201
|
di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P. Neurosteroid and neurotransmitter alterations in Parkinson's disease. Front Neuroendocrinol 2013; 34:132-42. [PMID: 23563222 DOI: 10.1016/j.yfrne.2013.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD.
Collapse
|
202
|
Novel Mechanisms Underlying Inhibitory and Facilitatory Transcranial Magnetic Stimulation Abnormalities in Parkinson's Disease. Arch Med Res 2013; 44:221-8. [DOI: 10.1016/j.arcmed.2013.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 03/05/2013] [Indexed: 12/31/2022]
|
203
|
Moro C, Torres N, El Massri N, Ratel D, Johnstone DM, Stone J, Mitrofanis J, Benabid AL. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: evidence from two mouse strains. BMC Neurosci 2013; 14:40. [PMID: 23531041 PMCID: PMC3616839 DOI: 10.1186/1471-2202-14-40] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have shown previously that near-infrared light (NIr) treatment or photobiomodulation neuroprotects dopaminergic cells in substantia nigra pars compacta (SNc) from degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Balb/c albino mice, a well-known model for Parkinson's disease. The present study explores whether NIr treatment offers neuroprotection to these cells in C57BL/6 pigmented mice. In addition, we examine whether NIr influences behavioural activity in both strains after MPTP treatment. We tested for various locomotive parameters in an open-field test, namely velocity, high mobility and immobility. RESULTS Balb/c (albino) and C57BL/6 (pigmented) mice received injections of MPTP (total of 50 mg/kg) or saline and NIr treatments (or not) over 48 hours. After each injection and/or NIr treatment, the locomotor activity of the mice was tested. After six days survival, brains were processed for TH (tyrosine hydroxylase) immunochemistry and the number of TH⁺ cells in the substantia nigra pars compacta (SNc) was estimated using stereology. Results showed higher numbers of TH⁺ cells in the MPTP-NIr groups of both strains, compared to the MPTP groups, with the protection greater in the Balb/c mice (30% vs 20%). The behavioural tests revealed strain differences also. For Balb/c mice, the MPTP-NIr group showed greater preservation of locomotor activity than the MPTP group. Behavioural preservation was less evident in the C57BL/6 strain however, with little effect of NIr being recorded in the MPTP-treated cases of this strain. Finally, there were differences between the two strains in terms of NIr penetration across the skin and fur. Our measurements indicated that NIr penetration was considerably less in the pigmented C57BL/6, compared to the albino Balb/c mice. CONCLUSIONS In summary, our results revealed the neuroprotective benefits of NIr treatment after parkinsonian insult at both cellular and behavioural levels and suggest that Balb/c strain, due to greater penetration of NIr through skin and fur, provides a clearer model of protection than the C57BL/6 strain.
Collapse
Affiliation(s)
- Cécile Moro
- CEA, LETI, CLINATEC, Grenoble, 38054, France
| | | | - Nabil El Massri
- Department of Anatomy & Histology, University of Sydney, Sydney, Australia
| | - David Ratel
- CEA, LETI, CLINATEC, Grenoble, 38054, France
| | | | - Jonathan Stone
- Department of Physiology, University of Sydney, Sydney, Australia
| | - John Mitrofanis
- Department of Anatomy & Histology, University of Sydney, Sydney, Australia
| | | |
Collapse
|
204
|
Blandini F. Neural and immune mechanisms in the pathogenesis of Parkinson's disease. J Neuroimmune Pharmacol 2013; 8:189-201. [PMID: 23378275 DOI: 10.1007/s11481-013-9435-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022]
Abstract
Although almost 50 years have passed since impaired dopaminergic transmission was identified as the main neurochemical defect in Parkinson's disease (PD), the cause of the disease remains unknown. A restricted number of biological mechanisms are likely to contribute to the process of cell death in the nigrostriatal pathway. These mechanisms include mitochondrial defects and enhanced formation of reactive oxygen species--leading to oxidative damage--and abnormal protein aggregation. In addition to or, possibly, intermingled with these mechanisms of neuronal damage there is another crucial factor: neuroinflammation. The inflammatory response associated with cell loss in the dopaminergic nigrostriatal tract and, more in general, the role of immune mechanisms are increasingly recognized in PD pathogenesis. Neuroinflammatory changes have been repeatedly demonstrated, in both neurotoxic and transgenic animal models of PD, as well as in PD patients. Transgenic models based on α-synuclein overexpression, in particular, have provided crucial insights into the correlation between this protein and the dichotomous response that microglia can activate, with the polarization toward a cytotoxic (M1) or cytoprotective (M2) phenotype. Full understanding of such mechanisms may set the ground for a fine tuning of the neuroinflammatory process that accompanies and sustains neurodegeneration, thereby opening new therapeutic perspectives for PD.
Collapse
Affiliation(s)
- Fabio Blandini
- Center for Research in Neurodegenerative Diseases, IRCCS National Neurological Institute C. Mondino, Via Mondino, 2, 27100 Pavia, Italy.
| |
Collapse
|
205
|
Superior colliculus mediates cervical dystonia evoked by inhibition of the substantia nigra pars reticulata. J Neurosci 2012; 32:13326-32. [PMID: 22993447 DOI: 10.1523/jneurosci.2295-12.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cervical dystonia (CD; spasmodic torticollis) can be evoked by inhibition of substantia nigra pars reticulata (SNpr) in the nonhuman primate (Burbaud et al., 1998; Dybdal et al., 2012). Suppression of GABAergic neurons that project from SNpr results in the disinhibition of the targets to which these neurons project. It therefore should be possible to prevent CD by inhibition of the appropriate nigral target region(s). Here we tested the hypothesis that the deep and intermediate layers of the superior colliculus (DLSC), a key target of nigral projections, are required for the emergence of CD. To test this hypothesis, we pretreated the DLSC of four macaques with the GABA(A) agonist muscimol to determine whether this treatment would prevent CD evoked by muscimol infusions in SNpr. Our data supported this hypothesis: inhibition of DLSC attenuated CD evoked by muscimol in SNpr in all four animals. In two of the four subjects, quadrupedal rotations were evoked by muscimol application into SNpr sites that were distinct from those that induced dystonia. We found that inhibition of DLSC did not significantly alter quadrupedal rotations, suggesting that this response is dissociable from the SNpr-evoked CD. Our results are the first to demonstrate a role of DLSC in mediating the expression of CD. Furthermore, these data reveal a functional relationship between SNpr and DLSC in regulating posture and movement in the nonhuman primate, raising the possibility that the nigrotectal pathway has potential as a target for therapeutic interventions for CD.
Collapse
|
206
|
Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson's disease. CNS Drugs 2012; 26:1017-32. [PMID: 23114872 DOI: 10.1007/s40263-012-0016-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The appearance of levodopa-induced dyskinesia (LID) and ongoing degeneration of nigrostriatal dopaminergic neurons are two key features of Parkinson's disease (PD) that current treatments fail to address. Increased glutamate transmission contributes to the motor symptoms in PD, to the striatal plasticity that underpins LID and to the progression of neurodegeneration through excitotoxic mechanisms. Glutamate receptors have therefore long been considered as potential targets for pharmacological intervention in PD, with emphasis on either blocking activation of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA), N-methyl-D-aspartate (NMDA) or excitatory metabotropic glutamate (mGlu) 5 receptors or promoting the activation of group II/III mGlu receptors. Following a brief summary of the role of glutamate in PD and LID, this article explores the current status of pharmacological studies in pre-clinical rodent and primate models through to clinical trials, where applicable, that support the potential of glutamate-based therapeutic interventions. To date, AMPA antagonists have shown good efficacy against LID in rat and primate models, but the failure of perampanel to lessen LID in clinical trials casts doubt on the translational potential of this approach. In contrast, antagonists selective for NR2B-containing NMDA receptors were effective against LID in animal models and in small-scale clinical trials, though observed adverse cognitive effects need addressing. So far, mGlu5 antagonists or negative allosteric modulators (NAMs) look set to become the first introduced for tackling LID, with AFQ-056 reported to exhibit good efficacy in phase II clinical trials. NR2B antagonists and mGlu5 NAMs may subsequently prove to also be effective disease-modifying agents if their protective effects in rat and primate models of PD, respectively, are replicated in the next stages of investigation. Finally, group III mGlu4 agonists or positive allosteric modulators (PAMs), although in the early pre-clinical stages of investigation, are showing good efficacy against motor symptoms, neurodegeneration and LID. It is anticipated that the recent development of mGlu4 PAMs with improved systemic bioavailability will facilitate progression of these agents into the primate model of PD where their potential can be further explored.
