201
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
202
|
Inflammation, Frailty and Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1216:55-64. [PMID: 31894547 DOI: 10.1007/978-3-030-33330-0_7] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inflammation, which is called "inflamm-aging" , is characterized by an increased level of inflammatory cytokines in response to physiological and environmental stressors, and causes the immune system to function consistently at a low level, even though it is not effective. Possible causes of inflammaging include genetic susceptibility, visceral obesity, changes in gut microbiota and permeability, chronic infections and cellular senescence. Inflammation has a role in the development of many age-related diseases, such as frailty. Low grade chronic inflammation can also increase the risk of atherosclerosis and insulin resistance which are the leading mechanisms in the development of cardiovascular diseases (CVD). As it is well known that the risk of CVD is higher in older people with frailty and the risk of frailty is higher in patients with CVD, there may be relationship between inflammation and the development of CVD and frailty. Therefore, this important issue will be discussed in this chapter.
Collapse
|
203
|
The Experimental Pathology at Ancona: 50 Years of Exciting and Pioneering Research on Human Pathology. THE FIRST OUTSTANDING 50 YEARS OF “UNIVERSITÀ POLITECNICA DELLE MARCHE” 2020. [PMCID: PMC7120276 DOI: 10.1007/978-3-030-33832-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Half century ago, a few academic pioneers founded the laboratories of experimental and ultrastructural pathology in Ancona. From this origin, a new phase of experimental studies developed aimed at translational and clinical research up to the present, when our group is internationally recognized for its fundamental contributions in gerontological research and molecular diagnostic pathology. Since the desire of immortality and of eternal youth seems to be as old as mankind, in the future we plan to focus our scientific research on Regenerative Medicine and Rejuvenation strategies. This is the most ambitious aim in the framework of the world aging population. We do not know whether we would achieve these results by ourselves. We are confident that, as in the past, new generations of scientist of the school of experimental pathology at Ancona will get the baton by the older one and lead the future with the same enthusiasm, love and commitment.
Collapse
|
204
|
Josi R, Bianchi M. Advanced practice nurses, registered nurses and medical practice assistants in new care models in Swiss primary care: a focused ethnography of their professional roles. BMJ Open 2019; 9:e033929. [PMID: 31892666 PMCID: PMC6955521 DOI: 10.1136/bmjopen-2019-033929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES We aimed to analyse roles and tasks of advanced practice nurses (APNs), registered nurses (RNs) without advanced practice education and medical practice assistants (MPAs) with regard to chronic care in Swiss primary care (PC). The objective of this study was to explore the potential of new care models, involving these health professionals, which could meet changing future healthcare needs. DESIGN An ethnographic design comprising semi-structured interviews and non-participant observations was conducted. SETTING Health professionals who worked in 10 primary care practices in the German-speaking part of Switzerland were included in the study. PARTICIPANTS In total, 16 interviews were conducted with four APNs, six MPAs, two RNs and four general practitioners (GPs). Nine of the health professionals were subsequently observed in their primary care practice. RESULTS APNs and MPAs were both involved in chronic care in the PC practice. While APNs cared for older, multimorbid patients with more complex needs, MPAs were involved in counselling of younger patients with chronic disease such as type 2 diabetes. Additionally, APNs were involved in many home visits and visits in elderly peoples - and nursing homes. APNs worked with a high degree of autonomy while MPAs had worked mostly in delegation. Task division between GPs and APNs or MPAs was not clear in every case yet. CONCLUSIONS APNs and MPAs have a high potential to contribute to optimal care in new care models, which address needs of the elderly population. The experience from our sample may inform international health policymakers and practitioners about the tasks and responsibilities those health professionals can take over in PC when implementing new models of care. The practical experience with new models of care involving APNs and MPAs may also influence the future regulation with regard to the scope of practice of these health professionals in Switzerland.
