201
|
Feavers I. Choosing isolates for the evaluation of meningococcal protein vaccines. Expert Rev Vaccines 2014; 8:1461-3. [DOI: 10.1586/erv.09.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
202
|
Anderson AS, Jansen KU, Eiden J. New frontiers in meningococcal vaccines. Expert Rev Vaccines 2014; 10:617-34. [DOI: 10.1586/erv.11.50] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
203
|
Esposito S, Principi N. Vaccine profile of 4CMenB: a four-componentNeisseria meningitidisserogroup B vaccine. Expert Rev Vaccines 2014; 13:193-202. [DOI: 10.1586/14760584.2014.874949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
204
|
Daugla DM, Gami JP, Gamougam K, Naibei N, Mbainadji L, Narbé M, Toralta J, Kodbesse B, Ngadoua C, Coldiron ME, Fermon F, Page AL, Djingarey MH, Hugonnet S, Harrison OB, Rebbetts LS, Tekletsion Y, Watkins ER, Hill D, Caugant DA, Chandramohan D, Hassan-King M, Manigart O, Nascimento M, Woukeu A, Trotter C, Stuart JM, Maiden M, Greenwood BM. Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study [corrected]. Lancet 2014; 383:40-47. [PMID: 24035220 PMCID: PMC3898950 DOI: 10.1016/s0140-6736(13)61612-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND A serogroup A meningococcal polysaccharide-tetanus toxoid conjugate vaccine (PsA-TT, MenAfriVac) was licensed in India in 2009, and pre-qualified by WHO in 2010, on the basis of its safety and immunogenicity. This vaccine is now being deployed across the African meningitis belt. We studied the effect of PsA-TT on meningococcal meningitis and carriage in Chad during a serogroup A meningococcal meningitis epidemic. METHODS We obtained data for the incidence of meningitis before and after vaccination from national records between January, 2009, and June, 2012. In 2012, surveillance was enhanced in regions where vaccination with PsA-TT had been undertaken in 2011, and in one district where a reactive vaccination campaign in response to an outbreak of meningitis was undertaken. Meningococcal carriage was studied in an age-stratified sample of residents aged 1-29 years of a rural area roughly 13-15 and 2-4 months before and 4-6 months after vaccination. Meningococci obtained from cerebrospinal fluid or oropharyngeal swabs were characterised by conventional microbiological and molecular methods. FINDINGS Roughly 1·8 million individuals aged 1-29 years received one dose of PsA-TT during a vaccination campaign in three regions of Chad in and around the capital N'Djamena during 10 days in December, 2011. The incidence of meningitis during the 2012 meningitis season in these three regions was 2·48 per 100,000 (57 cases in the 2·3 million population), whereas in regions without mass vaccination, incidence was 43·8 per 100,000 (3809 cases per 8·7 million population), a 94% difference in crude incidence (p<0·0001), and an incidence rate ratio of 0·096 (95% CI 0·046-0·198). Despite enhanced surveillance, no case of serogroup A meningococcal meningitis was reported in the three vaccinated regions. 32 serogroup A carriers were identified in 4278 age-stratified individuals (0·75%) living in a rural area near the capital 2-4 months before vaccination, whereas only one serogroup A meningococcus was isolated in 5001 people living in the same community 4-6 months after vaccination (adjusted odds ratio 0·019, 95% CI 0·002-0·138; p<0·0001). INTERPRETATION PSA-TT was highly effective at prevention of serogroup A invasive meningococcal disease and carriage in Chad. How long this protection will persist needs to be established. FUNDING The Bill & Melinda Gates Foundation, the Wellcome Trust, and Médecins Sans Frontères.
Collapse
Affiliation(s)
- D M Daugla
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - J P Gami
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - K Gamougam
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - N Naibei
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - L Mbainadji
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - M Narbé
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - J Toralta
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - B Kodbesse
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - C Ngadoua
- Ministry of Public Health, N'Djamena, Chad
| | - M E Coldiron
- Epicentre, Médecins sans Frontères, Paris, France
| | - F Fermon
- Epicentre, Médecins sans Frontères, Paris, France
| | - A-L Page
- Epicentre, Médecins sans Frontères, Paris, France
| | - M H Djingarey
- WHO Intercountry Support Team, Ougadougou, Burkina Faso
| | - S Hugonnet
- Department of Pandemic and Epidemic Diseases, WHO, Geneva, Switzerland
| | - O B Harrison
- Department of Zoology, University of Oxford, Oxford, UK
| | - L S Rebbetts
- Department of Zoology, University of Oxford, Oxford, UK
| | - Y Tekletsion
- Department of Zoology, University of Oxford, Oxford, UK
| | - E R Watkins
- Department of Zoology, University of Oxford, Oxford, UK
| | - D Hill
- Department of Zoology, University of Oxford, Oxford, UK
| | - D A Caugant
- Norwegian Institute for Public Health, Oslo, Norway
| | - D Chandramohan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M Hassan-King
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - O Manigart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M Nascimento
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - A Woukeu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - C Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - J M Stuart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - McJ Maiden
- Department of Zoology, University of Oxford, Oxford, UK
| | - B M Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
205
|
Tsang RS, Jamieson FB, Lefebvre B, Gilca R. Letter to the editor. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2014; 25:8-38. [PMID: 24634679 PMCID: PMC3950991 DOI: 10.1155/2014/847192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Raymond Sw Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada
| | - Frances B Jamieson
- Public Health Ontario Laboratory, Public Health Ontario, Faculty of Medicine, University of Toronto, Toronto, Ontario
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Ste-Anne-de Bellevue
| | - Rodica Gilca
- Institut national de santé publique du Québec, Centre de recherche du CHU de Québec, Laval University, Laval, Québec
| |
Collapse
|
206
|
Role of epidermal growth factor receptor signaling in the interaction of Neisseria meningitidis with endothelial cells. Infect Immun 2013; 82:1243-55. [PMID: 24379285 DOI: 10.1128/iai.01346-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neisseria meningitidis, the causative agent of meningitis and septicemia, attaches to and invades various cell types. Both steps induce and/or require tyrosine phosphorylation of host cell proteins. Here, we used a phospho array platform to identify active receptor tyrosine kinases (RTKs) and key signaling nodes in N. meningitidis-infected brain endothelial cells to decipher RTK-dependent signaling pathways necessary for bacterial uptake. We detected several activated RTKs, including the ErbB family receptors epidermal growth factor receptor (EGFR), ErbB2, and ErbB4. We found that pharmacological inhibition and genetic ablation of ErbB receptor tyrosine phosphorylation and expression resulted in decreased bacterial uptake and heterologous expression of EGFR, ErbB2, or ErbB4 in Chinese ovary hamster (CHO-K1) cells, which do not express of EGFR and ErbB4; the decrease caused a significant increase in meningococcal invasion. Activation of EGFR and ErbB4 was mediated by transactivation via the common ligand HB-EGF (heparin-binding EGF-like ligand), which was significantly elevated in infected cell culture supernatants. We furthermore determined that N. meningitidis induced phosphorylation of EGFR at Tyr845 independent of ligand binding, which required c-Src activation and was involved in mediating uptake of N. meningitidis into eukaryotic cells. Increased uptake was repressed by expression of EGFR Y845F, which harbored a point mutation in the kinase domain. In addition, activation of ErbB4 at its autophosphorylation site, Tyr1284, and phosphorylation of ErbB2 Thr686 were observed. Altogether, our results provide evidence that EGFR, ErbB2, and ErbB4 are activated in response to N. meningitidis infection and shed new light on the role of ErbB signaling in meningococcal infection biology.