Collapse
|
207
|
Heuer A, Smith GA, Dunnett SB. Comparison of 6-hydroxydopamine lesions of the substantia nigra and the medial forebrain bundle on a lateralised choice reaction time task in mice. Eur J Neurosci 2012; 37:294-302. [DOI: 10.1111/ejn.12036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/21/2012] [Accepted: 09/23/2012] [Indexed: 01/16/2023]
Affiliation(s)
- Andreas Heuer
- Brain Repair Group; School of Bioscience; Cardiff University; Cardiff; Wales; UK
| | - Gaynor A. Smith
- Brain Repair Group; School of Bioscience; Cardiff University; Cardiff; Wales; UK
| | - Stephen B. Dunnett
- Brain Repair Group; School of Bioscience; Cardiff University; Cardiff; Wales; UK
| |
Collapse
|
208
|
Abstract
Compensatory mechanisms are a crucial component of the cerebral changes triggered by neurodegenerative disorders. Identifying such compensatory mechanisms requires at least two complementary approaches: localizing candidate areas using functional imaging, and showing that interference with these areas has behavioral consequences. Building on recent imaging evidence, we use this approach to test whether a visual region in the human occipito-temporal cortex-the extrastriate body area-compensates for altered dorsal premotor activity in Parkinson's disease (PD) during motor-related processes. We separately inhibited the extrastriate body area and dorsal premotor cortex in 11 PD patients and 12 healthy subjects, using continuous theta burst stimulation. Our goal was to test whether these areas are involved in motor compensatory processes. We used motor imagery to isolate a fundamental element of motor planning, namely subjects' ability to incorporate the current state of their body into a motor plan (mental hand rotation). We quantified this ability through a posture congruency effect (i.e., the improvement in subjects' performance when their current body posture is congruent to the imagined movement). Following inhibition of the right extrastriate body area, the posture congruency effect was lost in PD patients, but not in healthy subjects. In contrast, inhibition of the left dorsal premotor cortex reduced the posture congruency effect in healthy subjects, but not in PD patients. These findings suggest that the right extrastriate body area plays a compensatory role in PD by supporting a function that is no longer performed by the dorsal premotor cortex.
Collapse
|
209
|
Chu JMT, Chan YS, Chen LW, Yung KKL. Neurokinin receptor 3 peptide exacerbates 6-hydroxydopamine-induced dopaminergic degeneration in rats through JNK pathway. J Neurochem 2012; 123:417-27. [DOI: 10.1111/j.1471-4159.2012.07858.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
210
|
Lin CLG, Kong Q, Cuny GD, Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem 2012; 4:1689-700. [PMID: 22924507 PMCID: PMC3580837 DOI: 10.4155/fmc.12.122] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamate is the primary excitatory amino acid neurotransmitter in the CNS. The concentration of glutamate in the synaptic cleft is tightly controlled by interplay between glutamate release and glutamate clearance. Abnormal glutamate release and/or dysfunction of glutamate clearance can cause overstimulation of glutamate receptors and result in neuronal injury known as excitotoxicity. The glial glutamate transporter EAAT2 plays a major role in glutamate clearance. Dysfunction or reduced expression of EAAT2 has been documented in many neurodegenerative diseases. In addition, many studies in animal models of disease indicate that increased EAAT2 expression provides neuronal protection. Here, we summarize these studies and suggest that EAAT2 is a potential target for the prevention of excitotoxicity. EAAT2 can be upregulated by transcriptional or translational activation. We discuss current progress in the search for EAAT2 activators, which is a promising direction for the treatment of neurodegenerative diseases.
Collapse
|
211
|
Hahn JD, Swanson LW. Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol 2012; 520:1831-90. [PMID: 22488503 DOI: 10.1002/cne.23064] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The connections of the lateral hypothalamic area juxtadorsomedial region (LHAjd) were investigated in a series of pathway-tracing experiments involving iontophoretic co-injection of the tracers Phaseolus vulgaris-leucoagglutinin (PHA-L; for outputs) and cholera toxin B subunit (CTB; for inputs). Results revealed that the LHAjd has connections with some 318 distinct gray matter regions encompassing all four subsystems-motor, sensory, cognitive, and behavioral state-included in a basic structure-function network model of the nervous system. Integration of these subsystems is necessary for the coordination and control of emotion and behavior, and in that regard the connections of the LHAjd indicate that it may have a prominent role. Furthermore, the LHAjd connections, together with the connections of other LHA differentiations studied similarly to date, indicate a distinct topographic organization that suggests each LHA differentiation has specifically differing degrees of involvement in the control of multiple behaviors. For the LHAjd, its involvement to a high degree in the control of defensive behavior, and to a lesser degree in the control of other behaviors, including ingestive and reproductive, is suggested. Moreover, the connections of the LHAjd suggest that its possible role in the control of these behaviors may be very broad in scope because they involve the somatic, neuroendocrine, and autonomic divisions of the nervous system. In addition, we suggest that connections between LHA differentiations may provide, at the level of the hypothalamus, a neuronal substrate for the coordinated control of multiple themes in the behavioral repertoire.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | |
Collapse
|
212
|
Blockade of metabotropic glutamate receptors inhibits cognition and neurodegeneration in an MPTP-induced Parkinson's disease rat model. Pharmacol Biochem Behav 2012; 102:64-71. [DOI: 10.1016/j.pbb.2012.03.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/16/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
213
|
Leon-Sarmiento FE, Rizzo-Sierra CV, Bayona EA, Bayona-Prieto J, Bara-Jimenez W. WITHDRAWN: Mechanisms Underlying Inhibitory and Facilitatory Transcranial Magnetic Stimulation Abnormalities in a Large Sample of Patients with Parkinson's Disease. Arch Med Res 2012:S0188-4409(12)00158-0. [PMID: 22721866 DOI: 10.1016/j.arcmed.2012.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Fidias E Leon-Sarmiento
- Smell and Taste Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Unit of Parkinson and Movement Disorders, Mediciencias Research Group, Universidad Nacional/Ramon and Cajal Panamerican Health Foundation, Bogota, Colombia
| | | | | | | | | |
Collapse
|
214
|
Pastorino M, Cancela J, Arredondo MT, Pansera M, Pastor-Sanz L, Villagra F, Pastor MA, Martin JA. Assessment of Bradykinesia in Parkinson's disease patients through a multi-parametric system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:1810-3. [PMID: 22254680 DOI: 10.1109/iembs.2011.6090516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this paper is to describe and present the results of the automatic detection and assessment of bradykinesia in motor disease patients using wireless, wearable accelerometers. The current work is related to a module of the PERFORM system, a FP7 project from the European Commission, that aims at providing an innovative and reliable tool, able to evaluate, monitor and manage patients suffering from Parkinson's disease. The assessment procedure was carried out through a developed C# library that detects the activities of the patient using an activity recognition algorithm and classifies the data using a Support Vector Machine trained with data coming from previous test phases. The accuracy between the output of the automatic detection and the evaluation of the clinician both expressed with the Unified Parkinson's disease Rating Scale, presents an average value of [68.3 ± 8.9]%. A meta-analysis algorithm is used in order to improve the accuracy to an average value of [74.4 ± 14.9]%. Future work will include a personalized training of the classifiers in order to achieve a higher level of accuracy.
