201
|
Abstract
Caenorhabditis elegans senses multiple environmental stimuli through sensory systems and rapidly changes its behaviors for survival. With a simple and well-characterized nervous system, C. elegans is a suitable animal model for studying behavioral plasticity. Previous studies have shown acute neurodepressive effects of ethanol on multiple behaviors of C. elegans similar to the effect of ethanol on other organisms. Caenorhabditis elegans also develops ethanol tolerance during continuous exposure to ethanol. In mammals, chronic ethanol exposure leads to ethanol tolerance as well as increased ethanol consumption. Ethanol preference is associated with the development of tolerance and may lead to the development of ethanol dependence. In this study, we show that C. elegans is a useful model organism for studying chronic effects of ethanol, including the development of ethanol preference. We designed a behavioral assay for testing ethanol preference after prolonged ethanol exposure. Despite baseline aversive responses to ethanol, animals show ethanol preference after 4 h of pre-exposure to ethanol and exhibit significantly enhanced preference for ethanol after a lifetime of ethanol exposure. The cat-2 and tph-1 mutant animals have defects in the synthetic enzymes for dopamine and serotonin, respectively. These mutants are deficient in the development of ethanol preference, indicating that dopamine and serotonin are required for this form of behavioral plasticity.
Collapse
Affiliation(s)
| | | | - Steven L. McIntire
- Ernest Gallo Clinic and Research Center, Department of Neurology, Programs in Neuroscience and Biomedical Science, University of California, San Francisco, Emeryville, CA94608, USA
| |
Collapse
|
202
|
Bhandari P, Kendler KS, Bettinger JC, Davies AG, Grotewiel M. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcohol Clin Exp Res 2009; 33:1794-805. [PMID: 19645731 DOI: 10.1111/j.1530-0277.2009.01018.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. METHODS We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. RESULTS Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. CONCLUSIONS The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the function of alpha and beta integrins in flies.
Collapse
Affiliation(s)
- Poonam Bhandari
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23113, USA
| | | | | | | | | |
Collapse
|
203
|
Karmacharya R, Sliwoski GR, Lundy MY, Suckow RF, Cohen BM, Buttner EA. Clozapine interaction with phosphatidyl inositol 3-kinase (PI3K)/insulin-signaling pathway in Caenorhabditis elegans. Neuropsychopharmacology 2009; 34:1968-78. [PMID: 19322168 PMCID: PMC3348699 DOI: 10.1038/npp.2009.35] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clozapine has superior and unique effects as an antipsychotic agent, but the mediators of these effects are not known. We studied behavioral and developmental effects of clozapine in Caenorhabditis elegans, as a model system to identify previously undiscovered mechanisms of drug action. Clozapine induced early larval arrest, a phenotype that was also seen with the clozapine metabolite N-desmethyl clozapine but not with any other typical or atypical antipsychotic drug tested. Mutations in the insulin receptor/daf-2 and phosphatidyl inositol 3-kinase (PI3K)/age-1 suppressed clozapine-induced larval arrest, suggesting that clozapine may activate the insulin-signaling pathway. Consistent with this notion, clozapine also increased the expression of an age-1::GFP reporter. Activation of the insulin-signaling pathway leads to cytoplasmic localization of the fork head transcription factor FOXO/daf-16. Clozapine produced cytoplasmic localization of DAF-16::GFP in arrested L1 larvae, in contrast to stressors such as starvation or high temperature, which produce nuclear localization of DAF-16::GFP in arrested L1 larvae. Clozapine also inhibited pharyngeal pumping in C. elegans, an effect that may contribute to, but did not explain, clozapine-induced larval arrest. Our findings demonstrate a drug-specific interaction between clozapine and the PI3K/insulin-signaling pathway in C. elegans. As this pathway is conserved across species, the results may have implications for understanding the unique effects of clozapine in humans.
Collapse
Affiliation(s)
- Rakesh Karmacharya
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Mailman Research Center, McLean Hospital, 115 Mill Street, Belmont, Massachusetts 02478
- Chemical Biology Program, Broad Institute of Harvard & MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Gregory R. Sliwoski
- Mailman Research Center, McLean Hospital, 115 Mill Street, Belmont, Massachusetts 02478
| | - Miriam Y. Lundy
- Mailman Research Center, McLean Hospital, 115 Mill Street, Belmont, Massachusetts 02478
| | - Raymond F. Suckow
- Department of Analytical Psychopharmacology, New York State Psychiatric Institute, 1051 Riverside Drive, New York, New York 10032
| | - Bruce M. Cohen
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Mailman Research Center, McLean Hospital, 115 Mill Street, Belmont, Massachusetts 02478
| | - Edgar A. Buttner
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Mailman Research Center, McLean Hospital, 115 Mill Street, Belmont, Massachusetts 02478
| |
Collapse
|
204
|
Peng J, Wagle M, Mueller T, Mathur P, Lockwood BL, Bretaud S, Guo S. Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signaling in behavioral sensitivity to ethanol. J Neurosci 2009; 29:8408-18. [PMID: 19571131 PMCID: PMC2722107 DOI: 10.1523/jneurosci.0714-09.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/11/2009] [Accepted: 05/25/2009] [Indexed: 11/21/2022] Open
Abstract
Ethanol, a widely abused substance, elicits evolutionarily conserved behavioral responses in a concentration-dependent manner in vivo. The molecular mechanisms underlying such behavioral sensitivity to ethanol are poorly understood. While locomotor-based behavioral genetic screening is successful in identifying genes in invertebrate models, such complex behavior-based screening has proven difficult for recovering genes in vertebrates. Here we report a novel and tractable ethanol response in zebrafish. Using this ethanol-modulated camouflage response as a screening assay, we have identified a zebrafish mutant named fantasma (fan), which displays reduced behavioral sensitivity to ethanol. Positional cloning reveals that fan encodes type 5 adenylyl cyclase (AC5). fan/ac5 is required to maintain the phosphorylation of extracellular signal-regulated kinase (ERK) in the forebrain structures, including the telencephalon and hypothalamus. Partial inhibition of phosphorylation of ERK in wild-type zebrafish mimics the reduction in sensitivity to stimulatory effects of ethanol observed in the fan mutant, whereas, strikingly, strong inhibition of phosphorylation of ERK renders a stimulatory dose of ethanol sedating. Since previous studies in Drosophila and mice show a role of cAMP signaling in suppressing behavioral sensitivity to ethanol, our findings reveal a novel, isoform-specific role of AC signaling in promoting ethanol sensitivity, and suggest that the phosphorylation level of the downstream effector ERK is a critical "gatekeeper" of behavioral sensitivity to ethanol.
Collapse
Affiliation(s)
- Jisong Peng
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Mahendra Wagle
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Thomas Mueller
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Priya Mathur
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Brent L. Lockwood
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Sandrine Bretaud
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| | - Su Guo
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, The Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, San Francisco, California 94143-2811
| |
Collapse
|
205
|
Mulholland PJ, Hopf FW, Bukiya AN, Martin GE, Liu J, Dopico AM, Bonci A, Treistman SN, Chandler LJ. Sizing up ethanol-induced plasticity: the role of small and large conductance calcium-activated potassium channels. Alcohol Clin Exp Res 2009; 33:1125-35. [PMID: 19389201 PMCID: PMC2760381 DOI: 10.1111/j.1530-0277.2009.00936.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Small (SK) and large conductance (BK) Ca(2+)-activated K(+) channels contribute to action potential repolarization, shape dendritic Ca(2+)spikes and postsynaptic responses, modulate the release of hormones and neurotransmitters, and contribute to hippocampal-dependent synaptic plasticity. Over the last decade, SK and BK channels have emerged as important targets for the development of acute ethanol tolerance and for altering neuronal excitability following chronic ethanol consumption. In this mini-review, we discuss new evidence implicating SK and BK channels in ethanol tolerance and ethanol-associated homeostatic plasticity. Findings from recent reports demonstrate that chronic ethanol produces a reduction in the function of SK channels in VTA dopaminergic and CA1 pyramidal neurons. It is hypothesized that the reduction in SK channel function increases the propensity for burst firing in VTA neurons and increases the likelihood for aberrant hyperexcitability during ethanol withdrawal in hippocampus. There is also increasing evidence supporting the idea that ethanol sensitivity of native BK channel results from differences in BK subunit composition, the proteolipid microenvironment, and molecular determinants of the channel-forming subunit itself. Moreover, these molecular entities play a substantial role in controlling the temporal component of ethanol-associated neuroadaptations in BK channels. Taken together, these studies suggest that SK and BK channels contribute to ethanol tolerance and adaptive plasticity.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Center for Department of Neurosciences and Charleston Alcohol Research Center, Medical University of South Carolina (PJM, LJC), Charleston, South Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Ward A, Walker VJ, Feng Z, Xu XZS. Cocaine modulates locomotion behavior in C. elegans. PLoS One 2009; 4:e5946. [PMID: 19536276 PMCID: PMC2691951 DOI: 10.1371/journal.pone.0005946] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 05/22/2009] [Indexed: 11/19/2022] Open
Abstract
Cocaine, a potent addictive substance, is an inhibitor of monoamine transporters, including DAT (dopamine transporter), SERT (serotonin transporter) and NET (norepinephrine transporter). Cocaine administration induces complex behavioral alterations in mammals, but the underlying mechanisms are not well understood. Here, we tested the effect of cocaine on C. elegans behavior. We show for the first time that acute cocaine treatment evokes changes in C. elegans locomotor activity. Interestingly, the neurotransmitter serotonin, rather than dopamine, is required for cocaine response in C. elegans. The C. elegans SERT MOD-5 is essential for the effect of cocaine, consistent with the role of cocaine in targeting monoamine transporters. We further show that the behavioral response to cocaine is primarily mediated by the ionotropic serotonin receptor MOD-1. Thus, cocaine modulates locomotion behavior in C. elegans primarily by impinging on its serotoninergic system.