Collapse
Affiliation(s)
- Renata Josi
- Dipartimento economia aziendale sanità e sociale, Scuola Universitaria Professionale della Svizzeria Italiana, Manno, Switzerland
| | - Monica Bianchi
- Dipartimento economia aziendale sanità e sociale, Scuola Universitaria Professionale della Svizzera Italiana, Manno, Switzerland
| |
Collapse
|
205
|
lncRNA-Triggered Macrophage Inflammaging Deteriorates Age-Related Diseases. Mediators Inflamm 2019; 2019:4260309. [PMID: 31949425 PMCID: PMC6942909 DOI: 10.1155/2019/4260309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Aging and age-related diseases (ARDs) share basic mechanisms largely involving inflammation. A chronic, low-grade, subclinical inflammation called inflammaging occurs during aging. Autophagy defects, oxidative stresses, senescence-associated secretory phenotypes (SASPs), and DNA damage generally contribute to inflammaging and are largely regulated by numerous lncRNA through two-level vicious cycles disrupting cellular homeostasis: (1) inflammaging and the cellular senescence cascade and (2) autophagy defects, oxidative stress, and the SASP cascade. SASPs and inflammasomes simultaneously cause inflammaging. This review discusses the involvement of macrophage inflammaging in various ARDs and its regulation via lncRNA. Among macrophages, this phenomenon potentially impairs its immunosurveillance and phagocytosis mechanisms, leading to decreased recognition and clearance of malignant and senescent cells. Moreover, SASPs extracellularly manifest to induce paracrine senescence. Macrophage senescence escalates to organ level malfunction, and the organism is more prone to ARDs. By targeting genes and proteins or functioning as competing endogenous RNA (ceRNA), lncRNA regulates different phenomena including inflammaging and ARDs. The detailed mechanism warrants further elucidation to obtain pathological evidence of ARDs and potential treatment approaches.
Collapse
|
206
|
Fulop T, Larbi A, Khalil A, Cohen AA, Witkowski JM. Are We Ill Because We Age? Front Physiol 2019; 10:1508. [PMID: 31956310 PMCID: PMC6951428 DOI: 10.3389/fphys.2019.01508] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
Growing elderly populations, sometimes referred to as gray (or silver) tsunami, are an increasingly serious health and socioeconomic concern for modern societies. Science has made tremendous progress in the understanding of aging itself, which has helped medicine to extend life expectancies. With the increase of the life expectancy, the incidence of chronic age-related diseases (ARDs) has also increased. A new approach trying to solve this problem is the concept of geroscience. This concept implies that the aging process itself is the common cause of all ARDs. The corollary and consequence of such thinking is that we can and should treat aging itself as a disease. How to translate this into the medical practice is a big challenge, but if we consider aging as a disease the problem is solved. However, as there is no common definition of what aging is, what its causes are, why it occurs, and what should be the target(s) for interventions, it is impossible to conclude that aging is a disease. On the contrary, aging should be strongly considered not to be a disease and as such should not be treated; nonetheless, aging is likely amenable to optimization of changes/adaptations at an individual level to achieve a better functional healthspan.
Collapse
Affiliation(s)
- Tamas Fulop
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Biopolis, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, University of Singapore, Singapore, Singapore
- Department of Biology, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Abdelouahed Khalil
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Alan A. Cohen
- Department of Family Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
207
|
Sabbatinelli J, Prattichizzo F, Olivieri F, Procopio AD, Rippo MR, Giuliani A. Where Metabolism Meets Senescence: Focus on Endothelial Cells. Front Physiol 2019; 10:1523. [PMID: 31920721 PMCID: PMC6930181 DOI: 10.3389/fphys.2019.01523] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the decline in their proliferative potential, senescent cells display a high metabolic activity. Senescent cells have been shown to acquire a more glycolytic state even in presence of high oxygen levels, in a way similar to cancer cells. The diversion of pyruvate, the final product of glycolysis, away from oxidative phosphorylation results in an altered bioenergetic state and may occur as a response to the enhanced oxidative stress caused by the accumulation of dysfunctional mitochondria. This metabolic shift leads to increased AMP/ATP and ADP/ATP ratios, to the subsequent AMPK activation, and ultimately to p53-mediated growth arrest. Mounting evidences suggest that metabolic reprogramming is critical to direct considerable amounts of energy toward specific activities related to the senescent state, including the senescence-associated secretory phenotype (SASP) and the modulation of immune responses within senescent cell tissue microenvironment. Interestingly, despite the relative abundance of oxygen in the vascular compartment, healthy endothelial cells (ECs) produce most of their ATP content from the anaerobic conversion of glucose to lactate. Their high glycolytic rate further increases during senescence. Alterations in EC metabolism have been identified in age-related diseases (ARDs) associated with a dysfunctional vasculature, including atherosclerosis, type 2 diabetes and cardiovascular diseases. In particular, higher production of reactive oxygen species deriving from a variety of enzymatic sources, including uncoupled endothelial nitric oxide synthase and the electron transport chain, causes DNA damage and activates the NAD+-consuming enzymes polyADP-ribose polymerase 1 (PARP1). These non-physiological mechanisms drive the impairment of the glycolytic flux and the diversion of glycolytic intermediates into many pathological pathways. Of note, accumulation of senescent ECs has been reported in the context of ARDs. Through their pro-oxidant, pro-inflammatory, vasoconstrictor, and prothrombotic activities, they negatively impact on vascular physiology, promoting both the onset and development of ARDs. Here, we review the current knowledge on the cellular senescence-related metabolic changes and their contribution to the mechanisms underlying the pathogenesis of ARDs, with a particular focus on ECs. Moreover, current and potential interventions aimed at modulating EC metabolism, in order to prevent or delay ARD onset, will be discussed.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
