201
|
Natale DRC, Hemberger M, Hughes M, Cross JC. Activin promotes differentiation of cultured mouse trophoblast stem cells towards a labyrinth cell fate. Dev Biol 2009; 335:120-31. [PMID: 19716815 DOI: 10.1016/j.ydbio.2009.08.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Prolonged maintenance of trophoblast stem (TS) cells requires fibroblast growth factor (FGF) 4 and embryonic fibroblast feeder cells or feeder cell-conditioned medium. Previous studies have shown that TGF-beta and Activin are sufficient to replace embryonic fibroblast-conditioned medium. Nodal, a member of the TGF-beta superfamily, is also known to be important in vivo for the maintenance of TS cells in the developing placenta. Our current studies indicate that TS cells do not express the Nodal co-receptor, Cripto, and do not respond directly to active Nodal in culture. Conversely, Activin subunits and their receptors are expressed in the placenta and TS cell cultures, with Activin predominantly expressed by trophoblast giant cells (TGCs). Differentiation of TS cells in the presence of TGC-conditioned medium or exogenous Activin results in a reduction in the expression of TGC markers. In line with TGC-produced Activin representing the active component in TGC-conditioned medium, this differentiation-inhibiting effect can be reversed by the addition of follistatin. Additional experiments in which TS cells were differentiated in the presence or absence of exogenous Activin or TGF-beta show that Activin but not TGF-beta results in the maintenance of expression of TS cell markers, prolongs the expression of syncytiotrophoblast markers, and significantly delays the expression of spongiotrophoblast and TGC markers. These results suggest that Activin rather than TGF-beta (or Nodal) acts directly on TS cells influencing both TS cell maintenance and cell fate, depending on whether the cells are also exposed to FGF4.
Collapse
Affiliation(s)
- David R C Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, Calgary, AB, Canada T2N 4N1.
| | | | | | | |
Collapse
|
202
|
Early alteration of the self-renewal/differentiation threshold in trophoblast stem cells derived from mouse embryos after nuclear transfer. Dev Biol 2009; 334:325-34. [DOI: 10.1016/j.ydbio.2009.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/12/2009] [Accepted: 07/09/2009] [Indexed: 02/04/2023]
|
203
|
Grigor'eva EV, Shevchenko AI, Mazurok NA, Elisaphenko EA, Zhelezova AI, Shilov AG, Dyban PA, Dyban AP, Noniashvili EM, Slobodyanyuk SY, Nesterova TB, Brockdorff N, Zakian SM. FGF4 independent derivation of trophoblast stem cells from the common vole. PLoS One 2009; 4:e7161. [PMID: 19777059 PMCID: PMC2744875 DOI: 10.1371/journal.pone.0007161] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/21/2009] [Indexed: 12/02/2022] Open
Abstract
The derivation of stable multipotent trophoblast stem (TS) cell lines from preimplantation, and early postimplantation mouse embryos has been reported previously. FGF4, and its receptor FGFR2, have been identified as embryonic signaling factors responsible for the maintenance of the undifferentiated state of multipotent TS cells. Here we report the derivation of stable TS-like cell lines from the vole M. rossiaemeridionalis, in the absence of FGF4 and heparin. Vole TS-like cells are similar to murine TS cells with respect to their morphology, transcription factor gene expression and differentiation in vitro into derivatives of the trophectoderm lineage, and with respect to their ability to invade and erode host tissues, forming haemorrhagic tumours after subcutaneous injection into nude mice. Moreover, vole TS-like cells carry an inactive paternal X chromosome, indicating that they have undergone imprinted X inactivation, which is characteristic of the trophoblast lineage. Our results indicate that an alternative signaling pathway may be responsible for the establishment and stable proliferation of vole TS-like cells.
Collapse
Affiliation(s)
- Elena V. Grigor'eva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Alexander I. Shevchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Nina A. Mazurok
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Eugeny A. Elisaphenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Antonina I. Zhelezova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Alexander G. Shilov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Pavel A. Dyban
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Andrey P. Dyban
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | | - Sergey Ya. Slobodyanyuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | | | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| |
Collapse
|
204
|
El-Hashash AHK, Warburton D, Kimber SJ. Genes and signals regulating murine trophoblast cell development. Mech Dev 2009; 127:1-20. [PMID: 19755154 DOI: 10.1016/j.mod.2009.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
Abstract
A fundamental step in embryonic development is cell differentiation whereby highly specialised cell types are developed from a single undifferentiated, fertilised egg. One of the earliest lineages to form in the mammalian conceptus is the trophoblast, which contributes exclusively to the extraembryonic structures that form the placenta. Trophoblast giant cells (TGCs) in the rodent placenta form the outermost layer of the extraembryonic compartment, establish direct contact with maternal cells, and produce a number of pregnancy-specific cytokine hormones. Giant cells differentiate from proliferative trophoblasts as they exit the cell cycle and enter a genome-amplifying endocycle. Normal differentiation of secondary TGCs is a critical step toward the formation of the placenta and normal embryonic development. Trophoblast development is also of particular interest to the developmental biologist and immunobiologist, as these cells constitute the immediate cellular boundary between the embryonic and maternal tissues. Abnormalities in the development of secondary TGCs results in severe malfunction of the placenta. Herein we review new information that has been accumulated recently regarding the molecular and cellular regulation of trophoblast and placenta development. In particular, we discuss the molecular aspects of murine TGC differentiation. We also focus on the role of growth and transcription factors in TGC development.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
205
|
Kawamura K, Kawamura N, Sato W, Fukuda J, Kumagai J, Tanaka T. Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival. Endocrinology 2009; 150:3774-82. [PMID: 19372195 DOI: 10.1210/en.2009-0213] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Successful implantation of the blastocyst and subsequent placental development is essential for reproduction. Expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5, together with their receptor, tyrosine kinase B (TrkB), in trophectoderm cells of blastocyst suggests their potential roles in implantation and placental development. Here we demonstrated that treatment with BDNF promoted blastocyst outgrowth, but not adhesion, in vitro and increased levels of the cell invasion marker matrix metalloproteinase-9 in cultured blastocysts through the phosphatidylinositol 3-kinase pathway. After implantation, BDNF and neurotrophin-4/5 proteins as well as TrkB were expressed in trophoblast cells and placentas during different stages of pregnancy. Both TrkB and its ligands were also expressed in decidual cells. Treatment of cultured trophoblast cells with the TrkB ectodomain, or a Trk receptor inhibitor K252a, suppressed cell growth as reflected by decreased proliferation and increased apoptosis, whereas an inactive plasma membrane nonpermeable K252b was ineffective. Studies using the specific inhibitors also indicated the importance of the phosphatidylinositol 3-kinase/Akt pathway in mediating the action of TrkB ligands. In vivo studies in pregnant mice further demonstrated that treatment with K252a, but not K252b, suppressed placental development accompanied by increases in trophoblast cell apoptosis and decreases in placental labyrinth zone at midgestation. In vivo K252a treatment also decreased fetal weight at late gestational stages. Our findings suggested important autocrine/paracrine roles of the BDNF/TrkB signaling system during implantation, subsequent placental development, and fetal growth by increasing trophoblast cell growth and survival.
Collapse
Affiliation(s)
- Kazuhiro Kawamura
- Department of Obstetrics and Gynecology, Akita University School of Medicine, Akita 010-8543 Japan.
| | | | | | | | | | | |
Collapse
|
206
|
Ullah Z, Lee CY, Depamphilis ML. Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy. Cell Div 2009; 4:10. [PMID: 19490616 PMCID: PMC2697143 DOI: 10.1186/1747-1028-4-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 06/02/2009] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play a central role in the orderly transition from one phase of the eukaryotic mitotic cell division cycle to the next. In this context, p27Kip1 (one of the CIP/KIP family of CDK specific inhibitors in mammals) or its functional analogue in other eukarya prevents a premature transition from G1 to S-phase. Recent studies have revealed that expression of a second member of this family, p57Kip2, is induced as trophoblast stem (TS) cells differentiate into trophoblast giant (TG) cells. p57 then inhibits CDK1 activity, an enzyme essential for initiating mitosis, thereby triggering genome endoreduplication (multiple S-phases without an intervening mitosis). Expression of p21Cip1, the third member of this family, is also induced in during differentiation of TS cells into TG cells where it appears to play a role in suppressing the DNA damage response pathway. Given the fact that p21 and p57 are unique to mammals, the question arises as to whether one or both of these proteins are responsible for the induction and maintenance of polyploidy during mammalian development.
Collapse
Affiliation(s)
- Zakir Ullah
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | | | |
Collapse
|
207
|
Abstract
Development of a fertilized egg into an adult human requires trillions of cell divisions, the vast majority of which duplicate their genome once and only once. Nevertheless, trophoblast giant cells and megakaryocytes in mammals circumvent this rule by duplicating their genome multiple times without undergoing cell division, a process generally referred to as 'endoreduplication'. In contrast, arthropods such as Drosophila endoreduplicate their genome in most larval tissues, as well as in many adult tissues. Endoreduplication requires that cells prevent entrance into or completion of mitosis and cytokinesis under conditions that permit assembly of prereplication complexes. In addition, cells must prevent induction of apoptosis in response to incomplete DNA replication or DNA damage that may occur during the ensuing sequence of 'endocycles'. Thus, developmentally regulated endoreduplication results in terminal cell differentiation. Recent progress has revealed both differences and similarities in the mechanisms employed by flies and mammals to change from mitotic cell cycles to 'endocycles'. The critical step, however, appears to be switching from a CDK-dependent form of the anaphase promoting complex (APC) to one that functions only in the absence of CDK activity.
