201
|
SNHG1 promotes MPP +-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol Res 2020; 53:1. [PMID: 31907031 PMCID: PMC6943908 DOI: 10.1186/s40659-019-0267-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNA small molecule RNA host gene 1 (SNHG1) was previously identified to be relevant with Parkinson’s disease (PD) pathogenesis. This work aims to further elucidate the regulatory networks of SNHG1 involved in PD. Methods 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-induced mice and 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells were respectively constructed as the in vivo and in vitro PD models. Expression levels of SNHG1 and miR-153-3p were detected by qRT-PCR. Protein expression levels of phosphate and tension homology deleted on chromosome ten (PTEN) were measured by western blotting assay. Cell viability and apoptosis were determined by MTT and flow cytometry assays. The interactions among SNHG1, miR-153-3p and PTEN were identified by luciferase reporter assay, RNA immunoprecipitation, and/or RNA pull-down analysis. Results Increased SNHG1 expression was found in midbrain of MPTP-induced PD mice and MPP+-treated SH-SY5Y cells. Overexpression of SNHG1 lowered viability and enhanced apoptosis in MPP+-treated SH-SY5Y cells. Moreover, SNHG1 acted as a molecular sponge to inhibit the expression of miR-153-3p. Furthermore, miR-153-3p-mediated suppression of MPP+-induced cytotoxicity was abated following SNHG1 up-regulation. Additionally, PTEN was identified as a direct target of miR-153-3p, and SNHG1 could serve as a competing endogenous RNA (ceRNA) of miR-153-3p to improve the expression of PTEN. Besides, enforced expression of PTEN displayed the similar functions as SNHG1 overexpression in regulating the viability and apoptosis of MPP+-treated SH-SY5Y cells. Finally, SNHG1 was found to activate PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells by targeting miR-153-3p. Conclusion SNHG1 aggravates MPP+-induced cellular toxicity in SH-SY5Y cells by regulating PTEN/AKT/mTOR signaling via sponging miR-153-3p, indicating the potential of SNHG1 as a promising therapeutic target for PD.
Collapse
|
202
|
Kim M, Won JH, Youn J, Park H. Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:23-34. [PMID: 31144631 DOI: 10.1109/tmi.2019.2918839] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Imaging genetics is a method used to detect associations between imaging and genetic variables. Some researchers have used sparse canonical correlation analysis (SCCA) for imaging genetics. This study was conducted to improve the efficiency and interpretability of SCCA. We propose a connectivity-based penalty for incorporating biological prior information. Our proposed approach, named joint connectivity-based SCCA (JCB-SCCA), includes the proposed penalty and can handle multi-modal neuroimaging datasets. Different neuroimaging techniques provide distinct information on the brain and have been used to investigate various neurological disorders, including Parkinson's disease (PD). We applied our algorithm to simulated and real imaging genetics datasets for performance evaluation. Our algorithm was able to select important features in a more robust manner compared with other multivariate methods. The algorithm revealed promising features of single-nucleotide polymorphisms and brain regions related to PD by using a real imaging genetic dataset. The proposed imaging genetics model can be used to improve clinical diagnosis in the form of novel potential biomarkers. We hope to apply our algorithm to cohorts such as Alzheimer's patients or healthy subjects to determine the generalizability of our algorithm.
Collapse
|
203
|
Meng D, Zhuang P, Hallett M, Zhang Y, Li J, Hu Y, Li Y. Characteristics of oscillatory pallidal neurons in patients with Parkinson's disease. J Neurol Sci 2019; 410:116661. [PMID: 31918151 DOI: 10.1016/j.jns.2019.116661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Excessive neuronal activity in the globus pallidus internus (GPi) is believed to promote parkinsonian akinesia/bradykinesia, but not tremor. Parkinsonian tremor is thought to result from dysfunction in the basal ganglia and cerebello-thalamo-cortical circuits. Whether the GPi is involved in tremorgenesis has not been fully elucidated. This study was designed to quantify the characteristics of oscillatory GPi neurons in patients with Parkinson's disease. METHODS Nine patients undergoing surgery were studied. Microelectrode recordings in the GPi and electromyographic (EMG) activity in the limbs were recorded and the mean spontaneous firing rates (MSFRs) were calculated. Spectral analysis was used to assess neuronal oscillatory patterns. Coherence analysis was applied to explore the relationship between oscillatory neurons and EMG. RESULTS Of 79 GPi neurons, 50.6% oscillated at the tremor frequency; 25.3% oscillated at β frequency, and 24.1% did not oscillate. The MSFR of all neurons was 81.5 ± 7.4 spikes/s. Among neurons oscillating at tremor frequency, 40% were coherent with the tremor. In four neurons, the pattern changed from tremor frequency to β frequency or vice versa. It appeared that the tremor began before the GPi fired bursts. CONCLUSION Some neuronal activity in the GPi correlates with tremor and this correlation might be due to either feedback, maintenance, or initiation. Since there were examples of EMG tremor prior to GPi activity, initiation seems least likely. The data further support the prediction of the classic pathophysiology model of Parkinson's disease.
Collapse
Affiliation(s)
- Detao Meng
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Ping Zhuang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yuqing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Jianyu Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Yongsheng Hu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University and Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, China
| |
Collapse
|
204
|
Zhu Z, Yichen W, Ziheng Z, Dinghao G, Ming L, Wei L, Enfang S, Gang H, Honda H, Jian Y. The loss of dopaminergic neurons in DEC1 deficient mice potentially involves the decrease of PI3K/Akt/GSK3β signaling. Aging (Albany NY) 2019; 11:12733-12753. [PMID: 31884423 PMCID: PMC6949058 DOI: 10.18632/aging.102599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
Abstract
Here we study the effects of differentiated embryonic chondrocyte gene 1(DEC1) deficiency on midbrain dopaminergic(DA) neurons in the substantia nigra pars compacta(SNpc) through behavioral, histological and molecular analysis. We have found that compared to the age-matched WT mice, DEC1 deficient mice show a decrease in locomotor activity and motor coordination, which shows the main features of Parkinson's disease(PD). But there is no significant difference in spatial learning and memory skills between WT and DEC1 KO mice. Compared to the age-matched WT mice, DEC1 deficient mice exhibit the loss of DA neurons in the SNpc and reduction of dopamine and its metabolites in the striatum. The activated caspase-3 and TH/TUNEL+ cells increase in the SNpc of 6- and 12-month-old DEC1 KO mice compared to those of the age-matched WT mice. But we haven't found any NeuN/TUNEL+ cell increase in the hippocampus of the above two types of mice at the age of 6 months. Furthermore, DEC1 deficiency leads to a significant inhibition of PI3K/Akt/GSK3β signaling pathway. Additionally, LiCl could rescue the DA neuron loss of midbrain in the 6-month-old DEC1 KO mice. Taken together, the loss of DA neurons in the DEC1 deficient mice potentially involves the downregulation of PI3K/Akt/GSK3β signaling.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.,, Department of Pharmacology Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wu Yichen
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhang Ziheng
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Ge Dinghao
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Lu Ming
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Liu Wei
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Shan Enfang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hu Gang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.,, Department of Pharmacology Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hiroaki Honda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yang Jian
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
205
|
Jin X, Wang L, Liu S, Zhu L, Loprinzi PD, Fan X. The Impact of Mind-body Exercises on Motor Function, Depressive Symptoms, and Quality of Life in Parkinson's Disease: A Systematic Review and Meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E31. [PMID: 31861456 PMCID: PMC6981975 DOI: 10.3390/ijerph17010031] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
Purpose: To systematically evaluate the effects of mind-body exercises (Tai Chi, Yoga, and Health Qigong) on motor function (UPDRS, Timed-Up-and-Go, Balance), depressive symptoms, and quality of life (QoL) of Parkinson's patients (PD). Methods: Through computer system search and manual retrieval, PubMed, Web of Science, The Cochrane Library, CNKI, Wanfang Database, and CQVIP were used. Articles were retrieved up to the published date of June 30, 2019. Following the Cochrane Collaboration System Evaluation Manual (version 5.1.0), two researchers independently evaluated the quality and bias risk of each article, including 22 evaluated articles. The Pedro quality score of 6 points or more was found for 86% (19/22) of these studies, of which 21 were randomized controlled trials with a total of 1199 subjects; and the trial intervention time ranged from 4 to 24 weeks. Interventions in the control group included no-intervention controls, placebo, waiting-lists, routine care, and non-sports controls. Meta-analysis was performed on the literature using RevMan 5.3 statistical software, and heterogeneity analysis was performed using Stata 14.0 software. Results: (1) Mind-body exercises significantly improved motor function in PD patients, including UPDRS (SMD = -0.61, p < 0.001), TUG (SMD = -1.47, p < 0.001) and balance function (SMD = 0.79, p < 0.001). (2) Mind-body exercises also had significant effects on depression (SMD = -1.61, p = 0.002) and QoL (SMD = 0.66, p < 0.001). (3) Among the indicators, UPDRS (I2 = 81%) and depression (I2 = 91%) had higher heterogeneity; according to the results of the separate combined effect sizes of TUG(I2 = 29%), Balance(I2 = 16%) and QoL(I2 = 35%), it shows that the heterogeneity is small; (4) After meta-regression analysis of the age limit and other possible confounding factors, further subgroup analysis showed that the reason for the heterogeneity of UPDRS motor function may be related to the sex of PD patients and severity of the disease; the outcome of depression was heterogeneous. The reason for this may be the use of specific drugs in the experiment and the duration of intervention in the trial. Conclusion: (1) Mind-body exercises were found to have significant improvements in motor function, depressive symptoms, and quality of life in patients with Parkinson's disease, and can be used as an effective method for clinical exercise intervention in PD patients. (2) Future clinical intervention programs for PD patients need to fully consider specific factors such as gender, severity of disease, specific drug use, and intervention cycle to effectively control heterogeneity factors, so that the clinical exercise intervention program for PD patients is objective, scientific, and effective.