208
|
Schein TN, Blackburn TE, Heath SL, Barnum SR. Plasma levels of soluble membrane attack complex are elevated despite viral suppression in HIV patients with poor immune reconstitution. Clin Exp Immunol 2019; 198:359-366. [PMID: 31461782 PMCID: PMC6857077 DOI: 10.1111/cei.13366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
The complement system is now a therapeutic target for the management of serious and life-threatening conditions such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, glomerulonephritis and other diseases caused by complement deficiencies or genetic variants. As complement therapeutics expand into more clinical conditions, monitoring complement activation is increasingly important, as is the baseline levels of complement activation fragments in blood or other body fluid levels. Although baseline complement levels have been reported in the literature, the majority of these data were generated using non-standard assays and with variable sample handling, potentially skewing results. In this study, we examined the plasma and serum levels of the soluble membrane attack complex of complement (sMAC). sMAC is formed in the fluid phase when complement is activated through the terminal pathway. It binds the regulatory proteins vitronectin and/or clusterin and cannot insert into cell membranes, and can serve as a soluble diagnostic marker in infectious disease settings, as previously shown for intraventricular shunt infections. Here we show that in healthy adults, serum sMAC levels were significantly higher than those in plasma, that plasma sMAC levels were similar between in African Americans and Caucasians and that plasma sMAC levels increase with age. Plasma sMAC levels were significantly higher in virally suppressed people living with HIV (PLWH) compared to non-HIV infected healthy donors. More specifically, PLWH with CD4+ T cell counts below 200 had even greater sMAC levels, suggesting diagnostic value in monitoring sMAC levels in this group.
Collapse
Affiliation(s)
- T. N. Schein
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - T. E. Blackburn
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - S. L. Heath
- Department of Medicine, Division of Infectious DiseaseUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - S. R. Barnum
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
209
|
Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW. Dissecting Aging and Senescence-Current Concepts and Open Lessons. Cells 2019; 8:cells8111446. [PMID: 31731770 PMCID: PMC6912776 DOI: 10.3390/cells8111446] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
In contrast to the programmed nature of development, it is still a matter of debate whether aging is an adaptive and regulated process, or merely a consequence arising from a stochastic accumulation of harmful events that culminate in a global state of reduced fitness, risk for disease acquisition, and death. Similarly unanswered are the questions of whether aging is reversible and can be turned into rejuvenation as well as how aging is distinguishable from and influenced by cellular senescence. With the discovery of beneficial aspects of cellular senescence and evidence of senescence being not limited to replicative cellular states, a redefinition of our comprehension of aging and senescence appears scientifically overdue. Here, we provide a factor-based comparison of current knowledge on aging and senescence, which we converge on four suggested concepts, thereby implementing the newly emerging cellular and molecular aspects of geroconversion and amitosenescence, and the signatures of a genetic state termed genosenium. We also address the possibility of an aging-associated secretory phenotype in analogy to the well-characterized senescence-associated secretory phenotype and delineate the impact of epigenetic regulation in aging and senescence. Future advances will elucidate the biological and molecular fingerprints intrinsic to either process.
Collapse
Affiliation(s)
- Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
- Correspondence:
| | - Alexandra Kretz
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Diane Wengerodt
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
| | - Milan Stojiljkovic
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| |
Collapse
|
210
|
Vaiserman A, Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics. Ageing Res Rev 2019; 55:100957. [PMID: 31473332 DOI: 10.1016/j.arr.2019.100957] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
Traditionally, genetics and lifestyle are considered as main determinants of aging-associated pathological conditions. Accumulating evidence, however, suggests that risk of many age-related diseases is not only determined by genetic and adult lifestyle factors but also by factors acting during early development. Type 2 diabetes (T2D), an age-related disease generally manifested after the age of 40, is among such disorders. Since several age-related conditions, such as pro-inflammatory states, are characteristic of both T2D and aging, this disease is conceptualized by many authors as a kind of premature or accelerated aging. There is substantial evidence that intrauterine growth restriction (IUGR), induced by poor or unbalanced nutrient intake, exposure to xenobiotics, maternal substance abuse etc., may impair fetal development, thereby causing the fetal adipose tissue and pancreatic beta cell dysfunction. Consequently, persisting adaptive changes may occur in the glucose-insulin metabolism, including reduced capacity for insulin secretion and insulin resistance. These changes can lead to an improved ability to store fat, thus predisposing to T2D development in later life. The modulation of epigenetic regulation of gene expression likely plays a central role in linking the adverse environmental conditions early in life to the risk of T2D in adulthood. In animal models of IUGR, long-term persistent changes in both DNA methylation and expression of genes implicated in metabolic processes have been repeatedly reported. Findings from human studies confirming the role of epigenetic mechanisms in linking early-life adverse experiences to the risk for T2D in adult life are scarce compared to data from animal studies, mainly because of limited access to suitable biological samples. It is, however, convincing evidence that these mechanisms may also operate in human beings. In this review, theoretical models and research findings evidencing the role of developmental epigenetic variation in the pathogenesis of T2D are summarized and discussed.
