201
|
Ramadan E, Ahmed A, Naguib YW. Advances in mRNA LNP-Based Cancer Vaccines: Mechanisms, Formulation Aspects, Challenges, and Future Directions. J Pers Med 2024; 14:1092. [PMID: 39590584 PMCID: PMC11595619 DOI: 10.3390/jpm14111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
After the COVID-19 pandemic, mRNA-based vaccines have emerged as a revolutionary technology in immunization and vaccination. These vaccines have shown remarkable efficacy against the virus and opened up avenues for their possible application in other diseases. This has renewed interest and investment in mRNA vaccine research and development, attracting the scientific community to explore all its other applications beyond infectious diseases. Recently, researchers have focused on the possibility of adapting this vaccination approach to cancer immunotherapy. While there is a huge potential, challenges still remain in the design and optimization of the synthetic mRNA molecules and the lipid nanoparticle delivery system required to ensure the adequate elicitation of the immune response and the successful eradication of tumors. This review points out the basic mechanisms of mRNA-LNP vaccines in cancer immunotherapy and recent approaches in mRNA vaccine design. This review displays the current mRNA modifications and lipid nanoparticle components and how these factors affect vaccine efficacy. Furthermore, this review discusses the future directions and clinical applications of mRNA-LNP vaccines in cancer treatment.
Collapse
Affiliation(s)
- Eslam Ramadan
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary;
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ali Ahmed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Youssef Wahib Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
202
|
Liu S, Wen Y, Shan X, Ma X, Yang C, Cheng X, Zhao Y, Li J, Mi S, Huo H, Li W, Jiang Z, Li Y, Lin J, Miao L, Lu X. Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination. Nat Commun 2024; 15:9471. [PMID: 39488531 PMCID: PMC11531489 DOI: 10.1038/s41467-024-53914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Inhaled delivery of messenger RNA (mRNA) using lipid nanoparticle (LNP) holds immense promise for treating pulmonary diseases or serving as a mucosal vaccine. However, the unsatisfactory delivery efficacy caused by the disintegration and aggregation of LNP during nebulization represents a major obstacle. To address this, we develop a charge-assisted stabilization (CAS) strategy aimed at inducing electrostatic repulsions among LNPs to enhance their colloidal stability. By optimizing the surface charges using a peptide-lipid conjugate, the leading CAS-LNP demonstrates exceptional stability during nebulization, resulting in efficient pulmonary mRNA delivery in mouse, dog, and pig. Inhaled CAS-LNP primarily transfect dendritic cells, triggering robust mucosal and systemic immune responses. We demonstrate the efficacy of inhaled CAS-LNP as a vaccine for SARS-CoV-2 Omicron variant and as a cancer vaccine to inhibit lung metastasis. Our findings illustrate the design principles of nebulized LNPs, paving the way of developing inhaled mRNA vaccines and therapeutics.
Collapse
Affiliation(s)
- Shuai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixing Wen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhu Shan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinghuan Ma
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingdi Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjiao Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiwei Mi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haonan Huo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yijia Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiaqi Lin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lei Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
203
|
Yıldırım Akdeniz G, Timuçin AC. Structure based computational RNA design towards MafA transcriptional repressor implicated in multiple myeloma. J Mol Graph Model 2024; 132:108839. [PMID: 39096645 DOI: 10.1016/j.jmgm.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Multiple myeloma is recognized as the second most common hematological cancer. MafA transcriptional repressor is an established mediator of myelomagenesis. While there are multitude of drugs available for targeting various effectors in multiple myeloma, current literature lacks a candidate RNA based MafA modulator. Thus, using the structure of MafA homodimer-consensus target DNA, a computational effort was implemented to design a novel RNA based chemical modulator against MafA. First, available MafA-consensus DNA structure was employed to generate an RNA library. This library was further subjected to global docking to select the most plausible RNA candidates, preferring to bind DNA binding region of MafA. Following global docking, MD-ready complexes that were prepared via local docking program, were subjected to 500 ns of MD simulations. First, each of these MD simulations were analyzed for relative binding free energy through MM-PBSA method, which pointed towards a strong RNA based MafA binder, RNA1. Second, through a detailed MD analysis, RNA1 was shown to prefer binding to a single monomer of the dimeric DNA binding domain of MafA using higher number of hydrophobic interactions compared with positive control MafA-DNA complex. At the final phase, a principal component analyses was conducted, which led us to identify the actual interaction region of RNA1 and MafA monomer. Overall, to our knowledge, this is the first computational study that presents an RNA molecule capable of potentially targeting MafA protein. Furthermore, limitations of our study together with possible future implications of RNA1 in multiple myeloma were also discussed.
Collapse
Affiliation(s)
- Güneş Yıldırım Akdeniz
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Tuzla, İstanbul, Turkey.
| | - Ahmet Can Timuçin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acıbadem Mehmet Ali Aydınlar University, 34752, Ataşehir, İstanbul, Turkey.
| |
Collapse
|
204
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
205
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
206
|
Wang G, Lu H, Pan Y, Qi Y, Huang Y. Ultrasound-Sensitive Targeted Liposomes as a Gene Delivery System for the Synergistic Treatment of Hepatocellular Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406182. [PMID: 39189532 DOI: 10.1002/smll.202406182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Gene therapy and sonodynamic therapy, as emerging treatment methods, have great potential in cancer treatment. However, there are significant challenges in the in vivo delivery of genes and sonosensitizers during the treatment process, which ultimately affects the therapeutic outcome. In this study, an ultrasound-sensitive targeted liposome nanoparticle system (MLipsiBcl-2) is developed to deliver the sonosensitizers and siRNA for the synergistic treatment of hepatocellular carcinoma. Generation of reactive oxygen species (ROS) by MLipsiBcl-2 can be initiated through ultrasound stimulation, leading to liposome rupture and release of the sonosensitizer and small interfering RNA (siRNA). Furthermore, ROS can disrupt lysosomal membranes, facilitating gene release for downregulating overexpressed antiapoptotic protein levels in cancer cells. Experimental results from in vitro and in vivo studies demonstrated the efficacy of synergistic treatment on hepatocellular carcinoma cells and the high biocompatibility of MLipsiBcl-2 under ultrasound stimulation. The advancement of this ultrasound-sensitive targeted gene delivery system shows potential as a versatile therapeutic platform that is easily operable, presenting a prospect for a synergistic treatment approach across various cancer types.
Collapse
Affiliation(s)
- Guannan Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hongtong Lu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
207
|
Chueasupcharoen W, Meepowpan P, Manokruang K, Sriyai M, Manaspon C, Tighe BJ, Derry MJ, Topham PD, Punyodom W. Metal-free ring-opening polymerization for the synthesis of biocompatible star-shaped block copolymers with controllable architecture. Eur Polym J 2024; 220:113471. [DOI: 10.1016/j.eurpolymj.2024.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
208
|
Meng F, Fu Y, Xie H, Wang H. Nanoparticle-assisted Targeting Delivery Technologies for Preventing Organ Rejection. Transplantation 2024; 108:2174-2185. [PMID: 38597913 DOI: 10.1097/tp.0000000000005025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Although organ transplantation is a life-saving medical procedure, the challenge of posttransplant rejection necessitates safe and effective immune modulation strategies. Nanodelivery approaches may have the potential to overcome the limitations of small-molecule immunosuppressive drugs, achieving efficacious treatment options for transplant tolerance without compromising overall host immunity. This review highlights recent advances in biomaterial-assisted formulations and technologies for targeted nanodrug delivery with transplant organ- or immune cell-level precision for treating graft rejection after transplantation. We provide an overview of the mechanism of transplantation rejection, current clinically approved immunosuppressive drugs, and their relevant limitations. Finally, we discuss the targeting principles and advantages of organ- and immune cell-specific delivery technologies. The development of biomaterial-assisted novel therapeutic strategies holds considerable promise for treating organ rejection and clinical translation.