Collapse
Affiliation(s)
- Zakir Ullah
- Genomics of Differentiation Program; National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | - Chrissie Y. Lee
- Genomics of Differentiation Program; National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | - Mary A. Lilly
- Cell Biology and Metabolism Program; National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | - Melvin L. DePamphilis
- Genomics of Differentiation Program; National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
208
|
Rosario GX, Ain R, Konno T, Soares MJ. Intrauterine fate of invasive trophoblast cells. Placenta 2009; 30:457-63. [PMID: 19344949 PMCID: PMC2674526 DOI: 10.1016/j.placenta.2009.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/27/2022]
Abstract
Invasion of trophoblast cells into the uterine spiral arteries and the uterine wall is characteristic of hemochorial placentation. In the rat, trophoblast cells penetrate through the uterine decidua and well into the metrial gland. In this report, we examined the fate of these invasive trophoblast cells following parturition. Invasive trophoblast endocrine cells were retained in the postpartum mesometrial uterus in the rat. The demise of invasive trophoblast cells was followed by the appearance of differentiated smooth muscle cells surrounding blood vessels previously lined by invasive trophoblast cells and an infiltration of macrophages. Regulation of intrauterine trophoblast cell fate was investigated following premature removal of the fetus or removal of the fetus and chorioallantoic placenta. The presence of the fetus affected the distribution of invasive trophoblast cells within the uterus but did not negatively impact their survival. Premature removal of all chorioallantoic placentas and associated fetuses from a uterus resulted in extensive removal of intrauterine trophoblast cells. In summary, the postpartum demise of intrauterine invasive trophoblast cells is a dynamic developmental event regulated in part by the removal of trophic signals emanating from the chorioallantoic placenta.
Collapse
Affiliation(s)
| | | | - Toshihiro Konno
- Institute of Maternal-Fetal Biology, Division of Cancer and Developmental Biology, Departments of Pathology & Laboratory of Medicine and Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J. Soares
- Institute of Maternal-Fetal Biology, Division of Cancer and Developmental Biology, Departments of Pathology & Laboratory of Medicine and Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
209
|
Kim GS, Ko YG, Park OS, Park HJ, Koh PO, Cho KW, Min KS, Seong HH, Won CK, Cho JH. Identification of trophoblast-specific binding sites for GATA-2 that are essential for rat placental lactogen-I gene expression. Biotechnol Lett 2009; 31:1173-81. [PMID: 19357811 DOI: 10.1007/s10529-009-9994-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
Abstract
We identified a 3.4-kb 5'-flanking region of the rPL-I gene and examined its promoter activity using rat trophoblast Rcho-1 cells. A regulatory element between base pairs (bp) -2,487 and -2,310 in the 5'-flanking region was essential for maximum promoter activity of the rPL-I gene. This regulatory element was further characterized between bp -2,443 to -2,415 and -2,374 to -2,345. Electrophoretic mobility shift analysis showed that the interaction of nuclear extract proteins from differentiated Rcho-1 cells was inhibited by competition with a GATA-like sequence in the promoter, but not by a mutated GATA sequence. Moreover, the promoter activity of 2487 eLuc containing two novel GATA sites was significantly elevated by co-transfection of a GATA-2 expression vector in proliferating Rcho-1 cells. Our results demonstrate that GATA-2 is involved in multiple promoter regions to activate the specific expression of the rPL-I gene in placental tissue.
Collapse
Affiliation(s)
- Gon-Sup Kim
- Department of Anatomy, Institute of Life Science, College of Veterinary Medicine, Gyongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Ogawa H, Shindo N, Kumagai T, Usami Y, Shikanai M, Jonwn K, Fukuda A, Kawahara M, Sotomaru Y, Tanaka S, Arima T, Kono T. Developmental ability of trophoblast stem cells in uniparental mouse embryos. Placenta 2009; 30:448-56. [PMID: 19345411 DOI: 10.1016/j.placenta.2009.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 10/20/2022]
Abstract
Neither parthenogenetic (PG) nor androgenetic (AG) mouse embryos survive after day 9.5 of pregnancy, owing to the inadequate growth of extraembryonic tissues, including the placenta. At day 9.5 of pregnancy, the placental structures are poorly developed in PG embryos, while trophoblast giant cells are abundant at the implantation site in AG embryos. These findings suggest that both parental genomes are required for placental development. To gain further insight into the trophoblast lineage in PG and AG embryos, we attempted to derive trophoblast stem (TS)-like cell lines from uniparental embryos. Furthermore, we sought to assess their ability to differentiate into cells of the trophoblast lineage by using gene expression analysis. Three cell lines that expressed marker genes for undifferentiated TS cells (Cdx2 and Errbeta) were derived from AG embryos. Under differentiation conditions, these cells expressed the trophoblast giant cell-specific genes, but did not express the spongiotrophoblast-specific genes. In contrast, none of the four cell lines from PG embryos expressed marker genes for undifferentiated TS cells, but they expressed Oct3/4, a marker gene for embryonic stem cells. Immunohistochemical analysis indicated that PG blastocysts expressed Oct3/4 and Cdx2 specifically in inner cell mass and the trophectoderm respectively. These results suggest that PG embryos do not possess TS cells, because of the lack of the developmental ability of trophoblast cells.
Collapse
Affiliation(s)
- H Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol 2009; 29:2748-61. [PMID: 19289495 DOI: 10.1128/mcb.01391-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trophoblast differentiation during placentation involves an epithelial-mesenchymal transition (EMT) with loss of E-cadherin and gain of trophoblast invasiveness. Mice harboring a point mutation that renders inactive the mitogen-activated protein kinase kinase kinase MEKK4 exhibit dysregulated placental development with increased trophoblast invasion. Isolated MEKK4 kinase-inactive trophoblast stem (TS) cells cultured under undifferentiating, self-renewing conditions in the presence of fibroblast growth factor 4 (FGF4) display increased expression of Slug, Twist, and matrix metalloproteinase 2 (MMP2), loss of E-cadherin, and hyperinvasion of extracellular matrix, each a hallmark of EMT. MEKK4 kinase-inactive TS cells show a preferential differentiation to Tpbp alpha- and Gcm1-positive trophoblasts, which are indicative of spongiotrophoblast and syncytiotrophoblast differentiation, respectively. FGF4-stimulated Jun N-terminal kinase (JNK) and p38 activity is markedly reduced in MEKK4 kinase-inactive TS cells. Chemical inhibition of JNK in wild-type TS cells induced a similar EMT response as loss of MEKK4 kinase activity, including inhibition of E-cadherin expression and increased expression of Slug, MMP2, Tpbp alpha, and Gcm1. Chromatin immunoprecipitation analyses revealed changes in AP-1 composition with increased Fra-2 and decreased Fra-1 and JunB binding to the regulatory regions of Gcm1 and MMP2 genes in MEKK4 kinase-inactive TS cells. Our results define MEKK4 as a signaling hub for FGF4 activation of JNK that is required for maintenance of TS cells in an undifferentiated state.
Collapse
|
212
|
Shirakawa H, Rochman M, Furusawa T, Kuehn MR, Horigome S, Haketa K, Sugita Y, Inada T, Komai M, Bustin M. The nucleosomal binding protein NSBP1 is highly expressed in the placenta and modulates the expression of differentiation markers in placental Rcho-1 cells. J Cell Biochem 2009; 106:651-8. [PMID: 19160411 PMCID: PMC2846783 DOI: 10.1002/jcb.22046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report that NSBP1, a nucleosome binding protein that affects the structure of chromatin, is highly expressed in mouse placenta. In Rcho-1 cells, which recapitulate the differentiation of trophoblast giant cells of living placenta, NSBP1 expression is linked to differentiation. Disregulation of NSBP1 protein levels, by either siRNA treatment or by overexpression, alters the expression of several members of the prolactin gene family without affecting the levels of several transcription factors involved in placental differentiation. Our studies identify NSBP1 as a nucleosome binding protein that modulates the expression of prolactin gene family members most likely by inducing changes in chromatin structure.
Collapse
Affiliation(s)
- Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mark Rochman
- Protein Section, Laboratory of Metabolism, National Institutes of Health, Bethesda, Maryland 20892
| | - Takashi Furusawa
- Protein Section, Laboratory of Metabolism, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael R. Kuehn
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Satoru Horigome
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keiichi Haketa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yumi Sugita
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomoyuki Inada
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
213
|
Abstract
In mammals, trophoblast giant (TG) cell differentiation is characterized by a physiological endoreduplication, resulting in genome size augmentation. A recent study by Ullah and colleagues (pp. 3024-3036), published in this issue of Genes & Development, now elucidates the role of the cyclin-dependent kinase inhibitors (CKIs), p21 and p57, in mammalian endocycle regulation.
Collapse
|
214
|
Ullah Z, Kohn MJ, Yagi R, Vassilev LT, DePamphilis ML. Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 2009; 22:3024-36. [PMID: 18981479 DOI: 10.1101/gad.1718108] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome endoreduplication during mammalian development is a rare event for which the mechanism is unknown. It first appears when fibroblast growth factor 4 (FGF4) deprivation induces differentiation of trophoblast stem (TS) cells into the nonproliferating trophoblast giant (TG) cells required for embryo implantation. Here we show that RO3306 inhibition of cyclin-dependent protein kinase 1 (CDK1), the enzyme required to enter mitosis, induced differentiation of TS cells into TG cells. In contrast, RO3306 induced abortive endoreduplication and apoptosis in embryonic stem cells, revealing that inactivation of CDK1 triggers endoreduplication only in cells programmed to differentiate into polyploid cells. Similarly, FGF4 deprivation resulted in CDK1 inhibition by overexpressing two CDK-specific inhibitors, p57/KIP2 and p21/CIP1. TS cell mutants revealed that p57 was required to trigger endoreduplication by inhibiting CDK1, while p21 suppressed expression of the checkpoint protein kinase CHK1, thereby preventing induction of apoptosis. Furthermore, Cdk2(-/-) TS cells revealed that CDK2 is required for endoreduplication when CDK1 is inhibited. Expression of p57 in TG cells was restricted to G-phase nuclei to allow CDK activation of S phase. Thus, endoreduplication in TS cells is triggered by p57 inhibition of CDK1 with concomitant suppression of the DNA damage response by p21.