Collapse
|
207
|
Pascucci MG, Di Gregori V, Frasca G, Rucci P, Finarelli AC, Moschella L, Borrini BM, Cavrini F, Liguori G, Sambri V, Bonanni P, Fantini MP. Impact of meningococcal C conjugate vaccination campaign in Emilia-Romagna, Italy. Hum Vaccin Immunother 2013; 10:671-6. [PMID: 24384537 DOI: 10.4161/hv.27597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The incidence of reported meningococcal disease in Italy is among the lowest in Europe. The trend of the disease was increasing up to 2005 and then declined after the gradual introduction of a universal Men C vaccination program in 17/21 Italian regions. Since 2006, in Emilia-Romagna region vaccination against Neisseria meningitidis serogroup C was actively offered free of charge in a single dose to the age groups 12-15 months and 14-15 years, in addition to people with defined epidemiological risk. Our aim was to measure the impact of vaccination on the incidence of meningococcal disease caused by different serogroups among the population of Emilia Romagna Region, Northern Italy (approximately 4.5 million inhabitants) subdivided by age. Using surveillance data, we computed the incidence rates of Neisseria meninigitidis related invasive disease per 100.000 inhabitants for the years 2000 to 2012. In addition, the percentage change in incidence and the mortality rates were calculated. Results indicate a 70.1% decrease in the incidence of meningococcus C-related invasive disease after the introduction of MenC universal vaccination. No case of serogroup C related infection was observed since 2006 in children aged 1-4 years. These findings suggest that the single-dose vaccination strategy against serogroup C N.meningitidis targeted to the age groups 12-15 months and 14-15 years was effective in the Emilia-Romagna population. However, the occurrence of two cases of meningiditis in a 5-month child and in a 9-years child suggests caution and careful consideration in surveillance for the next years.
Collapse
Affiliation(s)
| | - Valentina Di Gregori
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | | | - Paola Rucci
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| | | | | | | | - Francesca Cavrini
- Unit of Clinical Microbiology; S. Orsola-Malpighi University Hospital; Bologna, Italy
| | - Giovanna Liguori
- Unit of Clinical Microbiology; S. Orsola-Malpighi University Hospital; Bologna, Italy
| | - Vittorio Sambri
- Unit of Clinical Microbiology; S. Orsola-Malpighi University Hospital; Bologna, Italy; Unit of Clinical Microbiology; Greater Romagna Laboratory; Pievesestina, Cesena, Italy
| | - Paolo Bonanni
- Department of Health Sciences; University of Florence; Florence, Italy
| | - Maria Pia Fantini
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy
| |
Collapse
|
208
|
Carter NJ. Multicomponent meningococcal serogroup B vaccine (4CMenB; Bexsero(®)): a review of its use in primary and booster vaccination. BioDrugs 2013; 27:263-74. [PMID: 23575646 DOI: 10.1007/s40259-013-0029-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Multicomponent meningococcal serogroup B vaccine (4CMenB; Bexsero(®)) is a unique vaccine containing four main immunogenic components: three recombinant proteins combined with outer membrane vesicles derived from meningococcal NZ98/254 strain. After three doses of 4CMenB (administered at 2, 3, and 4 months or 2, 4, and 6 months of age) in vaccine-naive infants, the majority of infants had seroprotective human complement serum bactericidal assay (hSBA) antibody titers against the meningococcal serogroup B test strains selected to be specific for the vaccine antigens in randomized, open-label or observer-blind, multicenter, phase IIb or III trials. In extensions to the phase III trial, two doses of 4CMenB administered between 12 and 15 months of age in vaccine-naive infants, and a single booster dose of 4CMenB administered at 12 months of age in vaccine-experienced infants, also elicited robust immunogenic responses. In a phase IIb/III trial, the majority of adolescents (aged 11-17 years) achieved seroprotective hSBA antibody titers against meningococcal serogroup B test strains after two doses of 4CMenB, and a third dose did not appear to add any extra protection. In adults who were potentially at an increased risk of occupational exposure to meningococcal isolates, seroprotection rates were high after one dose of 4CMenB and increased further after two or three doses in a small noncomparative, two-center, phase II trial. The reactogenicity of 4CMenB was generally acceptable in clinical trials. However, the vaccine was associated with more solicited systemic adverse events (particularly fever) in infants when coadministered with routine infant vaccines than when these vaccines were administered alone. In conclusion, 4CMenB effectively elicited immune responses against meningococcal serogroup B test strains selected to be specific for the vaccine antigens in infants, adolescents, and adults.
Collapse
Affiliation(s)
- Natalie J Carter
- Adis, 41 Centorian Drive, Private Bag 65901, Mairangi Bay, North Shore, 0754, Auckland, New Zealand.
| |
Collapse
|
209
|
Bettinger JA, Deeks SL, Halperin SA, Tsang R, Scheifele DW. Controlling serogroup B invasive meningococcal disease: the Canadian perspective. Expert Rev Vaccines 2013; 12:505-17. [PMID: 23659299 DOI: 10.1586/erv.13.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With publically funded meningococcal immunization programs established in infants, children and adolescents, Canada is at the forefront of invasive meningococcal disease prevention. The advent of two new serogroup B vaccines that may protect against multiple disease-causing strains offers the potential to reduce endemic disease to very low levels in Canada. Canada likely will be one of the first countries with approval to use recombinant serogroup B vaccine. However, inclusion of these new vaccines into public immunization programs will be decided at the provincial/territorial level, rather than nationally, and may result initially in different immunization schedules throughout the country as we have seen with conjugate meningococcal vaccines. Such heterogeneous use and adoption of new vaccines complicates disease control, but may assist in evaluation of effectiveness. Minimally, it requires regionally specific information. In this article, the authors provide an overview of the Canadian epidemiology, serogroup B vaccine characteristics, potential strain coverage, immunization strategies and remaining postmarketing research questions.
Collapse
Affiliation(s)
- Julie A Bettinger
- Vaccine Evaluation Center, BC Children's Hospital and the University of British Columbia, A5-950 West 28th Street, Vancouver, BC V5Z 4H4, Canada.
| | | | | | | | | |
Collapse
|
210
|
Campsall PA, Laupland KB, Niven DJ. Severe meningococcal infection: a review of epidemiology, diagnosis, and management. Crit Care Clin 2013; 29:393-409. [PMID: 23830646 DOI: 10.1016/j.ccc.2013.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neisseria meningitidis, also known as meningococcus, is a relatively uncommon cause of invasive infection, but when it occurs it is frequently severe and potentially life threatening. Meningococcus should be considered and investigated promptly as a potentially etiologic pathogen in any patient with meningitis, or sepsis accompanied by a petechial rash. Suspected patients should receive early appropriate antimicrobial therapy concomitantly with confirmatory invasive diagnostic tests. Vaccines have reduced the incidence of infection with certain non-B meningococcal serogroups, and new serotype B vaccines are on the horizon. This article reviews the epidemiology, diagnosis, and management of severe meningococcal infections.
Collapse
Affiliation(s)
- Paul A Campsall
- Department of Critical Care Medicine, University of Calgary and Alberta Health Services, 3500 26th Avenue Northeast, Calgary, Alberta T1Y 6J4, Canada
| | | | | |
Collapse
|
211
|
SUN X, ZHOU H, XU L, YANG H, GAO Y, ZHU B, SHAO Z. Prevalence and genetic diversity of two adhesion-related genes, pilE and nadA, in Neisseria meningitidis in China. Epidemiol Infect 2013; 141:2163-72. [PMID: 23290624 PMCID: PMC9152637 DOI: 10.1017/s0950268812002944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/23/2012] [Accepted: 11/28/2012] [Indexed: 12/16/2022] Open
Abstract
The main Neisseria meningitidis adhesion molecules, type IV pili (Tfp) and Neisseria adhesion A (NadA), play important roles in the pathogenesis of invasive meningococcal disease. PilE is the major Tfp subunit. In this study, the prevalence and genetic diversity of pilE and nadA were investigated in the prevalent serogroups and clonal complexes (CC) of N. meningitidis isolated in China. All serogroup A strains belonging to CC1 and CC5 and all CC11 serogroup W135 strains were clustered into class II PilE clades. All serogroup C and most of serogroup B isolates except CC8 and ST5642 were class I PilE clades. Class II pilE sequences were highly conserved. All isolates belonging to class I PilE isolates were nadA negative. However, nadA-positive strains were exclusively found in CC5 and CC11 isolates (class II PilE). This study showed that PilE and NadA may be related to epidemic or endemic meningococcal disease.