Collapse
Affiliation(s)
- Xiaohu Jin
- Department of Physical Education, Wuhan University of Technology, Wuhan 430070, China;
| | - Lin Wang
- Department of Physical Education, Wuhan University of Technology, Wuhan 430070, China;
| | - Shijie Liu
- School of Physical Education & Training, Shanghai University of Sport, Shanghai 200438, China;
| | - Lin Zhu
- School of Physical Education, Soochow University, Suzhou, Jiangsu 205301, China;
| | - Paul Dinneen Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Xin Fan
- College of Physical Education, Hubei Normal University, Huangshi 435002, China;
| |
Collapse
|
206
|
Ben-Shachar D. The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson's disease and in schizophrenia. J Neural Transm (Vienna) 2019; 127:159-168. [PMID: 31848775 DOI: 10.1007/s00702-019-02120-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) and schizophrenia (SZ) are two CNS disorders in which dysfunctions in the dopaminergic system and mitochondria are major pathologies. The symptomology of both, PD a neurodegenerative disorder and SZ a neurodevelopmental disorder, is completely different. However, the pharmacological treatment of each of the diseases can cause a shift of symptoms into those characteristic of the other disease. In this review, I describe a pathological interaction between dopamine and mitochondria in both disorders, which due to differences in the extent of oxidative stress leads either to cell death and tissue degeneration as in PD substantia nigra pars compacta or to distorted neuronal activity, imbalanced neuronal circuitry and abnormal behavior and cognition in SZ. This review is in the honor of Moussa Youdim who introduced me to the secrets of research work. His enthusiasm, curiosity and novelty-seeking inspired me throughout my career. Thank you Moussa.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, and B. Rappaport Faculty of Medicine Technion-Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
207
|
NF-κB-Mediated Neuroinflammation in Parkinson's Disease and Potential Therapeutic Effect of Polyphenols. Neurotox Res 2019; 37:491-507. [PMID: 31823227 DOI: 10.1007/s12640-019-00147-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Different animal and human studies from last two decades in the case of Parkinson's disease (PD) have concentrated on oxidative stress due to increased inflammation and cytokine-dependent neurotoxicity leading to induction of dopaminergic (DA) degeneration pathway in the nigrostriatal region. Chronic inflammation, the principle hallmark of PD, forms the basis of neurodegeneration. Aging in association with activation of glia due to neuronal injury, perhaps because of immune alterations and genetic predispositions, leads to deregulation of inflammatory pathways premising the onset of PD. A family of inducible transcription factors, nuclear factor-κB (NF-κB), is found to show expression in various cells and tissues, such as microglia, neurons, and astrocytes which play an important role in activation and regulation of inflammatory intermediates during inflammation. Both canonical and non-canonical NF-κB pathways are involved in the regulation of the stimulated cells. During the prodromal/asymptomatic stage of age-associated neurodegenerative diseases (i.e., PD and AD), chronic neuroinflammation may act silently as the driver of neuronal dysfunction. Though research has provided an insight over age-related neurodegeneration in PD, elaborative role of NF-κB in neuroinflammation is yet to be completely understood and thus requires more investigation. Polyphenols, a group of naturally occurring compound in medicinal plants, have gained attention because of their anti-oxidative and anti-neuroinflammatory properties in neurodegenerative diseases. In this aspect, this review highlights the role of NF-κB and the possible therapeutic roles of polyphenols in NF-κB-mediated neuroinflammation in PD.
Collapse
|
208
|
Chen X, Gumina G, Virga KG. Recent Advances in Drug Repurposing for Parkinson's Disease. Curr Med Chem 2019; 26:5340-5362. [PMID: 30027839 DOI: 10.2174/0929867325666180719144850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Abstract
As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson's disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson's disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson's disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson's disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson's disease will be discussed.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, United States
| | - Giuseppe Gumina
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, United States
| | - Kristopher G Virga
- Department of Pharmaceutical Sciences, William Carey University School of Pharmacy, Biloxi, MS 39532, United States
| |
Collapse
|
209
|
Simonet C, Schrag A, Lees AJ, Noyce AJ. The motor prodromes of parkinson's disease: from bedside observation to large-scale application. J Neurol 2019; 268:2099-2108. [PMID: 31802219 PMCID: PMC8179909 DOI: 10.1007/s00415-019-09642-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
There is sufficient evidence that the pathological process that causes Parkinson's disease begins years before the clinical diagnosis is made. Over the last 15 years, there has been much interest in the existence of a prodrome in some patients, with a particular focus on non-motor symptoms such as reduced sense of smell, REM-sleep disorder, depression, and constipation. Given that the diagnostic criteria for Parkinson's disease depends on the presence of bradykinesia, it is somewhat surprising that there has been much less research into the possibility of subtle motor dysfunction as a pre-diagnostic pointer. This review will focus on early motor features and provide some advice on how to detect and measure them.
Collapse
Affiliation(s)
- C Simonet
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - A Schrag
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - A J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, London, UK
| | - A J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK. .,Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
210
|
Hjelm BE, Rollins B, Morgan L, Sequeira A, Mamdani F, Pereira F, Damas J, Webb MG, Weber MD, Schatzberg AF, Barchas JD, Lee FS, Akil H, Watson SJ, Myers RM, Chao EC, Kimonis V, Thompson PM, Bunney WE, Vawter MP. Splice-Break: exploiting an RNA-seq splice junction algorithm to discover mitochondrial DNA deletion breakpoints and analyses of psychiatric disorders. Nucleic Acids Res 2019; 47:e59. [PMID: 30869147 PMCID: PMC6547454 DOI: 10.1093/nar/gkz164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Deletions in the 16.6 kb mitochondrial genome have been implicated in numerous disorders that often display muscular and/or neurological symptoms due to the high-energy demands of these tissues. We describe a catalogue of 4489 putative mitochondrial DNA (mtDNA) deletions, including their frequency and relative read rate, using a combinatorial approach of mitochondria-targeted PCR, next-generation sequencing, bioinformatics, post-hoc filtering, annotation, and validation steps. Our bioinformatics pipeline uses MapSplice, an RNA-seq splice junction detection algorithm, to detect and quantify mtDNA deletion breakpoints rather than mRNA splices. Analyses of 93 samples from postmortem brain and blood found (i) the 4977 bp ‘common deletion’ was neither the most frequent deletion nor the most abundant; (ii) brain contained significantly more deletions than blood; (iii) many high frequency deletions were previously reported in MitoBreak, suggesting they are present at low levels in metabolically active tissues and are not exclusive to individuals with diagnosed mitochondrial pathologies; (iv) many individual deletions (and cumulative metrics) had significant and positive correlations with age and (v) the highest deletion burdens were observed in major depressive disorder brain, at levels greater than Kearns–Sayre Syndrome muscle. Collectively, these data suggest the Splice-Break pipeline can detect and quantify mtDNA deletions at a high level of resolution.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA.,Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Brandi Rollins
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Ling Morgan
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Firoza Mamdani
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Filipe Pereira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4050-123, Portugal
| | - Joana Damas
- The Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Michelle G Webb
- Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Matthieu D Weber
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Alan F Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jack D Barchas
- Department of Psychiatry, Weill Cornell Medical College at Cornell University, New York, NY 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College at Cornell University, New York, NY 10065, USA
| | - Huda Akil
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stanley J Watson
- The Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Elizabeth C Chao
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UCI, Irvine, CA, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, UCI, Irvine, CA, USA
| | - Peter M Thompson
- Southwest Brain Bank, Department of Psychiatry, Texas Tech University Health Sciences Center (TTUHSC), El Paso, TX 79905, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| | - Marquis P Vawter
- Department of Psychiatry and Human Behavior, University of California-Irvine (UCI), Irvine, CA 92697, USA
| |
Collapse
|
211
|
Abnormal pattern of brain glucose metabolism in Parkinson's disease: replication in three European cohorts. Eur J Nucl Med Mol Imaging 2019; 47:437-450. [PMID: 31768600 PMCID: PMC6974499 DOI: 10.1007/s00259-019-04570-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Rationale In Parkinson’s disease (PD), spatial covariance analysis of 18F-FDG PET data has consistently revealed a characteristic PD-related brain pattern (PDRP). By quantifying PDRP expression on a scan-by-scan basis, this technique allows objective assessment of disease activity in individual subjects. We provide a further validation of the PDRP by applying spatial covariance analysis to PD cohorts from the Netherlands (NL), Italy (IT), and Spain (SP). Methods The PDRPNL was previously identified (17 controls, 19 PD) and its expression was determined in 19 healthy controls and 20 PD patients from the Netherlands. The PDRPIT was identified in 20 controls and 20 “de-novo” PD patients from an Italian cohort. A further 24 controls and 18 “de-novo” Italian patients were used for validation. The PDRPSP was identified in 19 controls and 19 PD patients from a Spanish cohort with late-stage PD. Thirty Spanish PD patients were used for validation. Patterns of the three centers were visually compared and then cross-validated. Furthermore, PDRP expression was determined in 8 patients with multiple system atrophy. Results A PDRP could be identified in each cohort. Each PDRP was characterized by relative hypermetabolism in the thalamus, putamen/pallidum, pons, cerebellum, and motor cortex. These changes co-varied with variable degrees of hypometabolism in posterior parietal, occipital, and frontal cortices. Frontal hypometabolism was less pronounced in “de-novo” PD subjects (Italian cohort). Occipital hypometabolism was more pronounced in late-stage PD subjects (Spanish cohort). PDRPIT, PDRPNL, and PDRPSP were significantly expressed in PD patients compared with controls in validation cohorts from the same center (P < 0.0001), and maintained significance on cross-validation (P < 0.005). PDRP expression was absent in MSA. Conclusion The PDRP is a reproducible disease characteristic across PD populations and scanning platforms globally. Further study is needed to identify the topography of specific PD subtypes, and to identify and correct for center-specific effects. Electronic supplementary material The online version of this article (10.1007/s00259-019-04570-7) contains supplementary material, which is available to authorized users.