Collapse
Affiliation(s)
- Zakir Ullah
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
215
|
Sferruzzi-Perri AN, Macpherson AM, Roberts CT, Robertson SA. Csf2 null mutation alters placental gene expression and trophoblast glycogen cell and giant cell abundance in mice. Biol Reprod 2009; 81:207-21. [PMID: 19228596 DOI: 10.1095/biolreprod.108.073312] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be associated with placental development, including Mid1, Cd24a, Tnfrsf11b, and Wdfy1. Genes controlling trophoblast differentiation (Ascl2, Tcfeb, Itgav, and Socs3) were also differentially expressed. The CSF2 ligand and the CSF2 receptor alpha subunit were predominantly synthesized in the placental junctional zone. Altered placental structure in Csf2 null mice at E15 was characterized by an expanded junctional zone and by increased Cx31(+) glycogen cells and cyclin-dependent kinase inhibitor 1C (CDKN1C(+), P57(Kip2+)) giant cells, accompanied by elevated junctional zone transcription of genes controlling spongiotrophoblast and giant cell differentiation and secretory function (Ascl2, Hand1, Prl3d1, and Prl2c2). Granzyme genes implicated in tissue remodeling and potentially in trophoblast invasion (Gzmc, Gzme, and Gzmf) were downregulated in the junctional zone of Csf2 null mutant placentae. These data demonstrate aberrant placental gene expression in Csf2 null mutant mice that is associated with altered differentiation and/or functional maturation of junctional zone trophoblast lineages, glycogen cells, and giant cells. We conclude that CSF2 is a regulator of trophoblast differentiation and placental development, which potentially influences the functional capacity of the placenta to support optimal fetal growth in pregnancy.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
216
|
Chiu SY, Asai N, Costantini F, Hsu W. SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol 2009; 6:e310. [PMID: 19090619 PMCID: PMC2602722 DOI: 10.1371/journal.pbio.0060310] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022] Open
Abstract
SUMO-specific protease 2 (SENP2) modifies proteins by removing SUMO from its substrates. Although SUMO-specific proteases are known to reverse sumoylation in many defined systems, their importance in mammalian development and pathogenesis remains largely elusive. Here we report that SENP2 is highly expressed in trophoblast cells that are required for placentation. Targeted disruption of SENP2 in mice reveals its essential role in development of all three trophoblast layers. The mutation causes a deficiency in cell cycle progression. SENP2 has a specific role in the G-S transition, which is required for mitotic and endoreduplication cell cycles in trophoblast proliferation and differentiation, respectively. SENP2 ablation disturbs the p53-Mdm2 pathway, affecting the expansion of trophoblast progenitors and their maturation. Reintroducing SENP2 into the mutants can reduce the sumoylation of Mdm2, diminish the p53 level and promote trophoblast development. Furthermore, downregulation of p53 alleviates the SENP2-null phenotypes and stimulation of p53 causes abnormalities in trophoblast proliferation and differentiation, resembling those of the SENP2 mutants. Our data reveal a key genetic pathway, SENP2-Mdm2-p53, underlying trophoblast lineage development, suggesting its pivotal role in cell cycle progression of mitosis and endoreduplication.
Collapse
Affiliation(s)
- Shang-Yi Chiu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Naoya Asai
- Department of Pathology, Nagoya University, Nagoya, Japan
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
217
|
Proctor L, Dunk C, Baczyk D, Kingdom J, Lee Adamson S. Early Gene Expression and Morphogenesis of the Murine Chorioallantoic Placenta In vivo and In vitro. Placenta 2009; 30:96-104. [DOI: 10.1016/j.placenta.2008.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/22/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
218
|
Guzeloglu-Kayisli O, Kayisli UA, Taylor HS. The role of growth factors and cytokines during implantation: endocrine and paracrine interactions. Semin Reprod Med 2009; 27:62-79. [PMID: 19197806 PMCID: PMC3107839 DOI: 10.1055/s-0028-1108011] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Implantation, a critical step for establishing pregnancy, requires molecular and cellular events resulting in uterine growth and differentiation, blastocyst adhesion, invasion, and placental formation. Successful implantation requires a receptive endometrium, a normal and functional embryo at the blastocyst stage, and a synchronized dialogue between maternal and embryonic tissues. In addition to the well-characterized role of sex steroids, the complexity of embryo implantation and placentation is exemplified by the number of cytokines and growth factors with demonstrated roles in these processes. Disturbances in the normal expression and action of these cytokines result in an absolute or partial failure of implantation and abnormal placental formation in mice and human. Members of the gp130 cytokine family, interleukin-11 (IL-11) and leukemia inhibitory factor, the transforming growth factor beta superfamily, the colony-stimulating factors, and the IL-1 and IL-15 systems are crucial molecules for a successful implantation. Chemokines are also important, both in recruiting specific cohorts of leukocytes to the implantation site and in trophoblast trafficking and differentiation. This review provides discussion of the embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine, and/or juxtacrine manners at the hormonal, cellular, and molecular levels.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Umit Ali Kayisli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
219
|
Ray S, Dutta D, Rumi MAK, Kent LN, Soares MJ, Paul S. Context-dependent function of regulatory elements and a switch in chromatin occupancy between GATA3 and GATA2 regulate Gata2 transcription during trophoblast differentiation. J Biol Chem 2008; 284:4978-88. [PMID: 19106099 DOI: 10.1074/jbc.m807329200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA transcription factors are important regulators of tissue-specific gene expression during development. GATA2 and GATA3 have been implicated in the regulation of trophoblast-specific genes. However, the regulatory mechanisms of GATA2 expression in trophoblast cells are poorly understood. In this study, we demonstrate that Gata2 is transcriptionally induced during trophoblast giant cell-specific differentiation. Transcriptional induction is associated with displacement of GATA3-dependent nucleoprotein complexes by GATA2-dependent nucleoprotein complexes at two regulatory regions, the -3.9- and +9.5-kb regions, of the mouse Gata2 locus. Analyses with reporter genes showed that, in trophoblast cells, -3.9- and +9.5-kb regions function as transcriptional enhancers in GATA motif independent and dependent fashions, respectively. We also found that knockdown of GATA3 by RNA interference induces GATA2 in undifferentiated trophoblast cells. Interestingly, three other known GATA motif-dependent Gata2 regulatory elements, the -1.8-, -2.8-, and -77-kb regions, which are important to regulate Gata2 in hematopoietic cells are not occupied by GATA factors in trophoblast cells. These elements do not show any enhancer activity and also possess inaccessible chromatin structure in trophoblast cells indicating a context-dependent function. Our results indicate that GATA3 directly represses Gata2 in undifferentiated trophoblast cells, and a switch in chromatin occupancy between GATA3 and GATA2 (GATA3/GATA2 switch) induces transcription during trophoblast differentiation. We predict that this GATA3/GATA2 switch is an important mechanism for the transcriptional regulation of other trophoblast-specific genes.
Collapse
Affiliation(s)
- Soma Ray
- Institute of Maternal-Fetal Biology and the Division of Cancer & Developmental Biology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
220
|
Song G, Satterfield MC, Kim J, Bazer FW, Spencer TE. Progesterone and interferon tau regulate leukemia inhibitory factor receptor and IL6ST in the ovine uterus during early pregnancy. Reproduction 2008; 137:553-65. [PMID: 19060097 DOI: 10.1530/rep-08-0437] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The actions of leukemia inhibitory factor (LIF) via LIF receptor (LIFR) and its co-receptor, IL6 signal transducer (IL6ST), are implicated in uterine receptivity to conceptus implantation in a number of species including sheep. The present study determined the effects of the estrous cycle, pregnancy, progesterone (P4), and interferon tau (IFNT) on the expression of LIFR and IL6ST in the ovine uterus. LIFR mRNA and protein were localized to the endometrial luminal (LE) and superficial glandular epithelia (sGE), whereas IL6ST mRNA and protein were localized primarily in the middle to deep GE. Both LIFR and IL6ST mRNAs and protein were more abundant in pregnant than cyclic ewes and increased from days 10 to 20 of pregnancy. Treatment of ovariectomized ewes with P4 and/or infusion of ovine IFNT increased LIFR and IL6ST in endometrial LE/sGE and GE respectively. Co-expression of LIFR and IL6ST as well as phosphorylated STAT3 was observed only in the upper GE of the endometrium as well as in the conceptus trophectoderm on days 18 and 20. In mononuclear trophectoderm and GE cells, LIF elicited an increase in phosphorylated STAT3 and MAPK3/1 MAPK proteins. Collectively, these results suggest that LIFR and IL6ST are both stimulated by IFNT and regulated by P4 in a complex stage- and cell-specific manner, and support the hypothesis that LIF exerts effects on the endometrial GE as well as conceptus trophectoderm during early pregnancy in sheep. Thus, LIF and STAT3 may have biological roles in endometrial function and trophectoderm growth and differentiation.
Collapse
Affiliation(s)
- Gwonhwa Song
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | |
Collapse
|
221
|
Transcriptional regulator BPTF/FAC1 is essential for trophoblast differentiation during early mouse development. Mol Cell Biol 2008; 28:6819-27. [PMID: 18794365 DOI: 10.1128/mcb.01058-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The putative transcriptional regulator BPTF/FAC1 is expressed in embryonic and extraembryonic tissues of the early mouse conceptus. The extraembryonic trophoblast lineage in mammals is essential to form the fetal part of the placenta and hence for the growth and viability of the embryo in utero. Here, we describe a loss-of-function allele of the BPTF/FAC1 gene that causes embryonic lethality in the mouse. BPTF/FAC1-deficient embryos form apparently normal blastocysts that implant and develop epiblast, visceral endoderm, and extraembryonic ectoderm including trophoblast stem cells. Subsequent development of mutants, however, is arrested at the early gastrula stage (embryonic day 6.5), and virtually all null embryos die before midgestation. Most notably, the ectoplacental cone is drastically reduced or absent in mutants, which may cause the embryonic lethality. Development of the mutant epiblast is also affected, as the anterior visceral endoderm and the primitive streak do not form correctly, while brachyury-expressing mesodermal cells arise but are delayed. The mutant phenotype suggests that gastrulation is initiated, but no complete anteroposterior axis of the epiblast appears. We conclude that BPTF/FAC1 is essential in the extraembryonic lineage for correct development of the ectoplacental cone and fetomaternal interactions. In addition, BPTF/FAC1 may also play a role either directly or indirectly in anterior-posterior patterning of the epiblast.