Collapse
Affiliation(s)
- M Pastorino
- Life Supporting Technologies, Technical University of Madrid, Madrid 28804, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
An NR2B-Dependent Decrease in the Expression of trkB Receptors Precedes the Disappearance of Dopaminergic Cells in Substantia Nigra in a Rat Model of Presymptomatic Parkinson's Disease. PARKINSONS DISEASE 2012; 2012:129605. [PMID: 22720191 PMCID: PMC3377358 DOI: 10.1155/2012/129605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 01/07/2023]
Abstract
Compensatory changes occurring during presymptomatic stages of Parkinson's disease (PD) would explain that the clinical symptoms of the disease appear late, when the degenerative process is quite advanced. Several data support the proposition that brain-derived neurotrophic factor (BDNF) could play a role in these plastic changes. In the present study, we evaluated the expression of the specific BDNF receptor, trkB, in a rat model of presymptomatic PD generated by intrastriatal injection of the neurotoxin 6-OHDA. Immunohistochemical studies revealed a decrease in trkB expression in SN pars compacta (SNc) seven days after 6-OHDA injection. At this time point, no change in the number of tyrosine hydroxylase (TH) immunoreactive (TH-IR) cells is detected, although a decrease is evident 14 days after neurotoxin injection. The decrease in TH-positive cells and trkB expression in SNc was significantly prevented by systemic administration of Ifenprodil, a specific antagonist of NR2B-containing NMDA receptors. Therefore, an NR2B-NMDA receptor-dependent decrease in trkB expression precedes the disappearance of TH-IR cells in SNc in response to 6-OHDA injection. These results support the idea that a functional coupling between NMDA receptors and BDNF/trkB signalling may be important for the maintenance of the dopaminergic phenotype in SNc during presymptomatic stages of PD.
Collapse
|
216
|
Amalric M, Lopez S, Goudet C, Fisone G, Battaglia G, Nicoletti F, Pin JP, Acher FC. Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson's disease. Neuropharmacology 2012; 66:53-64. [PMID: 22664304 DOI: 10.1016/j.neuropharm.2012.05.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/28/2012] [Accepted: 05/21/2012] [Indexed: 12/22/2022]
Abstract
Restoring the balance between excitatory and inhibitory circuits in the basal ganglia, following the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta, represents a major challenge to treat patients affected by Parkinson's disease (PD). The imbalanced situation in favor of excitation in the disease state may also accelerate excitotoxic processes, thereby representing a potential target for neuroprotective therapies. Reducing the excitatory action of glutamate, the major excitatory neurotransmitter in the basal ganglia, should lead to symptomatic improvement for PD patients and may promote the survival of DA neurons. Recent studies have focused on the modulatory action of metabotropic glutamate (mGlu) receptors on neurodegenerative diseases including PD. Group III mGlu receptors, including subtypes 4, 7 and 8, are largely expressed in the basal ganglia. Recent studies highlight the use of selective mGlu4 receptor positive allosteric modulators (PAMs) for the treatment of PD. Here we review the effects of newly-designed group-III orthosteric agonists on neuroprotection, neurorestoration and reduction of l-DOPA induced dyskinesia in animal models of PD. The combination of orthosteric mGlu4 receptor selective agonists with PAMs may open new avenues for the symptomatic treatment of PD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- M Amalric
- Aix-Marseille University, CNRS UMR 7291, Laboratoire de Neurosciences Fonctionnelles, Case C, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Pitel AL, Chanraud S, Rohlfing T, Pfefferbaum A, Sullivan EV. Face-name association learning and brain structural substrates in alcoholism. Alcohol Clin Exp Res 2012; 36:1171-9. [PMID: 22509954 DOI: 10.1111/j.1530-0277.2011.01731.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 10/28/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. METHODS Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. RESULTS Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. CONCLUSIONS Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded RTs occurred at the expense of accuracy and were related most robustly to cerebellar volumes.
Collapse
Affiliation(s)
- Anne-Lise Pitel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5723, USA
| | | | | | | | | |
Collapse
|
218
|
An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat. Behav Brain Res 2012; 230:365-73. [PMID: 22391117 DOI: 10.1016/j.bbr.2012.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/27/2012] [Accepted: 02/17/2012] [Indexed: 12/29/2022]
Abstract
The subthalamic nucleus (STN) serves important functions in regulating movement, cognition, and motivation and is connected with cortical and basal ganglia circuits that process reward and reinforcement. In order to further examine the role of the STN on motivation toward food in non-deprived rats, these experiments studied the effects of pharmacological inhibition or μ-opioid receptor stimulation of the STN on the 2-h intake of a sweetened fat diet, the amount of work exerted to earn sucrose on a progressive ratio 2 (PR-2) schedule of reinforcement, and performance on a differential reinforcement of low-rate responding (DRL) schedule for sucrose reward. Separate behavioral groups (N=6-9) were tested following bilateral inhibition of the STN with the GABA(A) receptor agonist muscimol (at 0-5 ng/0.5 μl/side) or following μ-opioid receptor stimulation with the agonist D-Ala², N-MePhe⁴, Gly-ol-enkephalin (DAMGO; at 0, 0.025 or 0.25 μg/0.5 μl/side). Although STN inhibition increased ambulatory behavior during 2-h feeding sessions, it did not significantly alter intake of the sweetened fat diet. STN inhibition also did not affect the breakpoint for sucrose pellets during a 1-h PR-2 reinforcement schedule or impact the number of reinforcers earned on a 1-h DRL-20s reinforcement schedule in non-deprived rats. In contrast, STN μ-opioid receptor stimulation significantly increased feeding on the palatable diet and reduced the reinforcers earned on a DRL-20 schedule, although DAMGO microinfusions had no effect on PR-2 performance. These data suggest that STN inhibition does not enhance incentive motivation for food in the absence of food restriction and that STN μ-opioid receptors play an important and unique role in motivational processes.
Collapse
|
219
|
Blandini F, Armentero MT. New pharmacological avenues for the treatment of L-DOPA-induced dyskinesias in Parkinson's disease: targeting glutamate and adenosine receptors. Expert Opin Investig Drugs 2012; 21:153-68. [PMID: 22233485 DOI: 10.1517/13543784.2012.651457] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) therapy is still centered on the use of L-3,4-dihydroxyphenylalanine (L-DOPA), which is hampered by numerous side effects, including abnormal involuntary movements known as L-DOPA-induced dyskinesias (LIDs). LIDs are the result of pre- and postsynaptic changes at the corticostriatal level, induced by chronic and pulsatile stimulation of striatal dopaminergic receptors. These changes impact on synaptic plasticity and involve also selected, nondopaminergic receptors expressed by striatal projection neurons. AREAS COVERED Among nondopaminergic receptors, glutamate receptors - NMDA and mGluR5 subtypes in particular - and adenosine A(2A) receptors are those most likely involved in LIDs. The aim of the present review is to summarize results of studies undertaken with specific antagonists of these receptors, first conducted in animal models of LIDs, which in selected cases have been translated into clinical trials. EXPERT OPINION Selected antagonists of glutamate and adenosine receptors have been proposed as anti-dyskinetic agents. Promising results have been obtained in preclinical investigations and in initial clinical trials, but long-term safety, tolerability and efficacy studies in patients are still required. The current development of novel antagonists, including tools able to act on receptor mosaics, may provide innovative tools for LIDs management in the next future.