Collapse
|
212
|
Betrouni N, Lopes R, Defebvre L, Leentjens AFG, Dujardin K. Texture features of magnetic resonance images: A marker of slight cognitive deficits in Parkinson's disease. Mov Disord 2019; 35:486-494. [PMID: 31758820 DOI: 10.1002/mds.27931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/23/2019] [Accepted: 11/06/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cognitive impairment is a frequent nonmotor symptom of Parkinson's disease. Depending on severity, patients are considered to have mild cognitive impairment or dementia. However, among the cognitively intact patients, some may have deficits in a less severe range. The early detection of such subtle symptoms may be important for the initiation of care strategies. OBJECTIVE To identify imaging markers of early cognitive symptoms, potentially before usual signs, such as atrophy, become manifest. METHODS A total of 102 patients with Parkinson's disease and 17 age-matched cognitively intact healthy controls underwent extensive neuropsychological assessment and T1-weighted magnetic resonance imaging. Parkinson's disease patients were separated into 3 groups according to their cognitive status: intact, with slight slowing, and with mild deficits in executive functions. Texture features as measured by first-order and second-order statistics were computed in the following 6 brain regions: the hippocampus, thalamus, amygdala, putamen, caudate nucleus, and pallidum. They were tested between the groups, and their correlation with cognition was examined. Volumetric measurements were made for comparison. RESULTS Texture analysis showed significant between-group differences for 2 features-skewness and entropy in the hippocampus, the thalamus, and the amygdala-and the volume analysis revealed no between-group difference. These features were significantly correlated with cognitive performance. CONCLUSION These results support the assumption that signal alterations associated with Parkinson's disease-related cognitive decline can be captured very early by texture analysis. As these changes appear to reflect clinical phenomena, texture analysis may be a promising marker for helping cognitive phenotyping in Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nacim Betrouni
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Degenerative & Vascular Cognitive Disorders, Lille, France
| | - Renaud Lopes
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Degenerative & Vascular Cognitive Disorders, Lille, France
| | - Luc Defebvre
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Degenerative & Vascular Cognitive Disorders, Lille, France.,Neurology and Movement Disorders Department, CHU Lille, Lille, France
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kathy Dujardin
- Université de Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Degenerative & Vascular Cognitive Disorders, Lille, France.,Neurology and Movement Disorders Department, CHU Lille, Lille, France
| |
Collapse
|
213
|
Rau YA, Wang SM, Tournier JD, Lin SH, Lu CS, Weng YH, Chen YL, Ng SH, Yu SW, Wu YM, Tsai CC, Wang JJ. A longitudinal fixel-based analysis of white matter alterations in patients with Parkinson's disease. Neuroimage Clin 2019; 24:102098. [PMID: 31795054 PMCID: PMC6889638 DOI: 10.1016/j.nicl.2019.102098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/01/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Disruption to white matter pathways is an important contributor to the pathogenesis of Parkinson's disease. Fixel-based analysis has recently emerged as a useful fiber-specific tool for examining white matter structure. In this longitudinal study, we used Fixel-based analysis to investigate white matter changes occurring over time in patients with Parkinson's disease. METHODS Fifty patients with idiopathic Parkinson's disease (27 men and 23 women; mean age: 61.8 ± 6.1 years), were enrolled. Diffusion-weighted imaging and clinical examinations were performed at three different time points (baseline, first follow-up [after a mean of 24±2 months], and second follow-up [after a mean of 40 ± 3 months]). Additional 76 healthy control subjects (38 men and 38 women; mean age: 62.3 ± 5.5 years) were examined at baseline. The following fixel-based metrics were obtained: fiber density (FD), fiber bundle cross-section (FC), and a combined measure of both (FDC). Paired comparisons of metrics between three different time points were performed in patients. Linear regression was implemented between longitudinal changes of fixel-based metrics and the corresponding modifications in clinical parameters. A family-wise error corrected p < 0.05 was considered statistically significant. RESULTS AND DISCUSSIONS Early degeneration in the splenium of corpus callosum was identified as a typical alteration of Parkinson's disease over time. At follow-up, we observed significant FDC reductions compared with baseline in white matter, noticeably in corpus callosum; tapetum; cingulum, posterior thalamic radiation, corona radiata, and sagittal stratum. We also identified significant FC decreases that reflected damage to white matter structures involved in Parkinson's disease -related pathways. Fixel-based metrics were found to relate with a deterioration of 39-item Parkinson's Disease Questionnaire, Unified Parkinson's Disease Rating Scale and activity of daily living. A Parkinson's disease -facilitated aging effect was observed in terms of white matter disruption. CONCLUSION This study provides a thorough fixel-based profile of longitudinal white matter alterations occurring in patients with Parkinson's disease and new evidence of FC as an important role in white matter degeneration in this setting.
Collapse
Affiliation(s)
- Yi-Ai Rau
- Division of Chinese Acupuncture and Traumatology, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shi-Ming Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jacques-Donald Tournier
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom
| | - Sung-Han Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Liang Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shao-Wen Yu
- Division of Chinese Acupuncture and Traumatology, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Chih-Chien Tsai
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan; Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
214
|
van Nuland AJM, den Ouden HEM, Zach H, Dirkx MFM, van Asten JJA, Scheenen TWJ, Toni I, Cools R, Helmich RC. GABAergic changes in the thalamocortical circuit in Parkinson's disease. Hum Brain Mapp 2019; 41:1017-1029. [PMID: 31721369 PMCID: PMC7267977 DOI: 10.1002/hbm.24857] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/31/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease is characterized by bradykinesia, rigidity, and tremor. These symptoms have been related to an increased gamma‐aminobutyric acid (GABA)ergic inhibitory drive from globus pallidus onto the thalamus. However, in vivo empirical evidence for the role of GABA in Parkinson's disease is limited. Some discrepancies in the literature may be explained by the presence or absence of tremor. Specifically, recent functional magnetic resonance imaging (fMRI) findings suggest that Parkinson's tremor is associated with reduced, dopamine‐dependent thalamic inhibition. Here, we tested the hypothesis that GABA in the thalamocortical motor circuit is increased in Parkinson's disease, and we explored differences between clinical phenotypes. We included 60 Parkinson patients with dopamine‐resistant tremor (n = 17), dopamine‐responsive tremor (n = 23), or no tremor (n = 20), and healthy controls (n = 22). Using magnetic resonance spectroscopy, we measured GABA‐to‐total‐creatine ratio in motor cortex, thalamus, and a control region (visual cortex) on two separate days (ON and OFF dopaminergic medication). GABA levels were unaltered by Parkinson's disease, clinical phenotype, or medication. However, motor cortex GABA levels were inversely correlated with disease severity, particularly rigidity and tremor, both ON and OFF medication. We conclude that cortical GABA plays a beneficial rather than a detrimental role in Parkinson's disease, and that GABA depletion may contribute to increased motor symptom expression.
Collapse
Affiliation(s)
- Annelies J M van Nuland
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Hanneke E M den Ouden
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Heidemarie Zach
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands.,Medical University of Vienna, Department of Neurology, Vienna, Austria
| | - Michiel F M Dirkx
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| | - Jack J A van Asten
- Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Radboud University Medical Centre, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Ivan Toni
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Rick C Helmich
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| |
Collapse
|
215
|
Yoo SW, Heo Y, Kim JS, Lee KS. Unilateral Pseudo-Orthostatic Tremor Provoked by a Remote Limb Movement in Parkinson's Disease. J Mov Disord 2019; 13:69-71. [PMID: 31694356 PMCID: PMC6987524 DOI: 10.14802/jmd.19056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sang-Won Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youngje Heo
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joong-Seok Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kwang-Soo Lee
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
216
|
Ikenouchi Y, Kamagata K, Andica C, Hatano T, Ogawa T, Takeshige-Amano H, Kamiya K, Wada A, Suzuki M, Fujita S, Hagiwara A, Irie R, Hori M, Oyama G, Shimo Y, Umemura A, Hattori N, Aoki S. Evaluation of white matter microstructure in patients with Parkinson's disease using microscopic fractional anisotropy. Neuroradiology 2019; 62:197-203. [PMID: 31680195 DOI: 10.1007/s00234-019-02301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Micro fractional anisotropy (μFA) is more accurate than conventional fractional anisotropy (FA) for assessing microscopic tissue properties and can overcome limitations related to crossing white matter fibres. We compared μFA and FA for evaluating white matter changes in patients with Parkinson's disease (PD). METHODS We compared FA and μFA measures between 25 patients with PD and 25 age- and gender-matched healthy controls using tract-based spatial statistics (TBSS) analysis. We also examined potential correlations between changes, revealed by conventional FA or μFA, and disease duration or Unified Parkinson's Disease Rating Scale (UPDRS)-III scores. RESULTS Compared with healthy controls, patients with PD had significantly reduced μFA values, mainly in the anterior corona radiata (ACR). In the PD group, μFA values (primarily those from the ACR) were significantly negatively correlated with UPDRS-III motor scores. No significant changes or correlations with disease duration or UPDRS-III scores with tissue properties were detected using conventional FA. CONCLUSION μFA can evaluate microstructural changes that occur during white matter degeneration in patients with PD and may overcome a key limitation of FA.
Collapse
Affiliation(s)
- Yutaka Ikenouchi
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruka Takeshige-Amano
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kouhei Kamiya
- Department of Radiology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ryusuke Irie
- Department of Radiology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yashushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Atsushi Umemura
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
217
|
Serotonin 5-HT 4 Receptor Agonists Improve Facilitation of Contextual Fear Extinction in an MPTP-Induced Mouse Model of Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20215340. [PMID: 31717815 PMCID: PMC6862438 DOI: 10.3390/ijms20215340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Previously, we found that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD) model mice (PD mice) showed facilitation of hippocampal memory extinction via reduced cyclic adenosine monophosphate (cAMP)/cAMP-dependent response element-binding protein (CREB) signaling, which may cause cognitive impairment in PD. Serotonergic neurons in the median raphe nucleus (MnRN) project to the hippocampus, and functional abnormalities have been reported. In the present study, we investigated the effects of the serotonin 5-HT4 receptor (5-HT4R) agonists prucalopride and velusetrag on the facilitation of memory extinction observed in PD mice. Both 5-HT4R agonists restored facilitation of contextual fear extinction in PD mice by stimulating the cAMP/CREB pathway in the dentate gyrus of the hippocampus. A retrograde fluorogold-tracer study showed that γ-aminobutyric acid-ergic (GABAergic) neurons in the reticular part of the substantia nigra (SNr), but not dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc), projected to serotonergic neurons in the MnRN, which are known to project their nerve terminals to the hippocampus. It is possible that the degeneration of the SNpc DAergic neurons in PD mice affects the SNr GABAergic neurons, and thereafter, the serotonergic neurons in the MnRN, resulting in hippocampal dysfunction. These findings suggest that 5HT4R agonists could be potentially useful as therapeutic drugs for treating cognitive deficits in PD.