Collapse
Affiliation(s)
- Fanchao Meng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, People's Republic of China
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yang Fu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Haiyang Xie
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hangxiang Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, People's Republic of China
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
209
|
Zajda J, Wadych E, Ogórek K, Drozd M, Matczuk M. Novel Applications of CE-ICP-MS/MS: Monitoring of Antiaging GHK-Cu Cosmetic Component Encapsulation in Liposomes. Electrophoresis 2024; 45:1946-1954. [PMID: 39451062 DOI: 10.1002/elps.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
The hyphenation of the separation technique with the high-sensitive mass spectrometry detection is one of the driving forces of modern analysis enabling measurements in complex matrices. In particular, capillary electrophoresis coupled to inductively coupled plasma tandem mass spectrometry allows for speciation analysis of selected analytes with a superior resolution. The mild, physiological-friendly conditions of this separation technique offer the unique advantage of analyzing chemical entities in their intact form, which has been successfully exploited in various areas. Herein, we report the pioneering application of such a hyphenated technique in the cosmetic field to investigate the encapsulation of copper tripeptide complex (GHK-Cu) in liposomes. By monitoring copper and phosphorus signals, the formation of liposomes via a simple ethanol injection method was confirmed, and the concentration of GHK-Cu in the liposomes was assessed. The application of coupling of capillary electrophoresis with inductively coupled plasma tandem mass spectrometry (CE-ICP-MS/MS) in cosmetic studies could lead to the development of diverse liposomal formulations with preferential properties and expand their accessibility.
Collapse
Affiliation(s)
- Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Emilia Wadych
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Karolina Ogórek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Drozd
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
210
|
Setyawati DR, Azzahra K, Mardliyati E, Tarwadi, Maharani BY, Nurmeilis. Box-Behnken design assisted approach in optimizing lipid composition for cationic liposome formulation as gene carrier. Biochim Biophys Acta Gen Subj 2024; 1868:130705. [PMID: 39178921 DOI: 10.1016/j.bbagen.2024.130705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Cationic liposomes represent a promising non-viral carrier platform for gene delivery. The successful intracellular delivery of genes to the target cell is highly influenced by lipid compositions in the liposomal formulation. In the present study, a Box-Behnken design was applied to investigate the optimal lipid composition for the liposome-based transfection agent. METHODS The concentrations of DOTAP, DSPE-PEG, and cholesterol were set as independent factors. A total of 15 lipid compositions were generated and tested for specific responses, including particle size, encapsulation efficiency, cell viability, and cell transfection. The data were then analyzed to predict the optimal composition using response surface methodology (RSM). RESULTS The results for particle size, encapsulation efficiency, cell viability and fluorescence intensity ranged from 158.7 to 2064 nm, 48.19-95.72%, 81.50-122.67%, and 0.0-9.08, respectively. Compositions of liposome-based transfection agent without DOTAP, those without cholesterol, and those containing DSPE-PEG2000 with a molar ratio equal to or greater than that of cholesterol tended to exhibit low encapsulation efficiency. The ability of the liposome to complex DNA, as determined through electrophoresis gel retardation assay, showed that the composition without DOTAP produced DNA bands, indicating that the prepared liposomes had a less ability to complex DNA. The cytotoxicity test results indicated that all lipid compositions were considered non-toxic, as they exhibited >80% cell viability. The cell transfection assay demonstrated that the lipid composition containing a combination of DOTAP and cholesterol was able to transfect DNA into cells. According to response analysis, RSM predicted that the optimal lipid composition consisted of 2.75 μmol DOTAP and 0.91 μmol cholesterol, with a desirability value of 0.85. CONCLUSIONS Although the equation model is still acceptable for predicting the optimal lipid composition, further study is needed to obtain a model with higher desirability, such as by using more lipid compositions, increased replications, and different variable responses.
Collapse
Affiliation(s)
- Damai Ria Setyawati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency, Jakarta, Indonesia
| | - Khairunnisa Azzahra
- Department of Pharmacy, Faculty of Health and Sciences, Universitas Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia; Nano Center Indonesia, South Tangerang 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency, Jakarta, Indonesia.
| | - Tarwadi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency, Jakarta, Indonesia
| | - Bismi Yasinta Maharani
- Research Center for Vaccine and Drugs, National Research and Innovation Agency, Jakarta, Indonesia
| | - Nurmeilis
- Department of Pharmacy, Faculty of Health and Sciences, Universitas Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia
| |
Collapse
|
211
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
212
|
Duan L, Zheng Q, Liang Y, Tu T. From Simple Probe to Smart Composites: Water-Soluble Pincer Complex With Multi-Stimuli-Responsive Luminescent Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409620. [PMID: 39300862 DOI: 10.1002/adma.202409620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Water-soluble smart materials with multi-stimuli-responsiveness and ultra-long room-temperature phosphorescence (RTP) have garnered broad attention. Herein, a water-soluble terpyridine zinc complex (MeO-Tpy-Zn-OAc), featuring a simple donor-π-acceptor (D-π-A) structure is presented, which responds to a variety of stimuli, including changes in solvents, pH, temperature, and the addition of amino acids. Notably, MeO-Tpy-Zn-OAc functions as a fluorescence probe, capable of visually and selectively discriminating aspartate or histidine among other common amino acids in water. Additionally, when incorporated into polyvinyl alcohol (PVA) to form the composite MeO-Tpy-Zn-OAc@PVA, the material exhibits reversible writing, photochromism, and a prolonged RTP with a 14 s afterglow. These unique properties enable the composite to be utilized in potential applications such as secure data encryption and inkless printing.
Collapse
Affiliation(s)
- Lixin Duan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanlin Liang
- Forensic Science Institute of Shanghai Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai, 200083, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
213
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
214
|
Li TY, Liang WL, Zhao YM, Chen WD, Zhu HX, Duan YY, Zou HB, Huang SS, Li XJ, Zhang WK. Alpha-Pinene-encapsulated lipid nanoparticles diminished inflammatory responses in THP-1 cells and imiquimod-induced psoriasis-like skin injury and splenomegaly in mice. Front Immunol 2024; 15:1390589. [PMID: 39534602 PMCID: PMC11554515 DOI: 10.3389/fimmu.2024.1390589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Psoriasis, a persistent skin condition caused by the disorder of the immune system, impacts approximately 1.25 million individuals globally. Nevertheless, the presence of adverse effects in conventional clinical drugs necessitates further exploration of novel medications or combination therapies to mitigate these reactions and enhance their effectiveness. Methods Hence, our intention here in this paper is to utilize the lipid nanoparticle delivery system for overcoming the volatility and hydrophobic properties of α-pinene, a naturally occurring compound renowned for its anti-inflammatory and antiviral effects, and further explore its potential pharmacological applications both in vitro and in vivo. Results The production of α-pinene lipid nanoparticles (APLNs) was achieved through the utilization of high pressure homogenization methods. APLNs was successfully fabricated with enhanced stability and water solubility. Meanwhile, the application of APLNs could drastically reduce the expression of lipopolysaccharide (LPS)-induced inflammation-related factors in THP-1 cells. Administration of APLNs to a mouse model of auricular swelling could effectively reduce redness and swelling in the auricles of mice as well. Furthermore, APLNs were also found to alleviate skin damage in mice with Imiquimod (IMQ)-induced psoriasis model, as well as decrease the levels of psoriasis-related protein nuclear factor kappa-B (NF-κB) and interleukin-17 (IL-17), interleukin-23 (IL-23), and other inflammation-related cytokines. More importantly, utilization of APLNs successfully mitigated the systemic inflammatory reactions in mice, resulting in the reduction of spleen-to-body ratio (wt%) and of inflammatory cytokines' expression in the serum. Discussion Overall, our results suggest that with the help of lipid nanoparticle encapsulation, APLNs possess a better pharmacological effect in anti-inflammation and could potentially serve as an anti-psoriasis drug.
