201
|
Abbate T, Dewasme L, Vande Wouwer A, Bogaerts P. Adaptive flux variability analysis of HEK cell cultures. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
202
|
Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci 2020; 77:395-413. [PMID: 31768608 PMCID: PMC7015805 DOI: 10.1007/s00018-019-03377-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed 'reverse CCR' (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.
Collapse
Affiliation(s)
- Heejoon Park
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - S Lee McGill
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Adrienne D Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
203
|
Regueira A, Bevilacqua R, Lema JM, Carballa M, Mauricio-Iglesias M. A metabolic model for targeted volatile fatty acids production by cofermentation of carbohydrates and proteins. BIORESOURCE TECHNOLOGY 2020; 298:122535. [PMID: 31865254 DOI: 10.1016/j.biortech.2019.122535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic mixed-culture fermentations are interesting processes to valorise organic wastes by converting them to volatile fatty acids. One of the main issues is that certain operational conditions (e.g. pH or different substrate concentrations) can vary significantly the product spectrum. So far, there are no tools that take into the account the characteristic features of cofermentation processes, which hinders the possibility of designing processes that use real wastes as substrates. In this work a mathematical model was developed for the production of volatile fatty acids from organic wastes with a high concentration of carbohydrates and proteins. The model reproduces satisfactorily experimental results and is also able of giving mechanistic insight into the interactions between carbohydrates and proteins that explain the observed changes in the product spectrum. We envision this model as the core of an early-stage design tool for anaerobic cofermentation processes, as shown in this work with different examples.
Collapse
Affiliation(s)
- Alberte Regueira
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Riccardo Bevilacqua
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan Manuel Lema
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marta Carballa
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Mauricio-Iglesias
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
204
|
Distributed flux balance analysis simulations of serial biomass fermentation by two organisms. PLoS One 2020; 15:e0227363. [PMID: 31945096 PMCID: PMC6964848 DOI: 10.1371/journal.pone.0227363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Intelligent biorefinery design that addresses both the composition of the biomass feedstock as well as fermentation microorganisms could benefit from dedicated tools for computational simulation and computer-assisted optimization. Here we present the BioLego Vn2.0 framework, based on Microsoft Azure Cloud, which supports large-scale simulations of biomass serial fermentation processes by two different organisms. BioLego enables the simultaneous analysis of multiple fermentation scenarios and the comparison of fermentation potential of multiple feedstock compositions. Thanks to the effective use of cloud computing it further allows resource intensive analysis and exploration of media and organism modifications. We use BioLego to obtain biological and validation results, including (1) exploratory search for the optimal utilization of corn biomasses-corn cobs, corn fiber and corn stover-in fermentation biorefineries; (2) analysis of the possible effects of changes in the composition of K. alvarezi biomass on the ethanol production yield in an anaerobic two-step process (S. cerevisiae followed by E. coli); (3) analysis of the impact, on the estimated ethanol production yield, of knocking out single organism reactions either in one or in both organisms in an anaerobic two-step fermentation process of Ulva sp. into ethanol (S. cerevisiae followed by E. coli); and (4) comparison of several experimentally measured ethanol fermentation rates with the predictions of BioLego.
Collapse
|
205
|
The ETFL formulation allows multi-omics integration in thermodynamics-compliant metabolism and expression models. Nat Commun 2020; 11:30. [PMID: 31937763 PMCID: PMC6959363 DOI: 10.1038/s41467-019-13818-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/28/2019] [Indexed: 11/09/2022] Open
Abstract
Systems biology has long been interested in models capturing both metabolism and expression in a cell. We propose here an implementation of the metabolism and expression model formalism (ME-models), which we call ETFL, for Expression and Thermodynamics Flux models. ETFL is a hierarchical model formulation, from metabolism to RNA synthesis, that allows simulating thermodynamics-compliant intracellular fluxes as well as enzyme and mRNA concentration levels. ETFL formulates a mixed-integer linear problem (MILP) that enables both relative and absolute metabolite, protein, and mRNA concentration integration. ETFL is compatible with standard MILP solvers and does not require a non-linear solver, unlike the previous state of the art. It also accounts for growth-dependent parameters, such as relative protein or mRNA content. We present ETFL along with its validation using results obtained from a well-characterized E. coli model. We show that ETFL is able to reproduce proteome-limited growth. We also subject it to several analyses, including the prediction of feasible mRNA and enzyme concentrations and gene essentiality. Accounting for the effects of genetic expression in genome-scale metabolic models is challenging. Here, the authors introduce a model formulation that efficiently simulates thermodynamic-compliant fluxes, enzyme and mRNA concentration levels, allowing omics integration and broad analysis of in silico cellular physiology.
Collapse
|
206
|
Hebing L, Tran F, Brandt H, Engell S. Robust Optimizing Control of Fermentation Processes Based on a Set of Structurally Different Process Models. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Florian Tran
- io-consultants GmbH & Co. KG, Speyerer Straße 14, 69115 Heidelberg, Germany
| | | | | |
Collapse
|
207
|
Aminian-Dehkordi J, Mousavi SM, Jafari A, Mijakovic I, Marashi SA. Manually curated genome-scale reconstruction of the metabolic network of Bacillus megaterium DSM319. Sci Rep 2019; 9:18762. [PMID: 31822710 PMCID: PMC6904757 DOI: 10.1038/s41598-019-55041-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Bacillus megaterium is a microorganism widely used in industrial biotechnology for production of enzymes and recombinant proteins, as well as in bioleaching processes. Precise understanding of its metabolism is essential for designing engineering strategies to further optimize B. megaterium for biotechnology applications. Here, we present a genome-scale metabolic model for B. megaterium DSM319, iJA1121, which is a result of a metabolic network reconciliation process. The model includes 1709 reactions, 1349 metabolites, and 1121 genes. Based on multiple-genome alignments and available genome-scale metabolic models for other Bacillus species, we constructed a draft network using an automated approach followed by manual curation. The refinements were performed using a gap-filling process. Constraint-based modeling was used to scrutinize network features. Phenotyping assays were performed in order to validate the growth behavior of the model using different substrates. To verify the model accuracy, experimental data reported in the literature (growth behavior patterns, metabolite production capabilities, metabolic flux analysis using 13C glucose and formaldehyde inhibitory effect) were confronted with model predictions. This indicated a very good agreement between in silico results and experimental data. For example, our in silico study of fatty acid biosynthesis and lipid accumulation in B. megaterium highlighted the importance of adopting appropriate carbon sources for fermentation purposes. We conclude that the genome-scale metabolic model iJA1121 represents a useful tool for systems analysis and furthers our understanding of the metabolism of B. megaterium.
Collapse
Affiliation(s)
- Javad Aminian-Dehkordi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Arezou Jafari
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
208
|
Sharma S, Steuer R. Modelling microbial communities using biochemical resource allocation analysis. J R Soc Interface 2019; 16:20190474. [PMID: 31690234 PMCID: PMC6893496 DOI: 10.1098/rsif.2019.0474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023] Open
Abstract
To understand the functioning and dynamics of microbial communities is a fundamental challenge in current biology. To tackle this challenge, the construction of computational models of interacting microbes is an indispensable tool. There is, however, a large chasm between ecologically motivated descriptions of microbial growth used in many current ecosystems simulations, and detailed metabolic pathway and genome-based descriptions developed in the context of systems and synthetic biology. Here, we seek to demonstrate how resource allocation models of microbial growth offer the potential to advance ecosystem simulations and their parametrization. In particular, recent work on quantitative resource allocation allow us to formulate mechanistic models of microbial growth that are physiologically meaningful while remaining computationally tractable. These models go beyond Michaelis-Menten and Monod-type growth models, and are capable of accounting for emergent properties that underlie the remarkable plasticity of microbial growth. We outline the utility and advantages of using biochemical resource allocation models by considering a coarse-grained model of cyanobacterial growth and demonstrate how the model allows us to address specific questions of relevance for the simulation of marine microbial ecosystems, including the physiological acclimation of protein expression to different environments, the description of co-limitation by several nutrients and the differential use of alternative nutrient sources, as well as the description of metabolic diversity based on our increasing knowledge about quantitative cell physiology.
Collapse
Affiliation(s)
| | - Ralf Steuer
- Humboldt-Universität zu Berlin, Institut für Biologie, FachInstitut für Theoretische Biologie (ITB), Invalidenstr. 110, 10115 Berlin, Germany
| |
Collapse
|
209
|
Gardner JJ, Hodge BMS, Boyle NR. Multiscale Multiobjective Systems Analysis (MiMoSA): an advanced metabolic modeling framework for complex systems. Sci Rep 2019; 9:16948. [PMID: 31740694 PMCID: PMC6861322 DOI: 10.1038/s41598-019-53188-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
In natural environments, cells live in complex communities and experience a high degree of heterogeneity internally and in the environment. Even in 'ideal' laboratory environments, cells can experience a high degree of heterogeneity in their environments. Unfortunately, most of the metabolic modeling approaches that are currently used assume ideal conditions and that each cell is identical, limiting their application to pure cultures in well-mixed vessels. Here we describe our development of Multiscale Multiobjective Systems Analysis (MiMoSA), a metabolic modeling approach that can track individual cells in both space and time, track the diffusion of nutrients and light and the interaction of cells with each other and the environment. As a proof-of concept study, we used MiMoSA to model the growth of Trichodesmium erythraeum, a filamentous diazotrophic cyanobacterium which has cells with two distinct metabolic modes. The use of MiMoSA significantly improves our ability to predictively model metabolic changes and phenotype in more complex cell cultures.