Collapse
|
218
|
Decreased Striatal Vesicular Monoamine Transporter Type 2 Correlates With the Nonmotor Symptoms in Parkinson Disease. Clin Nucl Med 2019; 44:707-713. [PMID: 31205154 DOI: 10.1097/rlu.0000000000002664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Nonmotor symptoms (NMS) are critical players in the patients' quality of life in Parkinson disease (PD). Vesicular monoamine transporter type 2 (VMAT2) has been reported owing to a role in affecting dopamine neurons in the striatum. Therefore, this study set out to characterize the relationship between VMAT2 distribution in the striatum in relation to the NMS in PD. METHODS Totally, 21 age-matched normal controls and 37 patients with PD in the moderate stages were included, followed by examination using F-DTBZ (F-AV133) PET/CT. The specific uptake ratio (SUR) of each striatal subregion was then determined with the occipital cortex as the reference background region. The overall NMSs of each individual patient were evaluated. Finally, the role of the striatal SURs in the clinical symptom scores were evaluated through the application of a Spearman correlation analysis as well as a multivariable stepwise regression analysis. RESULTS Patients with PD, particularly those at a more advanced stage, exhibited a more pronounced reduction in SURs in the bilateral putamen and caudate nucleus (P < 0.05, vs healthy controls). Meanwhile, patients at more advanced PD stages were found to have significantly worse scores in NMS except cognitive function. The Spearman correlation analysis demonstrated that NMS scores, with the exception of cognition scores, were correlated with striatal SURs (P < 0.05). CONCLUSION The key findings of the study identified a correlation between decreased striatal VMAT2 with a broad spectrum of NMS in patients with PD, highlighting the association between diminished dopamine supply and the development of NMS in PD.
Collapse
|
219
|
Rusu SI, Pennartz CMA. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems. Hippocampus 2019; 30:73-98. [PMID: 31617622 PMCID: PMC6972576 DOI: 10.1002/hipo.23167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/05/2023]
Abstract
This article aims to provide a synthesis on the question how brain structures cooperate to accomplish hierarchically organized behaviors, characterized by low‐level, habitual routines nested in larger sequences of planned, goal‐directed behavior. The functioning of a connected set of brain structures—prefrontal cortex, hippocampus, striatum, and dopaminergic mesencephalon—is reviewed in relation to two important distinctions: (a) goal‐directed as opposed to habitual behavior and (b) model‐based and model‐free learning. Recent evidence indicates that the orbitomedial prefrontal cortices not only subserve goal‐directed behavior and model‐based learning, but also code the “landscape” (task space) of behaviorally relevant variables. While the hippocampus stands out for its role in coding and memorizing world state representations, it is argued to function in model‐based learning but is not required for coding of action–outcome contingencies, illustrating that goal‐directed behavior is not congruent with model‐based learning. While the dorsolateral and dorsomedial striatum largely conform to the dichotomy between habitual versus goal‐directed behavior, ventral striatal functions go beyond this distinction. Next, we contextualize findings on coding of reward‐prediction errors by ventral tegmental dopamine neurons to suggest a broader role of mesencephalic dopamine cells, viz. in behavioral reactivity and signaling unexpected sensory changes. We hypothesize that goal‐directed behavior is hierarchically organized in interconnected cortico‐basal ganglia loops, where a limbic‐affective prefrontal‐ventral striatal loop controls action selection in a dorsomedial prefrontal–striatal loop, which in turn regulates activity in sensorimotor‐dorsolateral striatal circuits. This structure for behavioral organization requires alignment with mechanisms for memory formation and consolidation. We propose that frontal corticothalamic circuits form a high‐level loop for memory processing that initiates and temporally organizes nested activities in lower‐level loops, including the hippocampus and the ripple‐associated replay it generates. The evidence on hierarchically organized behavior converges with that on consolidation mechanisms in suggesting a frontal‐to‐caudal directionality in processing control.
Collapse
Affiliation(s)
- Silviu I Rusu
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
220
|
Salas-Leal AC, Sandoval-Carrillo A, Romero-Gutiérrez E, Castellanos-Juárez FX, Méndez-Hernández EM, La Llave-León O, Quiñones-Canales G, Arias-Carrión O, Salas-Pacheco JM. rs3764435 Associated With Parkinson's Disease in Mexican Mestizos: Case-Control Study Reveals Protective Effects Against Disease Development and Cognitive Impairment. Front Neurol 2019; 10:1066. [PMID: 31649613 PMCID: PMC6794556 DOI: 10.3389/fneur.2019.01066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/20/2019] [Indexed: 01/21/2023] Open
Abstract
Parkinson's disease (PD) is the second most common movement disorder. Genetic risk factors provide information about the pathophysiology of PD that could potentially be used as biomarkers. The ALDH1A1 gene encodes for the aldehyde dehydrogenase enzyme, which is involved in the disposal of toxic metabolites of dopamine. Due to the cytotoxic nature of aldehydes, their detoxification is essential for cellular homeostasis. It has been reported that ALDH1A1 expression levels and activity are decreased in PD patients. A deficit in ALDH1A1 activity in the substantia nigra, may lead to the accumulation of neurotoxic aldehydes and eventually the cell death seen in PD. One of the single nucleotide polymorphisms (SNP) that may modulate ALDH1A1 activity levels is rs3764435 (A/C). To investigate whether a statistical association exists between PD and the SNP rs3764435, we carried out a population-based Case-Control association study (120 PD patients and 178 non-PD subjects) in Mexican mestizos. DNA was extracted from blood samples and genotyped for rs3764435 using real-time PCR. A significant difference was found between PD cases and controls in both allelic and genotypic frequencies. The calculated OR showed that the C/C genotype is a protective factor under the codominant and recessive models of inheritance. However, after stratifying by sex, the protective role of this genotype is conserved only in men. Also, under the codominant and dominant models, rs3764435 appears to exert a protective effect against cognitive impairment in PD patients. Here for the first time, we show an association between PD and rs3764435 in a Mexican mestizo population, suggesting it confers neuroprotection for dementia in PD and is neuroprotective against developing PD in the males of this population. While analysis of the SNP looks favorable, replication of our study in cell lines or rs3764435 KO mice is required to validate these results.
Collapse
Affiliation(s)
- Alma C Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Ada Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Elizabeth Romero-Gutiérrez
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | | | - Edna M Méndez-Hernández
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Osmel La Llave-León
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico.,Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - José M Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| |
Collapse
|
221
|
Cresto N, Gaillard MC, Gardier C, Gubinelli F, Diguet E, Bellet D, Legroux L, Mitja J, Auregan G, Guillermier M, Josephine C, Jan C, Dufour N, Joliot A, Hantraye P, Bonvento G, Déglon N, Bemelmans AP, Cambon K, Liot G, Brouillet E. The C-terminal domain of LRRK2 with the G2019S mutation is sufficient to produce neurodegeneration of dopaminergic neurons in vivo. Neurobiol Dis 2019; 134:104614. [PMID: 31605779 DOI: 10.1016/j.nbd.2019.104614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
The G2019S substitution in the kinase domain of LRRK2 (LRRK2G2019S) is the most prevalent mutation associated with Parkinson's disease (PD). Neurotoxic effects of LRRK2G2019S are thought to result from an increase in its kinase activity as compared to wild type LRRK2. However, it is unclear whether the kinase domain of LRRK2G2019S is sufficient to trigger degeneration or if the full length protein is required. To address this question, we generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2). A kinase activity that was increased by G2019➔S substitution could be detected in ΔLRRK2. However biochemical experiments suggested it did not bind or phosphorylate the substrate RAB10, in contrast to full length LRRK2. The overexpression of ΔLRRK2G2019S in the rat striatum using lentiviral vectors (LVs) offered a straightforward and simple way to investigate its effects in neurons in vivo. Results from a RT-qPCR array analysis indicated that ΔLRRK2G2019S led to significant mRNA expression changes consistent with a kinase-dependent mechanism. We next asked whether ΔLRRK2 could be sufficient to trigger neurodegeneration in the substantia nigra pars compacta (SNc) in adult rats. Six months after infection of the substantia nigra pars compacta (SNc) with LV-ΔLRRK2WT or LV-ΔLRRK2G2019S, the number of DA neurons was unchanged. To examine whether higher levels of ΔLRRK2G2019S could trigger degeneration we cloned ΔLRRK2 in AAV2/9 construct. As expected, AAV2/9 injected in the SNc led to neuronal expression of ΔLRRK2WT and ΔLRRK2G2019S at much higher levels than those obtained with LVs. Six months after injection, unbiased stereology showed that AAV-ΔLRRK2G2019S produced a significant ~30% loss of neurons positive for tyrosine hydroxylase- and for the vesicular dopamine transporter whereas AAV-ΔLRRK2WT did not. These findings show that overexpression of the C-terminal part of LRRK2 containing the mutant kinase domain is sufficient to trigger degeneration of DA neurons, through cell-autonomous mechanisms, possibly independent of RAB10.
Collapse
Affiliation(s)
- Noémie Cresto
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Camille Gardier
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Elsa Diguet
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France; Institut de Recherche SERVIER, Neuropsychiatry Department, 125 chemin de ronde, 78290 Croissy sur Seine, France
| | - Déborah Bellet
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Laurine Legroux
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Julien Mitja
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Gwenaëlle Auregan
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Martine Guillermier
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Charlène Josephine
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Caroline Jan
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Noëlle Dufour
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Alain Joliot
- Homeoprotein and Plasticity, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Philippe Hantraye
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Gilles Bonvento
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Nicole Déglon
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; Lausanne University Medical School (CHUV), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne, Switzerland; Lausanne University Medical School (CHUV), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne, Switzerland
| | - Alexis-Pierre Bemelmans
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Karine Cambon
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Géraldine Liot
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- CEA, DRF, Institut de Biologie Françoise Jacob, Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France; CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), F-92265 Fontenay-aux-Roses, France.