Collapse
Affiliation(s)
- X. SUN
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - H. ZHOU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - L. XU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - H. YANG
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Y. GAO
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - B. ZHU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Z. SHAO
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
212
|
Sáfadi MAP, de los Monteros LEE, López EL, Sàez-Llorens X, Lemos AP, Moreno-Espinosa S, Ayala SG, Torres JP, de Moraes JC, Vázquez JA. The current situation of meningococcal disease in Latin America and recommendations for a new case definition from the Global Meningococcal Initiative. Expert Rev Vaccines 2013; 12:903-15. [PMID: 23909747 DOI: 10.1586/14760584.2013.814879] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Global Meningococcal Initiative (GMI) is an international group of scientists and clinicians with expertise in meningococcal disease (MD). It promotes MD prevention through education and research. Given geographic differences in disease epidemiology, prevention strategies (e.g., vaccination) should be country-specific to ensure local needs are met. However, regional policies/recommendations and standardized disease diagnostic criteria should be implemented to improve surveillance and control strategies, and allow for more robust data comparisons. Consequently, the GMI convened a meeting with Latin American representatives to discuss the burden of MD and vaccination practices/policies, and consider if the global GMI recommendations could be tailored. The group determined that as robust, uniform epidemiologic data are required to make informed health-policy decisions, it would be useful to first summarize the regional situation herein (including disease surveillance, case definitions, epidemiology, vaccination and outbreak control strategies) and then determine a consensus-based meningococcal case definition for use throughout the region.
Collapse
Affiliation(s)
- Marco Aurélio P Sáfadi
- FCM da Santa Casa de São Paulo, Alameda dos Indigenas, 228, ZIP 04059 060, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
The spectrum of disease caused by Neisseria meningitidis includes bacteremia, fulminant sepsis (meningococcemia), meningitis, and pneumonia. The incidence of meningococcal infection has long been higher in infancy than adolescents or adults older than 65 years (a third group with an increased risk based on age). Five meningococcal serogroups (A, B, C, Y, and W135) cause the great majority of human disease. Serogroup B strains cause about two-thirds of disease in children younger than 6 years. For this reason, new meningococcal vaccine formulations have been developed and evaluated in children younger than 2 years. Of four meningococcal vaccines currently licensed in the United States, two conjugate products, (MenACWY-D [Menactra], Sanofi Pasteur; HibMenCY-TT [MenHibrix], GlaxoSmithKline), are recommended for infants and toddlers younger than 2 years who have an increased risk for invasive meningococcal disease. High-risk conditions are complement deficiencies, community outbreaks, functional or anatomic asplenia, and travel to high-risk areas in which serogroup A infection is prevalent. Recommendations vary by age, dosing, and indication between these two products. Both licensed products are immunogenic and have side-effect profiles that are considered safe for use. In most cases, concomitant use with other recommended childhood vaccines does not interfere with responses to these vaccines. As of yet, there has not been universal adoption of this immunization in the infant population by parents or providers. Factors that weigh against the implementation of a national routine infant program include the prevention of only 40 to 50 meningococcal cases, two to four deaths per year, and a relatively low case fatality among infants. Some argue that costs should not be considered a barrier because infant deaths and morbidity would be prevented. The availability of a serogroup B vaccine would improve impact and cost-effectiveness of a routine infant meningococcal vaccine program. Debate over the implementation of routine infant meningococcal vaccination in the United States is ongoing. This review focuses on vaccines for the prevention of N. meningitidis infection in infants and young toddlers in the first 2 years of life.
Collapse
Affiliation(s)
- Charles R Woods
- Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA. charles.woods@ louisville.edu
| |
Collapse
|
214
|
Geörg M, Maudsdotter L, Tavares R, Jonsson AB. Meningococcal resistance to antimicrobial peptides is mediated by bacterial adhesion and host cell RhoA and Cdc42 signalling. Cell Microbiol 2013; 15:1938-54. [PMID: 23834289 DOI: 10.1111/cmi.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/06/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) constitute an essential part of the innate immune defence. Pathogenic bacteria have evolved numerous strategies to withstand AMP-mediated killing. The influence of host epithelia on bacterial AMP resistance is, however, still largely unknown. We found that adhesion to pharyngeal epithelial cells protected Neisseria meningitidis, a leading cause of meningitis and sepsis, from the human cathelicidin LL-37, the cationic model amphipathic peptide (MAP) and the peptaibol alamethicin, but not from polymyxin B. Adhesion to primary airway epithelia resulted in a similar increase in LL-37 resistance. The inhibition of selective host cell signalling mediated by RhoA and Cdc42 was found to abolish the adhesion-induced LL-37 resistance by a mechanism unrelated to the actin cytoskeleton. Moreover, N. meningitidis triggered the formation of cholesterol-rich membrane microdomains in pharyngeal epithelial cells, and host cell cholesterol proved to be essential for adhesion-induced resistance. Our data highlight the importance of Rho GTPase-dependent host cell signalling for meningococcal AMP resistance. These results indicate that N. meningitidis selectively exploits the epithelial microenvironment in order to protect itself from LL-37.
Collapse
Affiliation(s)
- Miriam Geörg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
215
|
Oldfield NJ, Matar S, Bidmos FA, Alamro M, Neal KR, Turner DPJ, Bayliss CD, Ala’Aldeen DAA. Prevalence and phase variable expression status of two autotransporters, NalP and MspA, in carriage and disease isolates of Neisseria meningitidis. PLoS One 2013; 8:e69746. [PMID: 23936091 PMCID: PMC3723659 DOI: 10.1371/journal.pone.0069746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/12/2013] [Indexed: 01/24/2023] Open
Abstract
Neisseria meningitidis is a human nasopharyngeal commensal capable of causing life-threatening septicemia and meningitis. Many meningococcal surface structures, including the autotransporter proteins NalP and MspA, are subject to phase variation (PV) due to the presence of homopolymeric tracts within their coding sequences. The functions of MspA are unknown. NalP proteolytically cleaves several surface-located virulence factors including the 4CMenB antigen NhbA. Therefore, NalP is a phase-variable regulator of the meningococcal outer membrane and secretome whose expression may reduce isolate susceptibility to 4CMenB-induced immune responses. To improve our understanding of the contributions of MspA and NalP to meningococcal-host interactions, their distribution and phase-variable expression status was studied in epidemiologically relevant samples, including 127 carriage and 514 invasive isolates representative of multiple clonal complexes and serogroups. Prevalence estimates of >98% and >88% were obtained for mspA and nalP, respectively, with no significant differences in their frequencies in disease versus carriage isolates. 16% of serogroup B (MenB) invasive isolates, predominately from clonal complexes ST-269 and ST-461, lacked nalP. Deletion of nalP often resulted from recombination events between flanking repetitive elements. PolyC tract lengths ranged from 6–15 bp in nalP and 6–14 bp in mspA. In an examination of PV status, 58.8% of carriage, and 40.1% of invasive nalP-positive MenB isolates were nalP phase ON. The frequency of this phenotype was not significantly different in serogroup Y (MenY) carriage strains, but was significantly higher in invasive MenY strains (86.3%; p<0.0001). Approximately 90% of MenB carriage and invasive isolates were mspA phase ON; significantly more than MenY carriage (32.7%) or invasive (13.7%) isolates. This differential expression resulted from different mode mspA tract lengths between the serogroups. Our data indicates a differential requirement for NalP and MspA expression in MenB and MenY strains and is a step towards understanding the contributions of phase-variable loci to meningococcal biology.
