpopulation activated during mating. Genetic ablation of MPOA galanin neurons results in dramatic impairment of parental responses in males and females and affects male mating. Optogenetic activation of these neurons in virgin males suppresses inter-male and pup-directed aggression and induces pup grooming. Thus, MPOA galanin neurons emerge as an essential regulatory node of male and female parenting behavior and other social responses. These results provide an entry point to a circuit-level dissection of parental behavior and its modulation by social experience.
Collapse
Affiliation(s)
- Zheng Wu
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Anita E Autry
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Joseph F Bergan
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Catherine G Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|