| |
Collapse
|
222
|
Nisticò R, Cerasa A, Olivadese G, Dalla Volta R, Crasà M, Vasta R, Gramigna V, Vescio B, Barbagallo G, Chiriaco C, Quattrone A, Salsone M, Novellino F, Arabia G, Nicoletti G, Morelli M, Quattrone A. The embodiment of language in tremor-dominant Parkinson’s disease patients. Brain Cogn 2019; 135:103586. [DOI: 10.1016/j.bandc.2019.103586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
|
223
|
Li W, Guo B, Tao K, Li F, Liu Z, Yao H, Feng D, Liu X. Inhibition of SIRT1 in hippocampal CA1 ameliorates PTSD-like behaviors in mice by protections of neuronal plasticity and serotonin homeostasis via NHLH2/MAO-A pathway. Biochem Biophys Res Commun 2019; 518:344-350. [DOI: 10.1016/j.bbrc.2019.08.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022]
|
224
|
Sarbu M, Dehelean L, Munteanu CVA, Ica R, Petrescu AJ, Zamfir AD. Human caudate nucleus exhibits a highly complex ganglioside pattern as revealed by high-resolution multistage Orbitrap MS. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1669632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mirela Sarbu
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Liana Dehelean
- Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Raluca Ica
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Andrei J. Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alina D. Zamfir
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, Arad, Romania
| |
Collapse
|
225
|
Multichannel separation device with parallel electrochemical detection. J Chromatogr A 2019; 1610:460537. [PMID: 31537305 DOI: 10.1016/j.chroma.2019.460537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
Abstract
A device with four parallel channels was designed and manufactured by 3D printing in titanium. A simple experimental setup allowed splitting of the mobile phase in four parallel streams, such that a single sample could be analysed four times simultaneously. The four capillary channels were filled with a monolithic stationary phase, prepared using a zwitterionic functional monomer in combination with various dimethacrylate cross-linkers. The resulting stationary phases were applicable in both reversed-phase and hydrophilic-interaction retention mechanisms. The mobile-phase composition was optimized by means of a window diagram so as to obtain the highest possible resolution of dopamine precursors and metabolites on all columns. Miniaturized electrochemical detectors with carbon fibres as working electrodes and silver micro-wires as reference electrodes were integrated in the device at the end of each column. Experimental separations were successfully compared with those predicted by a three-parameter retention model. Finally, dopamine was determined in human urine to further confirm applicability of the developed device.
Collapse
|
226
|
Therapeutic Approaches to Dysphagia Treatment in Parkinson Disease: A Review. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.64921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
227
|
Morano A, Basili LM, Fanella M, Giallonardo AT, Di Bonaventura C. The Evolution of Movement Disorders in N‐Methyl‐D‐Aspartate Receptor Encephalitis—A Video Log. Mov Disord Clin Pract 2019; 6:610-611. [DOI: 10.1002/mdc3.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alessandra Morano
- Epilepsy Unit, Department of Human Neurosciences “Sapienza” University Rome Italy
| | - Luca Manfredi Basili
- Epilepsy Unit, Department of Human Neurosciences “Sapienza” University Rome Italy
| | - Martina Fanella
- Epilepsy Unit, Department of Human Neurosciences “Sapienza” University Rome Italy
| | | | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences “Sapienza” University Rome Italy
| |
Collapse
|
228
|
Hanssen H, Prasuhn J, Heldmann M, Diesta CC, Domingo A, Göttlich M, Blood AJ, Rosales RL, Jamora RDG, Münte TF, Klein C, Brüggemann N. Imaging gradual neurodegeneration in a basal ganglia model disease. Ann Neurol 2019; 86:517-526. [DOI: 10.1002/ana.25566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Henrike Hanssen
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Jannik Prasuhn
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Marcus Heldmann
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
| | - Cid C. Diesta
- Asian Hospital and Medical Center, Filinvest Corporate City, Alabang Muntinlupa City the Philippines
| | - Aloysius Domingo
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
- Department of NeurologyMassachusetts General Hospital Boston MA
| | - Martin Göttlich
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
| | - Anne J. Blood
- Mood and Motor Control LaboratoryMassachusetts General Hospital Charlestown MA
- Laboratory of Neuroimaging and GeneticsMassachusetts General Hospital Charlestown MA
- Department of Neurology and PsychiatryMassachusetts General Hospital Boston MA
- Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital Charlestown MA
- Division of Child NeurologyBoston Children's Hospital Boston MA
| | - Raymond L. Rosales
- Department of Neurology and Psychiatry, Faculty of Medicine and SurgeryUniversity of Santo Tomas Manila the Philippines
| | - Roland D. G. Jamora
- Department of Neurosciences, College of Medicine–Philippine General HospitalUniversity of the Philippines Manila Manila the Philippines
| | - Thomas F. Münte
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
| | - Christine Klein
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| | - Norbert Brüggemann
- Department of NeurologyUniversity Medical Center Schleswig‐Holstein, Campus Lübeck Lübeck Germany
- Institute of NeurogeneticsUniversity of Lübeck Lübeck Germany
| |
Collapse
|
229
|
Akinina Y, Dragoy O, Ivanova MV, Iskra EV, Soloukhina OA, Petryshevsky AG, Fedinа ON, Turken AU, Shklovsky VM, Dronkers NF. Grey and white matter substrates of action naming. Neuropsychologia 2019; 131:249-265. [PMID: 31129278 PMCID: PMC6650369 DOI: 10.1016/j.neuropsychologia.2019.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Despite a persistent interest in verb processing, data on the neural underpinnings of verb retrieval are fragmentary. The present study is the first to analyze the contributions of both grey and white matter damage affecting verb retrieval through action naming in stroke. We used voxel-based lesion-symptom mapping (VLSM) with an action naming task in 40 left-hemisphere stroke patients. Within the grey matter, we revealed the critical involvement of the left precentral and inferior frontal gyri, insula, and parts of basal ganglia. An overlay of white matter tract probability masks on the VLSM lesion map revealed involvement of left-hemisphere long and short association tracts with terminations in the frontal areas; and several projection tracts. The involvement of these structures is interpreted in the light of existing picture naming models, semantic control processes, and the embodiment cognition framework. Our results stress the importance of both cortico-cortical and cortico-subcortical networks of language processing.
Collapse
Affiliation(s)
- Yu Akinina
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; University of Groningen, Graduate School for the Humanities, P.O. Box 716, NL-9700, AS Groningen, Groningen, the Netherlands.
| | - O Dragoy
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; Federal Center for Cerebrovascular Pathology and Stroke, Department of Medical Rehabilitation, 1/10 Ostrovityanova Street, 117342, Moscow, Russia
| | - M V Ivanova
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; University of California, Berkeley, Dept. of Psychology, 2121 Berkeley Way, 94704, Berkeley, CA, USA; Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA
| | - E V Iskra
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia; Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - O A Soloukhina
- National Research University Higher School of Economics, Center for Language and Brain, 21/4 Staraya Basmannaya Street, Office 510, 105066, Moscow, Russia
| | - A G Petryshevsky
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - O N Fedinа
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia; Medicine and Nuclear Technology Ltd., 1/133 Akademika Kurchatova Street, 123182, Moscow, Russia
| | - A U Turken
- Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA
| | - V M Shklovsky
- Center for Speech Pathology and Neurorehabilitation, 20 Nikoloyamskaya Street, 109240, Moscow, Russia
| | - N F Dronkers
- University of California, Berkeley, Dept. of Psychology, 2121 Berkeley Way, 94704, Berkeley, CA, USA; Center for Aphasia and Related Disorders, VA Northern California Health Care System, 150 Muir Road 126R, 94553, Martinez, CA, USA; University of California, Davis, Dept. of Neurology, Sacramento, CA, USA
| |
Collapse
|
230
|
Hünerli D, Emek-Savaş DD, Çavuşoğlu B, Dönmez Çolakoğlu B, Ada E, Yener GG. Mild cognitive impairment in Parkinson’s disease is associated with decreased P300 amplitude and reduced putamen volume. Clin Neurophysiol 2019; 130:1208-1217. [DOI: 10.1016/j.clinph.2019.04.314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022]
|
231
|
Whitfield JA, Mehta DD. Examination of Clear Speech in Parkinson Disease Using Measures of Working Vowel Space. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:2082-2098. [PMID: 31306606 DOI: 10.1044/2019_jslhr-s-msc18-18-0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose The purpose of the current study was to characterize clear speech production for speakers with and without Parkinson disease (PD) using several measures of working vowel space computed from frequently sampled formant trajectories. Method The 1st 2 formant frequencies were tracked for a reading passage that was produced using habitual and clear speaking styles by 15 speakers with PD and 15 healthy control speakers. Vowel space metrics were calculated from the distribution of frequently sampled formant frequency tracks, including vowel space hull area, articulatory-acoustic vowel space, and multiple vowel space density (VSD) measures based on different percentile contours of the formant density distribution. Results Both speaker groups exhibited significant increases in the articulatory-acoustic vowel space and VSD10, the area of the outermost (10th percentile) contour of the formant density distribution, from habitual to clear styles. These clarity-related vowel space increases were significantly smaller for speakers with PD than controls. Both groups also exhibited a significant increase in vowel space hull area; however, this metric was not sensitive to differences in the clear speech response between groups. Relative to healthy controls, speakers with PD exhibited a significantly smaller VSD90, the area of the most central (90th percentile), densely populated region of the formant space. Conclusions Using vowel space metrics calculated from formant traces of the reading passage, the current work suggests that speakers with PD do indeed reach the more peripheral regions of the vowel space during connected speech but spend a larger percentage of the time in more central regions of formant space than healthy speakers. Additionally, working vowel space metrics based on the distribution of formant data suggested that speakers with PD exhibited less of a clarity-related increase in formant space than controls, a trend that was not observed for perimeter-based measures of vowel space area.