Collapse
Affiliation(s)
- Tao-Yu Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Wan-Li Liang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yi-Ming Zhao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wan-Dong Chen
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Hong-Xia Zhu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yuan-Yuan Duan
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Han-Bo Zou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Sha-Sha Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Xiao-Jun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wei Kevin Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
215
|
Rehman M, Tahir N, Sohail MF, Qadri MU, Duarte SOD, Brandão P, Esteves T, Javed I, Fonte P. Lipid-Based Nanoformulations for Drug Delivery: An Ongoing Perspective. Pharmaceutics 2024; 16:1376. [PMID: 39598500 PMCID: PMC11597327 DOI: 10.3390/pharmaceutics16111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Oils and lipids help make water-insoluble drugs soluble by dispersing them in an aqueous medium with the help of a surfactant and enabling their absorption across the gut barrier. The emergence of microemulsions (thermodynamically stable), nanoemulsions (kinetically stable), and self-emulsifying drug delivery systems added unique characteristics that make them suitable for prolonged storage and controlled release. In the 1990s, solid-phase lipids were introduced to reduce drug leakage from nanoparticles and prolong drug release. Manipulating the structure of emulsions and solid lipid nanoparticles has enabled multifunctional nanoparticles and the loading of therapeutic macromolecules such as proteins, nucleic acid, vaccines, etc. Phospholipids and surfactants with a well-defined polar head and carbon chain have been used to prepare bilayer vesicles known as liposomes and niosomes, respectively. The increasing knowledge of targeting ligands and external factors to gain control over pharmacokinetics and the ever-increasing number of synthetic lipids are expected to make lipid nanoparticles and vesicular systems a preferred choice for the encapsulation and targeted delivery of therapeutic agents. This review discusses different lipids and oil-based nanoparticulate systems for the delivery of water-insoluble drugs. The salient features of each system are highlighted, and special emphasis is given to studies that compare them.
Collapse
Affiliation(s)
- Mubashar Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
- Wellman Center of Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Muhammad Farhan Sohail
- Department of Pharmacy, University of South Asia, Lahore 54000, Pakistan;
- Department of Pharmacy, Faculty of Health and Medical Sciences, The University of Copenhagen, 1172 København, Denmark
| | - Muhammad Usman Qadri
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Sofia O. D. Duarte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- Departamento de Química, Centro de Química de Coimbra-Institute of Molecular Sciences (CQC-IMS), Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Teresa Esteves
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (M.U.Q.); (I.J.)
| | - Pedro Fonte
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.O.D.D.); (P.B.); (T.E.)
- Associate Laboratory i4HB, Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
216
|
Schultz D, Münter RD, Masi A, Kempen PJ, Jahnke N, Andresen TL, Simonsen JB, Urquhart AJ. Enhancing RNA encapsulation quantification in lipid nanoparticles: Sustainable alternatives to Triton X-100 in the RiboGreen assay. Eur J Pharm Biopharm 2024; 205:114571. [PMID: 39490428 DOI: 10.1016/j.ejpb.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
To quantify concentration and encapsulation efficiency (EE) of mRNA in lipid nanoparticles (LNPs) the RiboGreen assay is extensively used. As part of this assay, a surfactant is used to release mRNA from LNPs for detection with the RiboGreen dye. So far, the surfactant of choice has been Triton X-100, which is harmful to human health and the environment. Alternatives to Triton X-100 are therefore needed, but surprisingly no such effort has yet been described in the literature. Here we show how three, less harmful, surfactants (Brij 93, Zwittergent 3-14 and Tween 20) compare to Triton X-100 for releasing mRNA from LNPs for detection with the RiboGreen assay. We found that Zwittergent 3-14 and Tween 20 at high concentrations (0.5 %) are at the minimum as effective as Triton X-100 at high concentration (0.5 %) across three different mRNA-LNP formulations. Interestingly, Tween 20 was the most effective at releasing mRNA from LNPs, across all concentration ranges explored (0.0025 %, 0.01 %, 0.1 % and to 0.5 % (v/v)) highlighting its potency at solubilizing the three different LNP formulations. Our results show that Tween 20 can be used as an alternative to Triton X-100 in the RiboGreen assay, resulting in more accurate quantification of the total mRNA concentration and EE%, as well as making the assay more environmentally friendly. Such improvement could potentially increase the likelihood of identifying therapeutically attractive hard-to-solubilize LNP-mRNA formulations that would be discharged when using Triton X-100 due to their apparent low EE values, as well as ensure more accurate mRNA dosing in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- David Schultz
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus D Münter
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alex Masi
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nadine Jahnke
- Department of Non-viral Delivery, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
217
|
Aggarwal N, Singh G, Panda HS, Panda JJ. Unravelling the potential of L-carnosine analog-based nano-assemblies as pH-responsive therapeutics in treating glioma: an in vitro perspective. J Mater Chem B 2024; 12:10665-10681. [PMID: 39314035 DOI: 10.1039/d4tb01262c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Self-assembled small peptide-based nanoparticles (NPs) constitute a major section of the biomimetic smart NPs owing to their excellent compatibility and minimal adverse effects in the biological system. Here, we have designed a modified L-carnosine dipeptide analog, "Fmoc-β-Ala-L-His-(Trt)-o-methyl formate", which was assembled along with a modified single amino acid, Fmoc-Arg-(Pbf)-OH and zinc ions to form stable and mono-dispersed L-carnosine analog NPs (CaNPs) with inherent anti-cancer properties. Furthermore, the CaNPs demonstrated an average size of ∼200 nm, making them suitable to invade the tumor site by following the enhanced permeability and retention (EPR) effect. Our studies depicted a remarkable cancer cell killing ability of the NPs of ∼82% in C6 glioma cells. Thereafter, cellular investigations were performed in C6 cells to analyze the influence of the NPs on cellular cytoskeleton integrity by using a phalloidin assay and anti-cancer efficacy by using calcein AM/PI, and an apoptosis assay further indicated their anti-cancer effect. Additionally, the NPs negatively impacted the ability of C6 cells to migrate across a premade scratch (∼44% wound closure) demonstrating their tendency to halt cancer cell migration and metastasis. Also, our NPs depicted ∼19.51 ± 0.17% permeability across the bEnd.3 transwell model establishing their BBB penetrability. Collectively, our results could positively implicate the successful anti-cancer potential of the minimalistic, biologically compliant, L-carnosine analog (Ca)-based nanostructures in glioma.