Collapse
Affiliation(s)
- Alex Ward
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vyvyca J. Walker
- Program in Biomedical Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhaoyang Feng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - X. Z. Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Biomedical Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
207
|
Wang Y, Ghezzi A, Yin JCP, Atkinson NS. CREB regulation of BK channel gene expression underlies rapid drug tolerance. GENES, BRAIN, AND BEHAVIOR 2009; 8:369-76. [PMID: 19243452 PMCID: PMC2796570 DOI: 10.1111/j.1601-183x.2009.00479.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pharmacodynamic tolerance is believed to involve homeostatic mechanisms initiated to restore normal neural function. Drosophila exposed to a sedating dose of an organic solvent, such as benzyl alcohol or ethanol, acquire tolerance to subsequent sedation by that solvent. The slo gene encodes BK-type Ca(2+)-activated K(+) channels and has been linked to alcohol- and organic solvent-induced behavioral tolerance in mice, Caenorhabditis elegans (C. elegans) and Drosophila. The cyclic AMP response element-binding (CREB) proteins are transcription factors that have been mechanistically linked to some behavioral changes associated with drug addiction. Here, we show that benzyl alcohol sedation alters expression of both dCREB-A and dCREB2-b genes to increase production of positively acting CREB isoforms and to reduce expression of negatively acting CREB variants. Using a CREB-responsive reporter gene, we show that benzyl alcohol sedation increases CREB-mediated transcription. Chromatin immunoprecipitation assays show that the binding of dCREB2, with a phosphorylated kinase-inducible domain, increases immediately after benzyl alcohol sedation within the slo promoter region. Most importantly, we show that a loss-of-function allele of dCREB2 eliminates drug-induced upregulation of slo expression and the production of benzyl alcohol tolerance. This unambiguously links dCREB2 transcription factors to these two benzyl alcohol-induced phenotypes. These findings suggest that CREB positively regulates the expression of slo-encoded BK-type Ca(2+)-activated K(+) channels and that this gives rise to behavioral tolerance to benzyl alcohol sedation.
Collapse
Affiliation(s)
- Y Wang
- Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712-0248, USA
| | | | | | | |
Collapse
|
208
|
Abstract
Alcohol abuse is a global problem due to the financial burden on society and the healthcare system. While the harmful health effects of chronic alcohol abuse are well established, more recent data suggest that acute alcohol consumption also affects human wellbeing. Thus, there is a need for research models in order to fully understand the effect of acute alcohol abuse on different body systems and organs. The present manuscript summarizes the interdisciplinary advantages and disadvantages of currently available human and non-human models of acute alcohol abuse, and identifies their suitability for biomedical research.
Collapse
|
209
|
Schuckit MA, Smith TL, Trim R, Fukukura T, Allen R. The overlap in predicting alcohol outcome for two measures of the level of response to alcohol. Alcohol Clin Exp Res 2009; 33:563-9. [PMID: 19120060 PMCID: PMC2651993 DOI: 10.1111/j.1530-0277.2008.00870.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Two different measures have been used to establish a person's level of response (LR) to alcohol as a risk factor for alcohol use disorders. LR values established by the alcohol challenge protocol and the Self-Report of the Effects of Ethanol (SRE) questionnaire usually correlate at 0.3 to 0.4, up to 0.6. However, it is not clear how this correlation relates to the ability of each measure to predict alcohol outcomes. This paper evaluates that overlap. METHODS Sixty-six Caucasian males (mean age = 22 years) from 2 protocols participated in alcohol challenges with 0.75 ml/kg of ethanol, filled out the SRE, and were followed with a structured interview approximately 5 years later. The relationship between the subjective feelings of intoxication at the time of peak breath alcohol levels from the alcohol challenge and the SRE score for a time early in the drinking career were evaluated regarding predicting the drinks per occasion in the 6 months prior to follow-up. RESULTS Cross-sectional correlations between alcohol challenge and SRE LR's ranged from -0.25 (p < 0.05) to -0.32 (p = 0.02) for the full sample, and the 2 LR measures correlated with drinking at follow-up (-0.26 and 0.41, respectively). The SRE measure was more robust than the challenge in a regression analysis predicting the outcome in the context of other baseline predictors (e.g., drinking at baseline). As much as 60% of the ability of the more well established (gold standard) alcohol challenge LR to predict outcome was shared with the SRE. The alcohol challenge accounted for as much as 44% of the ability of the SRE to predict outcome. CONCLUSIONS The SRE-generated LR overlapped considerably with the alcohol challenge LR in the ability to predict future heavier drinking.
Collapse
Affiliation(s)
- Marc A Schuckit
- Department of Psychiatry, University of California, San Diego, VA San Diego Healthcare System, San Diego, California 92161-2002, USA.
| | | | | | | | | |
Collapse
|
210
|
Abstract
The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes that interfere with the acquisition of ethanol tolerance. Here, I discuss the genes identified as being important for the production of ethanol tolerance in Drosophila. Some of these genes have also been shown to be important for the production of tolerance in mammals, demonstrating that gene discovery in Drosophila has predictive value for understanding the molecular pathways that generate tolerance in mammals.
Collapse
Affiliation(s)
- Nigel S Atkinson
- Section of Neurobiology and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas 78712-0248, USA.
| |
Collapse
|
211
|
Graham ME, Edwards MR, Holden-Dye L, Morgan A, Burgoyne RD, Barclay JW. UNC-18 modulates ethanol sensitivity in Caenorhabditis elegans. Mol Biol Cell 2009; 20:43-55. [PMID: 18923141 PMCID: PMC2613081 DOI: 10.1091/mbc.e08-07-0689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/09/2008] [Accepted: 10/03/2008] [Indexed: 11/11/2022] Open
Abstract
Acute ethanol exposure affects the nervous system as a stimulant at low concentrations and as a depressant at higher concentrations, eventually resulting in motor dysfunction and uncoordination. A recent genetic study of two mouse strains with varying ethanol preference indicated a correlation with a polymorphism (D216N) in the synaptic protein Munc18-1. Munc18-1 functions in exocytosis via a number of discrete interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin-1. We report that the mutation affects binding to syntaxin but not through either a closed conformation mode of interaction or through binding to the syntaxin N terminus. The D216N mutant instead has a specific impairment in binding the assembled SNARE complex. Furthermore, the mutation broadens the duration of single exocytotic events. Expression of the orthologous mutation (D214N) in the Caenorhabditis elegans UNC-18 null background generated transgenic rescues with phenotypically similar locomotion to worms rescued with the wild-type protein. Strikingly, D214N worms were strongly resistant to both stimulatory and sedative effects of acute ethanol. Analysis of an alternative Munc18-1 mutation (I133V) supported the link between reduced SNARE complex binding and ethanol resistance. We conclude that ethanol acts, at least partially, at the level of vesicle fusion and that its acute effects are ameliorated by point mutations in UNC-18.
Collapse
Affiliation(s)
- Margaret E. Graham
- *The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom; and
| | - Mark R. Edwards
- *The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom; and
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom
| | - Alan Morgan
- *The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom; and
| | - Robert D. Burgoyne
- *The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom; and
| | - Jeff W. Barclay
- *The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom; and
| |
Collapse
|
212
|
Identification of a BK channel auxiliary protein controlling molecular and behavioral tolerance to alcohol. Proc Natl Acad Sci U S A 2008; 105:17543-8. [PMID: 18981408 DOI: 10.1073/pnas.0801068105] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tolerance, described as the loss of drug effectiveness over time, is an important component of addiction. The degree of acute behavioral tolerance to alcohol exhibited by a naïve subject can predict the likelihood of alcohol abuse. Thus, the determinants of acute tolerance are important to understand. Calcium- and voltage-gated (BK) potassium channels, consisting of pore forming alpha and modulatory beta subunits, are targets of ethanol (EtOH) action. Here, we examine the role, at the molecular, cellular, and behavioral levels, of the BK beta4 subunit in acute tolerance. Single channel recordings in HEK-293 cells show that, in the absence of beta4, EtOH potentiation of activity exhibits acute tolerance, which is blocked by coexpressing the beta4 subunit. BK channels in acutely isolated medium spiny neurons from WT mice (in which the beta4 subunit is well-represented) exhibit little tolerance. In contrast, neuronal BK channels from beta4 knockout (KO) mice do display acute tolerance. Brain slice recordings showed tolerance to EtOH's effects on spike patterning in KO but not in WT mice. In addition, beta4 KO mice develop rapid tolerance to EtOH's locomotor effects, whereas WT mice do not. Finally, in a restricted access ethanol self-administration assay, beta4 KO mice drink more than their WT counterparts. Taken together, these data indicate that the beta4 subunit controls ethanol tolerance at the molecular, cellular, and behavioral levels, and could determine individual differences in alcohol abuse and alcoholism, as well as represent a therapeutic target for alcoholism.