Collapse
Affiliation(s)
| | - Oleh Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
211
|
Sorgdrager FJH, Naudé PJW, Kema IP, Nollen EA, Deyn PPD. Tryptophan Metabolism in Inflammaging: From Biomarker to Therapeutic Target. Front Immunol 2019; 10:2565. [PMID: 31736978 PMCID: PMC6833926 DOI: 10.3389/fimmu.2019.02565] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation aims to restore tissue homeostasis after injury or infection. Age-related decline of tissue homeostasis causes a physiological low-grade chronic inflammatory phenotype known as inflammaging that is involved in many age-related diseases. Activation of tryptophan (Trp) metabolism along the kynurenine (Kyn) pathway prevents hyperinflammation and induces long-term immune tolerance. Systemic Trp and Kyn levels change upon aging and in age-related diseases. Moreover, modulation of Trp metabolism can either aggravate or prevent inflammaging-related diseases. In this review, we discuss how age-related Kyn/Trp activation is necessary to control inflammaging and alters the functioning of other metabolic faiths of Trp including Kyn metabolites, microbiota-derived indoles and nicotinamide adenine dinucleotide (NAD+). We explore the potential of the Kyn/Trp ratio as a biomarker of inflammaging and discuss how intervening in Trp metabolism might extend health- and lifespan.
Collapse
Affiliation(s)
- Freek J H Sorgdrager
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ellen A Nollen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
212
|
Ekmekcioglu C. Nutrition and longevity – From mechanisms to uncertainties. Crit Rev Food Sci Nutr 2019; 60:3063-3082. [DOI: 10.1080/10408398.2019.1676698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
213
|
Mughal TI, Deininger MW, Kucine N, Saglio G, Van Etten RA. Children and Adolescents with Chronic Myeloproliferative Neoplasms: Still an Unmet Biological and Clinical Need? Hemasphere 2019; 3:e283. [PMID: 31942538 PMCID: PMC6919464 DOI: 10.1097/hs9.0000000000000283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
|
214
|
Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, Zhou T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int J Mol Sci 2019; 20:E4472. [PMID: 31510091 PMCID: PMC6769561 DOI: 10.3390/ijms20184472] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that a chronic state of inflammation correlated with aging known as inflammaging, is implicated in multiple disease states commonly observed in the elderly population. Inflammaging is associated with over-abundance of reactive oxygen species in the cell, which can lead to oxidation and damage of cellular components, increased inflammation, and activation of cell death pathways. This review focuses on inflammaging and its contribution to various age-related diseases such as cardiovascular disease, cancer, neurodegenerative diseases, chronic obstructive pulmonary disease, diabetes, and rheumatoid arthritis. Recently published mechanistic details of the roles of reactive oxygen species in inflammaging and various diseases will also be discussed. Advancements in potential treatments to ameliorate inflammaging, oxidative stress, and consequently, reduce the morbidity of multiple disease states will be explored.
Collapse
Affiliation(s)
- Li Zuo
- College of Arts and Sciences, University of Maine Presque Isle Campus, Presque Isle, ME 04769, USA.
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Evan R Prather
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mykola Stetskiv
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Davis E Garrison
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - James R Meade
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Timotheus I Peace
- College of Arts and Sciences, University of Maine Presque Isle Campus, Presque Isle, ME 04769, USA
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
215
|
Ferri E, Casati M, Cesari M, Vitale G, Arosio B. Vitamin D in physiological and pathological aging: Lesson from centenarians. Rev Endocr Metab Disord 2019; 20:273-282. [PMID: 31654261 DOI: 10.1007/s11154-019-09522-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vitamin D is a secosteroid hormone that exerts a pleiotropic action on a wide spectrum of tissues, apparatuses and systems. Thus, vitamin D has assumed an increasingly dominant role as a key determinant of biological mechanisms and specific clinical conditions. Older people frequently present vitamin D deficiency, a status potentially influencing several mechanisms responsible for different age-related diseases. Centenarians symbolize the ideal model for investigating the peculiar traits of longevity, as they have reached an age close to the estimated limit of the human lifespan. Interestingly, despite the profound heterogeneity of centenarians in terms of health status, all these people share the same condition of severe vitamin D deficiency, suggesting that they may have implemented a number of adaptive strategies to cope with the age-related physiological derangement of vitamin D metabolism. The lesson deriving from centenarians' experience suggests that: i) severe vitamin D deficiency does not preclude the possibility of reaching extreme longevity, ii) strategies to prevent hypovitaminosis D may be useful to slow down the processes of "fragilization" occurring in aged people, iii) beneficial effects of vitamin D supplementation need to be confirmed regarding longevity.