Collapse
Affiliation(s)
- Fabio Blandini
- IRCCS National Neurological Institute C. Mondino, Interdepartmental Research Center for Parkinson's Disease, Via Mondino 2, 27100 Pavia, Italy.
| | | |
Collapse
|
220
|
Jones S, Brothwell S, Huang-Doran I, Hallett J. Ionotropic Glutamate Receptors in the Basal Ganglia. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b11284-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
221
|
Tseng KY, Caballero A, Dec A, Cass DK, Simak N, Sunu E, Park MJ, Blume SR, Sammut S, Park DJ, West AR. Inhibition of striatal soluble guanylyl cyclase-cGMP signaling reverses basal ganglia dysfunction and akinesia in experimental parkinsonism. PLoS One 2011; 6:e27187. [PMID: 22073284 PMCID: PMC3206945 DOI: 10.1371/journal.pone.0027187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/11/2011] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinson's disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD. METHODS The utility of the selective sGC inhibitor ODQ for reversing biochemical, electrophysiological, histochemical, and behavioral correlates of experimental PD was performed in 6-OHDA-lesioned rats and mice chronically treated with MPTP. RESULTS We found that one systemic administration of ODQ is sufficient to reverse the characteristic elevations in striatal cGMP levels, striatal output neuron activity, and metabolic activity in the subthalamic nucleus observed in 6-OHDA-lesioned rats. The latter outcome was reproduced after intrastriatal infusion of ODQ. Systemic administration of ODQ was also effective in improving deficits in forelimb akinesia induced by 6-OHDA and MPTP. INTERPRETATION Pharmacological inhibition of the sGC-cGMP signaling pathway is a promising non-dopaminergic treatment strategy for restoring basal ganglia dysfunction and attenuating motor symptoms associated with PD.
Collapse
Affiliation(s)
- Kuei Y. Tseng
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Adriana Caballero
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Alexander Dec
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Daryn K. Cass
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Natalie Simak
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Elizabeth Sunu
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Michael J. Park
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Shannon R. Blume
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Stephen Sammut
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Diana J. Park
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| | - Anthony R. West
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, North Chicago, Illinois, United States of America
| |
Collapse
|
222
|
Cao H, Xu X, Zhao Y, Long D, Zhang M. Altered brain activation and connectivity in early Parkinson disease tactile perception. AJNR Am J Neuroradiol 2011; 32:1969-74. [PMID: 21998100 DOI: 10.3174/ajnr.a2672] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Deficits in tactile perception are common in patients with PD. However, the neural mechanisms have not been previously reported in the early stages. This study aims to investigate how the brain activity and connectivity changed under tactile perception at early Parkinsonian state by using functional MR imaging. MATERIALS AND METHODS Twenty-one patients with early PD and 22 age- and sex-matched controls were recruited and scanned under a passive tactile stimulation task. Within-group and between-group activation maps were acquired, and regions of interest were defined according to the group-comparison result. This was followed by a functional connectivity analysis based on the graph theory. RESULTS We found that in the PD group, bilateral sensorimotor cortex was hypoactive during the task, whereas the hyperactive regions were mainly in bilateral prefrontal cortex, bilateral cerebellum, and contralateral striatum. There was a significant decrease of total connectivity degree in ipsilateral SMA in PD, which was negatively correlated with the Unified Parkinson's Disease Rating Scale score. Furthermore, the connection strengths among the areas of prefrontal cortex, striatum, and cerebellum were increased. CONCLUSIONS This study illustrated that early PD was associated with not only altered brain activation but also changed functional connectivity in tactile perception. The most significant impairment was in SMA, whereas striato-prefrontal and cerebello-prefrontal loops may play a compensatory role in early PD tactile function.
Collapse
Affiliation(s)
- H Cao
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
223
|
Pollo A, Carlino E, Benedetti F. Placebo mechanisms across different conditions: from the clinical setting to physical performance. Philos Trans R Soc Lond B Biol Sci 2011; 366:1790-8. [PMID: 21576136 DOI: 10.1098/rstb.2010.0381] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the great increase in interest in the placebo phenomenon was spurred by the clinical implications of its use, the progressive elucidation of the neurobiological and pharmacological mechanisms underlying the placebo effect also helps cast new light on the relationship between mind (and brain) and body, a topic of foremost philosophical importance but also a major medical issue in light of the complex interactions between the brain on the one hand and body functions on the other. While the concept of placebo can be a general one, with a broad definition generally applicable to many different contexts, the description of the cerebral processes called into action in specific situations can vary widely. In this paper, examples will be given where physiological or pathological conditions are altered following the administration of an inert substance or verbal instructions tailored to induce expectation of a change, and explanations will be offered with details on neurotransmitter changes and neural pathways activated. As an instance of how placebo effects can extend beyond the clinical setting, data in the physical performance domain and implications for sport competitions will also be presented and discussed.
Collapse
Affiliation(s)
- Antonella Pollo
- Department of Neuroscience, University of Turin, and National Institute of Neuroscience, Turin, Italy
| | | | | |
Collapse
|
224
|
Porcelli S, Drago A, Fabbri C, Serretti A. Mechanisms of antidepressant action: an integrated dopaminergic perspective. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1532-43. [PMID: 21402119 DOI: 10.1016/j.pnpbp.2011.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/23/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms that cause and maintain the major depressive disorder (MDD) are currently unknown. Consistently, antidepressant treatments are characterized by insufficient success rates. This causes high social costs and severe personal sufferings. In the present review we analyze some of the paradigms that are used to explain MDD, particularly from the perspective of the dopaminergic (DA) system. DA has been more classically associated with psychosis and substance abuse disorders, even though a role of DA in MDD has been proposed as well and some antidepressants with DA profile exist. In the present work, we review some of the molecular mechanisms that underpin MDD from the perspective of the dopaminergic system, in the hope of unifying some of the major theories of MDD - the monoaminergic, inflammatory, epigenetics, neurotrophin and anti-apoptotic theories. Several shared components of these theories are highlighted, partially accounted by the functions of the DA system (see supplementary video).
Collapse
Affiliation(s)
- S Porcelli
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, 40123 Bologna, Italy.
| | | | | | | |
Collapse
|
225
|
Braak H, Del Tredici K. Non‐Dopaminergic Pathology of Parkinson's Disease. PARKINSON'S DISEASE 2011. [DOI: 10.1002/9781444397970.ch3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
226
|
Melcangi RC, Caruso D, Levandis G, Abbiati F, Armentero MT, Blandini F. Modifications of Neuroactive Steroid Levels in an Experimental Model of Nigrostriatal Degeneration: Potential Relevance to the Pathophysiology of Parkinson’s Disease. J Mol Neurosci 2011; 46:177-83. [DOI: 10.1007/s12031-011-9570-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/31/2011] [Indexed: 11/24/2022]
|
227
|
Bétry C, Etiévant A, Lambás-Señas L, Mccreary AC, Haddjeri N. In vivo effects of pardoprunox (SLV308), a partial D2/D3 receptor and 5-HT1A receptor agonist, on rat dopamine and serotonin neuronal activity. Synapse 2011; 65:1042-51. [DOI: 10.1002/syn.20936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/12/2011] [Accepted: 03/21/2011] [Indexed: 01/20/2023]
|
228
|
Stefani A, Fedele E, Pierantozzi M, Galati S, Marzetti F, Peppe A, Pastore FS, Bernardi G, Stanzione P. Reduced GABA Content in the Motor Thalamus during Effective Deep Brain Stimulation of the Subthalamic Nucleus. Front Syst Neurosci 2011; 5:17. [PMID: 21519387 PMCID: PMC3078559 DOI: 10.3389/fnsys.2011.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/22/2011] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN), in Parkinson's disease (PD) patients, is a well established therapeutic option, but its mechanisms of action are only partially known. In our previous study, the clinical transitions from OFF- to ON-state were not correlated with significant changes of GABA content inside GPi or substantia nigra reticulata. Here, biochemical effects of STN-DBS have been assessed in putamen (PUT), internal pallidus (GPi), and inside the antero-ventral thalamus (VA), the key station receiving pallidothalamic fibers. In 10 advanced PD patients undergoing surgery, microdialysis samples were collected before and during STN-DBS. cGMP, an index of glutamatergic transmission, was measured in GPi and PUT by radioimmunoassay, whereas GABA from VA was measured by HPLC. During clinically effective STN-DBS, we found a significant decrease in GABA extracellular concentrations in VA (−30%). Simultaneously, cGMP extracellular concentrations were enhanced in PUT (+200%) and GPi (+481%). These findings support a thalamic dis-inhibition, in turn re-establishing a more physiological corticostriatal transmission, as the source of motor improvement. They indirectly confirm the relevance of patterning (instead of mere changes of excitability) and suggest that a rigid interpretation of the standard model, at least when it indicates the hyperactive indirect pathway as key feature of hypokinetic signs, is unlikely to be correct. Finally, given the demonstration of a key role of VA in inducing clinical relief, locally administration of drugs modulating GABA transmission in thalamic nuclei could become an innovative therapeutic strategy.