Collapse
Affiliation(s)
- Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Gurjot Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Himanshu Sekhar Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
218
|
Vasileva O, Zaborova O, Shmykov B, Ivanov R, Reshetnikov V. Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics. Front Pharmacol 2024; 15:1466337. [PMID: 39508050 PMCID: PMC11537937 DOI: 10.3389/fphar.2024.1466337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Today, lipid nanoparticles (LNPs) are some of the main delivery systems for mRNA-based therapeutics. The scope of LNP applications in terms of RNA is not limited to antiviral vaccines but encompasses anticancer drugs and therapeutics for genetic (including rare) diseases. Such widespread use implies high customizability of targeted delivery of LNPs to specific organs and tissues. This review addresses vector-free options for targeted delivery of LNPs, namely the influence of lipid composition of these nanoparticles on their biodistribution. In the review, experimental studies are examined that are focused on the biodistribution of mRNA or of the encoded protein after mRNA administration via LNPs in mammals. We also performed a comprehensive analysis of individual lipids' functional groups that ensure biodistribution to desired organs. These data will allow us to outline prospects for further optimization of lipid compositions of nanoparticles for targeted delivery of mRNA therapeutics.
Collapse
Affiliation(s)
- Olga Vasileva
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Olga Zaborova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
- Chemistry Department, Moscow State University, Moscow, Russia
| | - Bogdan Shmykov
- Chemistry Department, Moscow State University, Moscow, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
219
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
220
|
Cheng L, Zhu Y, Ma J, Aggarwal A, Toh WH, Shin C, Sangpachatanaruk W, Weng G, Kumar R, Mao HQ. Machine Learning Elucidates Design Features of Plasmid Deoxyribonucleic Acid Lipid Nanoparticles for Cell Type-Preferential Transfection. ACS NANO 2024; 18:28735-28747. [PMID: 39375194 PMCID: PMC11512640 DOI: 10.1021/acsnano.4c07615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
To broaden the accessibility of cell and gene therapies, it is essential to develop and optimize nonviral, cell type-preferential gene carriers such as lipid nanoparticles (LNPs). While high-throughput screening (HTS) approaches have proven effective in accelerating LNP discovery, they are often costly, labor-intensive, and do not consistently yield actionable design rules that direct screening efforts toward the most relevant chemical and formulation parameters. In this study, we employed a machine learning (ML) workflow, utilizing well-curated plasmid DNA LNP transfection data sets across six cell types, to extract compositional and chemical insights from HTS studies. Our approach achieved prediction errors averaging between 5 and 10%, depending on the cell type. By applying SHapley Additive exPlanations to our ML models, we uncovered key composition-function relationships that govern cell type-preferential LNP transfection efficiency. Notably, we identified consistent LNP composition parameters that enhance in vitro transfection efficiency across diverse cell types, including a helper lipid molar percentage of charged lipids between 9 and 50% and the inclusion of cationic/zwitterionic helper lipids. Additionally, several parameters were found to modulate cell type-preferentiality, such as the total molar percentage of ionizable and helper lipids, N/P ratio, PEGylated lipid molar percentage of uncharged lipids, and hydrophobicity of the helper lipid. This study leverages HTS of compositionally diverse LNP libraries combined with ML analysis to elucidate the interactions between lipid components in LNP formulations, providing insights that contribute to the design of LNP compositions tailored for cell type-preferential transfection.
Collapse
Affiliation(s)
- Leonardo Cheng
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yining Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Materials Science and Engineering, Whiting School of Engineering. Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ataes Aggarwal
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Charles Shin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
| | - Will Sangpachatanaruk
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gene Weng
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ramya Kumar
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Materials Science and Engineering, Whiting School of Engineering. Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
221
|
Xiong Y, Mi BB, Shahbazi MA, Xia T, Xiao J. Microenvironment-responsive nanomedicines: a promising direction for tissue regeneration. Mil Med Res 2024; 11:69. [PMID: 39434177 PMCID: PMC11492517 DOI: 10.1186/s40779-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Severe tissue defects present formidable challenges to human health, persisting as major contributors to mortality rates. The complex pathological microenvironment, particularly the disrupted immune landscape within these defects, poses substantial hurdles to existing tissue regeneration strategies. However, the emergence of nanobiotechnology has opened a new direction in immunomodulatory nanomedicine, providing encouraging prospects for tissue regeneration and restoration. This review aims to gather recent advances in immunomodulatory nanomedicine to foster tissue regeneration. We begin by elucidating the distinctive features of the local immune microenvironment within defective tissues and its crucial role in tissue regeneration. Subsequently, we explore the design and functional properties of immunomodulatory nanosystems. Finally, we address the challenges and prospects of clinical translation in nanomedicine development, aiming to propose a potent approach to enhance tissue regeneration through synergistic immune modulation and nanomedicine integration.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Tian Xia
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
222
|
Akbar K, Rehman MU, Shah FA, Younas S, Al-Otaibi JS, Khan H. Paroxetine Loaded Nanostructured Lipid Carriers Based In-situ Gel for Brain Delivery via Nasal Route for Enhanced Anti-Depressant Effect: In Vitro Prospect and In Vivo Efficacy. AAPS PharmSciTech 2024; 25:248. [PMID: 39433712 DOI: 10.1208/s12249-024-02954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
This study focused on developing a thermosensitive gel with nanostructured lipid carriers (NLCs) loaded with paroxetine (PAR) to enhance the treatment and management of depression via nasal administration. Micro emulsion technique was utilized for the PAR-NLCs preparation. The acetyl alcohol and oleic acid were used in the ratio of 76:24. In the NLCs Tween 40, Span40 and Myrj 52 were used as a surfactant. The NLCs were then added into Poloxamer mixture to get thermosensitive NLCs based gel. Characterization, in vitro and in vivo studies were performed to check the efficiency of formulation in drug delivery. The entrapment efficiency of optimized PAR-NLCs was about 90%. The particle size, zeta potential and PDI were 155 ± 1.4 nm, -25.9 ± 0.5 mV, and 0.12 ± 0.01 respectively. The optimized gel showed a gelling temperature of 31.50 ± 0.50°C and a gelling time of 1 ± 0.12 s with a pH of 6, suitable for nasal administration. The in vitro release assay of PAR-NLC-gel showed a cumulative release of about 59% in the first 6 h after comparison with PAR-NLCs which showed almost 100%release. In vivo studies included forced swim test and tail suspension tests showed significant potential for treating depression when compared to PAR-NLCs. PAR-NLCs and NLCs based gel enhanced the tissue architecture and suppressed the expression of TNF-α in brain cortex from histological and immunohistochemical analysis. PAR- NLCs gel-based delivery system can prove to be an effective delivery system for brain targeting through nose for the better management of depression.
Collapse
Affiliation(s)
- Kiran Akbar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology College of Pharmacy Prince Sattam bin Abdul Aziz University Saudi Arab, Al-Kharj, Saudi Arabia
| | - Sidra Younas
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
223
|
Haseeb M, Khan I, Kartal Z, Mahfooz S, Hatiboglu MA. Status Quo in the Liposome-Based Therapeutic Strategies Against Glioblastoma: "Targeting the Tumor and Tumor Microenvironment". Int J Mol Sci 2024; 25:11271. [PMID: 39457052 PMCID: PMC11509082 DOI: 10.3390/ijms252011271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Glioblastoma is the most aggressive and fatal brain cancer, characterized by a high growth rate, invasiveness, and treatment resistance. The presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) poses a challenging task for chemotherapeutics, resulting in low efficacy, bioavailability, and increased dose-associated side effects. Despite the rigorous treatment strategies, including surgical resection, radiotherapy, and adjuvant chemotherapy with temozolomide, overall survival remains poor. The failure of current chemotherapeutics and other treatment regimens in glioblastoma necessitates the development of new drug delivery methodologies to precisely and efficiently target glioblastoma. Nanoparticle-based drug delivery systems offer a better therapeutic option in glioblastoma, considering their small size, ease of diffusion, and ability to cross the BBB. Liposomes are a specific category of nanoparticles made up of fatty acids. Furthermore, liposomes can be surface-modified to target a particular receptor and are nontoxic. This review discusses various methods of liposome modification for active/directed targeting and various liposome-based therapeutic approaches in the delivery of current chemotherapeutic drugs and nucleic acids in targeting the glioblastoma and tumor microenvironment.