Collapse
Affiliation(s)
- Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Casati
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Via Pace 9, 20122, Milan, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Via Pace 9, 20122, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica ed Oncologica, Milan, Cusano Milanino, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Via Pace 9, 20122, Milan, Italy.
| |
Collapse
|
216
|
Gruber JV, Holtz R. In vitro expression of NLRP inflammasome-induced active Caspase-1 expression in normal human epidermal keratinocytes (NHEK) by various exogenous threats and subsequent inhibition by naturally derived ingredient blends. J Inflamm Res 2019; 12:219-230. [PMID: 31692589 PMCID: PMC6716588 DOI: 10.2147/jir.s215776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background The discovery of the nod-like receptor protein (NLRP) inflammasomes in 2002 has led to the rapid identification of these unique cellular proteins as key targets for studies on innate inflammation pathways. The NLRP inflammasomes have been shown to be expressed in normal human epidermal keratinocytes (NHEK) and human dermal fibroblasts (HDF). NLRP inflammasomes in keratinocytes are interesting as these skin cells are the first living cells in the skin to contact external exogenous threats such as UV energy, chemicals, physical trauma, and bacteria and viruses. Activation of the NLRP Inflammasomes by exogenous threats results in the release of active Caspase-1 (ACasp-1), a key protease enzyme, which targets inactive forms of IL-1β, IL-18 as well as IL-1α and IL-33. Purpose This article discusses efforts to examine the release of active Caspase-1 from NHEKs activated by various exogenous threats including UVB energy, ATP, Nigericin and Urban Dust. The work further examines if, after inflammasome activation and Caspase-1 release, certain naturally derived botanical ingredients known to have anti-inflammatory effects can function to inhibit upregulation of active Caspase-1. Methods NHEK were treated with various doses of UVB, ATP and Nigericin and with a single dose of Urban Dust. ACasp-1 expression was measured after 3 and 20 hours using the Promega Caspase Glo-1 bioluminescent assay. After confirmation that 60 mJ/cm2 of UVB and 5mM of ATP were effective to activate NHEK ACasp-1 release after 20 hrs, these conditions were employed to examine the influence of three botanical blends of ingredients on their ability to inhibit ACasp-1 expression. Results Initial results demonstrate that NHEKs can be activated to release active Caspase-1 by ATP and UVB, but not by Nigericin or Urban Dust. In addition, it was unexpectedly found that, while ATP and UVB activated NHEKs, the release of ACasp-1-did not happen within the first 3 hours after exposure but did become significant after 20 hours. Additional results indicate that a blend of polysaccharides and two blends of antioxidants, one oil-soluble and the other water-soluble, known for their anti-inflammatory effects, can reduce expression of active Caspase-1 in activated NHEKs when applied extracellularly. Conclusion Expression of NLRP activated release of ACasp-1 was found to be influenced by UVB and ATP but not by Nigericin or Urban Dust. The effects were also time dependent. Several botanical extract blends were found to reduce ACasp-1 expression in previously activated NHEKs. Links between these inflammatory effects and processes of cellular inflammaging are discussed.