Collapse
Affiliation(s)
- Joseph J Gardner
- Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St., Golden, CO, 80403, USA
| | - Bri-Mathias S Hodge
- Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St., Golden, CO, 80403, USA.,National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.,Electrical, Computer and Energy Engineering, 425 UCB, University of Colorado, Boulder, CO, 80309, USA
| | - Nanette R Boyle
- Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St., Golden, CO, 80403, USA.
| |
Collapse
|
210
|
Systems biology based metabolic engineering for non-natural chemicals. Biotechnol Adv 2019; 37:107379. [DOI: 10.1016/j.biotechadv.2019.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/23/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
|
211
|
Abstract
Abstract
Living organisms in analogy with chemical factories use simple molecules such as sugars to produce a variety of compounds which are necessary for sustaining life and some of which are also commercially valuable. The metabolisms of simple (such as bacteria) and higher organisms (such as plants) alike can be exploited to convert low value inputs into high value outputs. Unlike conventional chemical factories, microbial production chassis are not necessarily tuned for a single product overproduction. Despite the same end goal, metabolic and industrial engineers rely on different techniques for achieving productivity goals. Metabolic engineers cannot affect reaction rates by manipulating pressure and temperature, instead they have at their disposal a range of enzymes and transcriptional and translational processes to optimize accordingly. In this review, we first highlight how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed in systems and control engineering. Specifically, how algorithmic concepts derived in operations research can help explain the structure and organization of metabolic networks. Finally, we consider the future directions and challenges faced by the field of metabolic network modeling and the possible contributions of concepts drawn from the classical fields of chemical and control engineering. The aim of the review is to offer a current perspective of metabolic engineering and all that it entails without requiring specialized knowledge of bioinformatics or systems biology.
Collapse
|
212
|
Valverde JR, Gullón S, García-Herrero CA, Campoy I, Mellado RP. Dynamic metabolic modelling of overproduced protein secretion in Streptomyces lividans using adaptive DFBA. BMC Microbiol 2019; 19:233. [PMID: 31655540 PMCID: PMC6815373 DOI: 10.1186/s12866-019-1591-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Streptomyces lividans is an appealing host for the production of proteins of biotechnological interest due to its relaxed exogenous DNA restriction system and its ability to secrete proteins directly to the medium through the major Sec or the minor Tat routes. Often, protein secretion displays non-uniform time-dependent patterns. Understanding the associated metabolic changes is a crucial step to engineer protein production. Dynamic Flux Balance Analysis (DFBA) allows the study of the interactions between a modelled organism and its environment over time. Existing methods allow the specification of initial model and environment conditions, but do not allow introducing arbitrary modifications in the course of the simulation. Living organisms, however, display unexpected adaptive metabolic behaviours in response to unpredictable changes in their environment. Engineering the secretion of products of biotechnological interest has systematically proven especially difficult to model using DFBA. Accurate time-dependent modelling of complex and/or arbitrary, adaptive metabolic processes demands an extended approach to DFBA. RESULTS In this work, we introduce Adaptive DFBA, a novel, versatile simulation approach that permits inclusion of changes in the organism or the environment at any time in the simulation, either arbitrary or interactively responsive to environmental changes. This approach extends traditional DFBA to allow steering arbitrarily complex simulations of metabolic dynamics. When applied to Sec- or Tat-dependent secretion of overproduced proteins in S. lividans, Adaptive DFBA can overcome the limitations of traditional DFBA to reproduce experimental data on plasmid-free, plasmid bearing and secretory protein overproducing S. lividans TK24, and can yield useful insights on the behaviour of systems with limited experimental knowledge such as agarase or amylase overproduction in S. lividans TK21. CONCLUSIONS Adaptive DFBA has allowed us to overcome DFBA limitations and to generate more accurate models of the metabolism during the overproduction of secretory proteins in S. lividans, improving our understanding of the underlying processes. Adaptive DFBA is versatile enough to permit dynamical metabolic simulations of arbitrarily complex biotechnological processes.
Collapse
Affiliation(s)
- Jósé R. Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain
| | - Clara A. García-Herrero
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Iván Campoy
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Rafael P. Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain
| |
Collapse
|
213
|
Islam MM, Fernando SC, Saha R. Metabolic Modeling Elucidates the Transactions in the Rumen Microbiome and the Shifts Upon Virome Interactions. Front Microbiol 2019; 10:2412. [PMID: 31866953 PMCID: PMC6909001 DOI: 10.3389/fmicb.2019.02412] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
The complex microbial ecosystem within the bovine rumen plays a crucial role in host nutrition, health, and environmental impact. However, little is known about the interactions between the functional entities within the system, which dictates the community structure and functional dynamics and host physiology. With the advancements in high-throughput sequencing and mathematical modeling, in silico genome-scale metabolic analysis promises to expand our understanding of the metabolic interplay in the community. In an attempt to understand the interactions between microbial species and the phages inside rumen, a genome-scale metabolic modeling approach was utilized by using key members in the rumen microbiome (a bacteroidete, a firmicute, and an archaeon) and the viral phages associated with them. Individual microbial host models were integrated into a community model using multi-level mathematical frameworks. An elaborate and heuristics-based computational procedure was employed to predict previously unknown interactions involving the transfer of fatty acids, vitamins, coenzymes, amino acids, and sugars among the community members. While some of these interactions could be inferred by the available multi-omic datasets, our proposed method provides a systemic understanding of why the interactions occur and how these affect the dynamics in a complex microbial ecosystem. To elucidate the functional role of the virome on the microbiome, local alignment search was used to identify the metabolic functions of the viruses associated with the hosts. The incorporation of these functions demonstrated the role of viral auxiliary metabolic genes in relaxing the metabolic bottlenecks in the microbial hosts and complementing the inter-species interactions. Finally, a comparative statistical analysis of different biologically significant community fitness criteria identified the variation in flux space and robustness of metabolic capacities of the community members. Our elucidation of metabolite exchange among the three members of the rumen microbiome shows how their genomic differences and interactions with the viral strains shape up a highly sophisticated metabolic interplay and explains how such interactions across kingdoms can cause metabolic and compositional shifts in the community and affect the health, nutrition, and pathophysiology of the ruminant animal.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
214
|
Paulson JA, Martin-Casas M, Mesbah A. Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions. PLoS Comput Biol 2019; 15:e1007308. [PMID: 31469832 PMCID: PMC6742419 DOI: 10.1371/journal.pcbi.1007308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/12/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023] Open
Abstract
We present a novel surrogate modeling method that can be used to accelerate the solution of uncertainty quantification (UQ) problems arising in nonlinear and non-smooth models of biological systems. In particular, we focus on dynamic flux balance analysis (DFBA) models that couple intracellular fluxes, found from the solution of a constrained metabolic network model of the cellular metabolism, to the time-varying nature of the extracellular substrate and product concentrations. DFBA models are generally computationally expensive and present unique challenges to UQ, as they entail dynamic simulations with discrete events that correspond to switches in the active set of the solution of the constrained intracellular model. The proposed non-smooth polynomial chaos expansion (nsPCE) method is an extension of traditional PCE that can effectively capture singularities in the DFBA model response due to the occurrence of these discrete events. The key idea in nsPCE is to use a model of the singularity time to partition the parameter space into two elements on which the model response behaves smoothly. Separate PCE models are then fit in both elements using a basis-adaptive sparse regression approach that is known to scale well with respect to the number of uncertain parameters. We demonstrate the effectiveness of nsPCE on a DFBA model of an E. coli monoculture that consists of 1075 reactions and 761 metabolites. We first illustrate how traditional PCE is unable to handle problems of this level of complexity. We demonstrate that over 800-fold savings in computational cost of uncertainty propagation and Bayesian estimation of parameters in the substrate uptake kinetics can be achieved by using the nsPCE surrogates in place of the full DFBA model simulations. We then investigate the scalability of the nsPCE method by utilizing it for global sensitivity analysis and maximum a posteriori estimation in a synthetic metabolic network problem with a larger number of parameters related to both intracellular and extracellular quantities.
Collapse
Affiliation(s)
- Joel A. Paulson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, United States of America
| | - Marc Martin-Casas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, United States of America
| | - Ali Mesbah
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
215
|
Zampieri M, Hörl M, Hotz F, Müller NF, Sauer U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat Commun 2019; 10:3354. [PMID: 31350417 PMCID: PMC6659692 DOI: 10.1038/s41467-019-11331-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
How microbes dynamically coordinate uptake and simultaneous utilization of nutrients in complex nutritional ecosystems is still an open question. Here, we develop a constraint-based modeling approach that exploits non-targeted exo-metabolomics data to unravel adaptive decision-making processes in dynamic nutritional environments. We thereby investigate metabolic adaptation of Escherichia coli to continuously changing conditions during batch growth in complex medium. Unexpectedly, model-based analysis of time resolved exo-metabolome data revealed that fastest growth coincides with preferred catabolism of amino acids, which, in turn, reduces glucose uptake and increases acetate overflow. We show that high intracellular levels of the amino acid degradation metabolites pyruvate and oxaloacetate can directly inhibit the phosphotransferase system (PTS), and reveal their functional role in mediating regulatory decisions for uptake and catabolism of alternative carbon sources. Overall, the proposed methodology expands the spectrum of possible applications of flux balance analysis to decipher metabolic adaptation mechanisms in naturally occurring habitats and diverse organisms.