Collapse
Affiliation(s)
- Neil J. Oldfield
- Molecular Bacteriology and Immunology Group, School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Suzan Matar
- Molecular Bacteriology and Immunology Group, School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Biological Sciences and Medical Analysis, University of Jordan, Amman, Jordan
| | - Fadil A. Bidmos
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Mohammed Alamro
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Keith R. Neal
- School of Community Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P. J. Turner
- Molecular Bacteriology and Immunology Group, School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Christopher D. Bayliss
- School of Community Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Dlawer A. A. Ala’Aldeen
- Molecular Bacteriology and Immunology Group, School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
216
|
Esposito S, Zampiero A, Terranova L, Montinaro V, Scala A, Ansuini V, Principi N. Genetic characteristics of Neisseria meningitidis serogroup B strains carried by adolescents living in Milan, Italy: implications for vaccine efficacy. Hum Vaccin Immunother 2013; 9:2296-303. [PMID: 23880917 DOI: 10.4161/hv.25800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Before a protein vaccine is introduced into a country, it is essential to evaluate its potential impact and estimate its benefits and costs. The aim of this study was to determine the genetic characteristics of Neisseria meningitidis B (NmB) in the pharyngeal secretions of 1375 healthy adolescents aged 13-19 y living in Milan, Italy, in September 2012, and the possible protection offered by the two currently available NmB protein vaccines. Ninety-one subjects were Nm carriers (6.6%), 29 (31.9%) of whom carried the NmB capsular gene. The 29 identified strains belonged to eight clonal complexes (CCs), the majority of which were in the ST-41/44/Lin.3 CC (n = 11; 37.9%). All of the identified strains harboured ƒHbp alleles representing a total of 15 sub-variants: the gene for NHBA protein was found in all but three of the studied strains (10.3%) with 13 identified sub-variants. There were 15 porA sub-types, seven of which were identified in just one CC. The findings of this study seem to suggest that both of the protein vaccines proposed for the prevention of invasive disease due to NmB (the 4-protein and the 2-protein products) have a composition that can evoke a theoretically effective antibody response against the meningococcal strains currently carried by adolescents living in Northern Italy. The genetic characteristics of NmB strains can be easily evaluated by means of molecular methods, the results of which can provide an albeit approximate estimate of the degree of protection theoretically provided by the available vaccines, and the possible future need to change their composition.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic 1; Department of Pathophysiology and Transplantation; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
217
|
Meningococcal polysaccharide A O-acetylation levels do not impact the immunogenicity of the quadrivalent meningococcal tetanus toxoid conjugate vaccine: results from a randomized, controlled phase III study of healthy adults aged 18 to 25 years. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1499-507. [PMID: 23885033 DOI: 10.1128/cvi.00162-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, we compared the immunogenicities of two lots of meningococcal ACWY-tetanus toxoid conjugate vaccine (MenACWY-TT) that differed in serogroup A polysaccharide (PS) O-acetylation levels and evaluated their immunogenicities and safety in comparison to a licensed ACWY polysaccharide vaccine (Men-PS). In this phase III, partially blinded, controlled study, 1,170 healthy subjects aged 18 to 25 years were randomized (1:1:1) to receive one dose of MenACWY-TT lot A (ACWY-A) (68% O-acetylation), MenACWY-TT lot B (ACWY-B) (92% O-acetylation), or Men-PS (82% O-acetylation). Immunogenicity was evaluated in terms of serum bactericidal activity using rabbit complement (i.e., rabbit serum bactericidal activity [rSBA]). Solicited symptoms, unsolicited adverse events (AEs), and serious AEs (SAEs) were recorded. The immunogenicities, in terms of rSBA geometric mean titers, were comparable for both lots of MenACWY-TT. The vaccine response rates across the serogroups were 79.1 to 97.0% in the two ACWY groups and 73.7 to 94.1% in the Men-PS group. All subjects achieved rSBA titers of ≥1:8 for all serogroups. All subjects in the two ACWY groups and 99.5 to 100% in the Men-PS group achieved rSBA titers of ≥1:128. Pain was the most common solicited local symptom and was reported more frequently in the ACWY group (53.9 to 54.7%) than in the Men-PS group (36.8%). The most common solicited general symptoms were fatigue and headache, which were reported by 28.6 to 30.3% and 26.9 to 31.0% of subjects, respectively. Two subjects reported SAEs; one SAE was considered to be related to vaccination (blighted ovum; ACWY-B group). The level of serogroup A PS O-acetylation did not affect vaccine immunogenicity. MenACWY-TT (lot A) was not inferior to Men-PS in terms of vaccine response and was well tolerated.
Collapse
|
218
|
Abstract
Since the introduction of the first meningococcal conjugate vaccines in 1999, remarkable progress has been made in reducing the morbidity and mortality caused by meningococcal disease. Currently, varying meningococcal conjugate vaccines provide protection against serogroups A, C, Y, and W meningococcal disease. A large impact has been seen after vaccine introduction, particularly in the UK after vaccinating all 1-17 year olds. The introduction of serogroup A conjugate vaccine in the meningitis belt has the potential to control epidemics of disease that disproportionately affect this area of the world. Issues remain that require continued vigilance with disease surveillance and frequent reassessment of vaccine strategies. These issues include duration of protection, potential increases in non-vaccine serogroups, and vaccine safety and potential interference with other routine vaccines. Serogroup B meningococcal vaccines are protein-based vaccines, with the first approved in early 2013. Understanding the potential impact of serogroup B vaccines is critical to developing future meningococcal vaccination strategies.
Collapse
Affiliation(s)
- Amanda C Cohn
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. MS C-25, Atlanta, GA 30333, USA.
| | | |
Collapse
|
219
|
Harrison OB, Bennett JS, Derrick JP, Maiden MCJ, Bayliss CD. Distribution and diversity of the haemoglobin-haptoglobin iron-acquisition systems in pathogenic and non-pathogenic Neisseria. MICROBIOLOGY-SGM 2013; 159:1920-1930. [PMID: 23813677 PMCID: PMC3783016 DOI: 10.1099/mic.0.068874-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new generation of vaccines containing multiple protein components that aim to provide broad protection against serogroup B meningococci has been developed. One candidate, 4CMenB (4 Component MenB), has been approved by the European Medicines Agency, but is predicted to provide at most 70–80 % strain coverage; hence there is a need for second-generation vaccines that achieve higher levels of coverage. Prior knowledge of the diversity of potential protein vaccine components is a key step in vaccine design. A number of iron import systems have been targeted in meningococcal vaccine development, including the HmbR and HpuAB outer-membrane proteins, which mediate the utilization of haemoglobin or haemoglobin–haptoglobin complexes as iron sources. While the genetic diversity of HmbR has been described, little is known of the diversity of HpuAB. Using whole genome sequences deposited in a Bacterial Isolate Genome Sequence Database (BIGSDB), the prevalence and diversity of HpuAB among Neisseria were investigated. HpuAB was widely present in a range of Neisseria species whereas HmbR was mainly limited to the pathogenic species Neisseria meningitidis and Neisseria gonorrhoeae. Patterns of sequence variation in sequences from HpuAB proteins were suggestive of recombination and diversifying selection consistent with strong immune selection. HpuAB was subject to repeat-mediated phase variation in pathogenic Neisseria and the closely related non-pathogenic Neisseria species Neisseria lactamica and Neisseria polysaccharea but not in the majority of other commensal Neisseria species. These findings are consistent with HpuAB being subject to frequent genetic transfer potentially limiting the efficacy of this receptor as a vaccine candidate.
Collapse
Affiliation(s)
- Odile B Harrison
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Julia S Bennett
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Jeremy P Derrick
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | | |
Collapse
|
220
|
Maiden MCJ. The impact of protein-conjugate polysaccharide vaccines: an endgame for meningitis? Philos Trans R Soc Lond B Biol Sci 2013; 368:20120147. [PMID: 23798695 PMCID: PMC3720045 DOI: 10.1098/rstb.2012.0147] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The development and implementation of conjugate polysaccharide vaccines against invasive bacterial diseases, specifically those caused by the encapsulated bacteria Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, has been one of the most effective public health innovations of the last 25 years. These vaccines have resulted in significant reductions in childhood morbidity and mortality worldwide, with their effectiveness due in large part to their ability to induce long-lasting immunity in a range of age groups. At the population level this immunity reduces carriage and interrupts transmission resulting in herd immunity; however, these beneficial effects can be counterbalanced by the selection pressures that immunity against carriage can impose, potentially promoting the emergence and spread of virulent vaccine escape variants. Studies following the implementation of meningococcal serogroup C vaccines improved our understanding of these effects in relation to the biology of accidental pathogens such as the meningococcus. This understanding has enabled the refinement of the implementation of conjugate polysaccharide vaccines against meningitis-associated bacteria, and will be crucial in maintaining and improving vaccine control of these infections. To date there is little evidence for the spread of virulent vaccine escape variants of the meningococcus and H. influenzae, although this has been reported in pneumococci.
Collapse
Affiliation(s)
- Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
221
|
Xie O, Pollard AJ, Mueller JE, Norheim G. Emergence of serogroup X meningococcal disease in Africa: Need for a vaccine. Vaccine 2013; 31:2852-61. [DOI: 10.1016/j.vaccine.2013.04.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 12/27/2022]
|
222
|
Bambini S, Piet J, Muzzi A, Keijzers W, Comandi S, De Tora L, Pizza M, Rappuoli R, van de Beek D, van der Ende A, Comanducci M. An analysis of the sequence variability of meningococcal fHbp, NadA and NHBA over a 50-year period in the Netherlands. PLoS One 2013; 8:e65043. [PMID: 23717687 PMCID: PMC3663754 DOI: 10.1371/journal.pone.0065043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/26/2013] [Indexed: 02/04/2023] Open
Abstract
Studies of meningococcal evolution and genetic population structure, including the long-term stability of non-random associations between variants of surface proteins, are essential for vaccine development. We analyzed the sequence variability of factor H-binding protein (fHbp), Neisserial Heparin-Binding Antigen (NHBA) and Neisseria adhesin A (NadA), three major antigens in the multicomponent meningococcal serogroup B vaccine 4CMenB. A panel of invasive isolates collected in the Netherlands over a period of 50 years was used. To our knowledge, this strain collection covers the longest time period of any collection available worldwide. Long-term persistence of several antigen sub/variants and of non-overlapping antigen sub/variant combinations was observed. Our data suggest that certain antigen sub/variants including those used in 4CMenB are conserved over time and promoted by selection.