Collapse
Affiliation(s)
- James V Gruber
- Research and Development, BotanicalsPlus, Little Falls, NJ 07424, USA
| | - Robert Holtz
- Research and Development, Bioinnovation Laboratories, Inc, Lakewood, CO 80235, USA
| |
Collapse
|
217
|
Alam I, Gul R, Chong J, Tan CTY, Chin HX, Wong G, Doggui R, Larbi A. Recurrent circadian fasting (RCF) improves blood pressure, biomarkers of cardiometabolic risk and regulates inflammation in men. J Transl Med 2019; 17:272. [PMID: 31426866 PMCID: PMC6700786 DOI: 10.1186/s12967-019-2007-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background The effects of fasting on health in non-human models have been widely publicised for a long time and emerging evidence support the idea that these effects can be applicable to human practice. Methods In an open label longitudinal follow-up, a cohort of 78 adult men (aged 20 to 85 years) who fasted for 29 consecutive days from sunrise to sunset (16 h fasting—referred to as recurrent circadian fasting) in Pakistan, were studied. The primary outcomes of the fasting study was weight loss/recovery and the associated changes in blood pressure and circulating levels of surrogate markers linked to organ and system functions—including cardiovascular, metabolic and inflammation. Post-fasting outcomes include the regulation of physiological biomarkers. Results Recurrent circadian fasting with weight loss reduced blood pressure (140.6 vs. 124.2 mmHg) and markers of cardiovascular risk (~ 4-fold for resistin; triglycerides: p < 0.0001). Reduced glycemia (p < 0.0001) and the associated changes in the regulation of ketosis (β-hydroxybutyrate) were accompanied by a metabolic shift (PPARβ, osteoprotegerin), suggesting the involvement of the different physiological systems tested. Elevated orexin-A levels (p = 0.0183) in participants indicate sleep disturbance and circadian adaptation. All participants had CRP level < 2 mg/l during the fasting period and a similar trend was observed for TNFα. While most SASP molecules were decreased after the fasting period, heightened levels of IL-8 and IL-6 suggest that some inflammatory markers may be elevated by recurrent circadian fasting. Importantly, older adults reveal similar or more substantial benefits from fasting. Conclusions Recurrent circadian fasting is beneficial at the cardiometabolic and inflammatory levels, especially for at-risk individuals—this is contingent on compliance towards the recommended dietary behaviour, which controls carbohydrate and caloric intake. These benefits from fasting may be particularly beneficial to older adults as they often exhibit abnormal cardiovascular, metabolic and inflammatory signatures. Electronic supplementary material The online version of this article (10.1186/s12967-019-2007-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iftikhar Alam
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, King Abdullah Street, Riyadh, Kingdom of Saudi Arabia.,Department of Human Nutrition and Dietetics, Bacha Khan University, Charsaddah, KPK, Pakistan
| | - Rahmat Gul
- Department of Human Nutrition and Dietetics, Bacha Khan University, Charsaddah, KPK, Pakistan
| | - Joni Chong
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Crystal Tze Ying Tan
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Hui Xian Chin
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Glenn Wong
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Radhouene Doggui
- SURVEN (Nutrition Surveillance and Epidemiology in Tunisia) Research Laboratory, National Institute of Nutrition and Food Technology (INNTA), Tunis, Tunisia
| | - Anis Larbi
- Biology of Aging Laboratory, Singapore Immunology Network, Agency for Science Technology and Research, 8A Biomedical Grove, Singapore, 138648, Singapore. .,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
218
|
Nevalainen T, Autio A, Kummola L, Salomaa T, Junttila I, Jylhä M, Hurme M. CD27- IgD- B cell memory subset associates with inflammation and frailty in elderly individuals but only in males. IMMUNITY & AGEING 2019; 16:19. [PMID: 31423147 PMCID: PMC6693136 DOI: 10.1186/s12979-019-0159-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/02/2019] [Indexed: 01/08/2023]
Abstract
Background Immunosenescence, i.e. the aging-associated decline of the capacity of the immune system, is characterized by several distinct changes in the number and functions of the immune cells. In the case of B cells, the total number of CD19+ B cells is lower in the blood of elderly individuals than in the younger ones. CD19+ B cell population contains several subsets, which are commonly characterized by the presence of CD27 and IgD molecules, i.e. naïve B cells (CD27- IgD+), IgM memory (CD27+ IgD+), switched memory (CD27+ IgD-) and late memory (CD27- IgD-). This late memory, double negative, population represents cells which are nondividing, but are still able to produce inflammatory mediators and in this way maybe contributing to the aging-associated inflammation, inflammaging. Here we have focused on the role of these B cell subsets in elderly individuals, nonagenarians, in the regulation of inflammation and inflammation-associated decline of bodily functions. As the biological aging process demonstrates gender-specific characteristics, the analyses were performed separately in males and female. Results A subcohort of The Vitality 90+ study (67 nonagenarians, 22/45 males/females and 40 young controls, 13/27 males/females) was used. Flow cytometric analysis indicated that the total percentage of the CD19+ cells was ca. 50% lower in the nonagenarians than in the controls in both genders. The proportions of these four B cell subsets within the CD19+ populations were very similar in young and old individuals. Thus, it seems that the aging-associated decline of the total CD19+ cells affects similarly all these B cell subsets. To analyze the role of these subsets in the regulation of inflammation, the correlation with IL-6 levels was calculated. A significant correlation was observed only with the percentage of CD27- IgD- cells and only in males. As inflammation is associated with aging-associated functional performance and frailty, the correlations with the Barthel index and frailty score was analyzed. Again, only the CD27- IgD- population demonstrated a strong male-specific correlation. Conclusions These data show that the CD27- IgD- B cell subset demonstrates a strong pro-inflammatory effect in nonagenarians, which significantly associates with the decline of the bodily functions. However, this phenomenon is only observed in males.