Collapse
Affiliation(s)
- Mattia Zampieri
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland.
| | - Manuel Hörl
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Florian Hotz
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Nicola F Müller
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland.
| |
Collapse
|
216
|
Chen Y, McConnell BO, Gayatri Dhara V, Mukesh Naik H, Li CT, Antoniewicz MR, Betenbaugh MJ. An unconventional uptake rate objective function approach enhances applicability of genome-scale models for mammalian cells. NPJ Syst Biol Appl 2019; 5:25. [PMID: 31341637 PMCID: PMC6650483 DOI: 10.1038/s41540-019-0103-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Constraint-based modeling has been applied to analyze metabolism of numerous organisms via flux balance analysis and genome-scale metabolic models, including mammalian cells such as the Chinese hamster ovary (CHO) cells-the principal cell factory platform for therapeutic protein production. Unfortunately, the application of genome-scale model methodologies using the conventional biomass objective function is challenged by the presence of overly-restrictive constraints, including essential amino acid exchange fluxes that can lead to improper predictions of growth rates and intracellular flux distributions. In this study, these constraints are found to be reliably predicted by an "essential nutrient minimization" approach. After modifying these constraints with the predicted minimal uptake values, a series of unconventional objective functions are applied to minimize each individual non-essential nutrient uptake rate, revealing useful insights about metabolic exchange rates and flows across different cell lines and culture conditions. This unconventional uptake-rate objective functions (UOFs) approach is able to distinguish metabolic differences between three distinct CHO cell lines (CHO-K1, -DG44, and -S) not directly observed using the conventional biomass growth maximization solutions. Further, a comparison of model predictions with experimental data from literature correctly correlates with the specific CHO-DG44-derived cell line used experimentally, and the corresponding dual prices provide fruitful information concerning coupling relationships between nutrients. The UOFs approach is likely to be particularly suited for mammalian cells and other complex organisms which contain multiple distinct essential nutrient inputs, and may offer enhanced applicability for characterizing cell metabolism and physiology as well as media optimization and biomanufacturing control.
Collapse
Affiliation(s)
- Yiqun Chen
- 1Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Brian O McConnell
- 2Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, 150 Academy St, Newark, DE 19716 USA
| | - Venkata Gayatri Dhara
- 1Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Harnish Mukesh Naik
- 1Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Chien-Ting Li
- 1Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | - Maciek R Antoniewicz
- 2Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, 150 Academy St, Newark, DE 19716 USA
| | - Michael J Betenbaugh
- 1Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| |
Collapse
|
217
|
Ploch T, Zhao X, Hüser J, von Lieres E, Hannemann-Tamás R, Naumann U, Wiechert W, Mitsos A, Noack S. Multiscale dynamic modeling and simulation of a biorefinery. Biotechnol Bioeng 2019; 116:2561-2574. [PMID: 31237684 PMCID: PMC6771778 DOI: 10.1002/bit.27099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 06/18/2019] [Indexed: 01/11/2023]
Abstract
A biorefinery comprises a variety of process steps to synthesize products from sustainable natural resources. Dynamic plant‐wide simulation enhances the process understanding, leads to improved cost efficiency and enables model‐based operation and control. It is thereby important for an increased competitiveness to conventional processes. To this end, we developed a Modelica library with replaceable building blocks that allow dynamic modeling of an entire biorefinery. For the microbial conversion step, we built on the dynamic flux balance analysis (DFBA) approach to formulate process models for the simulation of cellular metabolism under changing environmental conditions. The resulting system of differential‐algebraic equations with embedded optimization criteria (DAEO) is solved by a tailor‐made toolbox. In summary, our modeling framework comprises three major pillars: A Modelica library of dynamic unit operations, an easy‐to‐use interface to formulate DFBA process models and a DAEO toolbox that allows simulation with standard environments based on the Modelica modeling language. A biorefinery model for dynamic simulation of the OrganoCat pretreatment process and microbial conversion of the resulting feedstock by Corynebacterium glutamicum serves as case study to demonstrate its practical relevance.
Collapse
Affiliation(s)
- Tobias Ploch
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany
| | - Xiao Zhao
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jonathan Hüser
- Software and Tools for Computational Engineering, RWTH Aachen University, Aachen, Germany
| | - Eric von Lieres
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Uwe Naumann
- Software and Tools for Computational Engineering, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Alexander Mitsos
- Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany
| | - Stephan Noack
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
218
|
Vijayakumar S, Conway M, Lió P, Angione C. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Brief Bioinform 2019; 19:1218-1235. [PMID: 28575143 DOI: 10.1093/bib/bbx053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolic modelling has entered a mature phase with dozens of methods and software implementations available to the practitioner and the theoretician. It is not easy for a modeller to be able to see the wood (or the forest) for the trees. Driven by this analogy, we here present a 'forest' of principal methods used for constraint-based modelling in systems biology. This provides a tree-based view of methods available to prospective modellers, also available in interactive version at http://modellingmetabolism.net, where it will be kept updated with new methods after the publication of the present manuscript. Our updated classification of existing methods and tools highlights the most promising in the different branches, with the aim to develop a vision of how existing methods could hybridize and become more complex. We then provide the first hands-on tutorial for multi-objective optimization of metabolic models in R. We finally discuss the implementation of multi-view machine learning approaches in poly-omic integration. Throughout this work, we demonstrate the optimization of trade-offs between multiple metabolic objectives, with a focus on omic data integration through machine learning. We anticipate that the combination of a survey, a perspective on multi-view machine learning and a step-by-step R tutorial should be of interest for both the beginner and the advanced user.
Collapse
Affiliation(s)
| | - Max Conway
- Computer Laboratory, University of Cambridge, UK
| | - Pietro Lió
- Computer Laboratory, University of Cambridge, UK
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, UK
| |
Collapse
|
219
|
Herrmann HA, Schwartz JM, Johnson GN. Metabolic acclimation-a key to enhancing photosynthesis in changing environments? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3043-3056. [PMID: 30997505 DOI: 10.1093/jxb/erz157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
Plants adjust their photosynthetic capacity in response to their environment in a way that optimizes their yield and fitness. There is growing evidence that this acclimation is a response to changes in the leaf metabolome, but the extent to which these are linked and how this is optimized remain poorly understood. Using as an example the metabolic perturbations occurring in response to cold, we define the different stages required for acclimation, discuss the evidence for a metabolic temperature sensor, and suggest further work towards designing climate-smart crops. In particular, we discuss how constraint-based and kinetic metabolic modelling approaches can be used to generate targeted hypotheses about relevant pathways, and argue that a stronger integration of experimental and in silico studies will help us to understand the tightly regulated interplay of carbon partitioning and resource allocation required for photosynthetic acclimation to different environmental conditions.
Collapse
Affiliation(s)
- Helena A Herrmann
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Giles N Johnson
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
220
|
Predicting the Longitudinally and Radially Varying Gut Microbiota Composition Using Multi-Scale Microbial Metabolic Modeling. Processes (Basel) 2019. [DOI: 10.3390/pr7070394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The gut microbiota is a heterogeneous group of microbes that is spatially distributed along various sections of the intestines and across the mucosa and lumen in each section. Understanding the dynamics between the spatially differential microbial populations and the driving forces for the observed spatial organization will provide valuable insights into important questions such as the nature of colonization of the infant gut and different types of inflammatory bowel disease localized in different regions of the intestines. However, in most studies, the microbiota is sampled only at a single site (often feces) or from a particular anatomical site of the intestines. Differential oxygen availability is putatively a key factor shaping the spatial organization. Results: To test this hypothesis, we constructed a community genome-scale metabolic model consisting of representative organisms for the major phyla present in the human gut microbiome. By solving step-wise optimization problems embedded in a dynamic framework to predict community metabolism and integrate the mucosally-adherent with the luminal microbiome between consecutive sections along the intestines, we were able to capture (i) the essential features of the spatially differential composition of obligate anaerobes vs. facultative anaerobes and aerobes determined experimentally, and (ii) the accumulation of microbial biomass in the lumen. Sensitivity analysis suggests that the spatial organization depends primarily on the oxygen-per-microbe availability in each region. Oxygen availability is reduced relative to the ~100-fold increase in mucosal microbial density along the intestines, causing the switch between aerobes and anaerobes. Conclusion: The proposed integrated dynamic framework is able to predict spatially differential gut microbiota composition using microbial genome-scale metabolic models and test hypotheses regarding the dynamics of the gut microbiota. It can potentially become a valuable tool for exploring therapeutic strategies for site-specific perturbation of the gut microbiota and the associated metabolic activities.