Collapse
|
222
|
Simmons DG, Rawn S, Davies A, Hughes M, Cross JC. Spatial and temporal expression of the 23 murine Prolactin/Placental Lactogen-related genes is not associated with their position in the locus. BMC Genomics 2008; 9:352. [PMID: 18662396 PMCID: PMC2527339 DOI: 10.1186/1471-2164-9-352] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/28/2008] [Indexed: 02/06/2023] Open
Abstract
Background The Prolactin (PRL) hormone gene family shows considerable variation among placental mammals. Whereas there is a single PRL gene in humans that is expressed by the pituitary, there are an additional 22 genes in mice including the placental lactogens (PL) and Prolactin-related proteins (PLPs) whose expression is limited to the placenta. To understand the regulation and potential functions of these genes, we conducted a detailed temporal and spatial expression study in the placenta between embryonic days 7.5 and E18.5 in three genetic strains. Results Of the 22 PRL/PL genes examined, only minor differences were observed among strains of mice. We found that not one family member has the same expression pattern as another when both temporal and spatial data were examined. There was also no correlation in expression between genes that were most closely related or between adjacent genes in the PRL/PL locus. Bioinformatic analysis of upstream regulatory regions identified conserved combinations (modules) of putative transcription factor binding sites shared by genes expressed in the same trophoblast subtype, supporting the notion that local regulatory elements, rather than locus control regions, specify subtype-specific expression. Further diversification in expression was also detected as splice variants for several genes. Conclusion In the present study, a detailed temporal and spatial placental expression map was generated for all murine PRL/PL family members from E7.5 to E18.5 of gestation in three genetic strains. This detailed analysis uncovered several new markers for some trophoblast cell types that will be useful for future analysis of placental structure in mutant mice with placental phenotypes. More importantly, several main conclusions about regulation of the locus are apparent. First, no two family members have the same expression pattern when both temporal and spatial data are examined. Second, most genes are expressed in multiple trophoblast cell subtypes though none were detected in the chorion, where trophoblast stem cells reside, or in syncytiotrophoblast of the labyrinth layer. Third, bioinformatic comparisons of upstream regulatory regions identified predicted transcription factor binding site modules that are shared by genes expressed in the same trophoblast subtype. Fourth, further diversification of gene products from the PRL/PL locus occurs through alternative splice isoforms for several genes.
Collapse
Affiliation(s)
- David G Simmons
- Department of Comparative Biology & Experimental Medicine, The University of Calgary, Calgary, Canada.
| | | | | | | | | |
Collapse
|
223
|
Rielland M, Hue I, Renard JP, Alice J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol 2008; 322:1-10. [PMID: 18680738 DOI: 10.1016/j.ydbio.2008.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 12/25/2022]
Abstract
The trophoblast is a supportive tissue in mammals that plays key roles in embryonic patterning, foetal growth and nutrition. It shows an extensive growth up to the formation of the placenta. This growth is believed to be fed by trophoblast stem cells able to self-renew and to give rise to the differentiated derivatives present in the placenta. In this review, we summarize recent data on the molecular regulation of the trophoblast in vivo and in vitro. Most data have been obtained in the mouse, however, whenever relevant, we compare this model to other mammals. In ungulates, the growth of the trophoblast displays some striking features that make these species interesting alternative models for the study of trophoblast development. After the transfer of somatic nuclei into oocytes, studies in the mouse and the cow have both underlined that the trophoblast may be a direct target of reprogramming defects and that its growth seems specifically affected. We propose that the study of TS cells derived from nuclear transfer embryos may help to unravel some of the epigenetic abnormalities which occur therein.
Collapse
Affiliation(s)
- Maite Rielland
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
224
|
Lu CW, Yabuuchi A, Chen L, Viswanathan S, Kim K, Daley GQ. Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nat Genet 2008; 40:921-6. [PMID: 18536715 PMCID: PMC2690707 DOI: 10.1038/ng.173] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/22/2008] [Indexed: 02/06/2023]
Abstract
In blastocyst chimeras, embryonic stem (ES) cells contribute to embryonic tissues but not extraembryonic trophectoderm. Conditional activation of HRas1(Q61L) in ES cells in vitro induces the trophectoderm marker Cdx2 and enables derivation of trophoblast stem (TS) cell lines that, when injected into blastocysts, chimerize placental tissues. Erk2, the downstream effector of Ras-mitogen-activated protein kinase (MAPK) signaling, is asymmetrically expressed in the apical membranes of the 8-cell-stage embryo just before morula compaction. Inhibition of MAPK signaling in cultured mouse embryos compromises Cdx2 expression, delays blastocyst development and reduces trophectoderm outgrowth from embryo explants. These data show that ectopic Ras activation can divert ES cells toward extraembryonic trophoblastic fates and implicate Ras-MAPK signaling in promoting trophectoderm formation from mouse embryos.
Collapse
Affiliation(s)
- Chi-Wei Lu
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Division of Hematology, Brigham and Women's Hospital; Harvard Stem Cell Institute, Boston, MA 02115; Howard Hughes Medical Institute
| | - Akiko Yabuuchi
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Division of Hematology, Brigham and Women's Hospital; Harvard Stem Cell Institute, Boston, MA 02115; Howard Hughes Medical Institute
| | - Lingyi Chen
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Division of Hematology, Brigham and Women's Hospital; Harvard Stem Cell Institute, Boston, MA 02115; Howard Hughes Medical Institute
| | - Srinivas Viswanathan
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Division of Hematology, Brigham and Women's Hospital; Harvard Stem Cell Institute, Boston, MA 02115; Howard Hughes Medical Institute
| | - Kitai Kim
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Division of Hematology, Brigham and Women's Hospital; Harvard Stem Cell Institute, Boston, MA 02115; Howard Hughes Medical Institute
| | - George Q. Daley
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Division of Hematology, Brigham and Women's Hospital; Harvard Stem Cell Institute, Boston, MA 02115; Howard Hughes Medical Institute
| |
Collapse
|
225
|
|
226
|
Pan Z, Sikandar S, Witherspoon M, Dizon D, Nguyen T, Benirschke K, Wiley C, Vrana P, Lipkin SM. Impaired placental trophoblast lineage differentiation in Alkbh1(-/-) mice. Dev Dyn 2008; 237:316-27. [PMID: 18163532 DOI: 10.1002/dvdy.21418] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
E. coli AlkB has been intensively studied since 1983, but the in vivo roles of its mammalian homologue Alkbh1 are unknown. We, therefore, created null mice for Alkbh1. Alkbh1 mRNA is expressed at highest levels in the trophoblast lineages of the developing placenta. Alkbh1(-/-) placentas have decreased expression of differentiated trophoblast markers including Tpbp, Gcm1, and Pl-1, and increased expression of the trophoblast stem cell marker Eomes. Alkbh1 localizes to nuclear euchromatin, and interacts strongly with Mrj, an essential placental gene that mediates gene repression by recruitment of class II histone deacetylases (HDACs). Competition experiments show Alkbh1 and HDAC4 binding to Mrj are mutually exclusive, which causes decreased HDAC activity and increased target gene expression. Our study demonstrates Alkbh1 performs important functions in placental trophoblast lineage differentiation and participates in mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Zishu Pan
- Department of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Simmons DG, Natale DRC, Begay V, Hughes M, Leutz A, Cross JC. Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development 2008; 135:2083-91. [PMID: 18448564 PMCID: PMC3159581 DOI: 10.1242/dev.020099] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The labyrinth of the rodent placenta contains villi that are the site of nutrient exchange between mother and fetus. They are covered by three trophoblast cell types that separate the maternal blood sinusoids from fetal capillaries--a single mononuclear cell that is a subtype of trophoblast giant cell (sinusoidal or S-TGC) with endocrine function and two multinucleated syncytiotrophoblast layers, each resulting from cell-cell fusion, that function in nutrient transport. The developmental origins of these cell types have not previously been elucidated. We report here the discovery of cell-layer-restricted genes in the mid-gestation labyrinth (E12.5-14.5) including Ctsq in S-TGCs (also Hand1-positive), Syna in syncytiotrophoblast layer I (SynT-I), and Gcm1, Cebpa and Synb in syncytiotrophoblast layer II (SynT-II). These genes were also expressed in distinct layers in the chorion as early as E8.5, prior to villous formation. Specifically, Hand1 was expressed in apical cells lining maternal blood spaces (Ctsq is not expressed until E12.5), Syna in a layer immediately below, and Gcm1, Cebpa and Synb in basal cells in contact with the allantois. Cebpa and Synb were co-expressed with Gcm1 and were reduced in Gcm1 mutants. By contrast, Hand1 and Syna expression was unaltered in Gcm1 mutants, suggesting that Gcm1-positive cells are not required for the induction of the other chorion layers. These data indicate that the three differentiated trophoblast cell types in the labyrinth arise from distinct and autonomous precursors in the chorion that are patterned before morphogenesis begins.