Collapse
Affiliation(s)
- Tapio Nevalainen
- 1Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland.,3Gerontology Research Center, Tampere University, Tampere, Finland.,4Science Centre, Pirkanmaa Hospital District, Tampere, Finland
| | - Arttu Autio
- 1Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland.,3Gerontology Research Center, Tampere University, Tampere, Finland.,4Science Centre, Pirkanmaa Hospital District, Tampere, Finland
| | - Laura Kummola
- 1Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Tanja Salomaa
- 1Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Ilkka Junttila
- 1Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland.,Department of Clinical Microbiology, Fimlab Laboratories, Tampere, Finland
| | - Marja Jylhä
- 2Faculty of Social Sciences, Tampere University, Tampere, Finland.,3Gerontology Research Center, Tampere University, Tampere, Finland
| | - Mikko Hurme
- 1Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland.,3Gerontology Research Center, Tampere University, Tampere, Finland
| |
Collapse
|
219
|
Abstract
Objectives: Literature suggests C-reactive protein (CRP)-as a marker of low-grade systemic inflammation-may mediate the linkage between chronic stressors and cardiometabolic conditions. Previous population-based reports are based on weak methodologies and may have yielded incorrect inferences. The current study examined linkages of within-person CRP variation with corresponding variation in stressor burdens. Method: Data were from the 2006, 2010, and 2014 waves of the U.S. Health and Retirement Study. Analysis was through unit fixed effects and first-difference estimators. Both gender-combined and gender-specific models were run. Results: In none of the analyses was CRP positively associated with chronic stressors. This was true among both genders, and in models of linear as well as nonlinear change. Results held in a series of separate robustness checks. Discussion: CRP may not mediate the social etiology of degenerative diseases. Population representative evidence of inflammation's role in these processes remains absent.
Collapse
|
220
|
The role of elastin-derived peptides in human physiology and diseases. Matrix Biol 2019; 84:81-96. [PMID: 31295577 DOI: 10.1016/j.matbio.2019.07.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
Once considered as inert, the extracellular matrix recently revealed to be biologically active. Elastin is one of the most important components of the extracellular matrix. Many vital organs including arteries, lungs and skin contain high amounts of elastin to assure their correct function. Physiologically, the organism contains a determined quantity of elastin from the early development which may remain physiologically constant due to its very long half-life and very low turnover. Taking into consideration the continuously ongoing challenges during life, there is a physiological degradation of elastin into elastin-derived peptides which is accentuated in several disease states such as obstructive pulmonary diseases, atherosclerosis and aortic aneurysm. These elastin-derived peptides have been shown to have various biological effects mediated through their interaction with their cognate receptor called elastin receptor complex eliciting several signal transduction pathways. In this review, we will describe the production and the biological effects of elastin-derived peptides in physiology and pathology.
Collapse
|
221
|
Snyder LD, Singer LG. Beyond the eyeball test: Measures of frailty in lung transplantation. J Heart Lung Transplant 2019; 38:708-709. [DOI: 10.1016/j.healun.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022] Open
|
222
|
Mughal TI, Pemmaraju N, Radich JP, Deininger MW, Kucine N, Kiladjian JJ, Bose P, Gotlib J, Valent P, Chen CC, Barbui T, Rampal R, Verstovsek S, Koschmieder S, Saglio G, Van Etten RA. Emerging translational science discoveries, clonal approaches, and treatment trends in chronic myeloproliferative neoplasms. Hematol Oncol 2019; 37:240-252. [PMID: 31013548 DOI: 10.1002/hon.2622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022]
Abstract
The 60th American Society of Hematology (ASH) held in San Diego in December 2018 was followed by the 13th Post-ASH chronic myeloproliferative neoplasms (MPNs) workshop on December 4 and 5, 2018. This closed annual workshop, first introduced in 2006 by Goldman and Mughal, was organized in collaboration with Alpine Oncology Foundation and allowed experts in preclinical and clinical research in the chronic MPNs to discuss the current scenario, including relevant presentations at ASH, and address pivotal open questions that impact translational research and clinical management. This review is based on the presentations and deliberations at this workshop, and rather than provide a resume of the proceedings, we have selected some of the important translational science and treatment issues that require clarity. We discuss the experimental and observational evidence to support the intimate interaction between aging, inflammation, and clonal evolution of MPNs, the clinical impact of the unfolding mutational landscape on the emerging targets and treatment of MPNs, new methods to detect clonal heterogeneity, the challenges in managing childhood and adolescent MPN, and reflect on the treatment of systemic mastocytosis (SM) following the licensing of midostaurin.