Collapse
|
221
|
Borer B, Ataman M, Hatzimanikatis V, Or D. Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLoS Comput Biol 2019; 15:e1007127. [PMID: 31216273 PMCID: PMC6583959 DOI: 10.1371/journal.pcbi.1007127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Natural soil is characterized as a complex habitat with patchy hydrated islands and spatially variable nutrients that is in a constant state of change due to wetting-drying dynamics. Soil microbial activity is often concentrated in sparsely distributed hotspots that contribute disproportionally to macroscopic biogeochemical nutrient cycling and greenhouse gas emissions. The mechanistic representation of such dynamic hotspots requires new modeling approaches capable of representing the interplay between dynamic local conditions and the versatile microbial metabolic adaptations. We have developed IndiMeSH (Individual-based Metabolic network model for Soil Habitats) as a spatially explicit model for the physical and chemical microenvironments of soil, combined with an individual-based representation of bacterial motility and growth using adaptive metabolic networks. The model uses angular pore networks and a physically based description of the aqueous phase as a backbone for nutrient diffusion and bacterial dispersal combined with dynamic flux balance analysis to calculate growth rates depending on local nutrient conditions. To maximize computational efficiency, reduced scale metabolic networks are used for the simulation scenarios and evaluated strategically to the genome scale model. IndiMeSH was compared to a well-established population-based spatiotemporal metabolic network model (COMETS) and to experimental data of bacterial spatial organization in pore networks mimicking soil aggregates. IndiMeSH was then used to strategically study dynamic response of a bacterial community to abrupt environmental perturbations and the influence of habitat geometry and hydration conditions. Results illustrate that IndiMeSH is capable of representing trophic interactions among bacterial species, predicting the spatial organization and segregation of bacterial populations due to oxygen and carbon gradients, and provides insights into dynamic community responses as a consequence of environmental changes. The modular design of IndiMeSH and its implementation are adaptable, allowing it to represent a wide variety of experimental and in silico microbial systems. Soil bacterial communities are key players in global biogeochemical cycles and drive other soil regulatory and provisional ecosystem functions. Despite the relatively high bacterial abundance found in fertile soil, bacteria occupy only a small fraction of the soil surfaces and often form hotspots with disproportionate contributions to observed biogenic fluxes. As soil opacity and complexity limit detailed observations of such hotspots in situ, we have developed a modeling platform, IndiMeSH (Individual-based Metabolic network model for Soil Habitats), to enable systematic study of dense multispecies bacterial communities within a structured habitat resembling (but not limited) to soil. The model is capable of representing multispecies trophic interactions and spatial self-organization in response to nutrient gradients, as confirmed in comparison with published results. IndiMeSH offers new opportunities for quantifying bacterial hotspot formation and dynamics and observe their resilience and response to perturbations in hydration and nutrient conditions.
Collapse
Affiliation(s)
- Benedict Borer
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Meriç Ataman
- Laboratory of Computational Systems Biotechnology, EPFL, Lausanne, Switzerland
| | | | - Dani Or
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
222
|
Bernstein DB, Dewhirst FE, Segrè D. Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome. eLife 2019; 8:39733. [PMID: 31194675 PMCID: PMC6609349 DOI: 10.7554/elife.39733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems.
Collapse
Affiliation(s)
- David B Bernstein
- Department of Biomedical Engineering, Boston University, Boston, United States.,Biological Design Center, Boston University, Boston, United States
| | - Floyd E Dewhirst
- The Forsyth Institute, Cambridge, United States.,Harvard School of Dental Medicine, Boston, United States
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, United States.,Biological Design Center, Boston University, Boston, United States.,Bioinformatics Program, Boston University, Boston, United States.,Department of Biology, Boston University, Boston, United States.,Department of Physics, Boston University, Boston, United States
| |
Collapse
|
223
|
Human Systems Biology and Metabolic Modelling: A Review-From Disease Metabolism to Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8304260. [PMID: 31281846 PMCID: PMC6590590 DOI: 10.1155/2019/8304260] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
Abstract
In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models, their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on cell-specific changes occurring in the metabolic network, therefore predicting biomarkers of disease metabolism. We finally discuss current challenges and future promising directions for this research field, including machine/deep learning and precision medicine. In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with state-of-the-art machine learning methods, this will allow characterizing each patient's disease phenotype and delivering precision medicine solutions, therefore leading to preventative medicine, reduced treatment, and in silico clinical trials.
Collapse
|
224
|
|
225
|
Gilbert JA, Lynch SV. Community ecology as a framework for human microbiome research. Nat Med 2019; 25:884-889. [PMID: 31133693 PMCID: PMC7410146 DOI: 10.1038/s41591-019-0464-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
The field of human microbiome research has revealed the intimate co-association of humans with diverse communities of microbes in various habitats in the human body, and the necessity of these microbes for the maintenance of human health. Microbial heterogeneity between humans and across spatial and temporal gradients requires multidimensional datasets and a unifying set of theories and statistical tools to analyze the human microbiome and fully realize the potential of this field. Here we consider the utility of community ecology as a framework for the interrogation and interpretation of the human microbiome.
Collapse
Affiliation(s)
- Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
226
|
Identifying and targeting cancer-specific metabolism with network-based drug target prediction. EBioMedicine 2019; 43:98-106. [PMID: 31126892 PMCID: PMC6558238 DOI: 10.1016/j.ebiom.2019.04.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background Metabolic rewiring allows cancer cells to sustain high proliferation rates. Thus, targeting only the cancer-specific cellular metabolism will safeguard healthy tissues. Methods We developed the very efficient FASTCORMICS RNA-seq workflow (rFASTCORMICS) to build 10,005 high-resolution metabolic models from the TCGA dataset to capture metabolic rewiring strategies in cancer cells. Colorectal cancer (CRC) was used as a test case for a repurposing workflow based on rFASTCORMICS. Findings Alternative pathways that are not required for proliferation or survival tend to be shut down and, therefore, tumours display cancer-specific essential genes that are significantly enriched for known drug targets. We identified naftifine, ketoconazole, and mimosine as new potential CRC drugs, which were experimentally validated. Interpretation The here presented rFASTCORMICS workflow successfully reconstructs a metabolic model based on RNA-seq data and successfully predicted drug targets and drugs not yet indicted for colorectal cancer. Fund This study was supported by the University of Luxembourg (IRP grant scheme; R-AGR-0755-12), the Luxembourg National Research Fund (FNR PRIDE PRIDE15/10675146/CANBIO), the Fondation Cancer (Luxembourg), the European Union‘s Horizon2020 research and innovation programme under the Marie Sklodowska- Curie grant agreement No 642295 (MEL-PLEX), and the German Federal Ministry of Education and Research (BMBF) within the project MelanomSensitivity (BMBF/BM/7643621).
Collapse
|
227
|
Weinrich S, Koch S, Bonk F, Popp D, Benndorf D, Klamt S, Centler F. Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity. Front Microbiol 2019; 10:1095. [PMID: 31156601 PMCID: PMC6533897 DOI: 10.3389/fmicb.2019.01095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/30/2019] [Indexed: 01/23/2023] Open
Abstract
The process of anaerobic digestion in which waste biomass is transformed to methane by complex microbial communities has been modeled for more than 16 years by parametric gray box approaches that simplify process biology and do not resolve intracellular microbial activity. Information on such activity, however, has become available in unprecedented detail by recent experimental advances in metatranscriptomics and metaproteomics. The inclusion of such data could lead to more powerful process models of anaerobic digestion that more faithfully represent the activity of microbial communities. We augmented the Anaerobic Digestion Model No. 1 (ADM1) as the standard kinetic model of anaerobic digestion by coupling it to Flux-Balance-Analysis (FBA) models of methanogenic species. Steady-state results of coupled models are comparable to standard ADM1 simulations if the energy demand for non-growth associated maintenance (NGAM) is chosen adequately. When changing a constant feed of maize silage from continuous to pulsed feeding, the final average methane production remains very similar for both standard and coupled models, while both the initial response of the methanogenic population at the onset of pulsed feeding as well as its dynamics between pulses deviates considerably. In contrast to ADM1, the coupled models deliver predictions of up to 1,000s of intracellular metabolic fluxes per species, describing intracellular metabolic pathway activity in much higher detail. Furthermore, yield coefficients which need to be specified in ADM1 are no longer required as they are implicitly encoded in the topology of the species’ metabolic network. We show the feasibility of augmenting ADM1, an ordinary differential equation-based model for simulating biogas production, by FBA models implementing individual steps of anaerobic digestion. While cellular maintenance is introduced as a new parameter, the total number of parameters is reduced as yield coefficients no longer need to be specified. The coupled models provide detailed predictions on intracellular activity of microbial species which are compatible with experimental data on enzyme synthesis activity or abundance as obtained by metatranscriptomics or metaproteomics. By providing predictions of intracellular fluxes of individual community members, the presented approach advances the simulation of microbial community driven processes and provides a direct link to validation by state-of-the-art experimental techniques.