Collapse
Affiliation(s)
- David G. Simmons
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - David R. C. Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Valerie Begay
- Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, 13092 Berlin, Germany
| | - Martha Hughes
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Achim Leutz
- Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, 13092 Berlin, Germany
| | - James C. Cross
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
228
|
Doss MX, Chen S, Winkler J, Hippler-Altenburg R, Odenthal M, Wickenhauser C, Balaraman S, Schulz H, Hummel O, Hübner N, Ghosh-Choudhury N, Sotiriadou I, Hescheler J, Sachinidis A. Transcriptomic and phenotypic analysis of murine embryonic stem cell derived BMP2+ lineage cells: an insight into mesodermal patterning. Genome Biol 2008; 8:R184. [PMID: 17784959 PMCID: PMC2375022 DOI: 10.1186/gb-2007-8-9-r184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/30/2007] [Accepted: 09/04/2007] [Indexed: 01/08/2023] Open
Abstract
Transcriptome analysis of BMP2+ cells in comparison to the undifferentiated BMP2 ES cells and the control population from 7-day old embryoid bodies led to the identification of 479 specifically upregulated and 193 downregulated transcripts. Background Bone morphogenetic protein (BMP)2 is a late mesodermal marker expressed during vertebrate development and plays a crucial role in early embryonic development. The nature of the BMP2-expressing cells during the early stages of embryonic development, their transcriptome and cell phenotypes developed from these cells have not yet been characterized. Results We generated a transgenic BMP2 embryonic stem (ES) cell lineage expressing both puromycin acetyltransferase and enhanced green fluorescent protein (EGFP) driven by the BMP2 promoter. Puromycin resistant and EGFP positive BMP2+ cells with a purity of over 93% were isolated. Complete transcriptome analysis of BMP2+ cells in comparison to the undifferentiated ES cells and the control population from seven-day-old embryoid bodies (EBs; intersection of genes differentially expressed between undifferentiated ES cells and BMP2+ EBs as well as differentially expressed between seven-day-old control EBs and BMP2+ EBs by t-test, p < 0.01, fold change >2) by microarray analysis led to identification of 479 specifically upregulated and 193 downregulated transcripts. Transcription factors, apoptosis promoting factors and other signaling molecules involved in early embryonic development are mainly upregulated in BMP2+ cells. Long-term differentiation of the BMP2+ cells resulted in neural crest stem cells (NCSCs), smooth muscle cells, epithelial-like cells, neuronal-like cells, osteoblasts and monocytes. Interestingly, development of cardiomyocytes from the BMP2+ cells requires secondary EB formation. Conclusion This is the first study to identify the complete transcriptome of BMP2+ cells and cell phenotypes from a mesodermal origin, thus offering an insight into the role of BMP2+ cells during embryonic developmental processes in vivo.
Collapse
Affiliation(s)
- Michael Xavier Doss
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Shuhua Chen
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Johannes Winkler
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Rita Hippler-Altenburg
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Margareta Odenthal
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Sridevi Balaraman
- Institute of Pathology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | - Herbert Schulz
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Oliver Hummel
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Norbert Hübner
- Max-Delbrueck-Center for Molecular Medicine - MDC, Robert-Rössle Str. 10, 13092 Berlin, Germany
| | - Nandini Ghosh-Choudhury
- Department of Pathology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Isaia Sotiriadou
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, 50931 Cologne, Germany
| |
Collapse
|
229
|
Rampon C, Bouillot S, Climescu-Haulica A, Prandini MH, Cand F, Vandenbrouck Y, Huber P. Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta. Physiol Genomics 2008; 34:193-204. [PMID: 18477666 DOI: 10.1152/physiolgenomics.00220.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protocadherins are transmembrane proteins exhibiting homophilic adhesive activities through their extracellular domain. Protocadherin 12 (Pcdh12) is expressed in angiogenic endothelial cells, mesangial cells of kidney glomeruli, and glycogen cells of the mouse placenta. To get insight into the role of this protein in vivo, we analyzed PCDH12-deficient mice and investigated their placental phenotype. The mice were alive and fertile; however, placental and embryonic sizes were reduced compared with wild-type mice. We observed defects in placental layer segregation and a decreased vascularization of the labyrinth associated with a reduction in cell density in this layer. To understand the molecular events responsible for the phenotypic alterations observed in Pcdh12(-/-) placentas, we analyzed the expression profile of embryonic day 12.5 mutant placentas compared with wild-type placentas, using pangenomic chips: 2,289 genes exhibited statistically significant changes in expressed levels due to loss of PCDH12. Functional grouping of modified genes was obtained by GoMiner software. Gene clusters that contained most of the differentially expressed genes were those involved in tissue morphogenesis and development, angiogenesis, cell-matrix adhesion and migration, immune response, and chromatin remodeling. Our data show that loss of PCDH12 leads to morphological alterations of the placenta and to notable changes in its gene expression profile. Specific genes emerging from the microarray screen support the biological modifications observed in PCDH12-deficient placentas.
Collapse
Affiliation(s)
- Christine Rampon
- Laboratory of Vascular Pathophysiology, Institut National de la Santé et de la Recherche Médicale U882, Commissariat à l'Energie Atomique (CEA), Grenoble University, CEA, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
230
|
Takahashi Y, Takahashi M, Carpino N, Jou ST, Chao JR, Tanaka S, Shigeyoshi Y, Parganas E, Ihle JN. Leukemia inhibitory factor regulates trophoblast giant cell differentiation via Janus kinase 1-signal transducer and activator of transcription 3-suppressor of cytokine signaling 3 pathway. Mol Endocrinol 2008; 22:1673-81. [PMID: 18451094 DOI: 10.1210/me.2008-0058] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) inhibits leukemia-inhibitory factor (LIF) signaling and acts as a negative regulator. Deletion of SOCS3 causes embryonic lethality because of placental failure, and genetic reduction of LIF or the LIF receptor (LIFR) in SOCS3-deficient mice rescues placental defects and embryonic lethality; this indicates that SOCS3 is an essential inhibitor of LIFR signaling. However, the downstream signaling molecule that acts as a link between the LIFR and SOCS3 has not been identified. In this study we explored the downstream signaling of LIFR. The administration of LIF to SOCS3-heterozygous pregnant mice promotes trophoblast giant cell differentiation and accelerates placental failure in SOCS3-deficient mice. SOCS3-deficient trophoblast stem cells show enhanced and prolonged signal transducer and activator of transcription 3 (Stat3) activation by LIF stimulation. Further, in the trophoblasts of SOCS3-deficient placenta and differentiating cells from the choriocarcinoma-derived cell line Rcho-1 cells, constitutive activation of Stat3 is observed. The forced expression of SOCS3, dominant-negative Stat3, and dominant-negative Janus kinase 1 (JAK1) in Rcho-1 cells significantly suppressed the trophoblast giant cell differentiation of these cells. In addition, the number of trophoblast giant cells is significantly reduced concomitant with an increased number of precursor trophoblasts in JAK1-deficient placentas. Finally, JAK1 deficiency rescues placental defects and embryonic lethality in SOCS3-deficient mice. These results indicate that the LIFR signaling is finely coordinated by JAK1, Stat3, and SOCS3 and regulates trophoblast giant cell differentiation. In addition, these data establish that LIFR-JAK1-Stat3-SOCS3 signaling is an essential pathway for the regulation of trophoblast giant cell differentiation.
Collapse
Affiliation(s)
- Yutaka Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Yamauchi H, Katayama KI, Ueno M, He XJ, Mikami T, Uetsuka K, Doi K, Nakayama H. Essential role of p53 in trophoblastic apoptosis induced in the developing rodent placenta by treatment with a DNA-damaging agent. Apoptosis 2008; 12:1743-54. [PMID: 17594519 DOI: 10.1007/s10495-007-0099-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Placental apoptosis plays important roles in both normal morphogenesis and pathogenesis. We previously reported that administration of cytosine arabinoside (Ara-C), a DNA-damaging agent, to pregnant rats induced apoptosis of trophoblasts in the placental labyrinth zone. Our aim here was to clarify the molecular pathway of DNA damage induced-trophoblastic apoptosis. We found the accumulation and phosphorylation of p53 protein, a tumor suppressor that mediates apoptosis under various cellular stresses, in Ara-C-treated rat placentas. Expression of the mRNAs of downstream targets of p53 was upregulated, suggesting that p53 exerts its function as a transcription factor. We also observed release of mitochondrial cytochrome c and activation of caspase-9, hallmarks of the intrinsic apoptotic pathway. Phosphorylation of Chk1 and H2A.X, target substrates of DNA damage transducers, was detected immediately after Ara-C treatment, suggesting activation of DNA damage cascades to phosphorylate p53. Ara-C-induced trophoblastic apoptosis was almost completely abrogated in placentas of Trp53 (coding p53)-deficient mice, whereas the levels of physiological apoptosis in trophoblasts were similar among wild-type and Trp53-deficient mice. These results indicate that p53 is essential for DNA damage-induced trophoblastic apoptosis and suggest that the mechanisms that regulate the damage-induced apoptosis differ from those that regulate physiological apoptosis.
Collapse
Affiliation(s)
- Hirofumi Yamauchi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Hemberger M. IFPA award in placentology lecture - characteristics and significance of trophoblast giant cells. Placenta 2008; 29 Suppl A:S4-9. [PMID: 18083226 DOI: 10.1016/j.placenta.2007.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/05/2007] [Accepted: 11/13/2007] [Indexed: 11/29/2022]
Abstract
Extraembryonic development in rodents depends on the differentiation and function of trophoblast giant cells. Morphologically striking, giant cells exhibit many extraordinary characteristics adapted to ensure the success of pregnancy. This review summarizes some of the intriguing aspects of giant cell morphology and function. Giant cells are highly polyploid as a result of a switch from a mitotic to an endoreduplicative cell cycle. They further partition their genome content into various fragments which may represent a mechanism to maximize protein synthesis. Similar to metastatic tumour cells, they breach basement membranes and invade deeply into a foreign tissue, the maternal decidualized uterine stroma. Their angiogenic and vasodilatory properties, combined with the ability to remodel arterial walls, enable them to redirect maternal blood flow towards the implantation site. Recent advances have recognized that the giant cell population is more diverse than previously recognized and future studies will have to show how these subtypes differ functionally and how their differentiation is controlled.