Collapse
Affiliation(s)
- Alessandro Stefani
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione S. Lucia, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Morera-Herreras T, Ruiz-Ortega JÁ, Linazasoro G, Ugedo L. Nigrostriatal denervation changes the effect of cannabinoids on subthalamic neuronal activity in rats. Psychopharmacology (Berl) 2011; 214:379-89. [PMID: 20959968 PMCID: PMC3045509 DOI: 10.1007/s00213-010-2043-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/30/2010] [Indexed: 02/03/2023]
Abstract
RATIONALE It is known that dopaminergic cell loss leads to increased endogenous cannabinoid levels and CB1 receptor density. OBJECTIVE The aim of this study was to evaluate the influence of dopaminergic cell loss, induced by injection of 6-hydroxydopamine, on the effects exerted by cannabinoid agonists on neuron activity in the subthalamic nucleus (STN) of anesthetized rats. RESULTS We have previously shown that Δ(9)-tetrahydrocannabinol (Δ(9)-THC) and anandamide induce both stimulation and inhibition of STN neuron activity and that endocannabinoids mediate tonic control of STN activity. Here, we show that in intact rats, the cannabinoid agonist WIN 55,212-2 stimulated all recorded STN neurons. Conversely, after dopaminergic depletion, WIN 55,212-2, Δ(9)-THC, or anandamide inhibited the STN firing rate without altering its discharge pattern, and stimulatory effects were not observed. Moreover, anandamide exerted a more intense inhibitory effect in lesioned rats in comparison to control rats. CONCLUSIONS Cannabinoids induce different effects on the STN depending on the integrity of the nigrostriatal pathway. These findings advance our understanding of the role of cannabinoids in diseases involving dopamine deficits.
Collapse
Affiliation(s)
- Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Vizcaya Spain
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Vizcaya Spain
| | - Gurutz Linazasoro
- Centro Investigación Parkinson, Policlínica Gipuzkoa, San Sebastián, Gipuzkoa Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Vizcaya Spain
| |
Collapse
|
230
|
The role of NMDA and AMPA/Kainate receptors in the consolidation of catalepsy sensitization. Behav Brain Res 2011; 218:194-9. [DOI: 10.1016/j.bbr.2010.11.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/25/2010] [Accepted: 11/28/2010] [Indexed: 11/22/2022]
|
231
|
Panayotis N, Pratte M, Borges-Correia A, Ghata A, Villard L, Roux JC. Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse. Neurobiol Dis 2011; 41:385-97. [DOI: 10.1016/j.nbd.2010.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/04/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022] Open
|
232
|
Duty S. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson's disease. Br J Pharmacol 2011; 161:271-87. [PMID: 20735415 PMCID: PMC2989582 DOI: 10.1111/j.1476-5381.2010.00882.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current drugs used in the treatment of Parkinson's disease (PD), for example, L-DOPA and dopamine agonists, are very effective at reversing the motor symptoms of the disease. However, they do little to combat the underlying degeneration of dopaminergic neurones in the substantia nigra pars compacta (SNc) and their long-term use is associated with the appearance of adverse effects such as L-DOPA-induced dyskinesia. Much emphasis has therefore been placed on finding alternative non-dopaminergic drugs that may circumvent some or all of these problems. Group III metabotropic glutamate (mGlu) receptors were first identified in the basal ganglia a decade ago. One or more of these receptors (mGlu4, mGlu7 or mGlu8) is found on pre-synaptic terminals of basal ganglia pathways whose overactivity is implicated not only in the generation of motor symptoms in PD, but also in driving the progressive SNc degeneration. The finding that drugs which activate group III mGlu receptors can inhibit transmission across these overactive synapses has lead to the proposal that group III mGlu receptors are promising targets for drug discovery in PD. This paper provides a comprehensive review of the role and target potential of group III mGlu receptors in the basal ganglia. Overwhelming evidence obtained from in vitro studies and animal models of PD supports group III mGlu receptors as potentially important drug targets for providing both symptom relief and neuroprotection in PD.
Collapse
Affiliation(s)
- Susan Duty
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, UK.
| |
Collapse
|
233
|
Zhang S, Liang R, Zhou F, Huang X, Ding JH, Hu G. Reversal of rotenone-induced dysfunction of astrocytic connexin43 by opening mitochondrial ATP-sensitive potassium channels. Cell Mol Neurobiol 2011; 31:111-7. [PMID: 20824494 PMCID: PMC11498518 DOI: 10.1007/s10571-010-9560-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/25/2010] [Indexed: 12/21/2022]
Abstract
Growing evidence suggests that the astrocytic gap junctions (GJs), mainly formed by connexin 43 (Cx43), play an important role in physiological maintenance and various central nervous system (CNS) pathological conditions. However, little is known about the role of Cx43 in Parkinson's disease (PD). In this article, we report that rotenone, a classic neurotoxin for PD, could inhibit expression of astrocytic Cx43 and gap junction permeability. ATP-sensitive potassium (K(ATP)) channel openers, iptakalim (IPT) and diazoxide (DZ), exerted protective effect on rotenone-induced dysfunction of Cx43 and astrocyte apoptosis, which was reversed by selective mitochondrial K(ATP) (mitoK(ATP)) channel blocker 5-hydroxydecanoate (5-HD). Taken together, our findings reveal that rotenone-induced dysfunction of astrocytic Cx43 may be involved in the pathology of PD. Moreover, opening mitoK(ATP) channels in astrocytes can reverse rotenone-induced dysfunction of astrocytic Cx43 and therefore protect against toxicity of rotenone on astrocytes.