Collapse
|
213
|
Mustard JA, Edgar EA, Mazade RE, Wu C, Lillvis JL, Wright GA. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiol Learn Mem 2008; 90:633-43. [PMID: 18723103 PMCID: PMC2678174 DOI: 10.1016/j.nlm.2008.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022]
Abstract
Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5%, 5%, 10%, or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA.
| | | | | | | | | | | |
Collapse
|
214
|
Feinberg-Zadek PL, Martin G, Treistman SN. BK channel subunit composition modulates molecular tolerance to ethanol. Alcohol Clin Exp Res 2008; 32:1207-16. [PMID: 18537940 DOI: 10.1111/j.1530-0277.2008.00704.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The large conductance calcium-activated potassium channel (also called BK channel or Slo channels) is a well-studied target of alcohol action, and plays an important role in behavioral tolerance. METHODS Using patch clamp electrophysiology, we examined human BK channels expressed in HEK293 cells to test whether tolerance to ethanol occurs in excised patches and whether it is influenced by subunit composition. Three combinations were examined: hSlo, hSlo + beta(1), and hSlo + beta(4). RESULTS The 2 components of BK alcohol adaptation (Component 1: rapid tolerance to acute potentiation, and Component 2: a more slowly developing decrease in current density) were observed, and varied according to subunit combination. Using a 2-exposure protocol, Component 1 tolerance was evident in 2 of the 3 combinations, because it was more pronounced for hSlo and hSlo + beta(4). CONCLUSIONS Thus, rapid tolerance in human BK occurs in cell-free membrane patches, independent of cytosolic second messengers, nucleotides or changes in free calcium. Alcohol pretreatment for 24 hours altered subsequent short-term plasticity of hSlo + beta(4) channels, suggesting a relationship between classes of tolerance. Finally, Component 2 reduction in current density showed a striking dependency on channel composition. Twenty-four hour exposure to 25 mM ethanol resulted in a down-regulation of BK current in hSlo and hSlo + beta(4) channels, but not in hSlo + beta(1) channels. The fact that hSlo + beta(1) channels show less sensitivity to acute challenge, in conjunction with less Component 1 and Component 2 tolerance, suggests subunit composition is an important factor for these elements of alcohol response.
Collapse
Affiliation(s)
- Paula L Feinberg-Zadek
- Harvard-MIT Division of Health, Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
215
|
Abstract
Ion channels are modulated by multiple molecular mechanisms. In this issue of Neuron, Pietrzykowski et al. expand the mechanistic repertoire by demonstrating that ethanol-induced microRNA can modulate the pattern of mRNA splice variants from which BK potassium channels are constructed. Because BK channels are important targets of ethanol, this finding has implications for mechanisms of ethanol sensitivity and tolerance.
Collapse
|
216
|
Xie J. Control of alternative pre-mRNA splicing by Ca(++) signals. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:438-52. [PMID: 18258215 PMCID: PMC3500379 DOI: 10.1016/j.bbagrm.2008.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/18/2007] [Accepted: 01/08/2008] [Indexed: 02/06/2023]
Abstract
Alternative pre-mRNA splicing is a common way of gene expression regulation in metazoans. The selective use of specific exons can be modulated in response to various manipulations that alter Ca(++) signals, particularly in neurons. A number of splicing factors have also been found to be controlled by Ca(++) signals. Moreover, pre-mRNA elements have been identified that are essential and sufficient to mediate Ca(++)-regulated splicing, providing model systems for dissecting the involved molecular components. In neurons, this regulation likely contributes to the fine-tuning of neuronal properties.
Collapse
Affiliation(s)
- Jiuyong Xie
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Canada MB R3E 3J7.
| |
Collapse
|
217
|
Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 2008; 59:274-87. [PMID: 18667155 PMCID: PMC2714263 DOI: 10.1016/j.neuron.2008.05.032] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 03/12/2008] [Accepted: 05/29/2008] [Indexed: 01/13/2023]
Abstract
Tolerance represents a critical component of addiction. The large-conductance calcium- and voltage-activated potassium channel (BK) is a well-established alcohol target, and an important element in behavioral and molecular alcohol tolerance. We tested whether microRNA, a newly discovered class of gene expression regulators, plays a role in the development of tolerance. We show that in adult mammalian brain, alcohol upregulates microRNA miR-9 and mediates posttranscriptional reorganization in BK mRNA splice variants by miR-9-dependent destabilization of BK mRNAs containing 3'UTRs with a miR-9 Recognition Element (MRE). Different splice variants encode BK isoforms with different alcohol sensitivities. Computational modeling indicates that this miR-9-dependent mechanism contributes to alcohol tolerance. Moreover, this mechanism can be extended to include regulation of additional miR-9 targets relevant to alcohol abuse. Our results describe a mechanism of multiplex regulation of stability of alternatively spliced mRNA by microRNA in drug adaptation and neuronal plasticity.
Collapse
Affiliation(s)
- Andrzej Z. Pietrzykowski
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Ryan M. Friesen
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Gilles E. Martin
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Sylvie I. Puig
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Cheryl L. Nowak
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Patricia M. Wynne
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| | - Hava T. Siegelmann
- University of Massachusetts, Computer Science Department, The Biologically Inspired Neural & Dynamical Systems Laboratory, 140 Governors Drive, Amherst, MA 01003
| | - Steven N. Treistman
- University of Massachusetts Medical School, Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, 303 Belmont Street, Worcester, MA 01604
| |
Collapse
|
218
|
Mayfield RD, Harris RA, Schuckit MA. Genetic factors influencing alcohol dependence. Br J Pharmacol 2008; 154:275-87. [PMID: 18362899 PMCID: PMC2442454 DOI: 10.1038/bjp.2008.88] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 01/22/2023] Open
Abstract
Plentiful data from both animal and human studies support the importance of genetic influences in substance abuse and dependence (Bierut et al., 1998; Tsuang et al., 1998; Kendler et al., 2003). This review summarizes the evidence supporting such genetic influences, places them into perspective regarding animal and human studies, discusses the importance of both genes and environment, and highlights some specific genes of interest regarding the vulnerabilities for problems associated with alcohol use disorders. A long history of repetitive heavy use of alcohol exists across generations as well as the high prevalence of alcohol-related problems in Western societies. Moreover, the information offered here addresses the importance of more general issues regarding genetics and gene expression related to alcohol abuse and dependence.
Collapse
Affiliation(s)
- R D Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin Austin, TX, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin Austin, TX, USA
| | - M A Schuckit
- Department of Psychiatry, University of California San Francisco, CA, USA
| |
Collapse
|
219
|
Kapfhamer D, Bettinger JC, Davies AG, Eastman CL, Smail EA, Heberlein U, McIntire SL. Loss of RAB-3/A in Caenorhabditis elegans and the mouse affects behavioral response to ethanol. GENES BRAIN AND BEHAVIOR 2008; 7:669-76. [PMID: 18397381 DOI: 10.1111/j.1601-183x.2008.00404.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanisms by which ethanol induces changes in behavior are not well understood. Here, we show that Caenorhabditis elegans loss-of-function mutations in the synaptic vesicle-associated RAB-3 protein and its guanosine triphosphate exchange factor AEX-3 confer resistance to the acute locomotor effects of ethanol. Similarly, mice lacking one or both copies of Rab3A are resistant to the ataxic and sedative effects of ethanol, and Rab3A haploinsufficiency increases voluntary ethanol consumption. These data suggest a conserved role of RAB-3-/RAB3A-regulated neurotransmitter release in ethanol-related behaviors.
Collapse
Affiliation(s)
- D Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA 94608, USA
| | | | | | | | | | | | | |
Collapse
|
220
|
Davis JR, Li Y, Rankin CH. Effects of developmental exposure to ethanol on Caenorhabditis elegans. Alcohol Clin Exp Res 2008; 32:853-67. [PMID: 18336629 DOI: 10.1111/j.1530-0277.2008.00639.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND We investigated the effects of chronic ethanol exposure on physical development, reproduction, and life expectancy of Caenorhabditis elegans, a microscopic nematode worm. It has a small nervous system of 302 neurons and a short lifespan of 2 to 3 weeks. METHODS In this study, the worms were chronically exposed to varying concentrations of ethanol for different periods of their life: for their entire lifespan, during larval development only, and during adulthood only. In addition, the worms were exposed to ethanol acutely during different stages of embryonic development. RESULTS Chronic exposure to ethanol during larval development temporarily delayed physical growth, slowed development, delayed the onset of reproductive maturity, and decreased both reproductive fecundity and longevity. Chronic exposure to ethanol beginning when worms completed development and reached reproductive maturity resulted in reduced C. elegans body length, decreased reproductive fecundity, and life expectancy. Finally, acute embryonic exposure of C. elegans eggs to high concentrations of ethanol at different stages of development resulted in a lower probability of exposed eggs hatching into larval worms depending on when eggs were exposed during development. Furthermore, some of the worms that did hatch displayed distinct physical dysmorphologies as a consequence of acute ethanol exposure during embryonic development. CONCLUSIONS These data suggest that exposing C. elegans to ethanol during critical development periods results in characteristic phenotypic outcomes. Thus, C. elegans offers a novel model for exploring the mechanisms by which ethanol exposure affects development.