Collapse
Affiliation(s)
- Sören Weinrich
- Biochemical Conversion Department, Deutsches Biomasseforschungszentrum gGmbH, Leipzig, Germany
| | - Sabine Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Fabian Bonk
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Denny Popp
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Dirk Benndorf
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Florian Centler
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
228
|
Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RMT, Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. MICROBIOME 2019; 7:75. [PMID: 31092280 PMCID: PMC6521386 DOI: 10.1186/s40168-019-0689-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/26/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND The human gut microbiome performs important functions in human health and disease. A classic example for host-gut microbial co-metabolism is host biosynthesis of primary bile acids and their subsequent deconjugation and transformation by the gut microbiome. To understand these system-level host-microbe interactions, a mechanistic, multi-scale computational systems biology approach that integrates the different types of omic data is needed. Here, we use a systematic workflow to computationally model bile acid metabolism in gut microbes and microbial communities. RESULTS Therefore, we first performed a comparative genomic analysis of bile acid deconjugation and biotransformation pathways in 693 human gut microbial genomes and expanded 232 curated genome-scale microbial metabolic reconstructions with the corresponding reactions (available at https://vmh.life ). We then predicted the bile acid biotransformation potential of each microbe and in combination with other microbes. We found that each microbe could produce maximally six of the 13 secondary bile acids in silico, while microbial pairs could produce up to 12 bile acids, suggesting bile acid biotransformation being a microbial community task. To investigate the metabolic potential of a given microbiome, publicly available metagenomics data from healthy Western individuals, as well as inflammatory bowel disease patients and healthy controls, were mapped onto the genomes of the reconstructed strains. We constructed for each individual a large-scale personalized microbial community model that takes into account strain-level abundances. Using flux balance analysis, we found considerable variation in the potential to deconjugate and transform primary bile acids between the gut microbiomes of healthy individuals. Moreover, the microbiomes of pediatric inflammatory bowel disease patients were significantly depleted in their bile acid production potential compared with that of controls. The contributions of each strain to overall bile acid production potential across individuals were found to be distinct between inflammatory bowel disease patients and controls. Finally, bottlenecks limiting secondary bile acid production potential were identified in each microbiome model. CONCLUSIONS This large-scale modeling approach provides a novel way of analyzing metagenomics data to accelerate our understanding of the metabolic interactions between the host and gut microbiomes in health and diseases states. Our models and tools are freely available to the scientific community.
Collapse
Affiliation(s)
- Almut Heinken
- School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Dmitry A Ravcheev
- School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Federico Baldini
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Laurent Heirendt
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ronan M T Fleming
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Faculty of Science, University of Leiden, Leiden, The Netherlands
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, University Road, Galway, Ireland.
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland.
| |
Collapse
|
229
|
Zeng H, Yang A. Quantification of proteomic and metabolic burdens predicts growth retardation and overflow metabolism in recombinant Escherichia coli. Biotechnol Bioeng 2019; 116:1484-1495. [PMID: 30712260 DOI: 10.1002/bit.26943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/17/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Escherichia coli has been the host organism most frequently investigated for efficient recombinant protein production. However, the production of a foreign protein in recombinant E. coli often leads to growth deterioration and elevated secretion of acetic acid. Such observed phenomena have been widely linked with cell stress responses and metabolic burdens originated particularly from the increased energy demand. In this study, flux balance analysis and dynamic flux balance analysis were applied to investigate the observed growth physiology of recombinant E. coli, incorporating the proteome allocation theory and an adjustable maintenance energy level (ATPM) to capture the proteomic and energetic burdens introduced by recombinant protein synthesis. Model predictions of biomass growth, substrate consumption, acetate excretion, and protein production with two different strains were in good agreement with the experimental data, indicating that the constraint on the available proteomic resource and the change in ATPM might be important contributors governing the growth physiology of recombinant strains. The modeling framework developed in this work, currently with several limitations to overcome, offers a starting point for the development of a practical, model-based tool to guide metabolic engineering decisions for boosting recombinant protein production.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
230
|
Integration of Plant Metabolomics Data with Metabolic Networks: Progresses and Challenges. Methods Mol Biol 2019; 1778:297-310. [PMID: 29761447 DOI: 10.1007/978-1-4939-7819-9_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last decade, plant genome-scale modeling has developed rapidly and modeling efforts have advanced from representing metabolic behavior of plant heterotrophic cell suspensions to studying the complex interplay of cell types, tissues, and organs. A crucial driving force for such developments is the availability and integration of "omics" data (e.g., transcriptomics, proteomics, and metabolomics) which enable the reconstruction, extraction, and application of context-specific metabolic networks. In this chapter, we demonstrate a workflow to integrate gas chromatography coupled to mass spectrometry (GC-MS)-based metabolomics data of tomato fruit pericarp (flesh) tissue, at five developmental stages, with a genome-scale reconstruction of tomato metabolism. This method allows for the extraction of context-specific networks reflecting changing activities of metabolic pathways throughout fruit development and maturation.
Collapse
|
231
|
Bonk F, Popp D, Weinrich S, Sträuber H, Becker D, Kleinsteuber S, Harms H, Centler F. Determination of Microbial Maintenance in Acetogenesis and Methanogenesis by Experimental and Modeling Techniques. Front Microbiol 2019; 10:166. [PMID: 30800108 PMCID: PMC6375858 DOI: 10.3389/fmicb.2019.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022] Open
Abstract
For biogas-producing continuous stirred tank reactors, an increase in dilution rate increases the methane production rate as long as substrate input can be converted fully. However, higher dilution rates necessitate higher specific microbial growth rates, which are assumed to have a strong impact on the apparent microbial biomass yield due to cellular maintenance. To test this, we operated two reactors at 37°C in parallel at dilution rates of 0.18 and 0.07 days-1 (hydraulic retention times of 5.5 and 14 days, doubling times of 3.9 and 9.9 days in steady state) with identical inoculum and a mixture of volatile fatty acids as sole carbon sources. We evaluated the performance of the Anaerobic Digestion Model No. 1 (ADM1), a thermodynamic black box approach (TBA), and dynamic flux balance analysis (dFBA), to describe the experimental observations. All models overestimated the impact of dilution rate on the apparent microbial biomass yield when using default parameter values. Based on our analysis, a maintenance coefficient value below 0.2 kJ per carbon mole of microbial biomass per hour should be used for the TBA, corresponding to 0.12 mmol ATP per gram dry weight per hour for dFBA, which strongly deviates from the value of 9.8 kJ Cmol h-1 that has been suggested to apply to all anaerobic microorganisms at 37°C. We hypothesized that a decrease in dilution rate might select taxa with minimized maintenance expenditure. However, no major differences in the dominating taxa between the reactors were observed based on amplicon sequencing of 16S rRNA genes and terminal restriction fragment length polymorphism analysis of mcrA genes. Surprisingly, Methanosaeta dominated over Methanosarcina even at a dilution rate of 0.18 days-1, which contradicts previous model expectations. Furthermore, only 23-49% of the bacterial reads could be assigned to known syntrophic fatty acid oxidizers, indicating that unknown members of this functional group remain to be discovered. In conclusion, microbial maintenance was found to be much lower for acetogenesis and methanogenesis than previously assumed, likely due to the exceptionally low growth rates in anaerobic digestion. This finding might also be relevant for other microbial systems operating at similarly low growth rates.
Collapse
Affiliation(s)
- Fabian Bonk
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Denny Popp
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sören Weinrich
- Biochemical Conversion Department, DBFZ-Deutsches Biomasseforschungszentrum gGmbH, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Daniela Becker
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
232
|
Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun 2019; 10:103. [PMID: 30626871 PMCID: PMC6327061 DOI: 10.1038/s41467-018-07946-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/06/2018] [Indexed: 01/21/2023] Open
Abstract
Metabolic exchange mediates interactions among microbes, helping explain diversity in microbial communities. As these interactions often involve a fitness cost, it is unclear how stable cooperation can emerge. Here we use genome-scale metabolic models to investigate whether the release of “costless” metabolites (i.e. those that cause no fitness cost to the producer), can be a prominent driver of intermicrobial interactions. By performing over 2 million pairwise growth simulations of 24 species in a combinatorial assortment of environments, we identify a large space of metabolites that can be secreted without cost, thus generating ample cross-feeding opportunities. In addition to providing an atlas of putative interactions, we show that anoxic conditions can promote mutualisms by providing more opportunities for exchange of costless metabolites, resulting in an overrepresentation of stable ecological network motifs. These results may help identify interaction patterns in natural communities and inform the design of synthetic microbial consortia. In considering cross-feeding among microbes within communities, it is typically assumed that metabolic secretions are costly to produce. However, Pacheco et al. use metabolic models to show that ‘costless’ secretions could be common in some environments and important for structuring interactions among microbes.
Collapse
|
233
|
Yang L, Ebrahim A, Lloyd CJ, Saunders MA, Palsson BO. DynamicME: dynamic simulation and refinement of integrated models of metabolism and protein expression. BMC SYSTEMS BIOLOGY 2019; 13:2. [PMID: 30626386 PMCID: PMC6327497 DOI: 10.1186/s12918-018-0675-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Genome-scale models of metabolism and macromolecular expression (ME models) enable systems-level computation of proteome allocation coupled to metabolic phenotype. RESULTS We develop DynamicME, an algorithm enabling time-course simulation of cell metabolism and protein expression. DynamicME correctly predicted the substrate utilization hierarchy on a mixed carbon substrate medium. We also found good agreement between predicted and measured time-course expression profiles. ME models involve considerably more parameters than metabolic models (M models). We thus generate an ensemble of models (each model having its rate constants perturbed), and then analyze the models by identifying archetypal time-course metabolite concentration profiles. Furthermore, we use a metaheuristic optimization method to calibrate ME model parameters using time-course measurements such as from a (fed-) batch culture. Finally, we show that constraints on protein concentration dynamics ("inertia") alter the metabolic response to environmental fluctuations, including increased substrate-level phosphorylation and lowered oxidative phosphorylation. CONCLUSIONS Overall, DynamicME provides a novel method for understanding proteome allocation and metabolism under complex and transient environments, and to utilize time-course cell culture data for model-based interpretation or model refinement.