Collapse
Affiliation(s)
- Mohd Haseeb
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeynep Kartal
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, 34820 Istanbul, Turkey; (M.H.); (S.M.)
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, 34093 Istanbul, Turkey
| |
Collapse
|
224
|
Surve D, Fish A, Debnath M, Pinjari A, Lorenzana A, Piya S, Peyton S, Kulkarni A. Sprayable inflammasome-inhibiting lipid nanorods in a polymeric scaffold for psoriasis therapy. Nat Commun 2024; 15:9035. [PMID: 39426974 PMCID: PMC11490495 DOI: 10.1038/s41467-024-53396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Localized delivery of inflammasome inhibitors in phagocytic macrophages could be promising for psoriasis treatment. The present work demonstrates the development of non-spherical lipid nanoparticles, mimicking pathogen-like shapes, consisting of an anti-inflammatory inflammasome inhibiting lipid (pyridoxine dipalmitate) as a trojan horse. The nanorods inhibit inflammasome by 3.8- and 4.5-fold compared with nanoellipses and nanospheres, respectively. Nanorods reduce apoptosis-associated speck-like protein and lysosomal rupture, restrain calcium influx, and mitochondrial reactive oxygen species. Dual inflammasome inhibitor (NLRP3/AIM-2-IN-3) loaded nanorods cause synergistic inhibition by 21.5- and 59-folds compared with nanorods and free drug, respectively alongside caspase-1 inhibition. The NLRP3/AIM-2-IN-3 nanorod when transformed into a polymeric scaffold, simultaneously and effectively inhibits RNA levels of NLRP3, AIM2, caspase-1, chemokine ligand-2, gasdermin-D, interleukin-1β, toll-like receptor 7/ 8, and IL-17A by 6.4-, 1.6-, 2.0-, 13.0-, 4.2-, 24.4-, 4.3-, and 1.82-fold, respectively in psoriatic skin in comparison to Imiquimod positive control group in an in-vivo psoriasis-like mice model.
Collapse
Affiliation(s)
- Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Adam Fish
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Aniruddha Pinjari
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Adrian Lorenzana
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sumi Piya
- Pathology Department, University of Massachusetts-Chan Medical School, Baystate Medical Center, Springfield, MA, 01199, USA
| | - Shelly Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
225
|
Taiedinejad E, Bausch C, Wittek J, Gül G, Erfle P, Schwarz N, Mozafari M, Baßler M, Dietzel A. Diffusive micromixing combined with dynamic in situ laser scattering allows shedding light on lipid nanoparticle precipitation. Sci Rep 2024; 14:24356. [PMID: 39420187 PMCID: PMC11487189 DOI: 10.1038/s41598-024-73721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Pharmaceutical formulations are increasingly based on drug nanoparticles or carrier nanoparticles encapsulating drugs or mRNA molecules. Sizes and monodispersity of the nanoparticles regulate bioavailability, pharmacokinetics and pharmacology. Microfluidic mixers promise unique conditions for their continuous preparation. A novel microfluidic antisolvent precipitation device was realized by two-photon-polymerization with a mixing channel in which the organic phase formed a sheet with a homogeneous thickness of down to 7 μm completely wrapped in the aqueous phase. Homogeneous diffusion through the sheet accelerates mixing. Optical access was implemented to allow in-situ dynamic light scattering. By centering the thin sheet in the microchannel cross-section, two important requirements are met. On the one hand, the organic phase never reaches the channel walls, avoiding fouling and unstable flow conditions. On the other hand, in the sheet positioned at the maximum of the parabolic flow profile the nanoparticle velocities are homogenized which enables flow-compensated Dynamic Light Scattering (flowDLS). These unique features allowed in-situ particle size determination for the first time. Monitoring of lipid nanoparticle precipitation was demonstrated for different rates of solvent and antisolvent flows. This breakthrough innovation will not only enable feedback control of nanoparticle production but also will provide new insights into the dynamics of nanoparticle precipitation.
Collapse
Affiliation(s)
- Ebrahim Taiedinejad
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.
| | - Cornelius Bausch
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Jörn Wittek
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Gökhan Gül
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Peer Erfle
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany
| | - Nicolai Schwarz
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Mohadeseh Mozafari
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany
| | - Michael Baßler
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.
| |
Collapse
|
226
|
Wu KY, Wang XC, Anderson M, Tran SD. Innovative Use of Nanomaterials in Treating Retinopathy of Prematurity. Pharmaceuticals (Basel) 2024; 17:1377. [PMID: 39459018 PMCID: PMC11509985 DOI: 10.3390/ph17101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Retinopathy of prematurity (ROP) is a severe condition primarily affecting premature infants with a gestational age (GA) of 30 weeks or less and a birth weight (BW) of 1500 g or less. The objective of this review is to examine the risk factors, pathogenesis, and current treatments for ROP, such as cryotherapy, laser photocoagulation, and anti-VEGF therapy, while exploring the limitations of these approaches. Additionally, this review evaluates emerging nanotherapeutic strategies to address these challenges, aiming to improve ROP management. METHODS A comprehensive literature review was conducted to gather data on the pathogenesis, traditional treatment methods, and novel nanotherapeutic approaches for ROP. This included assessing the efficacy and safety profiles of cryotherapy, laser treatment, anti-VEGF therapy, and nanotherapies currently under investigation. RESULTS Traditional treatments, while effective in reducing disease progression, exhibit limitations, including long-term complications, tissue damage, and systemic side effects. Nanotherapeutic approaches, on the other hand, have shown potential in offering targeted drug delivery with reduced systemic toxicity, improved ocular drug penetration, and sustained release, which could decrease the frequency of treatments and enhance therapeutic outcomes. CONCLUSIONS Nanotherapies represent a promising advancement in ROP treatment, offering safer and more effective management strategies. These innovations could address the limitations of traditional therapies, reducing complications and improving outcomes for premature infants affected by ROP. Further research is needed to confirm their efficacy and safety in clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Xingao C. Wang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Maude Anderson
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
227
|
Zhao Y, Le TMD, Hong J, Jiao A, Yoon AR, Yun CO. Smart Accumulating Dual-Targeting Lipid Envelopes Equipping Oncolytic Adenovirus for Enhancing Cancer Gene Therapeutic Efficacy. ACS NANO 2024; 18:27869-27890. [PMID: 39356167 DOI: 10.1021/acsnano.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Systemic delivery of oncolytic adenovirus (oAd) for cancer gene therapy must overcome several limitations such as rapid clearance from the blood, nonspecific accumulation in the liver, and insufficient delivery to the tumor tissues. In the present report, a tumor microenvironment-triggered artificial lipid envelope composed of a pH-responsive sulfamethazine-based polymer (PUSSM)-conjugated phospholipid (DOPE-HZ-PUSSM) and another lipid decorated with epidermal growth factor receptor (EGFR) targeting peptide (GE11) (GE11-DOPE) was utilized to encapsulate replication-incompetent Ad (dAd) or oAd coexpressing short-hairpin RNA (shRNA) against Wnt5 (shWnt5) and decorin (dAd/LP-GE-PS or oAd/LP-GE-PS, respectively). In vitro studies demonstrated that dAd/LP-GE-PS transduced breast cancer cells in a pH-responsive and EGFR-specific manner, showing a higher level of transduction than naked Ad under a mildly acidic pH of 6.0 in EGFR-positive cell lines. In vivo biodistribution analyses revealed that systemic administration of oAd/LP-GE-PS leads to a significantly higher level of intratumoral virion accumulation compared to naked oAd, oAd encapsulated in a liposome without PUSSM or EGFR targeting peptide moiety (oAd/LP), or oAd encapsulated in a liposome with EGFR targeting peptide alone (oAd/LP-GE) in an EGFR overexpressing MDA-MB-468 breast tumor xenograft model, showing that both pH sensitivity and EGFR targeting ability were integral to effective systemic delivery of oAd. Further, systemic administration of all liposomal oAd formulations (oAd/LP, oAd/LP-GE, and oAd/LP-GE-PS) showed significantly attenuated hepatic accumulation of the virus compared to naked oAd. Collectively, our findings demonstrated that pH-sensitive and EGFR-targeted liposomal systemic delivery of oAd can be a promising strategy to address the conventional limitations of oAd to effectively treat EGFR-positive cancer in a safe manner.