Collapse
Affiliation(s)
- Justin R Davis
- Brain Research Centre and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
221
|
Yuan C, O'Connell RJ, Wilson A, Pietrzykowski AZ, Treistman SN. Acute alcohol tolerance is intrinsic to the BKCa protein, but is modulated by the lipid environment. J Biol Chem 2008; 283:5090-8. [PMID: 18084004 PMCID: PMC4127471 DOI: 10.1074/jbc.m708214200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol tolerance, in which exposure leads to reduced sensitivity, is an important component of alcohol abuse and addiction. The molecular mechanisms underlying this process remain poorly understood. The BKCa channel plays a central role in the behavioral response to ethanol in Caenorhabditis elegans (Davies, A. G., Pierce-Shimomura, J. T., Kim, H., VanHoven, M. K., Thiele, T. R., Bonci, A., Bargmann, C. I., and McIntire, S. L. (2003) Cell 115, 655-666) and Drosophila (Cowmeadow, R. B., Krishnan, H. R., and Atkinson, N. S. (2005) Alcohol. Clin. Exp. Res. 29, 1777-1786) . In neurons, ethanol tolerance in BKCa channels has two components: a reduced number of membrane channels and decreased potentiation of the remaining channels (Pietrzykowski, A. Z., Martin, G. E., Puig, S. I., Knott, T. K., Lemos, J. R., and Treistman, S. N. (2004) J. Neurosci. 24, 8322-8332) . Here, heterologous expression coupled with planar bilayer techniques examines two additional aspects of tolerance in human BKCa channels. 1) Is acute tolerance observed in a single channel protein complex within a lipid environment reduced to only two lipids? 2) Does lipid bilayer composition affect the appearance of acute tolerance? We found that tolerance was observable in BKCa channels in membrane patches pulled from HEK cells and when they are placed into reconstituted 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine membranes. Furthermore, altering bilayer thickness by incorporating the channel into lipid mixtures of 1,2-dioleoyl-3-phosphatidylethanolamine with phosphatidylcholines of increasing chain length, or with sphingomyelin, strongly affected the sensitivity of the channel, as well as the time course of the acute response. Ethanol sensitivity changed from a strong potentiation in thin bilayers to inhibition in thick sphingomyelin/1,2-dioleoyl-3-phosphatidylethanolamine bilayers. Thus, tolerance can be an intrinsic property of the channel protein-lipid complex, and bilayer thickness plays an important role in shaping the pattern of response to ethanol. As a consequence of these findings the protein-lipid complex should be treated as a unit when studying ethanol action.
Collapse
Affiliation(s)
- Chunbo Yuan
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | | | | | | | | |
Collapse
|
222
|
Hong M, Choi MK, Lee J. The anesthetic action of ethanol analyzed by genetics in Caenorhabditis elegans. Biochem Biophys Res Commun 2008; 367:219-25. [DOI: 10.1016/j.bbrc.2007.12.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 12/20/2007] [Indexed: 11/27/2022]
|
223
|
Fernández-Aranda F, Pinheiro AP, Thornton LM, Berrettini WH, Crow S, Fichter MM, Halmi KA, Kaplan AS, Keel P, Mitchell J, Rotondo A, Strober M, Woodside DB, Kaye WH, Bulik CM. Impulse control disorders in women with eating disorders. Psychiatry Res 2008; 157:147-57. [PMID: 17961717 DOI: 10.1016/j.psychres.2007.02.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/29/2006] [Accepted: 02/11/2007] [Indexed: 01/04/2023]
Abstract
We compared symptom patterns, severity of illness, and comorbidity in individuals with eating disorders with and without impulse control disorders (ICD), and documented the temporal pattern of illness onset. Lifetime ICD were present in 16.6% of 709 women with a history of eating disorders. The most common syndromes were compulsive buying disorder and kleptomania. ICD occurred more in individuals with binge eating subtypes, and were associated with significantly greater use of laxatives, diuretics, appetite suppressants and fasting, and with greater body image disturbance, higher harm avoidance, neuroticism, cognitive impulsivity, and lower self-directedness. In addition, individuals with ICD were more likely to have obsessive-compulsive disorder, any anxiety disorder, specific phobia, depression, cluster B personality disorder, avoidant personality disorder, and to use psychoactive substances. Among those with ICD, 62% reported the ICD predated the eating disorder and 45% reported the onset of both disorders within the same 3-year window. The presence of a lifetime ICD appears to be limited to eating disorders marked by binge eating and to be associated with worse eating-related psychopathology, more pathological personality traits, and more frequent comorbid Axis I and II conditions. Untreated ICD may complicate recovery from eating disorders.
Collapse
|
224
|
Liu Q, Chen B, Ge Q, Wang ZW. Presynaptic Ca2+/calmodulin-dependent protein kinase II modulates neurotransmitter release by activating BK channels at Caenorhabditis elegans neuromuscular junction. J Neurosci 2007; 27:10404-13. [PMID: 17898212 PMCID: PMC6673169 DOI: 10.1523/jneurosci.5634-06.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although Ca2+/calmodulin-dependent protein kinase II (CaMKII) is enriched at the presynaptic nerve terminal, its role in neurotransmitter release is poorly defined. We assessed the function of presynaptic CaMKII in neurotransmitter release and tested the hypothesis that BK channel is a mediator of presynaptic CaMKII function by analyzing miniature and evoked postsynaptic currents at the Caenorhabditis elegans neuromuscular junction. Both loss-of-function (lf) and gain-of-function (gf) of unc-43, the gene encoding CaMKII, inhibited neurotransmitter release. The inhibitory effect of unc-43(gf) was reversed by mutation or blockade of the BK channel SLO-1. SLO-1 expressed in Xenopus oocytes could be activated by recombinant rat alpha-CaMKII, and this effect of CaMKII was abolished by mutating a threonine residue (T425) at a consensus CaMKII phosphorylation site in the first RCK (regulator of conductance for K+) domain of the channel. Expression of slo-1(T425A) in neurons antagonized the inhibitory effect of unc-43(gf) on neurotransmitter release as slo-1(lf) did. The inhibitory effect of unc-43(gf) was not reversed by unc-103(lf), dgk-1(lf), or eat-16(lf), which reportedly suppress behavioral phenotypes of unc-43(gf). These observations suggest that presynaptic CaMKII is a bidirectional modulator of neurotransmitter release, presumably by phosphorylating different molecular targets, and that its negative modulatory effect on the release is mainly mediated by SLO-1 activation.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Qian Ge
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
225
|
Bauer Huang SL, Saheki Y, VanHoven MK, Torayama I, Ishihara T, Katsura I, van der Linden A, Sengupta P, Bargmann CI. Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Dev 2007; 2:24. [PMID: 17986337 PMCID: PMC2213652 DOI: 10.1186/1749-8104-2-24] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/06/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The left and right AWC olfactory neurons in Caenorhabditis elegans differ in their functions and in their expression of chemosensory receptor genes; in each animal, one AWC randomly takes on one identity, designated AWCOFF, and the contralateral AWC becomes AWCON. Signaling between AWC neurons induces left-right asymmetry through a gap junction network and a claudin-related protein, which inhibit a calcium-regulated MAP kinase pathway in the neuron that becomes AWCON. RESULTS We show here that the asymmetry gene olrn-1 acts downstream of the gap junction and claudin genes to inhibit the calcium-MAP kinase pathway in AWCON. OLRN-1, a protein with potential membrane-association domains, is related to the Drosophila Raw protein, a negative regulator of JNK mitogen-activated protein (MAP) kinase signaling. olrn-1 opposes the action of two voltage-activated calcium channel homologs, unc-2 (CaV2) and egl-19 (CaV1), which act together to stimulate the calcium/calmodulin-dependent kinase CaMKII and the MAP kinase pathway. Calcium channel activity is essential in AWCOFF, and the two AWC neurons coordinate left-right asymmetry using signals from the calcium channels and signals from olrn-1. CONCLUSION olrn-1 and voltage-activated calcium channels are mediators and targets of AWC signaling that act at the transition between a multicellular signaling network and cell-autonomous execution of the decision. We suggest that the asymmetry decision in AWC results from the intercellular coupling of voltage-regulated channels, whose cross-regulation generates distinct calcium signals in the left and right AWC neurons. The interpretation of these signals by the kinase cascade initiates the sustained difference between the two cells.
Collapse
Affiliation(s)
- Sarah L Bauer Huang
- Howard Hughes Medical Institute and Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Mahoney TR, Luo S, Nonet ML. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc 2007; 1:1772-7. [PMID: 17487159 DOI: 10.1038/nprot.2006.281] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans has emerged as a powerful model system for studying the biology of the synapse. Here we describe a widely used assay for synaptic transmission at the C. elegans neuromuscular junction. This protocol monitors the sensitivity of C. elegans to the paralyzing affects of an acetylcholinesterase inhibitor, aldicarb. Briefly, adult worms are incubated in the presence of aldicarb and scored for the time-course of aldicarb-induced paralysis. Animals harboring mutations in genes that affect synaptic transmission generally exhibit a change in their sensitivity to aldicarb (either increased sensitivity for enhancements in synaptic transmission or decreased sensitivity for blockage in synaptic transmission). This technique provides a simple assay for the accurate comparative analysis of synaptic transmission in multiple C. elegans strains. The protocol described can be performed relatively quickly and is a practical alternative to other techniques used to study synaptic transmission. This protocol can also be modified to follow the paralytic effects with other pharmacological reagents. The assay can be performed in about 3-6 hours depending on the severity of synaptic transmission defects.
Collapse
Affiliation(s)
- Timothy R Mahoney
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
227
|
SLO, SLO, quick, quick, slow: calcium-activated potassium channels as regulators of Caenorhabditis elegans behaviour and targets for anthelmintics. INVERTEBRATE NEUROSCIENCE 2007; 7:199-208. [PMID: 17962986 DOI: 10.1007/s10158-007-0057-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 10/09/2007] [Indexed: 12/26/2022]
Abstract
Large-conductance calcium and voltage-activated potassium channels, termed SLO-1 (or BK), are pivotal players in the regulation of cell excitability across the animal phyla. Furthermore, emerging evidence indicates that these channels are key mediators of a number of neuroactive drugs, including the most recent new anthelmintic, the cyclo-octadepsipeptide emodepside. Detailed reviews of the structure, function and pharmacology of BK channels have recently been provided (Salkoff et al. in Nat Rev Neurosci 7:921-931, 2006; Ghatta et al. in Pharmacol Ther 110:103-116, 2006) and therefore these aspects will only briefly be covered here. The purpose of this review is to discuss how SLO-1 channels might function as regulators of neural transmission and network activity. In particular, we focus on the role of SLO-1 in the regulation of Caenorhabditis elegans behaviour and highlight the role of this channel as an effector for pleiotropic actions of neuroactive drugs, including emodepside. On the premise that C. elegans is a 'model nematode' with respect to many aspects of neural function, the intention is that this might inform a broader understanding of the role of these channels in the nematodes and their potential as novel anthelmintic targets.