Collapse
Affiliation(s)
- Laurence Yang
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, 92093 CA USA
| | - Ali Ebrahim
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, 92093 CA USA
| | - Colton J. Lloyd
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, 92093 CA USA
| | - Michael A. Saunders
- Department of Management Science and Engineering, Stanford University, 475 Via Ortega, Stanford, 94305 CA USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, 92093 CA USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, 2800 Denmark
| |
Collapse
|
234
|
Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD. A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput Biol 2019; 15:e1006692. [PMID: 30677028 PMCID: PMC6364703 DOI: 10.1371/journal.pcbi.1006692] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/05/2019] [Accepted: 12/03/2018] [Indexed: 11/26/2022] Open
Abstract
Phototrophic organisms such as cyanobacteria utilize the sun's energy to convert atmospheric carbon dioxide into organic carbon, resulting in diurnal variations in the cell's metabolism. Flux balance analysis is a widely accepted constraint-based optimization tool for analyzing growth and metabolism, but it is generally used in a time-invariant manner with no provisions for sequestering different biomass components at different time periods. Here we present CycleSyn, a periodic model of Synechocystis sp. PCC 6803 metabolism that spans a 12-hr light/12-hr dark cycle by segmenting it into 12 Time Point Models (TPMs) with a uniform duration of two hours. The developed framework allows for the flow of metabolites across TPMs while inventorying metabolite levels and only allowing for the utilization of currently or previously produced compounds. The 12 TPMs allow for the incorporation of time-dependent constraints that capture the cyclic nature of cellular processes. Imposing bounds on reactions informed by temporally-segmented transcriptomic data enables simulation of phototrophic growth as a single linear programming (LP) problem. The solution provides the time varying reaction fluxes over a 24-hour cycle and the accumulation/consumption of metabolites. The diurnal rhythm of metabolic gene expression driven by the circadian clock and its metabolic consequences is explored. Predicted flux and metabolite pools are in line with published studies regarding the temporal organization of phototrophic growth in Synechocystis PCC 6803 paving the way for constructing time-resolved genome-scale models (GSMs) for organisms with a circadian clock. In addition, the metabolic reorganization that would be required to enable Synechocystis PCC 6803 to temporally separate photosynthesis from oxygen-sensitive nitrogen fixation is also explored using the developed model formalism.
Collapse
Affiliation(s)
- Debolina Sarkar
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Thomas J. Mueller
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| | - Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Himadri B. Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri, United
States of America
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University,
University Park, Pennsylvania, United States of America
| |
Collapse
|
235
|
Succurro A, Segrè D, Ebenhöh O. Emergent Subpopulation Behavior Uncovered with a Community Dynamic Metabolic Model of Escherichia coli Diauxic Growth. mSystems 2019; 4:e00230-18. [PMID: 30944873 PMCID: PMC6446979 DOI: 10.1128/msystems.00230-18] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/27/2018] [Indexed: 11/21/2022] Open
Abstract
Microbes have adapted to greatly variable environments in order to survive both short-term perturbations and permanent changes. A classical and yet still actively studied example of adaptation to dynamic environments is the diauxic shift of Escherichia coli, in which cells grow on glucose until its exhaustion and then transition to using previously secreted acetate. Here we tested different hypotheses concerning the nature of this transition by using dynamic metabolic modeling. To reach this goal, we developed an open source modeling framework integrating dynamic models (ordinary differential equation systems) with structural models (metabolic networks) which can take into account the behavior of multiple subpopulations and smooth flux transitions between time points. We used this framework to model the diauxic shift, first with a single E. coli model whose metabolic state represents the overall population average and then with a community of two subpopulations, each growing exclusively on one carbon source (glucose or acetate). After introduction of an environment-dependent transition function that determined the balance between subpopulations, our model generated predictions that are in strong agreement with published data. Our results thus support recent experimental evidence that diauxie, rather than a coordinated metabolic shift, would be the emergent pattern of individual cells differentiating for optimal growth on different substrates. This work offers a new perspective on the use of dynamic metabolic modeling to investigate population heterogeneity dynamics. The proposed approach can easily be applied to other biological systems composed of metabolically distinct, interconverting subpopulations and could be extended to include single-cell-level stochasticity. IMPORTANCE Escherichia coli diauxie is a fundamental example of metabolic adaptation, a phenomenon that is not yet completely understood. Further insight into this process can be achieved by integrating experimental and computational modeling methods. We present a dynamic metabolic modeling approach that captures diauxie as an emergent property of subpopulation dynamics in E. coli monocultures. Without fine-tuning the parameters of the E. coli core metabolic model, we achieved good agreement with published data. Our results suggest that single-organism metabolic models can only approximate the average metabolic state of a population, therefore offering a new perspective on the use of such modeling approaches. The open source modeling framework that we provide can be applied to model general subpopulation systems in more-complex environments and can be extended to include single-cell-level stochasticity.
Collapse
Affiliation(s)
- Antonella Succurro
- Botanical Institute, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Daniel Segrè
- Bioinformatics Program and Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biology, Department of Biomedical Engineering, Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Quantitative and Theoretical Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
236
|
Serrano-Bermúdez LM, González Barrios AF, Montoya D. Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content. PLoS One 2018; 13:e0209447. [PMID: 30571717 PMCID: PMC6301710 DOI: 10.1371/journal.pone.0209447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extensive experimentation has been conducted to increment 1,3-propanediol (PDO) production using Clostridium butyricum cultures in glycerol, but computational predictions are limited. Previously, we reconstructed the genome-scale metabolic (GSM) model iCbu641, the first such model of a PDO-producing Clostridium strain, which was validated at steady state using flux balance analysis (FBA). However, the prediction ability of FBA is limited for batch and fed-batch cultures, which are the most often employed industrial processes. RESULTS We used the iCbu641 GSM model to develop a dynamic flux balance analysis (DFBA) approach to predict the PDO production of the Colombian strain Clostridium sp IBUN 158B. First, we compared the predictions of the dynamic optimization approach (DOA), static optimization approach (SOA), and direct approach (DA). We found no differences between approaches, but the DOA simulation duration was nearly 5000 times that of the SOA and DA simulations. Experimental results at glycerol limitation and glycerol excess allowed for validating dynamic predictions of growth, glycerol consumption, and PDO formation. These results indicated a 4.4% error in PDO prediction and therefore validated the previously proposed objective functions. We performed two global sensitivity analyses, finding that the kinetic input parameters of glycerol uptake flux had the most significant effect on PDO predictions. The other input parameters evaluated during global sensitivity analysis were biomass composition (precursors and macromolecules), death constants, and the kinetic parameters of acetic acid secretion flux. These last input parameters, all obtained from other Clostridium butyricum cultures, were used to develop a population balance model (PBM). Finally, we simulated fed-batch cultures, predicting a final PDO production near to 66 g/L, almost three times the PDO predicted in the best batch culture. CONCLUSIONS We developed and validated a dynamic approach to predict PDO production using the iCbu641 GSM model and the previously proposed objective functions. This validated approach was used to propose a population model and then an increment in predictions of PDO production through fed-batch cultures. Therefore, this dynamic model could predict different scenarios, including its integration into downstream processes to predict technical-economic feasibilities and reducing the time and costs associated with experimentation.
Collapse
Affiliation(s)
- Luis Miguel Serrano-Bermúdez
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera, Bogotá D.C., Colombia
- Grupo Cundinamarca Agroambiental, Departamento de Ingeniería Ambiental, Universidad de Cundinamarca, Facatativá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá D.C., Colombia
| | - Dolly Montoya
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera, Bogotá D.C., Colombia
| |
Collapse
|
237
|
Simulation and optimization of dynamic flux balance analysis models using an interior point method reformulation. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
238
|
Bajić D, Vila JCC, Blount ZD, Sánchez A. On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci U S A 2018; 115:11286-11291. [PMID: 30322921 PMCID: PMC6217403 DOI: 10.1073/pnas.1808485115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A fitness landscape is a map between the genotype and its reproductive success in a given environment. The topography of fitness landscapes largely governs adaptive dynamics, constraining evolutionary trajectories and the predictability of evolution. Theory suggests that this topography can be deformed by mutations that produce substantial changes to the environment. Despite its importance, the deformability of fitness landscapes has not been systematically studied beyond abstract models, and little is known about its reach and consequences in empirical systems. Here we have systematically characterized the deformability of the genome-wide metabolic fitness landscape of the bacterium Escherichia coli Deformability is quantified by the noncommutativity of epistatic interactions, which we experimentally demonstrate in mutant strains on the path to an evolutionary innovation. Our analysis shows that the deformation of fitness landscapes by metabolic mutations rarely affects evolutionary trajectories in the short range. However, mutations with large environmental effects produce long-range landscape deformations in distant regions of the genotype space that affect the fitness of later descendants. Our results therefore suggest that, even in situations in which mutations have strong environmental effects, fitness landscapes may retain their power to forecast evolution over small mutational distances despite the potential attenuation of that power over longer evolutionary trajectories. Our methods and results provide an avenue for integrating adaptive and eco-evolutionary dynamics with complex genetics and genomics.