Collapse
Affiliation(s)
- Yuebin Zhao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Thai Minh Duy Le
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jinwoo Hong
- GeneMedicine CO., Ltd., Seoul 04763, South Korea
| | - Ao Jiao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, South Korea
- GeneMedicine CO., Ltd., Seoul 04763, South Korea
| |
Collapse
|
228
|
Jeon T, Goswami R, Nagaraj H, Cicek YA, Lehot V, Welton J, Bell CJ, Park J, Luther DC, Im J, Rotello CM, Mager J, Rotello VM. Engineered zwitterionic diblock copolymer-siRNA polyplexes provide highly effective treatment of triple-negative breast cancer in a 4T1 murine model. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2406763. [PMID: 40017807 PMCID: PMC11864752 DOI: 10.1002/adfm.202406763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 03/01/2025]
Abstract
Self-assembly of siRNA with a block copolymer featuring guanidinium and zwitterion functionalized blocks generates core-shell-like nanovectors that provide cytosolic access to siRNA and efficiently evade phagocytic clearance. The guanidinium-functionalized inner block complexes siRNA in the nanovector interior and enables cytosolic delivery. The zwitterionic outer block provides a non-interacting shell on the nanovectors that reduces macrophage uptake in vitro and phagocytic clearance and enhances tumor localization in vivo. These nanovectors were used to treat a 4T1 (murine) model of triple-negative breast cancer (TNBC). The nanovectors deliver siRNA efficiently to 4T1 triple-negative breast cancer cells in vitro, with high selectivity relative to macrophages. This efficiency and selectivity translate into in vivo efficacy: diblock nanovectors evaded phagocytic clearance and efficiently localized in an aggressive murine 4T1 orthotopic model, with a ~3-fold increase of vector residing in the tumor compared to the homopolymer nanovectors. This increased localization efficiently knocked down STAT3 (~80%) and provided tumorostasis (100% growth inhibition) at a low dose of 0.14 mg/kg. The in vitro and in vivo efficacy of these nanovectors demonstrate the potential of engineered polymer architectures to generate effective self-assembled siRNA therapeutics that avoid phagocytic clearance for the treatment of diseases requiring systemic administration.
Collapse
Affiliation(s)
- Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Victor Lehot
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Janelle Welton
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Charlotte J Bell
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungkyun Im
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Caren M Rotello
- Department of Psychological and Brain Science, University of Massachusetts, Amherst, 135 Hicks Way, MA, 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M Rotello
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
229
|
Hara S, Arase S, Sano S, Suzuki T, Mizogaki I, Sato S, Ukai K. Anion exchange-HPLC method for evaluating the encapsulation efficiency of mRNA-loaded lipid nanoparticles using analytical quality by design. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124317. [PMID: 39303519 DOI: 10.1016/j.jchromb.2024.124317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Lipid nanoparticles (LNPs) are emerging nucleic acid delivery systems in the development of mRNA therapeutics such as the severe acute respiratory syndrome coronavirus 2 vaccines. However, a suitable analytical method for evaluating the encapsulation efficiency (EE) of the LNPs is required to ensure drug efficacy, as current analytical methods exhibit throughput issues and require long analysis times. Hence, we developed and validated an anion-exchange HPLC method using Analytical Quality by Design. Three critical method parameters (CMPs) were identified using risk assessment and Design of Experiments: column temperature, flow rate, and sodium perchlorate concentration. The CMPs were optimized using Face-Centered Central Composite Design. The discriminating power of the optimized HPLC method and RiboGreen assay was comparable. The main advantage of this method is that LNPs can be directly injected into the HPLC system without bursting the LNPs loaded with encapsulated poly(A). The optimized HPLC method was validated as robust, high-throughput, and sufficiently sensitive according to the ICH Q2 guidelines. We believe our findings could promote efficient LNPs-based drug development.
Collapse
Affiliation(s)
- Shoki Hara
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan.
| | - Shuntaro Arase
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Syusuke Sano
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Takuya Suzuki
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Iori Mizogaki
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Shinya Sato
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| | - Koji Ukai
- Formulation Research, Pharmaceutical Science and Technologies Unit, Pharmaceutical Profiling & Development Function, Eisai Co., Ltd., 1 Kawashimatakehaya-machi, Kakamigahara, Gifu 501-6195, Japan
| |
Collapse
|
230
|
McMillan C, Druschitz A, Rumbelow S, Borah A, Binici B, Rattray Z, Perrie Y. Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC PHARMACEUTICS 2024; 1:841-853. [PMID: 39323767 PMCID: PMC11417672 DOI: 10.1039/d4pm00128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Lipid nanoparticles (LNPs), most commonly recognised for their role in COVID-19 mRNA vaccines, are important delivery vehicles for nucleic acid (mRNA, siRNA) therapies. The physicochemical attributes, such as size, nucleic acid encapsulation and electric charge, may have a significant impact on the efficacy of these medicines. In this study, adjustments to aqueous to lipid phase ratios were assessed for their impact on LNP size and other critical quality attributes (CQAs). It was observed that minor adjustments of aqueous-to-organic lipid phase ratios can be used to precisely control the size of ALC-0315-formulated LNPs. This was then used to evaluate the impact of phase ratio and corresponding size ranges on the in vitro and in vivo expression of these LNPs. In HEK293 cells, larger LNPs led to higher expression of the mRNA cargo within the LNPs, with a linear correlation between size and expression. In THP-1 cells this preference for larger LNPs was observed up to 120 d.nm after which there was a fall in expression. In BALB/c mice, however, LNPs at the lowest phase ratio tested, >120 d.nm, showed reduced expression compared to those of range 60-120 d.nm, within which there was no significant difference between sizes. These results suggest a robustness of LNP expression up to 120 d.nm, larger than those <100 d.nm conventionally used in medicine.