Collapse
|
228
|
Green JL, Inoue T, Sternberg PW. The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway. Development 2007; 134:4053-62. [PMID: 17942487 DOI: 10.1242/dev.005363] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibitors of Wnt signaling promote normal development and prevent cancer by restraining when and where the Wnt pathway is activated. ROR proteins, a class of Wnt-binding receptor tyrosine kinases, inhibit Wnt signaling by an unknown mechanism. To clarify how RORs inhibit the Wnt pathway, we examined the relationship between Wnts and the sole C. elegans ROR homolog, cam-1, during C. elegans vulval development, a Wnt-regulated process. We found that loss and overexpression of cam-1 causes reciprocal defects in Wnt-mediated cell-fate specification. Our molecular and genetic analyses revealed that the CAM-1 extracellular domain (ECD) is sufficient to non-autonomously antagonize multiple Wnts, suggesting that the CAM-1/ROR ECD sequesters Wnts. A sequestration model is supported by our findings that the CAM-1 ECD binds to several Wnts in vitro. These results demonstrate how ROR proteins help to refine the spatial pattern of Wnt activity in a complex multicellular environment.
Collapse
Affiliation(s)
- Jennifer L Green
- Division of Biology, California Institute of Technology, Mail Code 156-29, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
229
|
Marutha Ravindran CR, Mehta AK, Ticku MK. Effect of chronic administration of ethanol on the regulation of the delta-subunit of GABA(A) receptors in the rat brain. Brain Res 2007; 1174:47-52. [PMID: 17854781 PMCID: PMC2278031 DOI: 10.1016/j.brainres.2007.07.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/06/2007] [Accepted: 07/08/2007] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated the effect of chronic ethanol (CE) administration on the polypeptide levels of the delta-subunit of GABA(A) receptors and [(3)H]muscimol binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat brain. CE administration resulted a down-regulation of polypeptide levels of the delta-subunit of GABA(A) receptors in the rat cerebellum and hippocampus, whereas there were no changes in the delta-subunit polypeptide levels in the rat cerebral cortex. Further, CE administration caused a down-regulation of native delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum as determined by [(3)H]muscimol binding to the immunoprecipitated receptor assemblies. These results indicate that the delta-subunit-containing GABA(A) receptors may play a role in chronic ethanol-induced tolerance and dependence.
Collapse
Affiliation(s)
- C R Marutha Ravindran
- Department of Pharmacology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio TX 78229-3900, USA
| | | | | |
Collapse
|
230
|
Brodie MS, Scholz A, Weiger TM, Dopico AM. Ethanol Interactions With Calcium-Dependent Potassium Channels. Alcohol Clin Exp Res 2007; 31:1625-32. [PMID: 17850640 DOI: 10.1111/j.1530-0277.2007.00469.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In most neurons and other excitable cells, calcium-activated potassium channels of small (SK) and large conductance (BK; MaxiK) control excitability and neurotransmitter release. The spontaneous activity of dopamine neurons of the ventral tegmental area is increased by ethanol. This ethanol excitation is potentiated by selective blockade of SK, indicating that SK channels modulate ethanol stimulation of neurons that are critical in reward and reinforcement. On the other hand, ethanol directly modulates BK channel activity in a variety of systems, including rat neurohypophysial nerve endings, primary sensory dorsal root ganglia, nucleus accumbens neurons, Caenorhabditis elegans type-IV dopaminergic CEP neurons, and nonneuronal preparations, such as rat pituitary cells, cerebrovascular myocytes and human umbilical vein endothelial cells. Ethanol action on BK channels can modify neuropeptide and growth hormone release, nociception, cerebrovascular tone, and endothelial proliferation. Ethanol modulates BK channels even when the drug is evaluated using recombinant BK channel-forming alpha (slo) subunits or channel reconstitution in artificial, binary lipid bilayers, indicating that the slo subunit and its immediate lipid microenvironment are the essential targets of ethanol. Consistent with this, single amino acid slo channel mutants display altered ethanol sensitivity. Furthermore, C. elegans slo1 null mutants are resistant to ethanol-induced motor incoordination. On the other hand, Drosophila melanogaster slo null mutants fail to acquire acute tolerance to ethanol sedation. Ethanol action on slo channels, however, may be tuned by a variety of factors, including posttranslational modification of slo subunits, coexpression of channel accessory subunits, and the lipid microenvironment, resulting in increase, refractoriness, or even decrease in channel activity. In brief, both SK and BK channels are important targets of ethanol throughout the body, and interference with ethanol effects on these channels could form the basis for novel pharmacotherapies to ameliorate the actions or consequences of alcohol abuse.
Collapse
Affiliation(s)
- Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
231
|
Karbowski J, Schindelman G, Cronin CJ, Seah A, Sternberg PW. Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. J Comput Neurosci 2007; 24:253-76. [PMID: 17768672 DOI: 10.1007/s10827-007-0054-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/06/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
To establish the relationship between locomotory behavior and dynamics of neural circuits in the nematode C. elegans we combined molecular and theoretical approaches. In particular, we quantitatively analyzed the motion of C. elegans with defective synaptic GABA and acetylcholine transmission, defective muscle calcium signaling, and defective muscles and cuticle structures, and compared the data with our systems level circuit model. The major experimental findings are: (1) anterior-to-posterior gradients of body bending flex for almost all strains both for forward and backward motion, and for neuronal mutants, also analogous weak gradients of undulatory frequency, (2) existence of some form of neuromuscular (stretch receptor) feedback, (3) invariance of neuromuscular wavelength, (4) biphasic dependence of frequency on synaptic signaling, and (5) decrease of frequency with increase of the muscle time constant. Based on (1) we hypothesize that the Central Pattern Generator (CPG) is located in the head both for forward and backward motion. Points (1) and (2) are the starting assumptions for our theoretical model, whose dynamical patterns are qualitatively insensitive to the details of the CPG design if stretch receptor feedback is sufficiently strong and slow. The model reveals that stretch receptor coupling in the body wall is critical for generation of the neuromuscular wave. Our model agrees with our behavioral data (3), (4), and (5), and with other pertinent published data, e.g., that frequency is an increasing function of muscle gap-junction coupling.
Collapse
Affiliation(s)
- Jan Karbowski
- Howard Hughes Medical Institute and Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | |
Collapse
|
232
|
Tanaka D, Furusawa K, Kameyama K, Okamoto H, Doi M. Melatonin signaling regulates locomotion behavior and homeostatic states through distinct receptor pathways in Caenorhabditis elegans. Neuropharmacology 2007; 53:157-68. [PMID: 17573073 DOI: 10.1016/j.neuropharm.2007.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/19/2007] [Accepted: 04/26/2007] [Indexed: 12/15/2022]
Abstract
Melatonin is a hormone that controls circadian rhythms and seasonal behavioral changes in vertebrates. Recent studies indicate that melatonin participates in diverse physiological functions including the modulation of neural activities. Melatonin is also detected in many other organisms that do not exhibit obvious circadian rhythms, but their precise functions are not known. To understand the role of melatonin and its genetic pathway in vivo, we examined the effects of melatonin and its receptor antagonists on various behaviors in Caenorhabditis elegans. Exogenously applied melatonin specifically decreased locomotion rates in 15-min treatments, suggesting that melatonin directly regulates neural activities for locomotion. This melatonin signaling functions through MT1-like melatonin receptors, because the MT1/2 receptor antagonist luzindole effectively blocked the effect of melatonin on locomotion, while MT2-specific antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT) and MT3-selective antagonist prazosin had no effect. Alternatively, long-term treatment with prazosin specifically altered homeostatic states of the worm, suggesting another melatonin-signaling pathway through MT3-like receptors. We also found that two G-protein alpha subunit mutants and newly isolated five mutants exhibited defects in response to melatonin. Our findings imply that melatonin acts as a neuromodulator by regulating locomotion behavior and as a ligand for homeostatic control through distinct receptor pathways in C. elegans.