Collapse
Affiliation(s)
- M Hemberger
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
233
|
Rosario GX, Konno T, Soares MJ. Maternal hypoxia activates endovascular trophoblast cell invasion. Dev Biol 2008; 314:362-75. [PMID: 18199431 PMCID: PMC2266816 DOI: 10.1016/j.ydbio.2007.12.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/01/2007] [Accepted: 12/05/2007] [Indexed: 11/19/2022]
Abstract
Oxygen is a critical regulator of placentation. Early placental development occurs in a predominantly low oxygen environment and is, at least partially, under the control of hypoxia signaling pathways. In the present study, in vivo hypobaric hypoxia was used as an experimental tool to delineate hypoxia-sensitive events during placentation. Pregnant rats were exposed to the equivalent of 11% oxygen between days 6.5 and 13.5 of gestation. Pair-fed pregnant animals exposed to ambient conditions were included as a control group. Uterine mesometrial blood vessels in the hypoxia-exposed animals were greatly expanded and some contained large cuboidal cells that were positive for cytokeratin and other markers characteristic of invasive trophoblast cells. Unlike later in gestation, the route of trophoblast cell invasion in the hypoxia-exposed animals was restricted to endovascular, with no interstitial invasion observed. Hypoxia-activated endovascular trophoblast invasion required exposure to hypoxia from gestation day 8.5 to day 9.5. Activation of the invasive trophoblast lineage was also associated with an enlargement of the junctional zone of the chorioallantoic placenta, a source of invasive trophoblast cell progenitors. In summary, maternal hypoxia during early stages of placentation activates the invasive endovascular trophoblast cell lineage and promotes uterine vascular remodeling.
Collapse
Affiliation(s)
| | - Toshihiro Konno
- Institute of Maternal-Fetal Biology, Division of Cancer & Developmental Biology, Departments of Pathology & Laboratory Medicine and Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Michael J. Soares
- Institute of Maternal-Fetal Biology, Division of Cancer & Developmental Biology, Departments of Pathology & Laboratory Medicine and Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
234
|
Blomberg L, Hashizume K, Viebahn C. Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction 2008; 135:181-95. [DOI: 10.1530/rep-07-0355] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular basis of ungulate and non-rodent conceptus elongation and gastrulation remains poorly understood; however, use of state-of-the-art genomic technologies is beginning to elucidate the mechanisms regulating these complicated processes. For instance, transcriptome analysis of elongating porcine concepti indicates that protein synthesis and trafficking, cell growth and proliferation, and cellular morphology are major regulated processes. Furthermore, potential autocrine roles of estrogen and interleukin-1-β in regulating porcine conceptus growth and remodeling and metabolism have become evident. The importance of estrogen in pig is emphasized by the altered expression of essential steroidogenic and trophoblast factors in lagging ovoid concepti. In ruminants, the characteristic mononucleate trophoblast cells differentiate into a second lineage important for implantation, the binucleate trophoblast, and transcriptome profiling of bovine concepti has revealed a gene cluster associated with rapid trophoblast proliferation and differentiation. Gene cluster analysis has also provided evidence of correlated spatiotemporal expression and emphasized the significance of the bovine trophoblast cell lineage and the regulatory mechanism of trophoblast function. As a part of the gastrulation process in the mammalian conceptus, specification of the germ layers and hence definitive body axes occur in advance of primitive streak formation. Processing of the transforming growth factor-β-signaling molecules nodal and BMP4 by specific proteases is emerging as a decisive step in the initial patterning of the pre-gastrulation embryo. The topography of expression of these and other secreted molecules with reference to embryonic and extraembryonic tissues determines their local interaction potential. Their ensuing signaling leads to the specification of axial epiblast and hypoblast compartments through cellular migration and differentiation and, in particular, the specification of the early germ layer tissues in the epiblast via gene expression characteristic of endoderm and mesoderm precursor cells.
Collapse
|
235
|
Abstract
Implantation, a critical step for establishing pregnancy, requires molecular and cellular events resulting in healthy uterine growth and differentiation, blastocyst adhesion, invasion and placental formation. Successful implantation requires a receptive endometrium, a normal and functional embryo at the blastocyst stage and a synchronized dialogue between maternal and embryonic tissues. In addition to the main role of sex steroids, the complexity of embryo implantation and placentation is exemplified by the number of cytokines and growth factors with demonstrated roles in these processes. Disturbances of the normal expression and action of these cytokines result in absolute or partial failure of implantation and abnormal placental formation in mice and humans. Members of the gp130 cytokine family, interleukin (IL)-11 and leukaemia inhibitory factor, the transforming growth factor-beta superfamily, colony-stimulating factors, and the IL-1 and IL-15 systems are all crucial for successful implantation. In addition, chemokines are important both in recruiting specific cohorts of leukocytes to the implantation site, and in trophoblast trafficking and differentiation. This review provides discussion on embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine and/or juxtacrine manners at hormonal, cellular, and molecular levels.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
236
|
Boyle K, Robb L. The role of SOCS3 in modulating leukaemia inhibitory factor signalling during murine placental development. J Reprod Immunol 2008; 77:1-6. [PMID: 17408753 PMCID: PMC2289801 DOI: 10.1016/j.jri.2007.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/08/2007] [Accepted: 02/16/2007] [Indexed: 11/20/2022]
Abstract
Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels. Suppressor of cytokine signalling (SOCS) proteins act in a negative feedback loop to inhibit signal transduction. Mice with a deletion of SOCS3 die at midgestion due to placental insufficiency. SOCS3-null placentae have increased numbers of mature trophoblast giant cells, disruption of the labyrinthine layer and a decrease in the spongiotrophoblast layer. Genetic crosses have revealed that the phenotype is due to dysregulation of signalling downstream of the leukaemia inhibitory factor (LIF) receptor alpha (LIFRalpha) and that the ligand responsible for this, LIF, is produced by embryonic tissues and acts in a paracrine fashion. These observations highlight the role of LIF as an extrinsic factor regulating trophoblast differentiation in vivo. The creation of mice with conditional deletion of SOCS3 in different tissues has also uncovered critical roles for SOCS3 in the regulation of IL-6, G-CSF and leptin signalling.
Collapse
Affiliation(s)
- Kristy Boyle
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, Australia
| | | |
Collapse
|
237
|
Wen F, Tynan JA, Cecena G, Williams R, Múnera J, Mavrothalassitis G, Oshima RG. Ets2 is required for trophoblast stem cell self-renewal. Dev Biol 2007; 312:284-99. [PMID: 17977525 PMCID: PMC2211385 DOI: 10.1016/j.ydbio.2007.09.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 09/11/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
The Ets2 transcription factor is essential for the development of the mouse placenta and for generating signals for embryonic mesoderm and axis formation. Using a conditional targeted Ets2 allele, we show that Ets2 is essential for trophoblast stem (TS) cells self-renewal. Inactivation of Ets2 results in TS cell slower growth, increased expression of a subset of differentiation-associated genes and decreased expression of several genes implicated in TS self-renewal. Among the direct TS targets of Ets2 is Cdx2, a key master regulator of TS cell state. Thus Ets2 contributes to the regulation of multiple genes important for maintaining the undifferentiated state of TS cells and as candidate signals for embryonic development.
Collapse
Affiliation(s)
- Fang Wen
- Molecular Pathology Graduate Program, University of California, San Diego, 9500 Gilman Drive 0612, La Jolla, CA 92093
- Oncodevelopmental Biology Program, Cancer Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - John A. Tynan
- Molecular Pathology Graduate Program, University of California, San Diego, 9500 Gilman Drive 0612, La Jolla, CA 92093
| | - Grace Cecena
- Oncodevelopmental Biology Program, Cancer Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | | | - Jorge Múnera
- Molecular Pathology Graduate Program, University of California, San Diego, 9500 Gilman Drive 0612, La Jolla, CA 92093
| | | | - Robert G. Oshima
- Molecular Pathology Graduate Program, University of California, San Diego, 9500 Gilman Drive 0612, La Jolla, CA 92093
| |
Collapse
|
238
|
Krüger I, Vollmer M, Simmons DG, Simmons D, Elsässer HP, Philipsen S, Suske G. Sp1/Sp3 compound heterozygous mice are not viable: impaired erythropoiesis and severe placental defects. Dev Dyn 2007; 236:2235-44. [PMID: 17584888 DOI: 10.1002/dvdy.21222] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ubiquitously expressed zinc finger transcription factors Sp1 and Sp3 play critical roles in embryonic development. Sp1 knockout mice die around embryonic day 10.5. Mice lacking Sp3 are postnatal lethal. Mice heterozygous for either Sp1 or Sp3 are apparently normal, although slightly smaller. Here, we show that compound heterozygosity of Sp1 and Sp3 results in embryonic lethality accompanied by a spectrum of developmental abnormalities, including growth retardation, morphological alterations of the lung, impaired ossification, anemia, and placental defects. Anemia in Sp1/Sp3 compound heterozygous mutant embryos is associated with impaired maturation of erythrocytes. Analyses of the placenta revealed a markedly reduced spongiotrophoblast layer and a severe disorganization of the labyrinth layer in Sp1/Sp3 compound heterozygous as well as in Sp3-deficient mutant embryos. Our findings demonstrate that a threshold of Sp1 and Sp3 activity is required for normal embryonic development, suggesting that Sp1 and Sp3 act cooperatively to regulate downstream targets.