Collapse
Affiliation(s)
- Shu Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
- Clinical Research Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Rui Liang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Fang Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Xu Huang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029 People’s Republic of China
| |
Collapse
|
234
|
Martella G, Madeo G, Schirinzi T, Tassone A, Sciamanna G, Spadoni F, Stefani A, Shen J, Pisani A, Bonsi P. Altered profile and D2-dopamine receptor modulation of high voltage-activated calcium current in striatal medium spiny neurons from animal models of Parkinson's disease. Neuroscience 2010; 177:240-51. [PMID: 21195752 DOI: 10.1016/j.neuroscience.2010.12.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/23/2010] [Accepted: 12/28/2010] [Indexed: 11/30/2022]
Abstract
In the present work we analyzed the profile of high voltage-activated (HVA) calcium (Ca2+) currents in freshly isolated striatal medium spiny neurons (MSNs) from rodent models of both idiopathic and familial forms of Parkinson's disease (PD). MSNs were recorded from reserpine-treated and 6-hydroxydopamine (6-OHDA)-lesioned rats, and from DJ-1 and PINK1 (PTEN induced kinase 1) knockout (-/-) mice. Our analysis showed no significant changes in total HVA Ca2+ current. However, we recorded a net increase in the L-type fraction of HVA Ca2+ current in dopamine-depleted rats, and of both N- and P-type components in DJ-1-/- mice, whereas no significant change in Ca2+ current profile was observed in PINK1-/- mice. Dopamine modulates HVA Ca2+ channels in MSNs, thus we also analyzed the effect of D1 and D2 receptor activation. The effect of the D1 receptor agonist SKF 83822 on Ca2+ current was not significantly different among MSNs from control animals or PD models. However, in both dopamine-depleted rats and DJ-1-/- mice the D2 receptor agonist quinpirole inhibited a greater fraction of HVA Ca2+ current than in the respective controls. Conversely, in MSNs from PINK1-/- mice we did not observe alterations in the effect of D2 receptor activation. Additionally, in both reserpine-treated and 6-OHDA-lesioned rats, the effect of quinpirole was occluded by the selective L-type Ca2+ channel blocker nifedipine, while in DJ-1-/- mice it was mostly occluded by ω-conotoxin GVIA, blocker of N-type channels. These results demonstrate that both dopamine depletion and DJ-1 deletion induce a rearrangement in the HVA Ca2+ channel profile, specifically involving those channels that are selectively modulated by D2 receptors.
Collapse
Affiliation(s)
- G Martella
- Department of Neuroscience, University Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Massie A, Schallier A, Kim SW, Fernando R, Kobayashi S, Beck H, Bundel DD, Vermoesen K, Bannai S, Smolders I, Conrad M, Plesnila N, Sato H, Michotte Y. Dopaminergic neurons of system x
c
–
‐deficient mice are highly protected against 6‐hydroxydopamine‐induced toxicity. FASEB J 2010; 25:1359-69. [DOI: 10.1096/fj.10-177212] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ann Massie
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | - Anneleen Schallier
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | | | - Ruani Fernando
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet Stockholm Sweden
| | - Sho Kobayashi
- Department of Food and Applied Life SciencesFaculty of Agriculture, Yamagata University Tsuruoka Yamagata Japan
| | - Heike Beck
- Walter Brendel Center of Experimental Medicine, Ludwig‐Maximilians‐University Munich Germany
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | - Katia Vermoesen
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | - Shiro Bannai
- Department of Food and Applied Life SciencesFaculty of Agriculture, Yamagata University Tsuruoka Yamagata Japan
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| | - Marcus Conrad
- Helmholtz Center MunichInstitute of Clinical Molecular Biology and Tumor Genetics Munich Germany
| | | | - Hideyo Sato
- Department of Food and Applied Life SciencesFaculty of Agriculture, Yamagata University Tsuruoka Yamagata Japan
| | - Yvette Michotte
- Department of Pharmaceutical Chemistry and Drug AnalysisResearch Group Experimental Pharmacology, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
236
|
Vacherot F, Attarian S, Vaugoyeau M, Azulay JP. A motor cortex excitability and gait analysis on Parkinsonian patients. Mov Disord 2010; 25:2747-55. [DOI: 10.1002/mds.23378] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
237
|
Moghaddam HF, Khodayar MJ, Abarghouei SMZ, Ardestani MS. Evaluation of the role of striatal cannabinoid CB1 receptors on movement activity of parkinsonian rats induced by reserpine. Saudi Pharm J 2010; 18:207-15. [PMID: 23960729 PMCID: PMC3730975 DOI: 10.1016/j.jsps.2010.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/28/2010] [Indexed: 10/18/2022] Open
Abstract
It has been observed cannabinoid CB1 receptor signalling and the levels of endocannabinoid ligands significantly increased in the basal ganglia and cerebrospinal fluids of Parkinson's disease (PD) patients. These evidences suggest that the blocking of cannabinoid CB1 receptors might be beneficial to improve movement disorders as a sign of PD. In this study, a dose-response study of the effects of intrastriatal injection of a cannabinoid CB1 receptor antagonist, AM251 and agonist, ACPA, on movement activity was performed by measuring the catalepsy of reserpinized and non-PD (normal) rats with bar test. Also the effect of co-administration the most effective dose of AM251 and several doses of ACPA were assessed. AM251 decreases the reserpine induced catalepsy in dose dependent manner and ACPA causes catalepsy in normal rats in dose dependant manner as well. AM251 significantly reverse the cataleptic effect in all three groups (1, 10, 100 ng/rat) that received ACPA. These results support this theory that cannabinoid CB1 receptor antagonists might be useful to alleviate movement disorder in PD. Also continuance of ACPA induced catalepsy in rats after AM251 injection can indicate that other neurotransmitters or receptors interfere in ACPA induced catalepsy. Based on the present finding there is an incomplete overlapping between cannabinoid CB1 receptor agonist and antagonist effects.
Collapse
Affiliation(s)
- Hadi Fathi Moghaddam
- Department of Physiology, School of Medicine & Physiology Research Center, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mehdi Shafiee Ardestani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research & Development Division and Hepatitis B Department, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
238
|
Wylie SA, Ridderinkhof KR, Elias WJ, Frysinger RC, Bashore TR, Downs KE, van Wouwe NC, van den Wildenberg WPM. Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson's disease. ACTA ACUST UNITED AC 2010; 133:3611-24. [PMID: 20861152 DOI: 10.1093/brain/awq239] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Past studies show beneficial as well as detrimental effects of subthalamic nucleus deep-brain stimulation on impulsive behaviour. We address this paradox by investigating individuals with Parkinson's disease treated with subthalamic nucleus stimulation (n = 17) and healthy controls without Parkinson's disease (n = 17) on performance in a Simon task. In this reaction time task, conflict between premature response impulses and goal-directed action selection is manipulated. We applied distributional analytic methods to separate the strength of the initial response impulse from the proficiency of inhibitory control engaged subsequently to suppress the impulse. Patients with Parkinson's disease were tested when stimulation was either turned on or off. Mean conflict interference effects did not differ between controls and patients, or within patients when stimulation was on versus off. In contrast, distributional analyses revealed two dissociable effects of subthalamic nucleus stimulation. Fast response errors indicated that stimulation increased impulsive, premature responding in high conflict situations. Later in the reaction process, however, stimulation improved the proficiency with which inhibitory control was engaged to suppress these impulses selectively, thereby facilitating selection of the correct action. This temporal dissociation supports a conceptual framework for resolving past paradoxical findings and further highlights that dynamic aspects of impulse and inhibitory control underlying goal-directed behaviour rely in part on neural circuitry inclusive of the subthalamic nucleus.
Collapse
Affiliation(s)
- Scott A Wylie
- Neurology Department, University of Virginia Health Systems, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Wylie SA, Ridderinkhof KR, Bashore TR, van den Wildenberg WPM. The effect of Parkinson's disease on the dynamics of on-line and proactive cognitive control during action selection. J Cogn Neurosci 2010; 22:2058-73. [PMID: 19702465 PMCID: PMC2923490 DOI: 10.1162/jocn.2009.21326] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Processing irrelevant visual information sometimes activates incorrect response impulses. The engagement of cognitive control mechanisms to suppress these impulses and make proactive adjustments to reduce the future impact of incorrect impulses may rely on the integrity of frontal-basal ganglia circuitry. Using a Simon task, we investigated the effects of basal ganglia dysfunction produced by Parkinson's disease (PD) on both on-line (within-trial) and proactive (between-trial) control efforts to reduce interference produced by the activation of an incorrect response. As a novel feature, we applied distributional analyses, guided by the activation-suppression model, to differentiate the strength of incorrect response activation and the proficiency of suppression engaged to counter this activation. For situations requiring on-line control, PD (n = 52) and healthy control (n = 30) groups showed similar mean interference effects (i.e., Simon effects) on reaction time (RT) and accuracy. Distributional analyses showed that although the strength of incorrect response impulses was similar between the groups PD patients were less proficient at suppressing these impulses. Both groups demonstrated equivalent and effective proactive control of response interference on mean RT and accuracy rates. However, PD patients were less effective at reducing the strength of incorrect response activation proactively. Among PD patients, motor symptom severity was associated with difficulties in on-line, but not in proactive, control of response impulses. These results suggest that basal ganglia dysfunction produced by PD has selective effects on cognitive control mechanisms engaged to resolve response conflict, with primary deficits in the on-line suppression of incorrect responses occurring in the context of a relatively spared ability to adjust control proactively to minimize future conflict.