Collapse
Affiliation(s)
- Jason A Whitfield
- Department of Communication Sciences and Disorders, Bowling Green State University, OH
| | - Daryush D Mehta
- Center for Laryngeal Surgery and Voice Rehabilitation, Department of Surgery, Massachusetts General Hospital, Boston
- Harvard Medical School, Harvard University, Boston, MA
| |
Collapse
|
232
|
Mattos DC, Meziat Filho NA, Pedron CA, Vasconcellos LF, Nogueira LAC, Oliveira LAS. Pain Characteristics and Their Relationship With Motor Dysfunction in Individuals With Parkinson Disease—A Cross‐Sectional Study. Pain Pract 2019; 19:732-739. [DOI: 10.1111/papr.12803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Danielle C. Mattos
- Post-Graduation Program in Rehabilitation Sciences Augusto Motta University Center (UNISUAM) Rio de Janeiro Brazil
| | - Ney A. Meziat Filho
- Post-Graduation Program in Rehabilitation Sciences Augusto Motta University Center (UNISUAM) Rio de Janeiro Brazil
| | - Carla A. Pedron
- Post-Graduation Program in Rehabilitation Sciences Augusto Motta University Center (UNISUAM) Rio de Janeiro Brazil
| | - Luiz F. Vasconcellos
- Institute of Neurology Deolindo Couto, Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Leandro A. C. Nogueira
- Post-Graduation Program in Rehabilitation Sciences Augusto Motta University Center (UNISUAM) Rio de Janeiro Brazil
- School of Physiotherapy Federal Institute of Rio de Janeiro Rio de Janeiro Brazil
| | - Laura Alice Santos Oliveira
- Post-Graduation Program in Rehabilitation Sciences Augusto Motta University Center (UNISUAM) Rio de Janeiro Brazil
- School of Physiotherapy Federal Institute of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
233
|
Reyes JF, Sackmann C, Hoffmann A, Svenningsson P, Winkler J, Ingelsson M, Hallbeck M. Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes. Acta Neuropathol 2019; 138:23-47. [PMID: 30976973 PMCID: PMC6570706 DOI: 10.1007/s00401-019-02007-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
The intercellular transfer of alpha-synuclein (α-syn) has been implicated in the progression of Parkinson's disease (PD) and multiple system atrophy (MSA). The cellular mechanisms underlying this process are now beginning to be elucidated. In this study, we demonstrate that the gap junction protein connexin-32 (Cx32) is centrally involved in the preferential uptake of α-syn oligomeric assemblies (oα-syn) in neurons and oligodendrocytes. In vitro, we demonstrate a clear correlation between Cx32 expression and oα-syn uptake. Pharmacological and genetic strategies targeting Cx32 successfully blocked oα-syn uptake. In cellular and transgenic mice modeling PD and MSA, we observed significant upregulation of Cx32 which correlates with α-syn accumulation. Notably, we could also demonstrate a direct interaction between α-syn and Cx32 in two out of four human PD cases that was absent in all four age-matched controls. These data are suggestive of a link between Cx32 and PD pathophysiology. Collectively, our results provide compelling evidence for Cx32 as a novel target for therapeutic intervention in PD and related α-synucleinopathies.
Collapse
Affiliation(s)
- Juan F Reyes
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Christopher Sackmann
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alana Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Ingelsson
- Section of Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
234
|
Ko YH, Kim SK, Kwon SH, Seo JY, Lee BR, Kim YJ, Hur KH, Kim SY, Lee SY, Jang CG. 7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells. Biomol Ther (Seoul) 2019; 27:363-372. [PMID: 30866601 PMCID: PMC6609108 DOI: 10.4062/biomolther.2018.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 12/28/2022] Open
Abstract
Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson' disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/GSK-3β pathways.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
235
|
Yang H, Hao D, Liu C, Huang D, Chen B, Fan H, Liu C, Zhang L, Zhang Q, An J, Zhao J. Generation of functional dopaminergic neurons from human spermatogonial stem cells to rescue parkinsonian phenotypes. Stem Cell Res Ther 2019; 10:195. [PMID: 31248447 PMCID: PMC6598262 DOI: 10.1186/s13287-019-1294-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent progress in the induced generation of dopaminergic (DA) neurons from different types of stem cells or reprogrammed somatic cells holds tremendous potential for the treatment of Parkinson's disease (PD). However, the lack of a reliable source for cell replacement therapy remains a major limitation in the treatment of human neurological disorders. Additionally, the current protocols for in vitro differentiation or cell reprogramming to generate human DA neurons are laborious, time-consuming, and expensive, and efficient conversion of human spermatogonial stem cells (hSSCs) to functional DA neurons has not yet been achieved. METHODS Primary hSSCs from testicular tissues of patients were exposed to an improved induction system, which consisted mainly of olfactory ensheathing cell conditioned culture medium (OECCM) and a set of defined cell-extrinsic factors and small molecules. Morphological changes were assessed, along with the expression of various DA neuron phenotypic markers (e.g., Tuj-1, TH, Nurr1, DAT) and several critical pro-DA neurogenesis effectors (e.g., EN-1, Pitx3, Foxa2, Lmx1a, Lmx1b, and OTX2). In addition, transcriptome analysis was used to further evaluate the genetic similarity between the artificially differentiated DA neurons and genuine ones. Concomitantly, the functional properties of converted DA neurons including synapse formation, dopamine release, electrophysiological activity, and neuron-specific Ca2+ signaling images were determined. Finally, hSSCs in the early stage of induction were evaluated for survival, differentiation, migration, tumorigenicity in the mouse striatum, and improvement of functional deficits in MPTP-induced PD animals. RESULTS The hSSC-derived neurons not only acquired neuronal morphological features but also expressed various phenotypic genes and protein characteristic of DA neurons and several effectors critical for pro-DA neurogenesis. Strikingly, as the period of induction was prolonged, expression of the critical molecules for DA neuron epigenetic status gradually increased while hSSC-specific markers sharply decreased. After 3 weeks of induction, the transdifferentiation efficiency reached 21%. In addition, hierarchical clustering analysis showed that the differentiated DA neurons closely resembled genuine ones. Furthermore, the hSSC-derived neurons gained sophisticated functional properties of wild-type DA neurons, and pro-induced hSSCs efficiently survived, migrated, and differentiated into DA neurons without tumorigenesis after transplantation into mouse striatum, leading to improvement of functional deficits in PD animals. CONCLUSIONS The results showed that, using the present improved straightforward approach, hSSCs could acquire DA neuron morphological features and functional properties and rescue parkinsonian phenotypes. Our strategy for the conversion of hSSCs into DA neurons is very efficient and thus may provide an alternative approach suitable for clinical cell therapy to treat neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Dingjun Hao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Cheng Liu
- Department of Foot and Ankle Surge, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dageng Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Chen
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hong Fan
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Cuicui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jing An
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jingjing Zhao
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
236
|
Spay C, Albares M, Lio G, Thobois S, Broussolle E, Lau B, Ballanger B, Boulinguez P. Clonidine modulates the activity of the subthalamic-supplementary motor loop: evidence from a pharmacological study combining deep brain stimulation and electroencephalography recordings in Parkinsonian patients. J Neurochem 2019; 146:333-347. [PMID: 29675956 DOI: 10.1111/jnc.14447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022]
Abstract
Clonidine is an anti-hypertensive medication which acts as an alpha-adrenergic receptor agonist. As the noradrenergic system is likely to support cognitive functions including attention and executive control, other clinical uses of clonidine have recently gained popularity for the treatment of neuropsychiatric disorders like attention-deficit hyperactivity disorder or Tourette syndrome, but the mechanism of action is still unclear. Here, we test the hypothesis that the noradrenergic system regulates the activity of subthalamo-motor cortical loops, and that this influence can be modulated by clonidine. We used pharmacological manipulation of clonidine in a placebo-controlled study in combination with subthalamic nucleus-deep brain stimulation (STN-DBS) in 16 Parkinson's disease patients performing a reaction time task requiring to refrain from reacting (proactive inhibition). We recorded electroencephalographical activity of the whole cortex, and applied spectral analyses directly at the source level after advanced blind source separation. We found only one cortical source localized to the supplementary motor area (SMA) that supported an interaction of pharmacological and subthalamic stimulation. Under placebo, STN-DBS reduced proactive alpha power in the SMA, a marker of local inhibitory activity. This effect was associated with the speeding-up of movement initiation. Clonidine substantially increased proactive alpha power from the SMA source, and canceled out the benefits of STN-DBS on movement initiation. These results provide the first direct neural evidence in humans that the tonic inhibitory activity of the subthalamocortical loops underlying the control of movement initiation is coupled to the noradrenergic system, and that this activity can be targeted by pharmacological agents acting on alpha-adrenergic receptors.
Collapse
Affiliation(s)
- Charlotte Spay
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| | - Marion Albares
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Sorbonne Universités, UPMC Université Pierre et Marie Curie Paris 06, UMR 7225, Paris, France.,INSERM UMR 1127, Institut du cerveau et de la moelle épinière, ICM, Paris, France.,CNRS, UMR 7225, Institut du cerveau et de la moelle épinière, ICM, Paris, France
| | - Guillaume Lio
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Stephane Thobois
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Hospices civils de Lyon, hôpital neurologique Pierre Wertheimer, Bron, France
| | - Emmanuel Broussolle
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Hospices civils de Lyon, hôpital neurologique Pierre Wertheimer, Bron, France
| | - Brian Lau
- Sorbonne Universités, UPMC Université Pierre et Marie Curie Paris 06, UMR 7225, Paris, France.,INSERM UMR 1127, Institut du cerveau et de la moelle épinière, ICM, Paris, France.,CNRS, UMR 7225, Institut du cerveau et de la moelle épinière, ICM, Paris, France
| | - Benedicte Ballanger
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| | - Philippe Boulinguez
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| |
Collapse
|
237
|
Preclinical signs of Parkinson's disease: A possible association of Parkinson's disease with skin and hair features. Med Hypotheses 2019; 127:100-104. [DOI: 10.1016/j.mehy.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/24/2022]
|
238
|
Yang YJ, Ge JJ, Liu FT, Liu ZY, Zhao J, Wu JJ, Ma Y, Zuo CT, Wang J. Preserved caudate function in young-onset patients with Parkinson's disease: a dual-tracer PET imaging study. Ther Adv Neurol Disord 2019; 12:1756286419851400. [PMID: 31205495 PMCID: PMC6535758 DOI: 10.1177/1756286419851400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/25/2019] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous clinical entity. Patients with young-onset PD (YOPD) show some characteristic manifestations to late-onset PD (LOPD). The current study aimed to investigate the cerebral dopaminergic and metabolic characteristics in YOPD with positron emission tomography (PET) imaging. In our study, 103 subjects (42 YOPD and 61 LOPD patients) accepted both 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane (11C-CFT) and 18F-fluorodeoxyglucose (18F-FDG) cerebral PET imaging. Sixty-two patients out of 103 patients in our study completed the cognition tests. In this limited subsection, YOPD patients performed better in cognitive functioning than LOPD patients of similar disease duration. In 11C-CFT imaging, dopamine transporter binding in caudate was relatively spared in YOPD compared with lesions in putamen. In 18F-FDG PET, YOPD patients showed increased metabolism in basal ganglia relative to the healthy controls. When compared with LOPD patients, YOPD patients exhibited hypermetabolism in caudate and hypometabolism in putamen. Furthermore, the regional metabolic values in caudate correlated positively and moderately with the dopaminergic binding deficiency in caudate. The findings of this imaging study might offer new perspectives in understanding the characteristic manifestations in YOPD in light of better-preserved cognition function.