Collapse
Affiliation(s)
- Tariq I Mughal
- Division of Hematology-Oncology, Tufts University Cancer Center, Boston, Massachusetts
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jerald P Radich
- Fred Hutch Cancer Research Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Nicole Kucine
- Division of Pediatric Hematology, Weill Cornell Medicine, New York, New York
| | | | - Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute, Stanford, California
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Chih-Cheng Chen
- Chang-Gung Memorial Hospital, Chiayi; College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tiziano Barbui
- Foundation for Clinical Research (FROM), Papa Giovanni XXIIII Hospital, Bergamo, Italy
| | - Raajit Rampal
- Division of Hematology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steffen Koschmieder
- Department of Medicine IV, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Giuseppe Saglio
- Divison of Hematology, Orbassano University Hospital, Turin, Italy
| | - Richard A Van Etten
- Division of Hematology-Oncology, University of California Irvine, Irvine, California
| |
Collapse
|
223
|
Fülöp T, Larbi A, Witkowski J. Human Inflammaging. Gerontology 2019; 65:495-504. [DOI: 10.1159/000497375] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/31/2019] [Indexed: 11/19/2022] Open
|
224
|
Circulating miR-146a in healthy aging and type 2 diabetes: Age- and gender-specific trajectories. Mech Ageing Dev 2019; 180:1-10. [PMID: 30880174 DOI: 10.1016/j.mad.2019.03.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023]
Abstract
To evaluate the combined effect of age and glycemic state on circulating levels of the inflamma-miR-146a levels, 188 healthy subjects (CTR) aged 20-104 years and 144 type-2 diabetic patients (T2DM), aged 40-80 years, were analyzed. In CTR subjects, miR-146a levels showed a significant age-related decline. When a gender-stratified analysis was ran, the miR-146a age-related trajectory was confirmed only in men and a negative correlation with PAI-1, uric acid, and creatinine was also observed. In women, miR-146a circulating levels showed negative correlations with azotemia, uric acid, waist/hip ratio and ferritin. A significant miR-146a decline with aging was also observed in T2DM patients. Significant positive correlations were found between miR-146a in diabetic patients and total cholesterol, LDL-C, ApoA1, ApoB, and platelets, and negative correlations with serum iron and ferritin. Notably, miR-146a was significantly overexpressed in T2DM patients treated with metformin. MiR-146a levels were significantly lower in diabetic patients than in age-matched CTR and negatively correlated to both fasting glucose and HbA1c in males. Finally, age-related trajectories for circulating miR-146a levels showed an inverted U-shaped relationship; however, in T2DM patients the trajectory was significantly shifted towards lower levels. Our findings support the hypothesis that miR-146a could be a functional biomarker of healthy/unhealthy aging.
Collapse
|
225
|
de Candia P, Prattichizzo F, Garavelli S, De Rosa V, Galgani M, Di Rella F, Spagnuolo MI, Colamatteo A, Fusco C, Micillo T, Bruzzaniti S, Ceriello A, Puca AA, Matarese G. Type 2 Diabetes: How Much of an Autoimmune Disease? Front Endocrinol (Lausanne) 2019; 10:451. [PMID: 31333589 PMCID: PMC6620611 DOI: 10.3389/fendo.2019.00451] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/21/2019] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by a progressive status of chronic, low-grade inflammation (LGI) that accompanies the whole trajectory of the disease, from its inception to complication development. Accumulating evidence is disclosing a long list of possible "triggers" of inflammatory responses, many of which are promoted by unhealthy lifestyle choices and advanced age. Diabetic patients show an altered number and function of immune cells, of both innate and acquired immunity. Reactive autoantibodies against islet antigens can be detected in a subpopulation of patients, while emerging data are also suggesting an altered function of specific T lymphocyte populations, including T regulatory (Treg) cells. These observations led to the hypothesis that part of the inflammatory response mounting in T2D is attributable to an autoimmune phenomenon. Here, we review recent data supporting this framework, with a specific focus on both tissue resident and circulating Treg populations. We also propose that selective interception (or expansion) of T cell subsets could be an alternative avenue to dampen inappropriate inflammatory responses without compromising immune responses.
Collapse
Affiliation(s)
- Paola de Candia
- IRCCS MultiMedica, Milan, Italy
- *Correspondence: Paola de Candia
| | | | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
- Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Francesca Di Rella
- Dipartimento di Senologia, Oncologia Medica, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maria Immacolata Spagnuolo
- Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Teresa Micillo
- Dipartimento di Biologia, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Antonio Ceriello
- IRCCS MultiMedica, Milan, Italy
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Annibale A. Puca
- IRCCS MultiMedica, Milan, Italy
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Baronissi, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- Giuseppe Matarese
| |
Collapse
|