Collapse
Affiliation(s)
| | - Amy Druschitz
- Croda International Plc and Avanti Polar Lipids Alabaster AL USA
| | - Stephen Rumbelow
- Croda International Plc and Avanti Polar Lipids Alabaster AL USA
| | | | | | | | | |
Collapse
|
231
|
Lawson JL, Sekar RP, Wright ARE, Wheeler G, Yanes J, Estridge J, Johansen CG, Farnsworth NL, Kumar P, Tay JW, Kumar R. The Spatial Distribution of Lipophilic Cations in Gradient Copolymers Regulates Polymer-pDNA Complexation, Polyplex Aggregation, and Intracellular pDNA Delivery. Biomacromolecules 2024; 25:6855-6870. [PMID: 39318335 PMCID: PMC12020213 DOI: 10.1021/acs.biomac.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Here, we demonstrate that the spatial distribution of lipophilic cations governs the complexation pathways, serum stability, and biological performance of polymer-pDNA complexes (polyplexes). Previous research focused on block/statistical copolymers, whereas gradient copolymers, where the density of lipophilic cations diminishes (gradually or steeply) along polymer backbones, remain underexplored. We engineered gradient copolymers that combine the polyplex colloidal stability of block copolymers with the transfection efficiency of statistical copolymers. We synthesized length- and compositionally equivalent gradient copolymers (G1-G3) along with statistical (S) and block (B) copolymers of 2-(diisopropylamino)ethyl methacrylate and 2-hydroxyethyl methacrylate. We mapped how polymer microstructure governs pDNA loading per polyplex, pDNA conformational changes, and polymer-pDNA binding thermodynamics via static light scattering, circular dichroism spectroscopy, and isothermal titration calorimetry, respectively. While gradient steepness is a powerful design handle to improve polyplex physical properties, augment pDNA delivery capacity, and attenuate polycation-triggered hemolysis, microstructural contrasts did not elicit differences in complement activation.
Collapse
Affiliation(s)
- Jessica L Lawson
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ram Prasad Sekar
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Aryelle R E Wright
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Grant Wheeler
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jillian Yanes
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jordan Estridge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chelsea G Johansen
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nikki L Farnsworth
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Praveen Kumar
- Shared Instrumentation Facility, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jian Wei Tay
- Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Ramya Kumar
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
232
|
Yuan K, Lai K, Miao G, Zhang J, Zhao X, Tan G, Wang X, Wang X. Cholinized-Polymer Functionalized Lipid-Based Drug Carriers Facilitate Liver Fibrosis Therapy via Ultrafast Liver-Targeting Delivery. Biomacromolecules 2024; 25:6526-6538. [PMID: 39213520 DOI: 10.1021/acs.biomac.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here, we report novel cholinized-polymer functionalized lipid-based nanoparticles (CP-LNPs) for rapid and highly effective delivery of drugs to the liver, achieving targeting within 10 min and nearly 100% efficiency. In this study, CP-LNPs loaded with a promising antifibrotic agent curcumin (CP-LNPs/Cur) significantly improved the stability of curcumin under physiological conditions and its distribution in the liver. In vitro experiments demonstrated that CP-LNPs/Cur effectively suppressed the proliferation and migration of activated hepatic stellate cells (aHSCs), as evidenced by the decreased expression of α-SMA. Moreover, CP-LNPs/Cur attenuated oxidative stress levels in hepatocytes while improving mitochondrial physiological activity. In vivo antifibrosis studies have shown that CP-LNPs/Cur only require a low dose to significantly alleviate liver injury and collagen deposition, thereby preventing the progression of liver fibrosis. These findings indicated that CP-LNPs exhibit great potential in liver fibrosis therapy benefiting from the novel targeting strategy.
Collapse
Affiliation(s)
- Kun Yuan
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Keren Lai
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Guifeng Miao
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Jibin Zhang
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xiaoxi Zhao
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Constructionand Detection in Tissue Engineering, Biomaterials Research Center, School ofBiomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Cardiovascular Surgery, ZhujiangHospital, Southern Medical University, Guangzhou, Guangdong Province 510280, China
| |
Collapse
|
233
|
Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Nanotechnology for boosting ovarian cancer immunotherapy. J Ovarian Res 2024; 17:202. [PMID: 39402681 PMCID: PMC11475952 DOI: 10.1186/s13048-024-01507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Ovarian cancer, often referred to as the "silent killer," is notoriously difficult to detect in its early stages, leading to a poor prognosis for many patients. Diagnosis is often delayed until the cancer has advanced, primarily due to its ambiguous and frequently occurring clinical symptoms. Ovarian cancer leads to more deaths than any other cancer of the female reproductive system. The main reasons for the high mortality rates include delayed diagnosis and resistance to treatment. As a result, there is an urgent need for improved diagnostic and treatment options for ovarian cancer. The standard treatments typically involve debulking surgery along with platinum-based chemotherapies. Among patients with advanced-stage cancer who initially respond to current therapies, 50-75% experience a recurrence. Recently, immunotherapy-based approaches to enhance the body's immune response to combat tumor growth have shown promise. Immune checkpoint inhibitors have shown promising results in treating other types of tumors. However, in ovarian cancer, only a few of these inhibitors have been effective because the tumor's environment suppresses the immune system and creates barriers for treatment. This hampers the effectiveness of existing immunotherapies. Nonetheless, advanced immunotherapy techniques and delivery systems based on nanotechnology hold promise for overcoming these challenges.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, 36014, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
234
|
Li Y, Shen Q, Feng L, Zhang C, Jiang X, Liu F, Pang B. A nanoscale natural drug delivery system for targeted drug delivery against ovarian cancer: action mechanism, application enlightenment and future potential. Front Immunol 2024; 15:1427573. [PMID: 39464892 PMCID: PMC11502327 DOI: 10.3389/fimmu.2024.1427573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/22/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological malignancies in the world and is the leading cause of cancer-related death in women. The complexity and difficult-to-treat nature of OC pose a huge challenge to the treatment of the disease, Therefore, it is critical to find green and sustainable drug treatment options. Natural drugs have wide sources, many targets, and high safety, and are currently recognized as ideal drugs for tumor treatment, has previously been found to have a good effect on controlling tumor progression and reducing the burden of metastasis. However, its clinical transformation is often hindered by structural stability, bioavailability, and bioactivity. Emerging technologies for the treatment of OC, such as photodynamic therapy, immunotherapy, targeted therapy, gene therapy, molecular therapy, and nanotherapy, are developing rapidly, particularly, nanotechnology can play a bridging role between different therapies, synergistically drive the complementary role of differentiated treatment schemes, and has a wide range of clinical application prospects. In this review, nanoscale natural drug delivery systems (NNDDS) for targeted drug delivery against OC were extensively explored. We reviewed the mechanism of action of natural drugs against OC, reviewed the morphological composition and delivery potential of drug nanocarriers based on the application of nanotechnology in the treatment of OC, and discussed the limitations of current NNDDS research. After elucidating these problems, it will provide a theoretical basis for future exploration of novel NNDDS for anti-OC therapy.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
235
|
Bérot A, Maniti O, El Alaoui S, Granjon T, El Alaoui M. Generation of Anti-Epidermal Growth Factor Receptor-2 (HER2) Immunoliposomes Using Microbial Transglutaminase (mTG)-Mediated Site-Specific Conjugated Antibodies. ACS Pharmacol Transl Sci 2024; 7:3034-3044. [PMID: 39416960 PMCID: PMC11475288 DOI: 10.1021/acsptsci.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Nanocarriers have found their interests in many fields including drug delivery and labeling of cells with the aim to target and eradicate tumor cells. One of the approaches to specifically address nanocarriers, such as liposomes, to their target is to attach antibodies of interest to their surface. To date, the development of immunoliposomes has been widely explored but has mainly involved chemical and unspecific reactions that could impair antibody stability, integrity, and orientation, thus reducing optimized immunoliposomes generation. In this study, we report the use of the patented COVISOLINK technology and the strain-promoted alkyne-azide cycloaddition (SPAAC) to generate immunoliposomes that target HER2 positive breast cancer with Trastuzumab as the antibody to be coupled. The efficacy of our two-step functionalization strategy and the successful specific coupling of the antibodies were validated by high-performance liquid chromatography-size exclusion chromatography (HPLC-SEC), which allowed a precise quantification of antibodies conjugated to liposomes and confirmed by cryo-TEM and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. We also demonstrate by flow cytometry and epifluorescence microscopy that the produced anti-HER2 immunoliposomes were able to interact specifically with their target cells (SK-BR-3) while remaining negative with cells that express HER2 at a low level (MDA-MB-231). Hence, for the first time, our COVISOLINK strategy using microbial transglutaminase (mTG) enables the preparation and production of well-characterized immunoliposomes that could be used in different applications, including therapies.