Collapse
Affiliation(s)
- Yu-jie Yang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing-jie Ge
- PET Center, Huashan Hospital, Fudan University, Shanghai, China, and Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Feng-tao Liu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen-yang Liu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-jun Wu
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yilong Ma
- Center for Neurosciences, Feinstein Institute for Medical Research, New York, USA
| | - Chuan-tao Zuo
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Jing’an District, Shanghai, 200040, China; Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai, 201203, China
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Jing’an District, Shanghai, 200040, China; Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai, 201203, China
| |
Collapse
|
239
|
Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94:112-120. [PMID: 31077796 DOI: 10.1016/j.semcdb.2019.05.004] [Citation(s) in RCA: 565] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Microglia, being the resident immune cells of the central nervous system, play an important role in maintaining tissue homeostasis and contributes towards brain development under normal conditions. However, when there is a neuronal injury or other insult, depending on the type and magnitude of stimuli, microglia will be activated to secrete either proinflammatory factors that enhance cytotoxicity or anti-inflammatory neuroprotective factors that assist in wound healing and tissue repair. Excessive microglial activation damages the surrounding healthy neural tissue, and the factors secreted by the dead or dying neurons in turn exacerbate the chronic activation of microglia, causing progressive loss of neurons. It is the case observed in many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This review gives a detailed account of the microglia-mediated neuroinflammation in various neurodegenerative diseases. Hence, resolving chronic inflammation mediated by microglia bears great promise as a novel treatment strategy to reduce neuronal damage and to foster a permissive environment for further regeneration effort.
Collapse
Affiliation(s)
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| |
Collapse
|
240
|
Kinematic Metrics from a Wireless Stylus Quantify Tremor and Bradykinesia in Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:6850478. [PMID: 31061696 PMCID: PMC6466869 DOI: 10.1155/2019/6850478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/04/2022]
Abstract
A fundamental challenge in the clinical care of Parkinson disease (PD) is the current dependence on subjective evaluations of tremor and bradykinesia. New technologies offer the ability to evaluate motor deficits using purely objective measures. The aim of this study was to develop and evaluate the efficacy of a wireless stylus (Cleveland Clinic Stylus) with an embedded motion sensor to quantitatively assess tremor and bradykinesia in patients with PD with subthalamic nucleus (STN) deep brain stimulation (DBS). Twenty-one subjects were tested in various on and off DBS conditions while holding the Cleveland Clinic Stylus while at rest, maintaining a postural hold, and during a movement task. Kinematic metrics were calculated from the motion sensor data, including 3D angular velocity and 3D acceleration data, and were compared between the on and off conditions. Generalized estimating equations (GEEs) were used to determine the relationship between kinematic metrics and MDS-Unified Parkinson's Disease Rating Scale Motor III (UPDRS-III) subscores. Kinematic metrics from the rest and postural tasks were significantly related to the UPDRS-III subscores of tremor (p < 0.001 for all metrics), and kinematic metrics from the movement task were significantly related to the UPDRS-III subscore of bradykinesia (p < 0.001 for 3/7 metrics). Kinematic metrics (7/9) showed a significant effect of stimulation setting (range: p < 0.03– < 0.0001) across the three tasks, indicating significant improvements from DBS in these measures. The Cleveland Clinic Stylus provided quantitative kinematic measures of tremor and bradykinesia severity and detected significant improvements in these measures from medication and DBS therapy. This low-cost, easy-to-use tool can provide objective measures that will improve clinical care of PD patients by providing a more reliable and objective evaluation of movement symptoms, disease progression, and effects of therapy in and outside the clinical setting.
Collapse
|
241
|
Lee JW, Song YS, Kim H, Ku BD, Lee WW. Alteration of Tremor Dominant and Postural Instability Gait Difficulty Subtypes During the Progression of Parkinson's Disease: Analysis of the PPMI Cohort. Front Neurol 2019; 10:471. [PMID: 31133973 PMCID: PMC6514149 DOI: 10.3389/fneur.2019.00471] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Classifying PD into tremor dominant (TD) and postural instability gait difficulty (PIGD) subtypes may have several limitations, such as its diagnostic inconsistency and inability to reflect disease stage. In this study, we investigated the patterns of progression and dopaminergic denervation, by prospective evaluation at regular time intervals. Methods: 325 PD dopamine replacement drug-naïve patients (age 61.2 ± 9.7, M:F = 215:110) were enrolled. Patients were grouped into TD, indeterminant, and PIGD subtypes. Clinical parameters and I-123 FP-CIT SPECT images of each groups were analyzed and compared at baseline, 1, 2, and 4 years of follow up periods. Results: Baseline I-123 FP-CIT uptakes of the striatum were significantly higher in the TD group compared with the indeterminant group and PIGD group (p < 0.01). H & Y stage and MDS-UPDRS part III scores of the indeterminant group were significantly worse at baseline, compared with the TD and PIGD groups (p < 0.001 and p < 0.01, respectively), and MDS-UPDRS part II scores of the indeterminant group were significantly worse than the PIGD group (p < 0.001). There were no other significant differences of age, gender, weight, duration of PD, SCOPA-AUT, MOCA, usage of dopamine agonists, and levodopa equivalent daily doses at baseline. After 4 years of follow up, there were no differences of I-123 FP-CIT uptakes or clinical parameters, except for the MDS-UPDRS part II between the TD and indeterminant group (p < 0.05). The motor-subtypes were reevaluated at the 4 years period, and the proportion of patients grouped to the PIGD subtype increased. In the reevaluated PIGD group, MDS-UPDRS part II score (p < 0.001), SCOPA-AUT (p < 0.001), the proportion of patients who developed levodopa induced dyskinesia were higher than the reevaluated TD group, and the striatal I-123 FP-CIT uptakes were significantly lower (p < 0.01). Conclusion: There are no significant differences of symptoms and dopaminergic innervation between the TD and PIGD group after a certain period of follow up. Significant portion of patients switched from the TD subtype to the PIGD subtype during disease progression, and had a worse clinical prognosis.
Collapse
Affiliation(s)
- Jeong Won Lee
- Department of Nuclear Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyeyun Kim
- Department of Neurology, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Bon D Ku
- Department of Neurology, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, South Korea
| | - Won Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Medical Research Center, Institute of Radiation Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
242
|
Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:1450-1499. [PMID: 29634350 PMCID: PMC6393771 DOI: 10.1089/ars.2017.7321] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Once considered to be mere by-products of metabolism, reactive oxygen, nitrogen and sulfur species are now recognized to play important roles in diverse cellular processes such as response to pathogens and regulation of cellular differentiation. It is becoming increasingly evident that redox imbalance can impact several signaling pathways. For instance, disturbances of redox regulation in the brain mediate neurodegeneration and alter normal cytoprotective responses to stress. Very often small disturbances in redox signaling processes, which are reversible, precede damage in neurodegeneration. Recent Advances: The identification of redox-regulated processes, such as regulation of biochemical pathways involved in the maintenance of redox homeostasis in the brain has provided deeper insights into mechanisms of neuroprotection and neurodegeneration. Recent studies have also identified several post-translational modifications involving reactive cysteine residues, such as nitrosylation and sulfhydration, which fine-tune redox regulation. Thus, the study of mechanisms via which cell death occurs in several neurodegenerative disorders, reveal several similarities and dissimilarities. Here, we review redox regulated events that are disrupted in neurodegenerative disorders and whose modulation affords therapeutic opportunities. CRITICAL ISSUES Although accumulating evidence suggests that redox imbalance plays a significant role in progression of several neurodegenerative diseases, precise understanding of redox regulated events is lacking. Probes and methodologies that can precisely detect and quantify in vivo levels of reactive oxygen, nitrogen and sulfur species are not available. FUTURE DIRECTIONS Due to the importance of redox control in physiologic processes, organisms have evolved multiple pathways to counteract redox imbalance and maintain homeostasis. Cells and tissues address stress by harnessing an array of both endogenous and exogenous redox active substances. Targeting these pathways can help mitigate symptoms associated with neurodegeneration and may provide avenues for novel therapeutics. Antioxid. Redox Signal. 30, 1450-1499.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
243
|
M P, Jacob J, K PJ. PID controlled fully automated portable duodopa pump for Parkinson’s disease patients. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
244
|
Workman CD, Thrasher TA. The influence of dopaminergic medication on gait automaticity in Parkinson's disease. J Clin Neurosci 2019; 65:71-76. [PMID: 30902437 DOI: 10.1016/j.jocn.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
Dual-tasking studies have shown that gait automaticity in Parkinson's disease (PD) is significantly diminished. Additionally, it's well accepted that dopaminergic medication improves single-task gait. But, how dopaminergic medication influences gait automaticity in PD has not been sufficiently understood. This study was a cross-sectional design, where sixteen subjects with PD completed single- and dual-task walking for 3 min off and on medication. Gait velocity, cadence, and stride length were measured. Kinematic variables included mean, maximum, and SD angles of bilateral hip, knee, and shoulder joints. Data were analyzed with a repeated measures ANOVA and a linear mixed effects repeated measures model. Dopaminergic medication significantly increased gait velocity (p = 0.007) and stride length (p = 0.046). After controlling for gait velocity, several kinematic variables were also improved with medication. Despite medication state, dual-tasking significantly interfered with cadence (p = 0.042), stride length (p < 0.001), and some kinematic measures. Dopaminergic medication mostly increased the hip and knee joint angles, while dual-tasking primarily decreased the hip joint angles on the less PD-affected side. There was no significant interaction between medication status and task condition. The significant differences in dual-tasking between off- and on-medication states indicates that motor improvements from taking medications improved dual-tasking. However, the lack of significant interactions and secondary task effects does not support a medication-induced improvement in automaticity.