Collapse
Affiliation(s)
- Djordje Bajić
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511;
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| | - Jean C C Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| | - Zachary D Blount
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
- Department of Biology, Kenyon College, Gambier OH 43022
| | - Alvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511;
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| |
Collapse
|
239
|
Integrating -omics data into genome-scale metabolic network models: principles and challenges. Essays Biochem 2018; 62:563-574. [PMID: 30315095 DOI: 10.1042/ebc20180011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
At genome scale, it is not yet possible to devise detailed kinetic models for metabolism because data on the in vivo biochemistry are too sparse. Predictive large-scale models for metabolism most commonly use the constraint-based framework, in which network structures constrain possible metabolic phenotypes at steady state. However, these models commonly leave many possibilities open, making them less predictive than desired. With increasingly available -omics data, it is appealing to increase the predictive power of constraint-based models (CBMs) through data integration. Many corresponding methods have been developed, but data integration is still a challenge and existing methods perform less well than expected. Here, we review main approaches for the integration of different types of -omics data into CBMs focussing on the methods' assumptions and limitations. We argue that key assumptions - often derived from single-enzyme kinetics - do not generally apply in the context of networks, thereby explaining current limitations. Emerging methods bridging CBMs and biochemical kinetics may allow for -omics data integration in a common framework to provide more accurate predictions.
Collapse
|
240
|
Ang KS, Lakshmanan M, Lee NR, Lee DY. Metabolic Modeling of Microbial Community Interactions for Health, Environmental and Biotechnological Applications. Curr Genomics 2018; 19:712-722. [PMID: 30532650 PMCID: PMC6225453 DOI: 10.2174/1389202919666180911144055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 02/08/2023] Open
Abstract
In nature, microbes do not exist in isolation but co-exist in a variety of ecological and biological environments and on various host organisms. Due to their close proximity, these microbes interact among themselves, and also with the hosts in both positive and negative manners. Moreover, these interactions may modulate dynamically upon external stimulus as well as internal community changes. This demands systematic techniques such as mathematical modeling to understand the intrinsic community behavior. Here, we reviewed various approaches for metabolic modeling of microbial communities. If detailed species-specific information is available, segregated models of individual organisms can be constructed and connected via metabolite exchanges; otherwise, the community may be represented as a lumped network of metabolic reactions. The constructed models can then be simulated to help fill knowledge gaps, and generate testable hypotheses for designing new experiments. More importantly, such community models have been developed to study microbial interactions in various niches such as host microbiome, biogeochemical and bioremediation, waste water treatment and synthetic consortia. As such, the metabolic modeling efforts have allowed us to gain new insights into the natural and synthetic microbial communities, and design interventions to achieve specific goals. Finally, potential directions for future development in metabolic modeling of microbial communities were also discussed.
Collapse
Affiliation(s)
- Kok Siong Ang
- 1Bioprocessing Technology Institute (BTI), ASTAR, Singapore 138668, Singapore; 2Department of Chemical and Biomolecular Engineering, and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117585, Singapore; 3School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do16419, Republic of Korea
| | - Meiyappan Lakshmanan
- 1Bioprocessing Technology Institute (BTI), ASTAR, Singapore 138668, Singapore; 2Department of Chemical and Biomolecular Engineering, and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117585, Singapore; 3School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do16419, Republic of Korea
| | - Na-Rae Lee
- 1Bioprocessing Technology Institute (BTI), ASTAR, Singapore 138668, Singapore; 2Department of Chemical and Biomolecular Engineering, and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117585, Singapore; 3School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do16419, Republic of Korea
| | - Dong-Yup Lee
- 1Bioprocessing Technology Institute (BTI), ASTAR, Singapore 138668, Singapore; 2Department of Chemical and Biomolecular Engineering, and NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117585, Singapore; 3School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do16419, Republic of Korea
| |
Collapse
|
241
|
López Zazueta C, Bernard O, Gouzé JL. Dynamical reduction of linearized metabolic networks through quasi steady state approximation. AIChE J 2018. [DOI: 10.1002/aic.16406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Claudia López Zazueta
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université; Biocore project team; Sophia Antipolis 06902 France
| | - Olivier Bernard
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université; Biocore project team; Sophia Antipolis 06902 France
| | - Jean-Luc Gouzé
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université; Biocore project team; Sophia Antipolis 06902 France
| |
Collapse
|
242
|
Emenike VN, Schenkendorf R, Krewer U. Model-based optimization of biopharmaceutical manufacturing in Pichia pastoris based on dynamic flux balance analysis. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
243
|
Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front Microbiol 2018; 9:2161. [PMID: 30319557 PMCID: PMC6167468 DOI: 10.3389/fmicb.2018.02161] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Collapse
Affiliation(s)
- Sharon A Huws
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Linda B Oyama
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Ireland
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Ilma Tapio
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Hauke Smidt
- Department of Agrotechnology and Food Sciences, Wageningen, Netherlands
| | - Sophie J Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David R Yáñez-Ruiz
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Alejandro Belanche
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert J Gruninger
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Rainer Roehe
- Scotland's Rural College, Edinburgh, United Kingdom
| | | | - Tim J Snelling
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nigel D Scollan
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Rodolpho M do Prado
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eduardo J Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Steven Morrisson
- Sustainable Livestock, Agri-Food and Bio-Sciences Institute, Hillsborough, United Kingdom
| | - Olga L Mayorga
- Colombian Agricultural Research Corporation, Mosquera, Colombia
| | - Christopher Elliott
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Diego P Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|
244
|
Kremling A, Geiselmann J, Ropers D, de Jong H. An ensemble of mathematical models showing diauxic growth behaviour. BMC SYSTEMS BIOLOGY 2018; 12:82. [PMID: 30241537 PMCID: PMC6151013 DOI: 10.1186/s12918-018-0604-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/20/2018] [Indexed: 11/17/2022]
Abstract
Background Carbon catabolite repression (CCR) controls the order in which different carbon sources are metabolised. Although this system is one of the paradigms of regulation in bacteria, the underlying mechanisms remain controversial. CCR involves the coordination of different subsystems of the cell - responsible for the uptake of carbon sources, their breakdown for the production of energy and precursors, and the conversion of the latter to biomass. The complexity of this integrated system, with regulatory mechanisms cutting across metabolism, gene expression, and signalling, has motivated important modelling efforts over the past four decades, especially in the enterobacterium Escherichia coli. Results Starting from a simple core model with only four intracellular metabolites, we develop an ensemble of model variants, all showing diauxic growth behaviour during a batch process. The model variants fall into one of the four categories: flux balance models, kinetic models with growth dilution, kinetic models with regulation, and resource allocation models. The model variants differ from one another in only a single aspect, each breaking the symmetry between the two substrate assimilation pathways in a different manner, and can be quantitatively compared using a so-called diauxic growth index. For each of the model variants, we predict the behaviour in two new experimental conditions, namely a glucose pulse for a culture growing in minimal medium with lactose and a batch culture with different initial concentrations of the components of the transport systems. When qualitatively comparing these predictions with experimental data for these two conditions, a number of models can be excluded while other model variants are still not discriminable. The best-performing model variants are based on inducer inclusion and activation of enzymatic genes by a global transcription factor, but the other proposed factors may complement these well-known regulatory mechanisms. Conclusions The model ensemble presented here offers a better understanding of the variety of mechanisms that have been proposed to play a role in CCR. In addition, it provides an educational resource for systems biology, as it gives an introduction to a broad range of modeling approaches in the context of a simple but biologically relevant example. Electronic supplementary material The online version of this article (10.1186/s12918-018-0604-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Kremling
- Systems Biotechnology, Technical University of Munich, Boltzmannstrasse 15, Garching b. München, 85748, Germany.
| | - Johannes Geiselmann
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, 140 avenue de la Physique, Saint Martin d'Hères, 38402, France
| | - Delphine Ropers
- Inria, Université Grenoble Alpes, 655 avenue de l'Europe, Saint Ismier Cedex, 38334, France
| | - Hidde de Jong
- Inria, Université Grenoble Alpes, 655 avenue de l'Europe, Saint Ismier Cedex, 38334, France
| |
Collapse
|
245
|
Latif M, May EE. A Multiscale Agent-Based Model for the Investigation of E. coli K12 Metabolic Response During Biofilm Formation. Bull Math Biol 2018; 80:2917-2956. [PMID: 30218278 DOI: 10.1007/s11538-018-0494-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Bacterial biofilm formation is an organized collective response to biochemical cues that enables bacterial colonies to persist and withstand environmental insults. We developed a multiscale agent-based model that characterizes the intracellular, extracellular, and cellular scale interactions that modulate Escherichia coli MG1655 biofilm formation. Each bacterium's intracellular response and cellular state were represented as an outcome of interactions with the environment and neighboring bacteria. In the intracellular model, environment-driven gene expression and metabolism were captured using statistical regression and Michaelis-Menten kinetics, respectively. In the cellular model, growth, death, and type IV pili- and flagella-dependent movement were based on the bacteria's intracellular state. We implemented the extracellular model as a three-dimensional diffusion model used to describe glucose, oxygen, and autoinducer 2 gradients within the biofilm and bulk fluid. We validated the model by comparing simulation results to empirical quantitative biofilm profiles, gene expression, and metabolic concentrations. Using the model, we characterized and compared the temporal metabolic and gene expression profiles of sessile versus planktonic bacterial populations during biofilm formation and investigated correlations between gene expression and biofilm-associated metabolites and cellular scale phenotypes. Based on our in silico studies, planktonic bacteria had higher metabolite concentrations in the glycolysis and citric acid cycle pathways, with higher gene expression levels in flagella and lipopolysaccharide-associated genes. Conversely, sessile bacteria had higher metabolite concentrations in the autoinducer 2 pathway, with type IV pili, autoinducer 2 export, and cellular respiration genes upregulated in comparison with planktonic bacteria. Having demonstrated results consistent with in vitro static culture biofilm systems, our model enables examination of molecular phenomena within biofilms that are experimentally inaccessible and provides a framework for future exploration of how hypothesized molecular mechanisms impact bulk community behavior.