Collapse
Affiliation(s)
- Daisuke Tanaka
- Neuroscience Research Institute, AIST, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
233
|
Guest M, Bull K, Walker RJ, Amliwala K, O'Connor V, Harder A, Holden-Dye L, Hopper NA. The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. Int J Parasitol 2007; 37:1577-88. [PMID: 17583712 DOI: 10.1016/j.ijpara.2007.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/07/2007] [Accepted: 05/10/2007] [Indexed: 11/21/2022]
Abstract
The cyclo-octadepsipeptide anthelmintic, emodepside, has pleiotropic effects on the behaviour of the model genetic animal Caenorhabditis elegans: it inhibits locomotion, feeding, egg-laying and slows development. Previous studies on pharyngeal muscle indicated a role for latrophilin-dependent signalling and therefore prompted the suggestion that this is a common effector of this drug's actions. However, whilst a C. elegans functional null mutant for latrophilin (lat-1) is less sensitive to the effect of emodepside on the pharynx it remains sensitive to the inhibitory effects of emodepside on locomotion. Here we show that this is not due to functional redundancy between two C. elegans latrophilins, as the double mutant, lat-2, lat-1, also remains sensitive to the effects of emodepside on locomotion. Therefore, emodepside has latrophilin-independent effects. To define the molecular basis for this we performed a mutagenesis screen. We recovered nine alleles of slo-1, which encodes a Ca(2+)-activated K(+) channel. These mutants were highly resistant to the inhibitory effect of emodepside on both pharyngeal and locomotor activity. The slo-1 alleles are predicted to reduce or eliminate SLO-1 signalling, suggesting that emodepside may signal through a SLO-1-dependent pathway. The observation that gain-of-function slo-1 alleles phenocopy the effects of emodepside, but are not themselves emodepside hypersensitive, favours a model whereby emodepside directly acts through a SLO-1-dependent pathway. Tissue-specific genetic rescue experiments reveal that emodepside acts through SLO-1 expressed in either body wall muscle or in neurones to inhibit locomotion. In contrast, in the pharyngeal system, emodepside acts through SLO-1 in neurones, but not muscle, to inhibit feeding. These data further inform understanding of the mode of action of emodepside and suggest that emodepside causes inhibition of feeding via a neuronal SLO-1-dependent pathway which is facilitated by LAT-1 whilst it signals through a latrophilin-independent, SLO-1-dependent pathway, in either neurones or body wall muscle, to inhibit locomotion.
Collapse
Affiliation(s)
- Marcus Guest
- School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton SO16 7PX, UK
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Feinberg-Zadek PL, Treistman SN. Beta-subunits are important modulators of the acute response to alcohol in human BK channels. Alcohol Clin Exp Res 2007; 31:737-44. [PMID: 17391339 DOI: 10.1111/j.1530-0277.2007.00371.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The BK channel (a Ca2+-activated potassium ion channel encoded by the slo gene) has been defined as a target of alcohol action in a number of preparations, possibly serving as primary mediator of intoxication in the Caenorhabditis elegans model system. However, we know little of the actions of alcohol on human BK, nor the consequences of BK subunit composition on alcohol action. METHODS Here, we use human embryonic kidney (HEK) cells to express various subunit combinations (hslo alpha+beta1 or beta4) of human BK, and examine the acute actions of alcohol on this channel using single channel recording techniques. RESULTS The human channel is potentiated by alcohol, although the presence of the beta1, and to a lesser extent, beta4-subunit, significantly reduced acute ethanol potentiation. Potentiation increased with concentration up to an asymptote, at which point potentiation decreased. The concentration of the asymptote differed according to subunit composition. The mechanism of potentiation was also subunit-dependent, with 25 mM ethanol affecting the mean open time of hSlo+beta4 channels, whereas channel open time was unaffected by the presence of beta1. The possibility that the known effect of the beta-subunit on calcium sensitivity accounts for its modulation of acute alcohol action is discussed. CONCLUSION Our data reinforce the idea that, as in other systems, BK may play a major role in alcohol's actions in humans, and highlight the potential role of channel subunit composition in the response to alcohol.
Collapse
Affiliation(s)
- Paula L Feinberg-Zadek
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
235
|
Mitchell PH, Bull K, Glautier S, Hopper NA, Holden-Dye L, O'Connor V. The concentration-dependent effects of ethanol on Caenorhabditis elegans behaviour. THE PHARMACOGENOMICS JOURNAL 2007; 7:411-7. [PMID: 17325734 DOI: 10.1038/sj.tpj.6500440] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of ethanol on the brain are concentration dependent. Low concentrations (mM) intoxicate, while greater than 100 mM anaesthetize. Of most relevance to human alcohol addiction are mechanisms of intoxication. Previously, Caenorhabditis elegans has been employed in genetic screens to define effectors of intoxication. Here, we inform interpretation of these studies by providing evidence that ethanol rapidly equilibriates across C. elegans cuticle. Importantly, the effect of ethanol on muscle activity rapidly reaches steady-state, and the concentration-dependence of the effect is very similar in intact animals and exposed muscle. Thus the cuticle does not present an absorption barrier for ethanol, and furthermore the internal concentration is likely to approach that applied externally. Thus, modelling intoxication in C. elegans requires exposure to external ethanol less than 100 mM. Furthermore, the permeability of the cuticle to ethanol enables analysis of precisely controlled concentration-dependent effects of acute, chronic, and episodic ethanol exposure on behaviour.
Collapse
Affiliation(s)
- P H Mitchell
- School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton UK
| | | | | | | | | | | |
Collapse
|
236
|
Artal-Sanz M, de Jong L, Tavernarakis N. Caenorhabditis elegans: a versatile platform for drug discovery. Biotechnol J 2007; 1:1405-18. [PMID: 17109493 DOI: 10.1002/biot.200600176] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Drug discovery and drug target identification are two intimately linked facets of intervention strategies aimed at effectively combating pathological conditions in humans. Simple model organisms provide attractive platforms for devising and streamlining efficient drug discovery and drug target identification methodologies. The nematode worm Caenorhabditis elegans has emerged as a particularly convenient and versatile tool that can be exploited to achieve these goals. Although C. elegans is a relatively modern addition to the arsenal of model organisms, its biology has already been investigated to an exceptional level. This, coupled with effortless handling and a notable low cost of cultivation and maintenance, allows seamless implementation of high-throughput drug screening approaches as well as in-depth genetic and biochemical studies of the molecular pathways targeted by specific drugs. In this review, we introduce C. elegans as a model organism with significant advantages toward the identification of molecular drug targets. In addition, we discuss the value of the worm in the development of drug screening and drug evaluation protocols. The unique features of C. elegans, which greatly facilitate drug studies, hold promise for both deciphering disease pathogenesis and formulating educated and effective therapeutic interventions.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Crete, Greece
| | | | | |
Collapse
|
237
|
Torayama I, Ishihara T, Katsura I. Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci 2007; 27:741-50. [PMID: 17251413 PMCID: PMC6672901 DOI: 10.1523/jneurosci.4312-06.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 11/21/2022] Open
Abstract
Behavioral plasticity induced by the integration of two sensory signals, such as associative learning, is an important issue in neuroscience, but its evolutionary origin and diversity have not been explored sufficiently. We report here a new type of such behavioral plasticity, which we call butanone enhancement, in Caenorhabditis elegans adult hermaphrodites: C. elegans specifically enhances chemotaxis to butanone by preexposure to butanone and food. Mutant analysis revealed that this plasticity requires the AWC(ON) olfactory neuron, whose fate is known to be determined by the NSY-1/ASK1 MAPKKK (mitogen-activated protein kinase kinase kinase) cascade as well as the DAF-11 and ODR-1 guanylyl cyclases. These proteins also control many aspects of olfactory sensation/plasticity in AWC neurons and seem to provide appropriate cellular conditions for butanone enhancement in the AWC(ON) neuron. Butanone enhancement also required the functions of Bardet-Biedl syndrome genes in the AWC(ON) neuron but not other genes that control ciliary transport. Furthermore, preexposure to butanone and the odor of food was enough for the enhancement of butanone chemotaxis. These results suggest that the AWC(ON) olfactory neuron may conduct a behavioral plasticity resembling associative learning and that the functions of Bardet-Biedl syndrome genes in sensory cilia may play an important role in this plasticity.
Collapse
Affiliation(s)
- Ichiro Torayama
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| | - Takeshi Ishihara
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| | - Isao Katsura
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| |
Collapse
|
238
|
Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci 2007; 7:921-31. [PMID: 17115074 DOI: 10.1038/nrn1992] [Citation(s) in RCA: 421] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-conductance, 'big' potassium (BK) channels encoded by the Slo gene family are among the largest and most complex of the extended family of potassium channels. The family of SLO channels apparently evolved from voltage-dependent potassium channels, but acquired a large conserved carboxyl extension, which allows channel gating to be altered in response to the direct sensing of several different intracellular ions, and by other second-messenger systems, such as those activated following neurotransmitter binding to G-protein-coupled receptors (GPCRs). This versatility has been exploited to serve many cellular roles, both within and outside the nervous system.
Collapse
Affiliation(s)
- Lawrence Salkoff
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
239
|
Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, Kunzelmann K, Bubendorf L. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 2006; 26:2525-34. [PMID: 17146446 DOI: 10.1038/sj.onc.1210036] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular mechanisms of prostate cancer progression are poorly understood. Here, we studied gene amplification of the large conductance calcium-activated potassium channel alpha subunit (KCNMA1), which is located at the chromosomal region 10q22. Fluorescence in situ hybridization (FISH) revealed KCNMA1 amplification in 16% of 119 late-stage human prostate cancers and in the hormone-insensitive prostate cancer cell line PC-3. In contrast, KCNMA1 amplification was absent in 33 benign controls, 32 precursor lesions and in 105 clinically organ-confined prostate cancers. Amplification was associated with mRNA and protein overexpression as well as increased density of BK channel protein and beta-estradiol-insensitive BK currents in PC-3 cells as compared to non-amplified control cell lines. Specific blockade of BK channels by iberiotoxin or RNA(i) significantly inhibited K(+) currents and growth of PC-3 cells. The data demonstrate that 10q22 amplification drives KCNMA1 expression and cell proliferation. Thus, KCNMA1 qualifies as a promising diagnostic and therapeutic target in patients with prostate cancer.