Collapse
Affiliation(s)
- Scott A Wylie
- University of Virginia Health Systems, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
240
|
Santiago RM, Barbieiro J, Lima MMS, Dombrowski PA, Andreatini R, Vital MABF. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1104-14. [PMID: 20547199 DOI: 10.1016/j.pnpbp.2010.06.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 06/05/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
Abstract
Depression is a frequently encountered non-motor feature of Parkinson's disease (PD) and it can have a significant impact on patient's quality of life. Considering the differential pathophysiology of depression in PD, it prompts the idea that a degenerated nigrostriatal system plays a role in depressive-like behaviors, whilst animal models of PD are employed. Therefore, we addressed the question of whether dopamine (DA) depletion, promoted by the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), lipopolysaccharide (LPS) and rotenone are able to induce depressive-like behaviors and neurotransmitters alterations similarly that encountered in PD. To test this rationale, we performed intranigral injections of each neurotoxin, followed by motor behavior, depressive-like behaviors, histological and neurochemical tests. After the motor recovery period, MPTP, 6-OHDA and rotenone were able to produce anhedonia and behavioral despair. These altered behavioral responses were accompanied by reductions of striatal DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) restricted to the 6-OHDA group. Additionally, decreases on the hippocampal serotonin (5-HT) content were detected for the MPTP, 6-OHDA and rotenone groups. Notably, strong correlations were detected among the groups when 5-HT and DA were correlated with swimming (r=+0.97; P=0.001) and immobility (r=-0.90; P=0.012), respectively. Our data indicate that MPTP, 6-OHDA and rotenone, but not LPS were able to produce depressive-like behaviors accompanied primarily by hippocampal 5-HT reductions. Moreover, DA and 5-HT strongly correlated with "emotional" impairments suggesting an important participation of these neurotransmitters in anhedonia and behavioral despair after nigral lesions promoted by the neurotoxins.
Collapse
Affiliation(s)
- Ronise M Santiago
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | | | | | | | | | | |
Collapse
|
241
|
Gouty S, Brown JM, Rosenberger J, Cox BM. MPTP treatment increases expression of pre-pro-nociceptin/orphanin FQ mRNA in a subset of substantia nigra reticulata neurons. Neuroscience 2010; 169:269-78. [PMID: 20417255 PMCID: PMC2900514 DOI: 10.1016/j.neuroscience.2010.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
Antagonists selectively inhibiting activation of the nociceptin/orphanin FQ (N/OFQ) receptor reduce motor symptoms in experimental models of Parkinson's disease, and genetic deletion of the ppN/OFQ gene offers partial protection of mid-brain dopamine neurons against the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP increased ppN/OFQ mRNA expression in the substantia nigra (SN). We have evaluated the temporal relationship of dopamine cell loss to increased ppN/OFQ mRNA expression in the substantia nigra after MPTP treatment, and characterized the cellular locations in which increased ppN/OFQ mRNA expression was observed after MPTP treatment. MPTP increased by about 5-fold the number of neurons expressing ppN/OFQ mRNA in the pars reticulata of SN (SNr) by 24 h after treatment and the elevation remained significant for at least 7 days. This period coincided with the timing of the loss of dopamine neurons from the pars compacta of substantia nigra (SNc) after MPTP. The increased expression of ppN/OFQ mRNA co-localized with a neuronal marker in the SNr. MPTP treatment resulted in a small increase in the numbers of neurons expressing ppN/OFQ in the SNc in mice from one mouse colony but the increase did not reach statistical significance in mice from another colony. No changes in ppN/OFQ-mRNA expression were observed in the ventral tegmental area (VTA), the caudate-putamen, the subthalamic nucleus, or in two other brains areas. These results demonstrate that increased N/OFQ expression in the SNr is closely associated with the MPTP-induced loss of dopamine neurons in the SNc in a widely used animal model of Parkinson's disease.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Gene Expression Regulation/drug effects
- MPTP Poisoning/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/classification
- Neurons/drug effects
- Neurons/metabolism
- Opioid Peptides/biosynthesis
- Opioid Peptides/genetics
- Parkinsonian Disorders/genetics
- Protein Precursors/biosynthesis
- Protein Precursors/deficiency
- Protein Precursors/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Opioid/biosynthesis
- Receptors, Opioid/deficiency
- Receptors, Opioid/genetics
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
- Nociceptin
Collapse
Affiliation(s)
- Shawn Gouty
- Department of Pharmacology Uniformed Services University of the Health Sciences Bethesda MD 20814
| | | | | | - Brian M. Cox
- Department of Pharmacology Uniformed Services University of the Health Sciences Bethesda MD 20814
| |
Collapse
|
242
|
Suárez F, Zhao Q, Monaghan DT, Jane DE, Jones S, Gibb AJ. Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones. Eur J Neurosci 2010; 32:359-67. [PMID: 20618827 PMCID: PMC4177768 DOI: 10.1111/j.1460-9568.2010.07298.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nigra substantia nigra pars compacta (SNc) and substantia pars reticulata (SNr) form two major basal ganglia components with different functional roles. SNc dopaminergic (DA) neurones are vulnerable to cell death in Parkinson's disease, and NMDA receptor activation is a potential contributing mechanism. We have investigated the sensitivity of whole-cell and synaptic NMDA responses to intracellular ATP and GTP application in the SNc and SNr from rats on postnatal day (P) 7 and P28. Both NMDA current density (pA/pF) and desensitization to prolonged or repeated NMDA application were greater in the SNr than in the SNc. When ATP levels were not supplemented, responses to prolonged NMDA administration desensitized in P7 SNc DA neurones but not at P28. At P28, SNr neurones desensitized more than SNc neurones, with or without added ATP. Responses to brief NMDA applications and synaptic NMDA currents were not sensitive to inclusion of ATP in the pipette solution. To investigate these differences between the SNc and SNr, NR2 subunit-selective antagonists were tested. NMDA currents were inhibited by ifenprodil (10 microM) and UBP141 (4 microM), but not by Zn(2+) (100 nm), in both the SNr and SNc, suggesting that SNc and SNr neurones express similar receptor subunits; NR2B and NR2D, but not NR2A. The different NMDA response properties in the SNc and SNr may be caused by differences in receptor modulation and/or trafficking. The vulnerability of SNc DA neurones to cell death is not correlated with NMDA current density or receptor subtypes, but could in part be related to inadequate NMDA receptor desensitization.