Collapse
Affiliation(s)
| | - Jurgen Piet
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
| | | | - Wendy Keijzers
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
- The Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, The Netherlands
| | | | | | | | | | | | - Arie van der Ende
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
- The Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, The Netherlands
- * E-mail: (AVDE); (MC)
| | | |
Collapse
|
223
|
Phase variation of PorA, a major outer membrane protein, mediates escape of bactericidal antibodies by Neisseria meningitidis. Infect Immun 2013; 81:1374-80. [PMID: 23403557 PMCID: PMC3639595 DOI: 10.1128/iai.01358-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several outer membrane proteins of Neisseria meningitidis are subject to phase variation due to alterations in simple sequence repeat tracts. The PorA protein is a major outer membrane protein and a target for protective host immune responses. Phase variation of PorA is mediated by a poly-G repeat tract present within the promoter, leading to alterations in protein expression levels. N. meningitidis strain 8047 was subjected to serial passage in the presence of P1.2, a PorA-specific bactericidal monoclonal antibody. Rapid development of resistance to bactericidal activity was associated with a switch in the PorA repeat tract from 11G to 10G. Phase variants with a 10G repeat tract exhibited a 2-fold reduction in surface expression of PorA protein. A mutS mutant of strain 8047, with an elevated phase variation rate, exhibited a higher rate of escape and an association of escape with 10G and 9G variants, the latter having a 13-fold reduction in surface expression of PorA. We conclude that graduated reductions in the surface expression of outer membrane proteins mediated by phase variation enable meningococci to escape killing in vitro by bactericidal antibodies. These findings indicate how phase variation could have a major impact on immune escape and host persistence of meningococci.
Collapse
|
224
|
Bartley SN, Tzeng YL, Heel K, Lee CW, Mowlaboccus S, Seemann T, Lu W, Lin YH, Ryan CS, Peacock C, Stephens DS, Davies JK, Kahler CM. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule. PLoS One 2013; 8:e55798. [PMID: 23405216 PMCID: PMC3566031 DOI: 10.1371/journal.pone.0055798] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022] Open
Abstract
We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS) in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.
Collapse
Affiliation(s)
- Stephanie N. Bartley
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Yih-Ling Tzeng
- Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kathryn Heel
- Centre for Microscopy, Characterisation and Analysis, and Translational Cancer Pathology Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Chiang W. Lee
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Shakeel Mowlaboccus
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Melbourne, Victoria, Australia
| | - Wei Lu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Ya-Hsun Lin
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Catherine S. Ryan
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Christopher Peacock
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - David S. Stephens
- Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John K. Davies
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
225
|
Jolley KA, Maiden MC. Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar. ACTA ACUST UNITED AC 2013; 18:20379. [PMID: 23369391 DOI: 10.2807/ese.18.04.20379-en] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Whole genome sequence (WGS) data are increasingly used to characterise bacterial pathogens. These data provide detailed information on the genotypes and likely phenotypes of aetiological agents, enabling the relationships of samples from potential disease outbreaks to be established precisely. However, the generation of increasing quantities of sequence data does not, in itself, resolve the problems that many microbiological typing methods have addressed over the last 100 years or so; indeed, providing large volumes of unstructured data can confuse rather than resolve these issues. Here we review the nascent field of storage of WGS data for clinical application and show how curated sequence-based typing schemes on websites have generated an infrastructure that can exploit WGS for bacterial typing efficiently. We review the tools that have been implemented within the PubMLST website to extract clinically useful, strain-characterisation information that can be provided to physicians and public health professionals in a timely, concise and understandable way. These data can be used to inform medical decisions such as how to treat a patient, whether to instigate public health action, and what action might be appropriate. The information is compatible both with previous sequence-based typing data and also with data obtained in the absence of WGS, providing a flexible infrastructure for WGS-based clinical microbiology.
Collapse
Affiliation(s)
- K A Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
226
|
|
227
|
The changing epidemiology of meningococcal disease in Quebec, Canada, 1991-2011: potential implications of emergence of new strains. PLoS One 2012; 7:e50659. [PMID: 23209803 PMCID: PMC3510192 DOI: 10.1371/journal.pone.0050659] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/26/2012] [Indexed: 12/12/2022] Open
Abstract
Background In order to inform meningococcal disease prevention strategies, we analysed the epidemiology of invasive meningococcal disease (IMD) in the province of Quebec, Canada, 10 years before and 10 years after the introduction of serogroup C conjugate vaccination. Methodology IMD cases reported to the provincial notifiable disease registry in 1991–2011 and isolates submitted for laboratory surveillance in 1997–2011 were analysed. Serogrouping, PCR testing and assignment of isolates to sequence types (ST) by using multilocus sequence typing (MLST) were performed. Results Yearly overall IMD incidence rates ranged from 2.2–2.3/100,000 in 1991–1992 to 0.49/100,000 in 1999–2000, increasing to 1.04/100,000 in 2011. Among the 945 IMD cases identified by laboratory surveillance in 1997–2011, 68%, 20%, 8%, and 3% were due to serogroups B, C, Y, and W135, respectively. Serogroup C IMD almost disappeared following the implementation of universal childhood immunization with monovalent C conjugate vaccines in 2002. Serogroup B has been responsible for 88% of all IMD cases and 61% of all IMD deaths over the last 3 years. The number and proportion of ST-269 clonal complex has been steadily increasing among the identified clonal complexes of serogroup B IMD since its first identification in 2003, representing 65% of serogroup B IMD in 2011. This clonal complex was first introduced in adolescent and young adults, then spread to other age groups. Conclusion Important changes in the epidemiology of IMD have been observed in Quebec during the last two decades. Serogroup C has been virtually eliminated. In recent years, most cases have been caused by the serogroup B ST-269 clonal complex. Although overall burden of IMD is low, the use of a vaccine with potential broad-spectrum coverage could further reduce the burden of disease. Acceptability, feasibility and cost-effectiveness studies coupled with ongoing clinical and molecular surveillance are necessary in guiding public policy decisions.
Collapse
|
228
|
Huber CA, Pflüger V, Hamid AWM, Forgor AA, Hodgson A, Sié A, Junghanss T, Pluschke G. Lack of antigenic diversification of major outer membrane proteins during clonal waves of Neisseria meningitidis serogroup A colonization and disease. Pathog Dis 2012; 67:4-10. [PMID: 23620114 DOI: 10.1111/2049-632x.12000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 12/22/2022] Open
Abstract
In particular in the 'meningitis belt' of sub-Saharan Africa, epidemic meningococcal meningitis is a severe public health problem. In the past decades, serogroup A lineages have been the dominant etiologic agents, but also other serogroups have caused outbreaks. A comprehensive vaccine based on subcapsular outer membrane proteins (OMPs) is not available. Here, we have investigated whether meningococcal populations overcome herd immunity by changing antigenic properties of their OMPs. Meningococcal isolates were collected in the context of longitudinal studies in Ghana between 2002 and 2008 and in Burkina Faso between 2006 and 2007. Serogroup A strains isolated during two clonal waves of colonization and disease showed no diversification in the genes encoding their PorA, PorB, and FetA proteins. However, we detected occasional allelic exchange of opa genes, as well as wide variation in the number of intragenic tandem repeats, showing that phase variation of Opa protein expression is a frequent event. Altogether we observed a remarkable antigenic stability of the PorA, PorB and FetA proteins over years. Our results indicate that while herd immunity may be responsible for the disappearance of meningococcal clones over time, it is not a strong driving force for antigenic diversification of the major OMPs analyzed here.
Collapse
|
229
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
230
|
Joseph S, Forsythe SJ. Insights into the Emergent Bacterial Pathogen Cronobacter spp., Generated by Multilocus Sequence Typing and Analysis. Front Microbiol 2012; 3:397. [PMID: 23189075 PMCID: PMC3504363 DOI: 10.3389/fmicb.2012.00397] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/30/2012] [Indexed: 11/13/2022] Open
Abstract
Cronobacter spp. (previously known as Enterobacter sakazakii) is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognized route of infection being the consumption of contaminated infant formula. As a recently recognized bacterial pathogen of considerable importance and regulatory control, appropriate detection, and identification schemes are required. The application of multilocus sequence typing (MLST) and analysis (MLSA) of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB, and ppsA (concatenated length 3036 base pairs) has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognized genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti) and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby's brain, and has contributed to improved control measures to protect neonatal health.