Collapse
Affiliation(s)
- M Bloch
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Lans H, Jansen G. Noncell- and cell-autonomous G-protein-signaling converges with Ca2+/mitogen-activated protein kinase signaling to regulate str-2 receptor gene expression in Caenorhabditis elegans. Genetics 2006; 173:1287-99. [PMID: 16868120 PMCID: PMC1526693 DOI: 10.1534/genetics.106.058750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the sensory system of C. elegans, the candidate odorant receptor gene str-2 is strongly expressed in one of the two AWC neurons and weakly in both ASI neurons. Asymmetric AWC expression results from suppression of str-2 expression by a Ca2+/MAPK signaling pathway in one of the AWC neurons early in development. Here we show that the same Ca2+/MAPK pathway promotes str-2 expression in the AWC and ASI neurons together with multiple cell-autonomous and noncell-autonomous G-protein-signaling pathways. In first-stage larvae and adult animals, signals mediated by the Galpha subunits ODR-3, GPA-2, GPA-5, and GPA-6 and a Ca2+/MAPK pathway involving the Ca2+ channel subunit UNC-36, the CaMKII UNC-43, and the MAPKK kinase NSY-1 induce strong str-2 expression. Cell-specific rescue experiments suggest that ODR-3 and the Ca2+/MAPK genes function in the AWC neurons, but that GPA-5 and GPA-6 function in the AWA and ADL neurons, respectively. In Dauer larvae, the same network of genes promotes strong str-2 expression in the ASI neurons, but ODR-3 functions in AWB and ASH and GPA-6 in AWB. Our results reveal a complex signaling network, encompassing signals from multiple cells, that controls the level of receptor gene expression at different developmental stages.
Collapse
Affiliation(s)
- Hannes Lans
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
241
|
Feng Z, Li W, Ward A, Piggott BJ, Larkspur ER, Sternberg PW, Shawn Xu XZ. A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 2006; 127:621-33. [PMID: 17081982 PMCID: PMC2859215 DOI: 10.1016/j.cell.2006.09.035] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 07/16/2006] [Accepted: 09/15/2006] [Indexed: 11/21/2022]
Abstract
Nicotine, the primary addictive substance in tobacco, induces profound behavioral responses in mammals, but the underlying genetic mechanisms are not well understood. Here we develop a C. elegans model of nicotine-dependent behavior. We show that worms exhibit behavioral responses to nicotine that parallel those observed in mammals, including acute response, tolerance, withdrawal, and sensitization. These nicotine responses require nicotinic acetylcholine receptor (nAChR) family genes that are known to mediate nicotine dependence in mammals, suggesting functional conservation of nAChRs in nicotine responses. Importantly, we find that mutant worms lacking TRPC (transient receptor potential canonical) channels are defective in their response to nicotine and that such a defect can be rescued by a human TRPC channel, revealing an unexpected role for TRPC channels in regulating nicotine-dependent behavior. Thus, C. elegans can be used to characterize known genes as well as to identify new genes regulating nicotine responses.
Collapse
Affiliation(s)
- Zhaoyang Feng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Wei Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alex Ward
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Beverly J. Piggott
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Erin R. Larkspur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Paul W. Sternberg
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - X. Z. Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
242
|
Wallner M, Hanchar HJ, Olsen RW. Low dose acute alcohol effects on GABA A receptor subtypes. Pharmacol Ther 2006; 112:513-28. [PMID: 16814864 PMCID: PMC2847605 DOI: 10.1016/j.pharmthera.2006.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 12/23/2022]
Abstract
GABA(A) receptors (GABA(A)Rs) are the main inhibitory neurotransmitter receptors and have long been implicated in mediating at least part of the acute actions of ethanol. For example, ethanol and GABAergic drugs including barbiturates and benzodiazepines share many pharmacological properties. Besides the prototypical synaptic GABA(A)R subtypes, nonsynaptic GABA(A)Rs have recently emerged as important regulators of neuronal excitability. While high doses (> or =100 mM) of ethanol have been reported to enhance activity of most GABA(A)R subtypes, most abundant synaptic GABA(A)Rs are essentially insensitive to ethanol concentrations that occur during social ethanol consumption (< 30 mM). However, extrasynaptic delta and beta3 subunit-containing GABA(A)Rs, associated in the brain with alpha4 or alpha6 subunits, are sensitive to low millimolar ethanol concentrations, as produced by drinking half a glass of wine. Additionally, we found that a mutation in the cerebellar alpha6 subunit (alpha6R100Q), initially reported in rats selectively bred for increased alcohol sensitivity, is sufficient to produce increased alcohol-induced motor impairment and further increases of alcohol sensitivity in recombinant alpha6beta3delta receptors. Furthermore, the behavioral alcohol antagonist Ro15-4513 blocks the low dose alcohol enhancement on alpha4/6/beta3delta receptors, without reducing GABA-induced currents. In binding assays alpha4beta3delta GABA(A)Rs bind [(3)H]Ro15-4513 with high affinity, and this binding is inhibited, in an apparently competitive fashion, by low ethanol concentrations, as well as analogs of Ro15-4513 that are active to antagonize ethanol or Ro15-4513's block of ethanol. We conclude that most low to moderate dose alcohol effects are mediated by alcohol actions on alcohol/Ro15-4513 binding sites on GABA(A)R subtypes.
Collapse
Affiliation(s)
- Martin Wallner
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine at UCLA, Room 23-120 CHS, 650 Charles Young Drive South, Los Angeles, CA 90095-1735, United States
| | - H. Jacob Hanchar
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine at UCLA, Room 23-120 CHS, 650 Charles Young Drive South, Los Angeles, CA 90095-1735, United States
| | - Richard W. Olsen
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine at UCLA, Room 23-120 CHS, 650 Charles Young Drive South, Los Angeles, CA 90095-1735, United States
| |
Collapse
|
243
|
Maze IS, Wright GA, Mustard JA. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2006; 52:1243-53. [PMID: 17070538 PMCID: PMC1712673 DOI: 10.1016/j.jinsphys.2006.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/05/2006] [Accepted: 09/11/2006] [Indexed: 05/12/2023]
Abstract
Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses led to hemolymph ethanol levels of approximately 40-100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 h post-ingestion for low doses and at 24-48 h for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior.
Collapse
Affiliation(s)
- Ian S. Maze
- Department of Entomology, Ohio State University, Columbus, OH 43210
| | - Geraldine A. Wright
- Department of Entomology, Ohio State University, Columbus, OH 43210
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210
| | - Julie A. Mustard
- Department of Entomology, Ohio State University, Columbus, OH 43210
- *To whom correspondence should be addressed:
| |
Collapse
|
244
|
Schuckit MA, Wilhelmsen K, Smith TL, Feiler HS, Lind P, Lange LA, Kalmijn J. Autosomal linkage analysis for the level of response to alcohol. Alcohol Clin Exp Res 2006; 29:1976-82. [PMID: 16340454 DOI: 10.1097/01.alc.0000187598.82921.27] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The level of response (LR) to alcohol is a genetically-influenced phenotype related to the alcoholism risk. Usually measured by evaluating psychological and physiological changes that follow the administration of alcohol, the heritability of LR is estimated to be between 0.4 and 0.6, and efforts are being made to find genes related to this phenotype. This paper presents data from a family-based genome with linkage analysis focusing on alcohol challenge determinants of LR. METHODS The subjects were 18-to-29-year-old sibling pairs with at least one parent who was alcohol-dependent and who had experience with alcohol but were not yet alcohol-dependent themselves. Both members of the sibling pairs were given oral alcohol challenges (0.75-0.90 ml/kg of ethanol for females and males, respectively), with LR established using the Subjective High Assessment Scale (SHAS) and changes in body sway (BS) repeatedly over a 3.5-hr. period. Blood samples from siblings and at least one parent were genotyped using 811 microsatellite markers, with results evaluated using several related variance component approaches as implemented in SOLAR for continuous traits. In addition, association was tested using single nucleotide polymorphisms (SNPs) within the KCNMA1, HTR7 and SLC18A2 genes that may relate to a finding on chromosome 10. RESULTS Data were generated from 238 sib-pairs representing 365 individuals (41.6% were males) from 165 families. The most consistent results across methods and samples were observed for SHAS on chromosome 10 between 120 and 140 cM (with a maximum LOD score of 2.6 at 122 cM), and a second region of possible interest at 173 cM (LOD = 1.2). Statistical analysis with the KCNMA1, HTR7 and SLC18A2 genes, which lie in the support region of interest revealed no evidence for association after correction for multiple comparisons. CONCLUSIONS These evaluations from the largest known alcohol challenge-based genetic study to date highlight the potential importance of genes on chromosome 10 as possible contributors to the low LR to alcohol as a risk factor for alcoholism.
Collapse
Affiliation(s)
- Marc A Schuckit
- Department of Genetics and Neurology, the Carolina Center for Genome Sciences, Chapel Hill, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
245
|
Cowmeadow RB, Krishnan HR, Ghezzi A, Al'Hasan YM, Wang YZ, Atkinson NS. Ethanol tolerance caused by slowpoke induction in Drosophila. Alcohol Clin Exp Res 2006; 30:745-53. [PMID: 16634842 DOI: 10.1111/j.1530-0277.2006.00087.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The large-conductance calcium-activated potassium channel encoded by the slowpoke gene has recently been implicated in the ethanol response. Caenorhabditis elegans carrying mutations in this gene have altered ethanol sensitivity and Drosophila mutant for this gene are unable to acquire rapid tolerance to ethanol or anesthetics. In Drosophila, induction of slowpoke expression has been linked to anesthetic resistance. METHODS We used Drosophila as a model system to examine the relationship between slowpoke expression and ethanol tolerance. Real-time PCR and a reporter transgene were used to measure slowpoke induction after ethanol sedation. An inducible slowpoke transgene was used to manipulate slowpoke levels in the absence of ethanol sedation. RESULTS Ethanol sedation increased transcription from the slowpoke neural promoters but not from the slowpoke muscle/tracheal cell promoters. This neural-specific change was concomitant with the appearance of ethanol tolerance, leading us to suspect linkage between the two. Moreover, induction of slowpoke expression from a transgene produced a phenotype that mimics ethanol tolerance. CONCLUSIONS In Drosophila, ethanol sedation induces slowpoke expression in the nervous system and results in ethanol tolerance. The induction of slowpoke expression alone is sufficient to produce a phenotype that is indistinguishable from true ethanol tolerance. Therefore, the regulation of the slowpoke BK-type channel gene must play an integral role in the Drosophila ethanol response.