Collapse
Affiliation(s)
- Craig D Workman
- Department of Health and Human Performance, University of Houston, Houston, TX, USA; Center for Neuromotor and Biomechanics Research, Houston, TX, USA.
| | - T Adam Thrasher
- Department of Health and Human Performance, University of Houston, Houston, TX, USA; Center for Neuromotor and Biomechanics Research, Houston, TX, USA
| |
Collapse
|
245
|
Dauwan M, Hoff JI, Vriens EM, Hillebrand A, Stam CJ, Sommer IE. Aberrant resting-state oscillatory brain activity in Parkinson's disease patients with visual hallucinations: An MEG source-space study. Neuroimage Clin 2019; 22:101752. [PMID: 30897434 PMCID: PMC6425119 DOI: 10.1016/j.nicl.2019.101752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/18/2019] [Accepted: 03/09/2019] [Indexed: 12/31/2022]
Abstract
To gain insight into possible underlying mechanism(s) of visual hallucinations (VH) in Parkinson's disease (PD), we explored changes in local oscillatory activity in different frequency bands with source-space magnetoencephalography (MEG). Eyes-closed resting-state MEG recordings were obtained from 20 PD patients with hallucinations (Hall+) and 20 PD patients without hallucinations (Hall-), matched for age, gender and disease severity. The Hall+ group was subdivided into 10 patients with VH only (unimodal Hall+) and 10 patients with multimodal hallucinations (multimodal Hall+). Subsequently, neuronal activity at source-level was reconstructed using an atlas-based beamforming approach resulting in source-space time series for 78 cortical and 12 subcortical regions of interest in the automated anatomical labeling (AAL) atlas. Peak frequency (PF) and relative power in six frequency bands (delta, theta, alpha1, alpha2, beta and gamma) were compared between Hall+ and Hall-, unimodal Hall+ and Hall-, multimodal Hall+ and Hall-, and unimodal Hall+ and multimodal Hall+ patients. PF and relative power per frequency band did not differ between Hall+ and Hall-, and multimodal Hall+ and Hall- patients. Compared to the Hall- group, unimodal Hall+ patients showed significantly higher relative power in the theta band (p = 0.005), and significantly lower relative power in the beta (p = 0.029) and gamma (p = 0.007) band, and lower PF (p = 0.011). Compared to the unimodal Hall+, multimodal Hall+ showed significantly higher PF (p = 0.007). In conclusion, a subset of PD patients with only VH showed slowing of MEG-based resting-state brain activity with an increase in theta activity, and a concomitant decrease in beta and gamma activity, which could indicate central cholinergic dysfunction as underlying mechanism of VH in PD. This signature was absent in PD patients with multimodal hallucinations.
Collapse
Affiliation(s)
- M Dauwan
- Neuroimaging Center, University Medical Center Groningen, University of Groningen, Neuroimaging Center 3111, Antonius Deusinglaan 2, 9713 AW Groningen, the Netherlands; Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Postbus 7057, 1007 MB Amsterdam, the Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, the Netherlands.
| | - J I Hoff
- Department of Neurology, St. Antonius Ziekenhuis, Nieuwegein, Utrecht, the Netherlands
| | - E M Vriens
- Department of Neurology, Diakonessenhuis Utrecht, the Netherlands
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Postbus 7057, 1007 MB Amsterdam, the Netherlands
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Postbus 7057, 1007 MB Amsterdam, the Netherlands
| | - I E Sommer
- Neuroimaging Center, University Medical Center Groningen, University of Groningen, Neuroimaging Center 3111, Antonius Deusinglaan 2, 9713 AW Groningen, the Netherlands; Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Norway
| |
Collapse
|
246
|
Wijemanne S, Jankovic J. Hand, foot, and spine deformities in parkinsonian disorders. J Neural Transm (Vienna) 2019; 126:253-264. [PMID: 30809710 DOI: 10.1007/s00702-019-01986-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/09/2019] [Indexed: 12/31/2022]
Abstract
Hand and foot deformities, known as "striatal deformities", and other musculoskeletal abnormalities such as dropped head, bent spine, camptocormia, scoliosis and Pisa syndrome, are poorly understood and often misdiagnosed features of Parkinson's disease and other parkinsonian syndromes. These deformities share some similarities with known rheumatologic conditions and can be wrongly diagnosed as rheumatoid arthritis, osteoarthritis, psoriatic arthritis, Dupuytren's contracture, trigger finger, or other rheumatologic or orthopedic conditions. Neurologists, rheumatologists, and other physicians must be familiar with these deformities to prevent misdiagnosis and unnecessary diagnostic tests, and to recommend appropriate treatment options.
Collapse
Affiliation(s)
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 7200 Cambridge St, Suite #9A, Houston, TX, 77030, USA.
| |
Collapse
|
247
|
Ciric J, Kapor S, Perovic M, Saponjic J. Alterations of Sleep and Sleep Oscillations in the Hemiparkinsonian Rat. Front Neurosci 2019; 13:148. [PMID: 30872994 PMCID: PMC6401659 DOI: 10.3389/fnins.2019.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/08/2019] [Indexed: 01/16/2023] Open
Abstract
Our previous studies in the rat model of Parkinson’s disease (PD) cholinopathy demonstrated the sleep-related alterations in electroencephalographic (EEG) oscillations at the cortical and hippocampal levels, cortical drives, and sleep spindles (SSs) as the earliest functional biomarkers preceding hypokinesia. Our aim in this study was to follow the impact of a unilateral substantia nigra pars compacta (SNpc) lesion in rat on the cortical and hippocampal sleep architectures and their EEG microstructures, as well as the cortico-hippocampal synchronizations of EEG oscillations, and the SS and high voltage sleep spindle (HVS) dynamics during NREM and REM sleep. We performed unilateral SNpc lesions using two different concentrations/volumes of 6-hydroxydopamine (6-OHDA; 12 μg/1 μl or 12 μg/2 μl). Whereas the unilateral dopaminergic neuronal loss >50% throughout the overall SNpc rostro-caudal dimension prolonged the Wake state, with no change in the NREM or REM duration, there was a long-lasting theta amplitude augmentation across all sleep states in the motor cortex (MCx), but also in the CA1 hippocampus (Hipp) during both Wake and REM sleep. We demonstrate that SS are the hallmarks of NREM sleep, but that they also occur during REM sleep in the MCx and Hipp of the control rats. Whereas SS are always longer in REM vs. NREM sleep in both structures, they are consistently slower in the Hipp. The dopaminergic neuronal loss increased the density of SS in both structures and shortened them in the MCx during NREM sleep, without changing the intrinsic frequency. Conversely, HVS are the hallmarks of REM sleep in the control rats, slower in the Hipp vs. MCx, and the dopaminergic neuronal loss increased their density in the MCx, but shortened them more consistently in the Hipp during REM sleep. In addition, there was an altered synchronization of the EEG oscillations between the MCx and Hipp in different sleep states, particularly the theta and sigma coherences during REM sleep. We provide novel evidence for the importance of the SNpc dopaminergic innervation in sleep regulation, theta rhythm generation, and SS/HVS dynamics control. We suggest the importance of the underlying REM sleep regulatory substrate to HVS generation and duration and to the cortico-hippocampal synchronizations of EEG oscillations in hemiparkinsonian rats.
Collapse
Affiliation(s)
- Jelena Ciric
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Slobodan Kapor
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
248
|
β-Asarone Regulates ER Stress and Autophagy Via Inhibition of the PERK/CHOP/Bcl-2/Beclin-1 Pathway in 6-OHDA-Induced Parkinsonian Rats. Neurochem Res 2019; 44:1159-1166. [DOI: 10.1007/s11064-019-02757-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
|
249
|
Mao Z, Ling Z, Pan L, Xu X, Cui Z, Liang S, Yu X. Comparison of Efficacy of Deep Brain Stimulation of Different Targets in Parkinson's Disease: A Network Meta-Analysis. Front Aging Neurosci 2019; 11:23. [PMID: 30853908 PMCID: PMC6395396 DOI: 10.3389/fnagi.2019.00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Deep brain stimulation (DBS) is considered an effective treatment option for Parkinson's disease (PD). Several studies have demonstrated the efficacy of neurostimulation in patients with advanced PD. The subthalamic nucleus (STN), the internal globus pallidus (GPi), ventral intermediate nucleus (Vim), and pedunculopontine nucleus (PPN) are reportedly effective DBS targets for control of Parkinsonian tremors. However, there is no consensus on the ideal target for DBS in patients with Parkinson's disease. Only a few studies have directly compared the efficacy of DBS of the Vim, STN, and GPi. Therefore, we searched PubMed, Embase, Cochrane Library, and other databases for observational studies, extracted data on unified Parkinson's disease rating scale (UPDRS) scores and performed a comprehensive network meta-analysis of different strategies of DBS and compared the efficiency of DBS at different targets. Methods: Forest plot was used to examine the overall efficiency of DBS; cumulative probability value was used to rank the strategies under examination. A node-splitting model was employed to assess consistency of reported outcomes inconsistency. A total of 16 studies which focused on UPDRS improvement were included in the network meta-analysis. Results: By comparing the overall efficiency associated with each target, we confirmed the efficacy of DBS therapy in PD. Our findings revealed similar efficacy of DBS targeted at GPi and STN in the on-medication phase [GPi-3.9 (95% CI -7.0 to -0.96); STN-3.1 (-5.9 to -0.38)]; however, in the off-medication phase, Vim-targeted DBS was associated with better improvement in UPDRS scores and could be a choice as a DBS target for tremor-dominant Parkinsonism. Conclusions: Our findings will help improve clinical application of DBS.
Collapse
Affiliation(s)
- Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xin Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Shuli Liang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
250
|
Attenuated beta rebound to proprioceptive afferent feedback in Parkinson's disease. Sci Rep 2019; 9:2604. [PMID: 30796340 PMCID: PMC6385616 DOI: 10.1038/s41598-019-39204-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/21/2019] [Indexed: 11/09/2022] Open
Abstract
Motor symptoms are defining traits in the diagnosis of Parkinson’s disease (PD). A crucial component in motor function is the integration of afferent proprioceptive sensory feedback. Previous studies have indicated abnormal movement-related cortical oscillatory activity in PD, but the role of the proprioceptive afference on abnormal oscillatory activity in PD has not been elucidated. We examine the cortical oscillations in the mu/beta-band (8–30 Hz) in the processing of proprioceptive stimulation in PD patients, ON/OFF levodopa medication, as compared to that of healthy controls (HC). We used a proprioceptive stimulator that generated precisely controlled passive movements of the index finger and measured the induced cortical oscillatory responses following the proprioceptive stimulation using magnetoencephalography. Both PD patients and HC showed a typical beta-band desynchronization during the passive movement. However, the subsequent beta rebound after the passive movement that was almost absent in PD patients compared to HC. Furthermore, we found no difference in the degree of beta rebound attenuation between patients ON and OFF levodopa medication. The results demonstrate a disease-related deterioration in cortical processing of proprioceptive afference in PD.
Collapse
|