Collapse
Affiliation(s)
- Susan Joseph
- Pathogen Research Group, School of Science and Technology, Nottingham Trent UniversityNottingham, UK
| | - Stephen J. Forsythe
- Pathogen Research Group, School of Science and Technology, Nottingham Trent UniversityNottingham, UK
| |
Collapse
|
231
|
WHO/Health Canada meeting on regulatory considerations for evaluation and licensing of new meningococcal Group B vaccines, Ottawa, Canada, 3–4 October 2011. Biologicals 2012; 40:507-16. [DOI: 10.1016/j.biologicals.2012.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
|
232
|
Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis. Proc Natl Acad Sci U S A 2012; 109:16852-7. [PMID: 23035246 DOI: 10.1073/pnas.1206563109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Base excision repair (BER) is a highly conserved DNA repair pathway throughout all kingdoms from bacteria to humans. Whereas several enzymes are required to complete the multistep repair process of damaged bases, apurinic-apyrimidic (AP) endonucleases play an essential role in enabling the repair process by recognizing intermediary abasic sites cleaving the phosphodiester backbone 5' to the abasic site. Despite extensive study, there is no structure of a bacterial AP endonuclease bound to substrate DNA. Furthermore, the structural mechanism for AP-site cleavage is incomplete. Here we report a detailed structural and biochemical study of the AP endonuclease from Neisseria meningitidis that has allowed us to capture structural intermediates providing more complete snapshots of the catalytic mechanism. Our data reveal subtle differences in AP-site recognition and kinetics between the human and bacterial enzymes that may reflect different evolutionary pressures.
Collapse
|
233
|
Watkins ER, Maiden MCJ. Persistence of hyperinvasive meningococcal strain types during global spread as recorded in the PubMLST database. PLoS One 2012; 7:e45349. [PMID: 23028953 PMCID: PMC3460945 DOI: 10.1371/journal.pone.0045349] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/15/2012] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis is a major cause of septicaemia and meningitis worldwide. Most disease in Europe, the Americas and Australasia is caused by meningococci expressing serogroup B capsules, but no vaccine against this polysaccharide exists. Potential candidates for 'serogroup B substitute' vaccines are outer membrane protein antigens including the typing antigens PorA and FetA. The web-accessible PubMLST database (www.pubmlst.org) was used to investigate the temporal and geographical patterns of associations among PorA and FetA protein variants and lineages defined by combinations of housekeeping genes, known as clonal complexes. The sample contained 3460 isolates with genotypic information from 57 countries over a 74 year period. Although shifting associations among antigen variants and clonal complexes were evident, a subset of strain types associated with several serogroups persisted for decades and proliferated globally. Genetic stability among outer membrane proteins of serogroup A meningococci has been described previously, but here long-lived genetic associations were also observed among meningococci belonging to serogroups B and C. The patterns of variation were consistent with behaviour predicted by models that invoke inter-strain competition mediated by immune selection. There was also substantial geographic and temporal heterogeneity in antigenic repertoires, providing both opportunities and challenges for the design of broad coverage protein-based meningococcal vaccines.
Collapse
|
234
|
The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 2012; 30 Suppl 2:B87-97. [PMID: 22607904 DOI: 10.1016/j.vaccine.2012.01.033] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/22/2022]
Abstract
Neisseria meningitidis is a major cause of endemic cases and epidemics of meningitis and devastating septicemia. Although effective vaccines exist for several serogroups of pathogenic N. meningitidis, conventional vaccinology approaches have failed to provide a universal solution for serogroup B (MenB) which consequently remains an important burden of disease worldwide. The advent of whole-genome sequencing changed the approach to vaccine development, enabling the identification of potential vaccine candidates starting directly with the genomic information, with a process named reverse vaccinology. The application of reverse vaccinology to MenB allowed the identification of new protein antigens able to induce bactericidal antibodies. Three highly immunogenic antigens (fHbp, NadA and NHBA) were combined with outer membrane vesicles and formulated for human use in a multicomponent vaccine, named 4CMenB. This is the first MenB vaccine based on recombinant proteins able to elicit a robust bactericidal immune response in adults, adolescents and infants against a broad range of serogroup B isolates. This review describes the successful story of the development of the 4CMenB vaccine, with particular emphasis on the functional, immunological and structural characterization of the protein antigens included in the vaccine.
Collapse
|
235
|
Maiden MCJ, Frosch M. Can we, should we, eradicate the meningococcus? Vaccine 2012; 30 Suppl 2:B52-6. [PMID: 22607899 PMCID: PMC3366072 DOI: 10.1016/j.vaccine.2011.12.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 12/28/2022]
Abstract
The eradication of infectious agents is an attractive means of disease control that, to date, has been achieved for only one human pathogen, the smallpox virus. The introduction of vaccines against Neisseria meningitidis into immunisation schedules, and particularly the conjugate polysaccharide vaccines which can interrupt transmission, raises the question of whether disease caused by this obligate human bacterium can be controlled, eliminated, or even eradicated. The limited number of meningococcal serogroups, lack of an animal reservoir, and importance of meningococcal disease are considerations in favour of eradication; however, the commensal nature of most infections, the high diversity of meningococcal populations, and the lack of comprehensive vaccines are all factors that suggest that this is not feasible. Indeed, any such attempt might be harmful by perturbing the human microbiome and its interaction with the immune system. On balance, the control and possible elimination of disease caused by particular disease-associated meningococcal genotypes is a more achievable and worthwhile goal.
Collapse
Affiliation(s)
- Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
236
|
Clonal analysis of Neisseria meningitidis serogroup B strains in South Africa, 2002 to 2006: emergence of new clone ST-4240/6688. J Clin Microbiol 2012; 50:3678-86. [PMID: 22972827 DOI: 10.1128/jcm.01079-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
From August 1999 through July 2002, hyperinvasive Neisseria meningitidis serogroup B (MenB) clonal complexes (CCs), namely, ST-32/ET-5 (CC32) and ST-41/44/lineage 3 (CC41/44), were predominant in the Western Cape Province of South Africa. This study analyzed MenB invasive isolates from a national laboratory-based surveillance system that were collected from January 2002 through December 2006. Isolates were characterized by pulsed-field gel electrophoresis (PFGE) (n = 302), and multilocus sequence typing (MLST) and PorA and FetA typing were performed on randomly selected isolates (34/302, 11%). In total, 2,400 cases were reported, with the highest numbers from Gauteng Province (1,307/2,400, 54%) and Western Cape Province (393/2,400, 16%); 67% (1,617/2,400) had viable isolates and 19% (307/1,617) were identified as serogroup B. MenB incidence remained stable over time (P = 0.77) (average incidence, 0.13/100,000 population [range, 0.10 to 0.16/100,000 population]). PFGE (302/307, 98%) divided isolates (206/302, 68%) into 13 clusters and 96 outliers. The largest cluster, B1, accounted for 25% of isolates (76/302) over the study period; its prevalence decreased from 43% (20/47) in 2002 to 13% (8/62) in 2006 (P < 0.001), and it was common in the Western Cape (58/76, 76%). Clusters B2 and B3 accounted for 10% (31/302) and 6% (19/302), respectively, and showed no significant change over time and were predominant in Gauteng. Randomly selected isolates from clusters B1, B2, and B3 belonged to CC32, CC41/44, and the new CC4240/6688, respectively. Overall, 15 PorA and 12 FetA types were identified. MenB isolates were mostly diverse with no single dominant clone; however, CC32 and CC41/44 accounted for 35% and the new CC4240/6688 was the third most prevalent clone.
Collapse
|
237
|
Tafuri S, Prato R, Martinelli D, Germinario C. Prevalence of carriers of Neisseria meningitidis among migrants: is migration changing the pattern of circulating meningococci? J Travel Med 2012; 19:311-3. [PMID: 22943272 DOI: 10.1111/j.1708-8305.2012.00630.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/29/2022]
Abstract
To evaluate the prevalence of carriers of Neisseria meningitidis and circulating serogroups, 253 African refugee residents in the Asylum Seeker Center of Bari, Italy, were enrolled. Thirteen subjects (5.1%) were identified as carriers of meningococci. Six (46.1%) strains were autoagglutinable, four (30.8%) belonged to serogroup W135, and three (23.1%) to serogroup Y.