Collapse
Affiliation(s)
- Majid Latif
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Elebeoba E May
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
246
|
Aller S, Scott A, Sarkar-Tyson M, Soyer OS. Integrated human-virus metabolic stoichiometric modelling predicts host-based antiviral targets against Chikungunya, Dengue and Zika viruses. J R Soc Interface 2018; 15:rsif.2018.0125. [PMID: 30209043 PMCID: PMC6170780 DOI: 10.1098/rsif.2018.0125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023] Open
Abstract
Current and reoccurring viral epidemic outbreaks such as those caused by the Zika virus illustrate the need for rapid development of antivirals. Such development would be facilitated by computational approaches that can provide experimentally testable predictions for possible antiviral strategies. To this end, we focus here on the fact that viruses are directly dependent on their host metabolism for reproduction. We develop a stoichiometric, genome-scale metabolic model that integrates human macrophage cell metabolism with the biochemical demands arising from virus production and use it to determine the virus impact on host metabolism and vice versa. While this approach applies to any host–virus pair, we first apply it to currently epidemic viruses Chikungunya, Dengue and Zika in this study. We find that each of these viruses causes specific alterations in the host metabolic flux towards fulfilling their biochemical demands as predicted by their genome and capsid structure. Subsequent analysis of this integrated model allows us to predict a set of host reactions, which, when constrained, inhibit virus production. We show that this prediction recovers known targets of existing antiviral drugs, specifically those targeting nucleotide production, while highlighting a set of hitherto unexplored reactions involving both amino acid and nucleotide metabolic pathways, with either broad or virus-specific antiviral potential. Thus, this computational approach allows rapid generation of experimentally testable hypotheses for novel antiviral targets within a host.
Collapse
Affiliation(s)
- Sean Aller
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7ES, UK
| | - Andrew Scott
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK
| | - Mitali Sarkar-Tyson
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK.,Marshall Center for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7ES, UK
| |
Collapse
|
247
|
Tibocha-Bonilla JD, Zuñiga C, Godoy-Silva RD, Zengler K. Advances in metabolic modeling of oleaginous microalgae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:241. [PMID: 30202436 PMCID: PMC6124020 DOI: 10.1186/s13068-018-1244-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Production of biofuels and bioenergy precursors by phototrophic microorganisms, such as microalgae and cyanobacteria, is a promising alternative to conventional fuels obtained from non-renewable resources. Several species of microalgae have been investigated as potential candidates for the production of biofuels, for the most part due to their exceptional metabolic capability to accumulate large quantities of lipids. Constraint-based modeling, a systems biology approach that accurately predicts the metabolic phenotype of phototrophs, has been deployed to identify suitable culture conditions as well as to explore genetic enhancement strategies for bioproduction. Core metabolic models were employed to gain insight into the central carbon metabolism in photosynthetic microorganisms. More recently, comprehensive genome-scale models, including organelle-specific information at high resolution, have been developed to gain new insight into the metabolism of phototrophic cell factories. Here, we review the current state of the art of constraint-based modeling and computational method development and discuss how advanced models led to increased prediction accuracy and thus improved lipid production in microalgae.
Collapse
Affiliation(s)
- Juan D. Tibocha-Bonilla
- Grupo de Investigación en Procesos Químicos y Bioquímicos, Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Av. Carrera 30 No. 45-03, Bogotá, D.C. Colombia
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760 USA
| | - Rubén D. Godoy-Silva
- Grupo de Investigación en Procesos Químicos y Bioquímicos, Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Av. Carrera 30 No. 45-03, Bogotá, D.C. Colombia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760 USA
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412 USA
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0436 USA
| |
Collapse
|
248
|
Mora Salguero DA, Fernández-Niño M, Serrano-Bermúdez LM, Páez Melo DO, Winck FV, Caldana C, González Barrios AF. Development of a Chlamydomonas reinhardtii metabolic network dynamic model to describe distinct phenotypes occurring at different CO 2 levels. PeerJ 2018; 6:e5528. [PMID: 30202653 PMCID: PMC6126472 DOI: 10.7717/peerj.5528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The increase in atmospheric CO2 due to anthropogenic activities is generating climate change, which has resulted in a subsequent rise in global temperatures with severe environmental impacts. Biological mitigation has been considered as an alternative for environmental remediation and reduction of greenhouse gases in the atmosphere. In fact, the use of easily adapted photosynthetic organisms able to fix CO2 with low-cost operation is revealing its high potential for industry. Among those organism, the algae Chlamydomonas reinhardtii have gain special attention as a model organism for studying CO2 fixation, biomass accumulation and bioenergy production upon exposure to several environmental conditions. In the present study, we studied the Chlamydomonas response to different CO2 levels by comparing metabolomics and transcriptomics data with the predicted results from our new-improved genomic-scale metabolic model. For this, we used in silico methods at steady dynamic state varying the levels of CO2. Our main goal was to improve our capacity for predicting metabolic routes involved in biomass accumulation. The improved genomic-scale metabolic model presented in this study was shown to be phenotypically accurate, predictive, and a significant improvement over previously reported models. Our model consists of 3726 reactions and 2436 metabolites, and lacks any thermodynamically infeasible cycles. It was shown to be highly sensitive to environmental changes under both steady-state and dynamic conditions. As additional constraints, our dynamic model involved kinetic parameters associated with substrate consumption at different growth conditions (i.e., low CO2-heterotrophic and high CO2-mixotrophic). Our results suggest that cells growing at high CO2 (i.e., photoautotrophic and mixotrophic conditions) have an increased capability for biomass production. In addition, we have observed that ATP production also seems to be an important limiting factor for growth under the conditions tested. Our experimental data (metabolomics and transcriptomics) and the results predicted by our model clearly suggest a differential behavior between low CO2-heterotrophic and high CO2-mixotrophic growth conditions. The data presented in the current study contributes to better dissect the biological response of C. reinhardtii, as a dynamic entity, to environmental and genetic changes. These findings are of great interest given the biotechnological potential of this microalga for CO2 fixation, biomass accumulation, and bioenergy production.
Collapse
Affiliation(s)
- Daniela Alejandra Mora Salguero
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Miguel Fernández-Niño
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - David O. Páez Melo
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Flavia V. Winck
- Laboratory of Regulatory Systems Biology, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | |
Collapse
|
249
|
Pan DT, Wang XD, Shi HY, Yuan DC, Xiu ZL. Dynamic flux balance analysis for microbial conversion of glycerol into 1,3-propanediol by Klebsiella pneumoniae. Bioprocess Biosyst Eng 2018; 41:1793-1805. [PMID: 30173374 DOI: 10.1007/s00449-018-2002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022]
Abstract
To investigate the relationship between the yield of 1,3-propanediol (1,3-PD) and the flux variation in metabolic pathways of Klebsiella pneumoniae, an optimized calculation method was constructed on basis of dynamic flux balance analysis by combining genome-scale flux balance analysis with a kinetic model of extracellular metabolites. Through optimizing calculations, a more completely expanded metabolic pathway was obtained, which includes the previously reported metabolic pathway and additional three pathways or site: a pentose phosphate pathway (PPP) elicited at the dihydroxyacetone (DHA) node to provide more reducing equivalents; a branch of synthetic amino acids at the 3-phosphoglycerate (3PG) node; and the α-ketoglutarate site in the tricarboxylic acid (TCA) cycle leading to anabolic pathways for glutamate and other amino acids. On this basis, the relationships between the dynamic flux distribution of the important nodes in the metabolic pathway and the yield of 1,3-propanediol were analyzed. First, dynamic flux change from DHA to the PPP is positively correlated with the yield. Second, variation in flux in the TCA cycle is also positively correlated with the yield of 1,3-propanediol. In addition, the influence of the feedback loop formed by the cofactor tetrahydrofolate on the flux change of TCA in the amino acid anabolic pathway was examined. These results are of important reference value and have guiding significance for the extension of the glycerol metabolism pathway in K. pneumoniae, the rational transformation of genetic engineering in bacteria, and the optimization of metabolic pathways for industrial production.
Collapse
Affiliation(s)
- Duo-Tao Pan
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, People's Republic of China
- Chemical Control Technology Key Laboratory of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China
- Institute of Information and Engineering, Shenyang University of Chemical and Technology, Shenyang, 110142, People's Republic of China
| | - Xu-Dong Wang
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Hong-Yan Shi
- Chemical Control Technology Key Laboratory of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China
- Institute of Information and Engineering, Shenyang University of Chemical and Technology, Shenyang, 110142, People's Republic of China
| | - De-Cheng Yuan
- Chemical Control Technology Key Laboratory of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, People's Republic of China
- Institute of Information and Engineering, Shenyang University of Chemical and Technology, Shenyang, 110142, People's Republic of China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, People's Republic of China.
| |
Collapse
|
250
|
Hynes WF, Chacón J, Segrè D, Marx CJ, Cady NC, Harcombe WR. Bioprinting microbial communities to examine interspecies interactions in time and space. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|