Collapse
Affiliation(s)
- F Suárez
- Research Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
243
|
Lobb CJ, Wilson CJ, Paladini CA. A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 2010; 104:403-13. [PMID: 20445035 PMCID: PMC2904231 DOI: 10.1152/jn.00204.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/29/2010] [Indexed: 01/10/2023] Open
Abstract
Dopaminergic neurons are subject to a significant background GABAergic input in vivo. The presence of this GABAergic background might be expected to inhibit dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead fire in single-spiking and burst firing modes. Here we present evidence that phasic changes in the tonic activity of GABAergic afferents are a potential extrinsic mechanism that triggers bursts and pauses in dopaminergic neurons. We find that spontaneous single-spiking is more sensitive to activation of GABA receptors than phasic N-methyl-D-aspartate (NMDA)-mediated burst firing in rat slices (P15-P31). Because tonic activation of GABA(A) receptors has previously been shown to suppress burst firing in vivo, our results suggest that the activity patterns seen in vivo are the result of a balance between excitatory and inhibitory conductances that interact with the intrinsic pacemaking currents observed in slices. Using the dynamic clamp technique, we applied balanced, constant NMDA and GABA(A) receptor conductances into dopaminergic neurons in slices. Bursts could be produced by disinhibition (phasic removal of the GABA(A) receptor conductance), and these bursts had a higher frequency than bursts produced by the same NMDA receptor conductance alone. Phasic increases in the GABA(A) receptor conductance evoked pauses in firing. In contrast to NMDA receptor, application of constant AMPA and GABA(A) receptor conductances caused the cell to go into depolarization block. These results support a bidirectional mechanism by which GABAergic inputs, in balance with NMDA receptor-mediated excitatory inputs, control the firing pattern of dopaminergic neurons.
Collapse
Affiliation(s)
- Collin J Lobb
- Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
244
|
Melis M, Pistis M. Endocannabinoid signaling in midbrain dopamine neurons: more than physiology? Curr Neuropharmacol 2010; 5:268-77. [PMID: 19305743 PMCID: PMC2644494 DOI: 10.2174/157015907782793612] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 11/22/2022] Open
Abstract
Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Memory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-mediated synaptic modulation. HOWEVER, ENDOCANNABINOIDS HAVE A DUAL ROLE: beyond a physiological modulation of synaptic functions, they have been demonstrated to participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, hypoxia-ischemia, which are key features of several neurodegenerative disorders. In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly interesting for the possible implication of these molecules in brain functions and dysfunctions. Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson's disease, where neuroprotective actions of cannabinoid-acting compounds may prove beneficial.The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against functional abnormalities as well as against their neurodegeneration.
Collapse
Affiliation(s)
- M Melis
- B.B. Brodie Department of Neuroscience and Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Monserrato, 09042, Italy
| | | |
Collapse
|
245
|
Abstract
The substantia nigra, located in the ventral mesencephalon, is one of the five nuclei that constitute the basal ganglia circuit, which controls voluntary movements. It is divided into the pars compacta and the pars reticulata, which mainly contain dopaminergic and GABAergic cells respectively. Here we overview the electrophysiological properties of these substantia nigra neurons in the pars compacta and reticulata, together with their synaptic connections, and discuss the functional effects of dopaminergic and GABAergic inputs within the basal ganglia. We also examine the phenomenon that when a deficiency of dopamine (DA) occurs (e.g. in Parkinson's disease), there is an aberrant synaptic plasticity in the basal ganglia. Moreover, we point out that the appearance of an altered pattern of neuronal firing (beta-oscillations) and synchrony among neurons in the subthalamic nucleus, the internal globus pallidus, and the substantia nigra pars reticulata has been related to motor symptoms and possibly, persistent degeneration of DA-containing neurons. Finally, we believe that, based on pathophysiological data, new and significant targets for therapeutic intervention can be identified and tested.
Collapse
|
246
|
Abstract
PURPOSE The purpose of this work was to investigate whether individual differences in eye surface area are related to the rate of spontaneous eye blinking (SB) in young infants. Rate of SB was also compared with the rate of gaze shifts. METHODS Forty-four 4-month-old infants were observed under controlled conditions for 4 to 6 min. SB, eye surface area, gaze shifts, and various background variables were measured. RESULTS Individual differences in the rate of SB and in eye surface area were wide. Neither the eye surface area nor the rate of gaze shifting was related to the rate of SB in young infants. However, when SB do occur, they are more likely to coincide with a shift in gaze than immediately precede or follow a shift in gaze. CONCLUSIONS Eye surface area does not explain individual differences in the rate of SB in infancy. This and other recent work suggests that central factors may play a more prominent role in the mechanisms of SB early in human development than previously reported and that the mechanisms regulating the rate of SB seem to be developmentally continuous with those of adults. To the extent that the rate and timing of SB reflects developing neurological systems, SB may be useful clinically.
Collapse
Affiliation(s)
- Leigh F Bacher
- Department of Psychology, State University of New York at Oswego, Oswego, New York 13126, USA.
| |
Collapse
|
247
|
Alterations of Hrd1 expression in various encephalic regional neurons in 6-OHDA model of Parkinson's disease. Neurosci Lett 2010; 474:63-8. [PMID: 20227462 DOI: 10.1016/j.neulet.2010.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 11/20/2022]
Abstract
The ubiquitin-proteasome system plays a central role in regulated degradation of cellular proteins under different physiological conditions. Accumulation of misfolded proteins is involved in the pathogenesis of many neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD). Hrd1 is a newly identified ubiquitin ligase involved in degradation of misfolded proteins from the endoplasmic reticulum (ER), thereby protecting cells against ER stress. Increasing evidence has linked ER stress to PD pathogenesis. However, the expression of Hrd1 in PD brain remains elusive. In the present study, the expression of Hrd1 in different encephalic regions was studied in 6-OHDA model of Parkinson's disease by immunohistochemistry. The results showed that Hrd1 was up-regulated in 6-OHDA-treated mice in various encephalic regional neurons, especially those in hippocampus, substantia nigra (SN), subthalamic nucleus (STN), striatum and frontal lobe. It suggested that Hrd1 up-regulation may represent a protective response against neurodegeneration in PD.
Collapse
|
248
|
Branchi I, D’Andrea I, Armida M, Carnevale D, Ajmone-Cat MA, Pèzzola A, Potenza RL, Morgese MG, Cassano T, Minghetti L, Popoli P, Alleva E. Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease. Behav Brain Res 2010; 208:137-43. [DOI: 10.1016/j.bbr.2009.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 12/31/2022]
|
249
|
Wang Y, Zhang QJ, Liu J, Ali U, Gui ZH, Hui YP, Chen L, Wang T. Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson's disease. Brain Res 2010; 1324:54-63. [PMID: 20149784 DOI: 10.1016/j.brainres.2010.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
The substantia nigra pars reticulata (SNr) plays a key role in the pathophysiology of Parkinson's disease (PD). It has been well documented that the SNr is not a homogeneous structure, and the lateral and medial subregions of the SNr receive different projections from the sensorimotor and limbic striatum, respectively. However, specific changes in firing activity of SNr subregions in PD remain unclear. In the present study, the spontaneous firing activity of GABAergic neurons in the lateral and medial SNr of rats with unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) or medial forebrain bundle (MFB) has been examined. Extracellular recordings indicated that the firing rate of lateral SNr neurons increased significantly and firing pattern of these neurons changed towards more irregular and bursty after SNc or MFB lesions compared to normal rats. In contrast, the firing rate and pattern of medial SNr neurons in rats with SNc lesions were unaltered when compared with that of normal rats. However, MFB lesions in rats decreased the firing rate of medial SNr neurons and firing pattern of these neurons changed towards more bursty. In addition, SNc lesions in rats increased the firing rate of the neurons with regular and irregular firing patterns within lateral but not in medial SNr, while the firing rate of the neurons within lateral and medial SNr with each firing pattern was not altered after MFB lesions. These results suggest that GABAergic neurons of SNr subregions have differential change of firing activity in the pathophysiology of PD.
Collapse
Affiliation(s)
- Yong Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Yan Ta Xi Lu 76, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Substance P selectively modulates GABAA receptor-mediated synaptic transmission in striatal cholinergic interneurons. Neuropharmacology 2010; 58:413-22. [DOI: 10.1016/j.neuropharm.2009.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/19/2009] [Accepted: 09/21/2009] [Indexed: 11/22/2022]
|