Collapse
Affiliation(s)
- Silvio Tafuri
- Department of Biomedical Sciences, Section of Hygiene, University of Bari Aldo Moro, Bari, Italy
| | | | | | | |
Collapse
|
238
|
Laboratory-based surveillance of Neisseria meningitidis isolates from disease cases in Latin American and Caribbean countries, SIREVA II 2006-2010. PLoS One 2012; 7:e44102. [PMID: 22952888 PMCID: PMC3431326 DOI: 10.1371/journal.pone.0044102] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/30/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Published data on the epidemiology of meningococcal disease in Latin America and the Caribbean region is scarce and, when available, it is often published in Spanish and/or in non-peer-reviewed journals, making it difficult for the international scientific community to have access. METHODS Laboratory data on 4,735 Neisseria meningitidis strains was collected and reported by the National Reference Laboratories in 19 Latin American countries and the Caribbean Epidemiology Centre (CAREC) between 2006 and 2010 as part of the work carried out by the SIREVA II network. Serogroup and MIC to penicillin, rifampin and chloramphenicol were determined. RESULTS Isolates were mainly obtained from patients <5 years, but each year around 25% of isolates came from adult patients. Serogroup distribution was highly variable among countries. Serogroup C was the main cause of disease in Brazil; the majority of disease seen in the Southern cone was caused by serogroup B, but serogroup W135 strains have increased in recent years. In the Andean and Mexico, Central America and Caribbean regions, serogroups B and C were equally present, and serogroup Y was frequently isolated. Isolates were generally susceptible to chloramphenicol, penicillin and rifampin, but almost 60% of isolates characterized in Southern cone countries presented intermediate resistance to penicillin. Five rifampin-resistant isolates have been isolated in Uruguay and Brazil. CONCLUSIONS Serogroup distribution is highly variable among countries, but some geographic structuring can be inferred from these data. Epidemiological and laboratory data are scarce among Andean and Mexico, Central America and Caribbean countries. Evaluation and implementation of corrective measures on disease surveillance and reporting systems and the implementation of molecular diagnostic techniques and molecular characterization on meningococcal isolates are advised.
Collapse
|
239
|
Bratcher HB, Bennett JS, Maiden MCJ. Evolutionary and genomic insights into meningococcal biology. Future Microbiol 2012; 7:873-85. [PMID: 22827308 PMCID: PMC3492750 DOI: 10.2217/fmb.12.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidemic disease caused by Neisseria meningitidis, the meningococcus, has been recognized for two centuries, but remains incompletely controlled and understood. There have been dramatic reductions in serogroup A and C meningococcal disease following the introduction of protein-polysaccharide conjugate vaccines, but there is currently no comprehensive vaccine against serogroup B meningococci. Genetic analyses of meningococcal populations have provided many insights into the biology, evolution and pathogenesis of this important pathogen. The meningococcus, and its close relative the gonococcus, are the only pathogenic members of the genus Neisseria, and the invasive propensity of meningococci varies widely, with approximately a dozen 'hyperinvasive lineages' responsible for most disease. Despite this, attempts to identify a 'pathogenome', a subset of genes associated with the invasive phenotypes, have failed; however, genome-wide studies of representative meningococcal isolates using high-throughput sequencing are beginning to provide details on the relationship of invasive phenotype and genotype in this fascinating organism and how this relationship has evolved.
Collapse
|
240
|
Ladhani SN, Flood JS, Ramsay ME, Campbell H, Gray SJ, Kaczmarski EB, Mallard RH, Guiver M, Newbold LS, Borrow R. Invasive meningococcal disease in England and Wales: Implications for the introduction of new vaccines. Vaccine 2012; 30:3710-6. [DOI: 10.1016/j.vaccine.2012.03.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 01/06/2023]
|
241
|
Ala'aldeen DAA, Oldfield NJ, Bidmos FA, Abouseada NM, Ahmed NW, Turner DPJ, Neal KR, Bayliss CD. Carriage of meningococci by university students, United Kingdom. Emerg Infect Dis 2012; 17:1762-3. [PMID: 21888817 PMCID: PMC3322062 DOI: 10.3201/eid1709.101762] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
242
|
Bradley DT, Bourke TW, Fairley DJ, Borrow R, Shields MD, Young IS, Zipfel PF, Hughes AE. Genetic susceptibility to invasive meningococcal disease: MBL2 structural polymorphisms revisited in a large case-control study and a systematic review. Int J Immunogenet 2012; 39:328-37. [PMID: 22296677 DOI: 10.1111/j.1744-313x.2012.01095.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Invasive infection caused by Neisseria meningitidis is a worldwide public health problem. Previous reports have indicated that carriage of common 'defective' structural polymorphisms of the host mannose-binding lectin gene (MBL2) greatly increases an individual's risk of developing the disease. We report the largest case-control study so far to investigate the effect of these polymorphisms in meningococcal disease (296 PCR-positive cases and 5196 population controls, all of European ancestry) and demonstrate that no change in risk is associated with the polymorphisms overall or in any age-defined subgroup. This finding contrasts with two smaller studies that reported an increase in risk. A systematic review of all studies of MBL2 polymorphisms in people of European ancestry published since 1999, including 24,693 individuals, revealed a population frequency of the combined 'defective'MBL2 allele of 0.230 (95% confidence limits: 0.226-0.234). The past reported associations of increased risk of meningococcal disease were because of low 'defective' allele frequencies in their study control populations (0.13 and 0.04) that indicate systematic problems with the studies. The data from our study and all other available evidence indicate that MBL2 structural polymorphisms do not predispose children or adults to invasive meningococcal disease.
Collapse
Affiliation(s)
- D T Bradley
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Evolutionary changes in antimicrobial resistance of invasive Neisseria meningitidis isolates in Belgium from 2000 to 2010: increasing prevalence of penicillin nonsusceptibility. Antimicrob Agents Chemother 2012; 56:2268-72. [PMID: 22290951 DOI: 10.1128/aac.06310-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to evaluate the evolution of the antimicrobial susceptibility of Neisseria meningitidis causing invasive diseases in Belgium in the period of January 2000 to December 2010. A total of 1,933 cases of N. meningitidis from invasive infections were analyzed by antimicrobial susceptibility testing at the Belgian Meningococcal Reference Centre. The majority of strains were susceptible to antibiotics that are currently used for the treatment and prophylaxis of meningococcal disease, but the prevalence of clinical isolates with reduced susceptibility to penicillin increased over the years. The phenotyping, genotyping, and determination of MICs of penicillin G were performed. The systematic shift of the curves toward higher penicillin MICs in the susceptible population indicated that this population became less sensitive to penicillin in this period. A 402-bp DNA fragment in the 3' end of penA was sequenced for the 296 nonsusceptible meningococcal strains isolated between 2000 and 2010 to examine the genetic diversity and evolution of their penA gene. In conclusion, the data obtained in our study support the statement that the position of penicillin G as a first choice in the treatment of invasive meningococcal diseases in Belgium should be reexamined. Despite an important number of isolates displaying a reduced susceptibility to penicillin, at present the expanded-spectrum cephalosporins, such as ceftriaxone, are not affected. The follow-up of the evolutionary changes in antimicrobial resistance has also proved to be essential for the recommendation of an appropriate antimicrobial treatment for invasive meningococcal diseases.
Collapse
|
244
|
Abstract
Neisseria meningitidis (the meningococcus) causes significant morbidity and mortality in children and young adults worldwide through epidemic or sporadic meningitis and/or septicemia. In this review, we describe the biology, microbiology, and epidemiology of this exclusive human pathogen. N.meningitidis is a fastidious, encapsulated, aerobic gram-negative diplococcus. Colonies are positive by the oxidase test and most strains utilize maltose. The phenotypic classification of meningococci, based on structural differences in capsular polysaccharide, lipooligosaccharide (LOS) and outer membrane proteins, is now complemented by genome sequence typing (ST). The epidemiological profile of N. meningitidis is variable in different populations and over time and virulence of the meningococcus is based on a transformable/plastic genome and expression of certain capsular polysaccharides (serogroups A, B, C, W-135, Y and X) and non-capsular antigens. N. meningitidis colonizes mucosal surfaces using a multifactorial process involving pili, twitching motility, LOS, opacity associated, and other surface proteins. Certain clonal groups have an increased capacity to gain access to the blood, evade innate immune responses, multiply, and cause systemic disease. Although new vaccines hold great promise, meningococcal infection continues to be reported in both developed and developing countries, where universal vaccine coverage is absent and antibiotic resistance increasingly more common.