Collapse
Affiliation(s)
- Roshani B Cowmeadow
- Section of Neurobiology and The Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 78712-0248, USA
| | | | | | | | | | | |
Collapse
|
246
|
Collins JJ, Evason K, Kornfeld K. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp Gerontol 2006; 41:1032-9. [PMID: 16872777 DOI: 10.1016/j.exger.2006.06.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2006] [Revised: 06/02/2006] [Accepted: 06/12/2006] [Indexed: 11/25/2022]
Abstract
The identification and analysis of compounds that delay aging and extend lifespan is an important aspect of gerontology research; these studies can test theories of aging, lead to the discovery of endogenous systems that influence aging, and establish the foundation for treatments that might delay normal human aging. Here we review studies using the nematode Caenorhabditis elegans to identify and characterize compounds that delay aging and extend lifespan. These studies are considered in four groups: (1) Studies that address the free-radical theory of aging by analyzing candidate compounds with antioxidant activities including vitamin E, tocotrienols, coenzyme Q, and Eukarion-8/134. (2) Studies that analyze plant extracts (blueberry and Ginko biloba) that contain a mixture of compounds. (3) Studies of resveratrol, which was identified in a screen for compounds that affect the activity of the Sir2 protein that influences lifespan. (4) Studies based on screening compound libraries using C. elegans aging as a bioassay, which led to the identification of the anticonvulsant medicines ethosuximide and trimethadione. There has been exciting progress in the analysis of compounds that influence C. elegans aging, and important challenges and opportunities remain in determining the mechanisms of action of these compounds and the relevance of these observations to aging of other animals.
Collapse
Affiliation(s)
- James J Collins
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
247
|
Yu JY, Upadhyaya AB, Atkinson NS. Tissue-specific alternative splicing of BK channel transcripts in Drosophila. GENES BRAIN AND BEHAVIOR 2006; 5:329-39. [PMID: 16716202 DOI: 10.1111/j.1601-183x.2005.00164.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BK-type calcium-activated potassium channels are large conductance channels that respond to changes in intracellular calcium and membrane potential. These channels are used in a wide variety of cell types and have recently been linked to drug sensitivity and tolerance. In both Drosophila and mammals, BK channels are encoded by the slowpoke gene. The Drosophila slowpoke gene includes 14 alternative exons distributed among five sites of alternative splicing. Presumably, the purpose of alternative processing is to provide transcripts tailored to the needs of the cell. The slowpoke gene is expressed in nervous, muscle and epithelial tissues. To determine whether splicing is controlled in a tissue- and/or developmental-specific manner, we built tissue- and developmental-specific cDNA libraries that preserved the relative frequency of various slowpoke splice variants. These libraries were screened by colony hybridization using alternative exon-specific DNA probes to document the frequency of individual alternative exons in different developmental stages and distinct tissue types. We demonstrate that slowpoke transcripts undergo tissue- and developmental-specific splicing in Drosophila and some exons are diagnostic for specific tissues.
Collapse
Affiliation(s)
- J Y Yu
- Section of Neurobiology, The University of Texas at Austin, Austin, TX 78712-0248, USA
| | | | | |
Collapse
|
248
|
Wallner M, Hanchar HJ, Olsen RW. Low-dose alcohol actions on alpha4beta3delta GABAA receptors are reversed by the behavioral alcohol antagonist Ro15-4513. Proc Natl Acad Sci U S A 2006; 103:8540-5. [PMID: 16698930 PMCID: PMC1482527 DOI: 10.1073/pnas.0600194103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is now more than two decades since it was first reported that the imidazobenzodiazepine Ro15-4513 reverses behavioral alcohol effects, the molecular target(s) of Ro15-4513 and the mechanism of alcohol antagonism remain elusive. Here, we show that Ro15-4513 blocks the alcohol enhancement on recombinant "extrasynaptic" alpha4/6beta3delta GABA(A) receptors at doses that do not reduce the GABA-induced Cl(-) current. At low ethanol concentrations (< or =30 mM), the Ro15-4513 antagonism is complete. However, at higher ethanol concentrations (> or =100 mM), there is a Ro15-4513-insensitive ethanol enhancement that is abolished in receptors containing a point mutation in the second transmembrane region of the beta3 subunit (beta3N265M). Therefore, alpha4/6beta3delta GABA receptors have two distinct alcohol modulation sites: (i) a low-dose ethanol site present in alpha4/6beta3delta receptors that is antagonized by the behavioral alcohol antagonist Ro15-4513 and (ii) a site activated at high (anesthetic) alcohol doses, defined by mutations in membrane-spanning regions. Receptors composed of alpha4beta3N265Mdelta subunits that lack the high-dose alcohol site show a saturable ethanol dose-response curve with a half-maximal enhancement at 16 mM, close to the legal blood alcohol driving limit in most U.S. states (17.4 mM). Like in behavioral experiments, the alcohol antagonist effect of Ro15-4513 on recombinant alpha4beta3delta receptors is blocked by flumazenil and beta-carboline-ethyl ester (beta-CCE). Our findings suggest that ethanol/Ro15-4513-sensitive GABA(A) receptors are important mediators of behavioral alcohol effects.
Collapse
Affiliation(s)
- M. Wallner
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1735
- To whom correspondence may be addressed. E-mail:
or
| | - H. J. Hanchar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1735
| | - R. W. Olsen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1735
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
249
|
Jakab M, Schmidt S, Grundbichler M, Paulmichl M, Hermann A, Weiger T, Ritter M. Hypotonicity and ethanol modulate BK channel activity and chloride currents in GH4/C1 pituitary tumour cells. Acta Physiol (Oxf) 2006; 187:51-9. [PMID: 16734742 DOI: 10.1111/j.1748-1716.2006.01544.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Description of the effects of hypotonic cell swelling and ethanol on maxi Ca2+-activated K+ channel (BK channel) activity and Cl- channel activity in GH4/C1 pituitary tumour cells. METHODS Whole cell-, cell attached- and outside-out patch clamp measurements, fluorescence (fluo-3) measurements of intracellular Ca2+ concentration, cell size video monitoring. RESULTS GH4/C1 pituitary tumour cells respond to both hypotonicity and ethanol with cell swelling which is followed by a regulatory volume decrease (RVD). Tetraethylammonium and 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) induced cell swelling per se and inhibited hypotonicity induced RVD. Ethanol-induced swelling is paralleled by an increase in the intracellular Ca2+ concentration and augmented by DIDS. BK channel activation by hypotonicity and ethanol is demonstrated in patch clamp experiments both in intact cells (cell attached configuration) and a subset of excised membrane patches (outside-out configuration). Cell swelling and addition of ionomycin under isotonic conditions leads to the activation of outwardly rectifying Cl- currents with time dependent activation at positive potentials. CONCLUSIONS In GH4/C1 cells both hypotonicity and ethanol lead to cell swelling, RVD and to activation of BK channels. The hypotonicity-induced BK channel activation can also be observed in cell free outside-out patches. Hypotonicity, but not ethanol leads to the activation of Cl- channels with features of Ca2+-activated Cl- currents.
Collapse
Affiliation(s)
- M Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
250
|
Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM, Williams RW, Miles MF. Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J Neurosci 2006; 25:2255-66. [PMID: 15745951 PMCID: PMC6726093 DOI: 10.1523/jneurosci.4372-04.2005] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the mesolimbic dopamine reward pathway by acute ethanol produces reinforcement and changes in gene expression that appear to be crucial to the molecular basis for adaptive behaviors and addiction. The inbred mouse strains DBA/2J and C57BL/6J exhibit contrasting acute behavioral responses to ethanol. We used oligonucleotide microarrays and bioinformatics methods to characterize patterns of gene expression in three brain regions of the mesolimbic reward pathway of these strains. Expression profiling included examination of both differences in gene expression 4 h after saline injection or acute ethanol (2 g/kg). Using a rigorous stepwise method for microarray analysis, we identified 788 genes differentially expressed in control DBA/2J versus C57BL/6J mice and 307 ethanol-regulated genes in the nucleus accumbens, prefrontal cortex, and ventral tegmental area. There were strikingly divergent patterns of ethanol-responsive gene expression in the two strains. Ethanol-responsive genes also showed clustering at discrete chromosomal regions, suggesting local chromatin effects in regulation. Ethanol-regulated genes were generally related to neuroplasticity, but regulation of discrete functional groups and pathways was brain region specific: glucocorticoid signaling, neurogenesis, and myelination in the prefrontal cortex; neuropeptide signaling and developmental genes, including factor Bdnf, in the nucleus accumbens; and retinoic acid signaling in the ventral tegmental area. Bioinformatics analysis identified several potential candidate genes for quantitative trait loci linked to ethanol behaviors, further supporting a role for expression profiling in identifying genes for complex traits. Brain region-specific changes in signaling and neuronal plasticity may be critical components in development of lasting ethanol behavioral phenotypes such as dependence, sensitization, and craving.
Collapse
Affiliation(s)
- Robnet T Kerns
- Department of Pharmacology/Toxicology and the Center for Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|