Collapse
Affiliation(s)
- Imme Krüger
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
239
|
Desmarais JA, Lopes FL, Zhang H, Das SK, Murphy BD. The Peroxisome Proliferator-Activated Receptor Gamma Regulates Trophoblast Cell Differentiation in Mink (Mustela vison)1. Biol Reprod 2007; 77:829-39. [PMID: 17615406 DOI: 10.1095/biolreprod.107.061929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family are implicated in implantation and early placental formation. In carnivores, the trophoblast invades to develop intimate contact with the endothelial cells of the maternal circulation, resulting in an endothelio-chorial form of placentation. Spatio-temporal investigation demonstrated that peroxisome proliferator-activated receptor gamma (PPARG) was strongly and specifically expressed in the mink trophoblast at the time of formation of the syncytiotrophoblast during early implantation, and in trophoblast of the placental labyrinth. The retinoid-X-receptor alpha (RXRA), the heterodimeric partner of PPARG in transcriptional regulation, is, with very few exceptions, co-expressed with PPARG in mink trophoblast. We used mink trophoblast cell lines together with a natural (15-deoxy-delta(12,14)-prostaglandin J(2) ) or a synthetic (troglitazone) PPARG ligand to demonstrate that PPARG is an authentic regulator of gene expression in this tissue. Ligand-activated PPARG stimulated transcription of the PPRE-luc reporter gene transfected into these cell lines. The prostaglandin-induced morphologic changes were accompanied by attenuation in cell proliferation, an increase in PPARG mRNA and protein levels, and the appearance of enlarged and multinuclear cells. Furthermore, 15-deoxy-delta(12,14)-prostaglandin J(2) stimulated the expression of invasion-related genes in trophoblast cells, namely, adipophilin and osteopontin. The results demonstrate that PPARG ligands attenuate proliferation and induce differentiation of mink trophoblast cells to the multlinuclear phenotype. The upregulation of differentiation-specific genes in the placenta under the influence of PPARG ligands provides a mechanism by which blastocyst and endometrial prostanoids regulate implantation, as well as the formation and maintenance of the placenta.
Collapse
Affiliation(s)
- Joëlle A Desmarais
- Centre of Animal Reproduction Research, Université de Montréal, Québec, Canada J2S 7C6
| | | | | | | | | |
Collapse
|
240
|
Wang H, Xie H, Sun X, Tranguch S, Zhang H, Jia X, Wang D, Das SK, Desvergne B, Wahli W, DuBois RN, Dey SK. Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor delta signaling is critical to pregnancy success. J Biol Chem 2007; 282:37770-82. [PMID: 17965409 DOI: 10.1074/jbc.m706577200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Zheng-Fischhöfer Q, Kibschull M, Schnichels M, Kretz M, Petrasch-Parwez E, Strotmann J, Reucher H, Lynn BD, Nagy JI, Lye SJ, Winterhager E, Willecke K. Characterization of connexin31.1-deficient mice reveals impaired placental development. Dev Biol 2007; 312:258-71. [PMID: 17961533 DOI: 10.1016/j.ydbio.2007.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/27/2007] [Accepted: 09/14/2007] [Indexed: 12/31/2022]
Abstract
The gap junction gene Connexin31.1 has been reported to be expressed predominantly in the epidermis of murine skin. To study the function of this gene, we generated mice in which the coding DNA of the Connexin31.1 gene was replaced by lacZ reporter coding DNA. Using beta-galactosidase staining, we have shown that lacZ/Connexin31.1 was expressed in the spinous and granular layers of the epidermis, in cells of olfactory epithelium and in the vomeronasal organ. During embryogenesis, Connexin31.1 was co-expressed with another isoform, Connexin31, in the post-implantation trophoblast cell lineage and, later in gestation, in placental glycogen cells. Although homozygous Connexin31.1-deficient mice were fertile and showed no morphological or functional defects in adult organs expressing this gene, 30% of the offspring expected according to Mendelian inheritance were lost between embryonic days 11.5 and 14.5 and surviving embryos were significantly reduced in weight near the end of pregnancy. Placentas of Connexin31.1-deficient embryos were reduced in weight and showed altered morphology of the spongiotrophoblast and labyrinth layer. The spongiotrophoblast formed a compact barrier at the decidual border that might restrict the maternal blood supply. We conclude that Connexin31.1 is critical for normal placental development but appears to be functionally compensated by other connexin isoforms in the embryo proper and adult mouse.
Collapse
|
242
|
Kimura AP, Sizova D, Handwerger S, Cooke NE, Liebhaber SA. Epigenetic activation of the human growth hormone gene cluster during placental cytotrophoblast differentiation. Mol Cell Biol 2007; 27:6555-68. [PMID: 17636034 PMCID: PMC2099626 DOI: 10.1128/mcb.00273-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hGH cluster contains a single human pituitary growth hormone gene (hGH-N) and four placenta-specific paralogs. Activation of the cluster in both tissues depends on 5' remote regulatory elements. The pituitary-specific locus control elements DNase I-hypersensitive site I (HSI) and HSII, located 14.5 kb 5' of the cluster (position -14.5), establish a continuous domain of histone acetylation that extends to and activates hGH-N in the pituitary gland. In contrast, histone modifications in placental chromatin are restricted to the more 5'-remote HSV-HSIII region (kb -28 to -32) and to the placentally expressed genes in the cluster, with minimal modification between these two regions. These data predict distinct modes of hGH cluster gene activation in the pituitary and placenta. Here we used cell culture models to track structural changes at the hGH locus through placental-gene activation. The data revealed that this process was initiated in primary cytotrophoblasts by histone H3K4 di- and trimethylation and H4 acetylation restricted to HSV and to the individual placental-gene repeat (PGR) units within the cluster. Later stages of transcriptional induction were accompanied by enhancement and extension of these modifications and by robust H3 acetylation at HSV, at HSIII, and throughout the placental-gene regions. These data suggested that elements restricted to HSIII-HSV regions and each individual PGR might be sufficient for activation of the hCS genes. This model was tested by comparing hCS transgene expression in the placentas of mouse embryos carrying a full hGH cluster to that in placentas in which the HSIII-HSV region was directly linked to the individual hCS-A PGR unit. The findings indicate that the HSIII-HSV region and the PGR units, although targeted for initial chromatin structural modifications, are insufficient to activate gene expression and that this process is dependent on additional, as-yet-unidentified chromatin determinants.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
243
|
Schenke-Layland K, Angelis E, Rhodes KE, Heydarkhan-Hagvall S, Mikkola HK, Maclellan WR. Collagen IV Induces Trophoectoderm Differentiation of Mouse Embryonic Stem Cells. Stem Cells 2007; 25:1529-38. [PMID: 17363553 DOI: 10.1634/stemcells.2006-0729] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The earliest segregation of lineages in the developing embryo is the commitment of cells to the inner cell mass or the trophoectoderm in preimplantation blastocysts. The exogenous signals that control commitment to a particular cell lineage are poorly understood; however, it has been suggested that extracellular "niche" and extracellular matrix, in particular, play an important role in determining the developmental fate of stem cells. Collagen IV (ColIV) has been reported to direct embryonic stem (ES) cell differentiation to mesodermal lineages in both mouse and human ES cells. To define the effects of ColIV on ES cell differentiation and to identify the resulting heterogeneous cell types, we performed microarray analyses and determined global gene expression. We observed that ColIV induced the expression of mesodermal genes specific to hematopoietic, endothelial, and smooth muscle cells and, surprisingly, also a panel of trophoectoderm-restricted markers. This effect was specific to collagen IV, as no trophoblast differentiation was seen on collagen I, laminin, or fibronectin. Stimulation with basic fibroblast growth factor (FGF) or FGF4 increased the number of trophoectodermal cells. These cells were isolated under clonal conditions and successfully differentiated into a variety of trophoblast derivatives. Interestingly, differentiation of ES cells to trophoblastic lineages was only seen in ES cell lines maintained on embryonic feeder layers and was caudal-type homeobox protein 2 (Cdx2)-dependent, consistent with Cdx2's postulated role in trophoectoderm commitment. Our data suggest that, given the appropriate extracellular stimuli, mouse embryonic stem cells can differentiate into trophoectoderm. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Katja Schenke-Layland
- Cardiovascular Research Laboratory, UCLA School of Medicine, 675 C.E. Young Dr., MRL 3-645, Los Angeles, California 90095-1760, USA
| | | | | | | | | | | |
Collapse
|
244
|
Rajaraman G, Murthi P, Leo B, Brennecke SP, Kalionis B. Homeobox gene HLX1 is a regulator of colony stimulating factor-1 dependent trophoblast cell proliferation. Placenta 2007; 28:991-8. [PMID: 17532041 DOI: 10.1016/j.placenta.2007.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/23/2007] [Accepted: 03/30/2007] [Indexed: 11/18/2022]
Abstract
The cytokine colony stimulating factor-1 (CSF-1) is a key regulator of the proliferation, differentiation and activation of mononuclear phagocytes. CSF-1 also plays an important role in reproduction. CSF-1 is produced in the placenta and activates signal transduction pathways that significantly increase the proliferation of placental trophoblast cells in culture. The target genes activated by CSF-1 mediated signal transduction in the nucleus are not well understood. Here, we use placental trophoblast cells to investigate potential downstream effector genes of CSF-1. HLX1 is a homeobox gene that controls proliferation in embryonic cell types and haematopoietic cell lineages. We have shown HLX1 is expressed in placental trophoblast cells but its functional role in the placenta is unknown. Following CSF-1 stimulation, HLX1 mRNA expression was significantly increased in SGHPL-4 and HTR-8/SVNeo cultured trophoblast cells (p<0.001, n=3). siRNA-mediated reduction of HLX1 mRNA levels with four independent oligonucleotides (siRNAs) resulted in significantly decreased cell proliferation in both cell lines (p<0.001, n=4). When HLX1 mRNA levels were reduced in the presence of CSF-1 stimulation, proliferation remained significantly decreased (p<0.001, n=4) in both the cell lines. We have shown for the first time that a homeobox gene, HLX1, is a downstream effector gene of CSF-1, that HLX1 regulates placental cell proliferation and that CSF-1 acts, at least in part, through HLX1 to control cell proliferation.