Collapse
Affiliation(s)
- Nadine G Rouphael
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
245
|
Ning P, Zhang Y, Liu P, Xu X, Gong C, Huang C, Ma L, Guo K, Bai J. Process Optimisation for Increased Polysaccharide Yield of Neisseria Meningitidis(Serogroup W135) by Submerged Fermentation. BIOTECHNOL BIOTEC EQ 2012. [DOI: 10.5504/bbeq.2012.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
246
|
Abstract
The clinical symptoms induced by Neisseria meningitidis reflect compartmentalized intravascular and intracranial bacterial growth and inflammation. In this chapter, we describe a classification system for meningococcal disease based on the nature of the clinical symptoms. Meningococci invade the subarachnoid space and cause meningitis in as many as 50-70% of patients. The bacteremic phase is moderate in patients with meningitis and mild systemic meningococcemia but graded high in patients with septic shock. Three landmark studies using this classification system and comprising 862 patients showed that 37-49% developed meningitis without shock, 10-18% shock without meningitis, 7-12% shock and meningitis, and 18-33% had mild meningococcemia without shock or meningitis. N. meningitidis lipopolysaccharide (LPS) is the principal trigger of the innate immune system via activation of the Toll-like receptor 4-MD2 cell surface receptor complex on myeloid and nonmyeloid human cells. The intracellular signals are conveyed via MyD88-dependent and -independent pathways altering the expression of >4,600 genes in target cells such as monocytes. However, non-LPS molecules contribute to inflammation, but 10-100-fold higher concentrations are required to reach the same responses as induced by LPS. Activation of the complement and coagulation systems is related to the bacterial load in the circulation and contributes to the development of shock, organ dysfunction, thrombus formation, bleeding, and long-term complications in patients. Despite rapid intervention and advances in patient intensive care, why as many as 30% of patients with systemic meningococcal disease develop massive meningococcemia leading to shock and death is still not understood.
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Departments of Pediatrics and Medical Biochemistry, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
247
|
Abstract
The genetic diversity of pathogens presents a challenge to the development of broadly effective vaccines. In this issue, Scarselli et al. combine atomic-level structural information with genomics and classical vaccinology to design a single immunogen that elicits protective immunity against more than 300 natural variants of the bacterial pathogen meningococcus B. This accomplishment provides a glimpse of the power of structure-based vaccine design to create immunogens capable of eliciting protective responses against genetically diverse pathogens.
Collapse
Affiliation(s)
- Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
248
|
Seroprevalence of serum bactericidal antibodies against group W135 and Y meningococci in England in 2009. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:219-22. [PMID: 22190393 DOI: 10.1128/cvi.05515-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serological surveillance has been used in the United Kingdom to inform vaccine policy for several infections, including those with group C meningococci. Meningococcal conjugate vaccines, containing capsular groups A, W135, and Y in addition to C, are now available, but their use in the United Kingdom is restricted to at-risk groups and travelers to areas of endemicity. The aim of this study was to establish a baseline for natural immunity for groups W135 and Y. Serum samples collected in 2009 from individuals of all ages were obtained from the Health Protection Agency Seroepidemiology Unit, which collects residual sera from participating laboratories across the country. Serum bactericidal antibody (SBA) activity against two reference strains, representing groups Y (strain M03 241125) and W135 (strain M01 240070), was determined with 1,191 sera using a standardized complement-mediated SBA assay, with complement derived from baby rabbits (rSBA). The age-specific geometric mean titers (GMTs) and percentages of individuals with rSBA titers of ≥ 8 were calculated, together with 95% confidence intervals (CI). Overall, 18.4% and 19.6% had rSBA titers of ≥ 8 for groups W135 and Y, respectively. Antibody prevalence varied by age. In general, rSBA titers were low for younger children, with serum samples from 7% and 13% of children under 5 years achieving titers of ≥ 8 against groups W135 and Y, respectively. GMTs peaked for 20- to 24-year-olds for group W135 (GMT, 7.1; 95% CI, 4.7, 10.9) and for 30- to 44-year-olds for group Y (GMT, 8.6; 95% CI, 5.9, 12.7). Unlike seroprevalence against group B meningococci, there was not an obvious peak in SBA titers in samples from teenagers. Natural immunity against group W135 and Y meningococci in England appears to be low.
Collapse
|
249
|
Wong HEE, Li MS, Kroll JS, Hibberd ML, Langford PR. Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica. PLoS One 2011; 6:e26130. [PMID: 22028815 PMCID: PMC3197596 DOI: 10.1371/journal.pone.0026130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants) and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria.
Collapse
Affiliation(s)
- Hazel En En Wong
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Martin L. Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Paul R. Langford
- Section of Paediatrics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
250
|
Ibarz-Pavón AB, MacLennan J, Andrews NJ, Gray SJ, Urwin R, Clarke SC, Walker AM, Evans MR, Kroll JS, Neal KR, Ala'Aldeen D, Crook DW, Cann K, Harrison S, Cunningham R, Baxter D, Kaczmarski E, McCarthy ND, Jolley KA, Cameron JC, Stuart JM, Maiden MCJ. Changes in serogroup and genotype prevalence among carried meningococci in the United Kingdom during vaccine implementation. J Infect Dis 2011; 204:1046-53. [PMID: 21881120 PMCID: PMC3164428 DOI: 10.1093/infdis/jir466] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/13/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Herd immunity is important in the effectiveness of conjugate polysaccharide vaccines against encapsulated bacteria. A large multicenter study investigated the effect of meningococcal serogroup C conjugate vaccine introduction on the meningococcal population. METHODS Carried meningococci in individuals aged 15-19 years attending education establishments were investigated before and for 2 years after vaccine introduction. Isolates were characterized by multilocus sequence typing, serogroup, and capsular region genotype and changes in phenotypes and genotypes assessed. RESULTS A total of 8462 meningococci were isolated from 47 765 participants (17.7%). Serogroup prevalence was similar over the 3 years, except for decreases of 80% for serogroup C and 40% for serogroup 29E. Clonal complexes were associated with particular serogroups and their relative proportions fluctuated, with 12 statistically significant changes (6 up, 6 down). The reduction of ST-11 complex serogroup C meningococci was probably due to vaccine introduction. Reasons for a decrease in serogroup 29E ST-254 meningococci (from 1.8% to 0.7%) and an increase in serogroup B ST-213 complex meningococci (from 6.7% to 10.6%) were less clear. CONCLUSIONS Natural fluctuations in carried meningococcal genotypes and phenotypes a can be affected by the use of conjugate vaccines, and not all of these changes are anticipatable in advance of vaccine introduction.
Collapse
Affiliation(s)
| | | | | | - Stephen J. Gray
- Meningococcal Reference Unit, Health Protection Agency, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary
| | | | - Stuart C. Clarke
- Division of Infection, Inflammation and Immunity, University of Southampton, School of Medicine, Southampton National Institute for Health Research Biomedical Research Unit in Respiratory Medicine, and Health Protection Agency, Southampton
| | | | - Meirion R. Evans
- Department of Primary Care and Public Health, Cardiff University
| | - J. Simon Kroll
- Imperial College School of Medicine, Norfolk Place, London
| | - Keith R. Neal
- University of Nottingham, Epidemiology and Public Health, Community Health Sciences, Queen's Medical Centre
| | - Dlawer Ala'Aldeen
- Division of Microbiology, School of Molecular Medicine, University Hospital, Nottingham
| | - Derrick W. Crook
- Nuffield Department of Clinical and Laboratory Sciences, John Radcliffe Hospital, Headley Way, University of Oxford
| | - Kathryn Cann
- Nuffield Department of Clinical and Laboratory Sciences, John Radcliffe Hospital, Headley Way, University of Oxford
| | | | | | - David Baxter
- Division of Epidemiology and Health Sciences, Medical School, The University of Manchester
| | - Edward Kaczmarski
- Meningococcal Reference Unit, Health Protection Agency, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary
| | | | | | | | - James M. Stuart
- School of Social and Community Medicine, University of Bristol, United Kingdom
| | | |
Collapse
|