Collapse
Affiliation(s)
- G Rajaraman
- Department of Obstetrics and Gynaecology, University of Melbourne, Australia
| | | | | | | | | |
Collapse
|
245
|
Georgiades P, Cox B, Gertsenstein M, Chawengsaksophak K, Rossant J. Trophoblast-specific gene manipulation using lentivirus-based vectors. Biotechniques 2007; 42:317-8, 320, 322-5. [PMID: 17390538 DOI: 10.2144/000112341] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The trophoblast layers of the mammalian placenta carry out many complex functions required to pattern the developing embryo and maintain its growth and survival in the uterine environment. Genetic disruption of many gene pathways can result in embryonic lethality because of placental failure, potentially confusing the interpretation of mouse knockout phenotypes. Development of tools to specifically and efficiently manipulate gene expression in the trophoblast lineage would greatly aid understanding of the relative roles of different genetic pathways in the trophoblast versus embryonic lineages. We show that short-term lentivirus-mediated infection of mouse blastocysts can lead to rapid expression of a green fluorescent protein (GFP) transgene specifically in the outer trophoblast progenitors and their later placental derivatives. Efficient trophoblast-specific gene knockdown can also be produced by lentivirus-mediated pol III-driven short hairpin RNA (shRNA) and efficient trophoblast-specific gene knockout by pol II-driven Cre recombinase lentiviral vectors. This lentivirus lineage-specific infection system thus facilitates both gain and loss of function studies during placental development in the mouse and potentially other mammalian species.
Collapse
Affiliation(s)
- Pantelis Georgiades
- Developmental Genetics and Embryology Research Unit, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| | | | | | | | | |
Collapse
|
246
|
Papadaki C, Alexiou M, Cecena G, Verykokakis M, Bilitou A, Cross JC, Oshima RG, Mavrothalassitis G. Transcriptional repressor erf determines extraembryonic ectoderm differentiation. Mol Cell Biol 2007; 27:5201-13. [PMID: 17502352 PMCID: PMC1951951 DOI: 10.1128/mcb.02237-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Extraembryonic ectoderm differentiation and chorioallantoic attachment are fibroblast growth factor (FGF)- and transforming growth factor beta-regulated processes that are the first steps in the development of the placenta labyrinth and the establishment of the fetal-maternal circulation in the developing embryo. Only a small number of genes have been demonstrated to be important in trophoblast stem cell differentiation. Erf is a ubiquitously expressed Erk-regulated, ets domain transcriptional repressor expressed throughout embryonic development and adulthood. However, in the developing placenta, after 7.5 days postcoitum (dpc) its expression is restricted to the extraembryonic ectoderm, and its expression is restricted after 9.5 dpc in a subpopulation of labyrinth cells. Homozygous deletion of Erf in mice leads to a block of chorionic cell differentiation before chorioallantoic attachment, resulting in a persisting chorion layer, a persisting ectoplacental cone cavity, failure of chorioallantoic attachment, and absence of labyrinth. These defects result in embryo death by 10.5 dpc. Trophoblast stem cell lines derived from Erf(dl1/dl1) knockout blastocysts exhibit delayed differentiation and decreased expression of spongiotrophoblast markers, consistent with the persisting chorion layer, the expanded giant cell layer, and the diminished spongiotrophoblast layer observed in vivo. Our data suggest that attenuation of FGF/Erk signaling and consecutive Erf nuclear localization and function is required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment.
Collapse
Affiliation(s)
- Chara Papadaki
- Medical School, University of Crete, Voutes, Heraklion, Crete 710 03, Greece
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Watson ED, Geary-Joo C, Hughes M, Cross JC. The Mrj co-chaperone mediates keratin turnover and prevents the formation of toxic inclusion bodies in trophoblast cells of the placenta. Development 2007; 134:1809-17. [PMID: 17409114 DOI: 10.1242/dev.02843] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Defects in protein-folding and -degradation machinery have been identified as a major cause of intracellular protein aggregation and of aggregation-associated diseases. In general, it remains unclear how these aggregates are harmful to normal cellular function. We demonstrate here that,in the developing placenta of the mouse, the absence of the Mrj (Dnajb6)co-chaperone prevents proteasome degradation of keratin 18 (K18; Krt18)intermediate filaments, resulting in the formation of keratin inclusion bodies. These inclusions in chorionic trophoblast cells prevent chorioallantoic attachment during placental development. We show further that keratin-deficient embryos undergo chorioallantoic attachment and that, by genetically reducing keratin expression in Mrj-/-conceptuses, chorioallantoic attachment was rescued. Therefore, the chorioallantoic attachment phenotype in Mrj mutants is not due to a deficiency of the normal keratin cytoskeleton, but rather is cytotoxicity caused by keratin aggregates that disrupt chorion trophoblast cell organization and function.
Collapse
Affiliation(s)
- Erica D Watson
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
248
|
Petit FG, Jamin SP, Kurihara I, Behringer RR, DeMayo FJ, Tsai MJ, Tsai SY. Deletion of the orphan nuclear receptor COUP-TFII in uterus leads to placental deficiency. Proc Natl Acad Sci U S A 2007; 104:6293-8. [PMID: 17404209 PMCID: PMC1851059 DOI: 10.1073/pnas.0702039104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
COUP-TFII (NR2F2), chicken ovalbumin upstream promoter-transcription factor II, is an orphan nuclear receptor of the steroid/thyroid hormone receptor superfamily. The Coup-tfII-null mutant mice die during the early embryonic development because of angiogenesis and heart defects. To analyze the physiological function of COUP-TFII during organogenesis, we used the cre/loxP system to conditionally inactivate COUP-TFII in the ovary and uterus. Homozygous adult female mutants with specific inactivation of the Coup-tfII gene in uterine stromal and smooth muscle cells have severely impaired placental formation, leading to miscarriage at days 10-12 of pregnancy. Deletion of the Coup-tfII gene resulted in an increase in trophoblast giant cell differentiation, a reduction of the spongiotrophoblast layer, and an absence of labyrinth formation causing an improper vascularization of the placenta. This study describes an important maternal role of COUP-TFII in regulating the placentation. The endometrial COUP-TFII might modulate the signaling between the uterus and the extraembryonic tissue for the proper formation of the placenta.
Collapse
Affiliation(s)
- Fabrice G. Petit
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- Institut National de la Santé et de la Recherche Médicale, Unité 553, Hôpital Saint-Louis, 1, Avenue Claude Vellefaux, F-75010 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 782, Université de Paris-Sud, Hôpital Antoine Béclère, 32, Rue des Carnets, F-92140 Clamart, France; and
- To whom correspondence may be sent at the ‡ address. E-mail:
| | - Soazik P. Jamin
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Isao Kurihara
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Richard R. Behringer
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Francesco J. DeMayo
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Ming-Jer Tsai
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- **To whom correspondence may be addressed. E-mail: or
| | - Sophia Y. Tsai
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- **To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
249
|
Simmons DG, Fortier AL, Cross JC. Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol 2007; 304:567-78. [PMID: 17289015 DOI: 10.1016/j.ydbio.2007.01.009] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/19/2006] [Accepted: 01/04/2007] [Indexed: 11/22/2022]
Abstract
Trophoblast giant cells (TGCs) are the first terminally differentiated subtype to form in the trophoblast cell lineage in rodents. In addition to mediating implantation, they are the main endocrine cells of the placenta, producing several hormones which regulate the maternal endocrine and immune systems and promote maternal blood flow to the implantation site. Generally considered a homogeneous population, TGCs have been identified by their expression of genes encoding placental lactogen 1 or proliferin. In the present study, we have identified a number of TGC subtypes, based on morphology and molecular criteria and demonstrated a previously underappreciated diversity of TGCs. In addition to TGCs that surround the implantation site and form the interface with the maternal deciduas, we demonstrate at least three other unique TGC subtypes: spiral artery-associated TGCs, maternal blood canal-associated TGCs and a TGC within the sinusoidal spaces of the labyrinth layer of the placenta. All four TGC subtypes could be identified based on the expression patterns of four genes: Pl1, Pl2, Plf (encoded by genes of the prolactin/prolactin-like protein/placental lactogen gene locus), and Ctsq (from a placental-specific cathepsin gene locus). Each of these subtypes was detected in differentiated trophoblast stem cell cultures and can be differentially regulated; treatment with retinoic acid induces Pl1/Plf+ TGCs preferentially. Furthermore, cell lineage tracing studies indicated unique origins for different TGC subtypes, in contrast with previous suggestions that secondary TGCs all arise from Tpbpa+ ectoplacental cone precursors.
Collapse
Affiliation(s)
- David G Simmons
- Department of Biochemistry and Molecular Biology, University of Calgary, Faculty of Medicine, Calgary, Alberta, and Department of Human Genetics, Montreal Children's Hospital Research Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
250
|
Watson ED. 2005 Trophoblast Research Award Lecture: Defects in the keratin cytoskeleton disrupt normal murine placental development and trophoblast cell function. Placenta 2007; 28 Suppl A:S111-5. [PMID: 17337050 DOI: 10.1016/j.placenta.2007.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 12/18/2022]
Abstract
The keratin cytoskeleton is present in all trophoblast cell subtypes of the mouse and human placenta and is required to maintain the structural integrity of these cells. Recently, various genetic mouse models have shown that a normal keratin network is necessary for placental development. Keratin-deficiency leads to trophoblast giant cell fragility, breaking the barrier between the conceptus and the maternal blood circulation. Alternatively, keratin aggregation prevents chorioallantoic attachment, a key developmental milestone required for the formation of the labyrinth within the mouse placenta. These models give us insight into cytokeratin function in human trophoblast cell subtypes and suggest that defects in the keratin cytoskeleton may result in intrauterine growth restriction or miscarriage.
Collapse
Affiliation(s)
- E D Watson
- Department of Biochemistry and Molecular Biology, University of Calgary, Health Science Center Room 2258, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|