Collapse
Affiliation(s)
- Anna Bérot
- Covalab, 1B Rue Jacques Monod, 69500 Bron, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires
ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
| | - Ofelia Maniti
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires
ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
| | | | - Thierry Granjon
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires
ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
| | | |
Collapse
|
236
|
Prasad R, Kumari R, Chaudhari R, Kumar R, Kundu GC, Kumari S, Roy G, Gorain M, Chandra P. Emissive Lipid Nanoparticles as Biophotonic Contrast Agent for Site-Selective Solid Tumor Imaging in Pre-Clinical Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53393-53404. [PMID: 39324588 DOI: 10.1021/acsami.4c08273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Small organic dye-based fluorescent agents are highly potent in solid tumor imaging but face challenges such as poor photostability, nonspecific distribution, low circulation, and weak tumor binding. Nanocarriers overcome these issues with better physicochemical and biological performance, particularly in cancer imaging. Among the various nanosized carriers, lipid formulations are clinically approved but yet to be designed as bright nanocontrast agents for solid tumor diagnosis without affecting surrounding tissues. Herein, indocyanine green (ICG) encapsulated targetable lipid nanoparticles (698 ICG/LNPs) as safe contrast agents (∼200 nm) have been developed and tested for solid tumor imaging and biodistribution. Our findings reveal that nanoprecipitation produces ICG-LNPs with a unique assembly, which contributes to their high brightness with improved quantum yield (3.5%) in aqueous media. The bright, optically stable (30 days) biophotonic agents demonstrate rapid accumulation (within 1 h) and prolonged retention (for up to 168 h) at the primary tumor site, with better signal intensity following a one-time dose administration (17.7 × 109 LNP per dose). Incorporated folic acid (735 folic acid/LNPs) helps in selective tumor binding and the specific biodistribution of intravenously injected nanoparticles without affecting healthy tissues. Designed targetable ICG-LNP (634 MESF) demonstrates high-contrast fluorescence and resolution from the tumor area as compared to the targetable ICG-liposomal nanoparticles (532 MESF). Various in vitro and in vivo findings reveal that the cancer diagnostic efficacy elicited by designed bright lipid nanoparticles are comparable to reported clinically accepted imaging agents. Thus, such LNPs hold translational potential for cancer diagnosis at an early stage.
Collapse
Affiliation(s)
- Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Gopal Chandra Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411008, India
- School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Simpy Kumari
- Sahu Bio-Tech Services, Utsav Society, Nandoshi Road, Kirkatwadi, Pune, Maharashtra 411024, India
| | - Gaurab Roy
- Sahu Bio-Tech Services, Utsav Society, Nandoshi Road, Kirkatwadi, Pune, Maharashtra 411024, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Pune 411008, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
237
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
238
|
Alejo T, Toro-Córdova A, Fernández L, Rivero A, Stoian AM, Pérez L, Navarro V, Martínez-Oliván J, de Miguel D. Comprehensive Optimization of a Freeze-Drying Process Achieving Enhanced Long-Term Stability and In Vivo Performance of Lyophilized mRNA-LNPs. Int J Mol Sci 2024; 25:10603. [PMID: 39408932 PMCID: PMC11476828 DOI: 10.3390/ijms251910603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The success of mRNA vaccines against SARS-CoV-2 has prompted interest in mRNA-based pharmaceuticals due to their rapid production, adaptability, and safety. Despite these advantages, the inherent instability of mRNA and its rapid degradation in vivo underscores the need for an encapsulation system for the administration and delivery of RNA-based therapeutics. Lipid nanoparticles (LNPs) have proven the most robust and safest option for in vivo applications. However, the mid- to long-term storage of mRNA-LNPs still requires sub-zero temperatures along the entire chain of supply, highlighting the need to develop alternatives to improve mRNA vaccine stability under non-freezing conditions to facilitate logistics and distribution. Lyophilization presents itself as an effective alternative to prolong the shelf life of mRNA vaccines under refrigeration conditions, although a complex optimization of the process parameters is needed to maintain the integrity of the mRNA-LNPs. Recent studies have demonstrated the feasibility of freeze-drying LNPs, showing that lyophilized mRNA-LNPs retain activity and stability. However, long-term functional data remain limited. Herein, we focus on obtaining an optimized lyophilizable mRNA-LNP formulation through the careful selection of an optimal buffer and cryoprotectant and by tuning freeze-drying parameters. The results demonstrate that our optimized lyophilization process maintains LNP characteristics and functionality for over a year at refrigerated temperatures, offering a viable solution to the logistical hurdles of mRNA vaccine distribution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan Martínez-Oliván
- CerTest Biotec S.L., 50840 San Mateo de Gállego, Spain; (T.A.); (A.T.-C.); (L.F.); (A.R.); (A.M.S.); (L.P.); (V.N.)
| | - Diego de Miguel
- CerTest Biotec S.L., 50840 San Mateo de Gállego, Spain; (T.A.); (A.T.-C.); (L.F.); (A.R.); (A.M.S.); (L.P.); (V.N.)
| |
Collapse
|
239
|
Deepak V, El-Balawi L, Harris LK. Placental Drug Delivery to Treat Pre-Eclampsia and Fetal Growth Restriction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311165. [PMID: 38745536 DOI: 10.1002/smll.202311165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Pre-eclampsia and fetal growth restriction (FGR) continue to cause unacceptably high levels of morbidity and mortality, despite significant pharmaceutical and technological advances in other disease areas. The recent pandemic has also impacted obstetric care, as COVID-19 infection increases the risk of poor pregnancy outcomes. This review explores the reasons why it lacks effective drug treatments for the placental dysfunction that underlies many common obstetric conditions and describes how nanomedicines and targeted drug delivery approaches may provide the solution to the current drug drought. The ever-increasing range of biocompatible nanoparticle formulations available is now making it possible to selectively deliver drugs to uterine and placental tissues and dramatically limit fetal drug transfer. Formulations that are refractory to placental uptake offer the possibility of retaining drugs within the maternal circulation, allowing pregnant individuals to take medicines previously considered too harmful to the developing baby. Liposomes, ionizable lipid nanoparticles, polymeric nanoparticles, and adenoviral vectors have all been used to create efficacious drug delivery systems for use in pregnancy, although each approach offers distinct advantages and limitations. It is imperative that recent advances continue to be built upon and that there is an overdue investment of intellectual and financial capital in this field.
Collapse
Affiliation(s)
- Venkataraman Deepak
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9WL, UK
- St Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Lujain El-Balawi
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9WL, UK
- St Mary's Hospital, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
240
|
Awaya T, Hara H, Moroi M. Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP Vaccination: Mechanisms and Therapeutic Approaches. Diseases 2024; 12:231. [PMID: 39452475 PMCID: PMC11507195 DOI: 10.3390/diseases12100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Acute adverse reactions to COVID-19 mRNA vaccines are a major concern, as autopsy reports indicate that deaths most commonly occur on the same day of or one day following vaccination. These acute reactions may be due to cytokine storms triggered by lipid nanoparticles (LNPs) and anaphylaxis induced by polyethene glycol (PEG), both of which are vital constituents of the mRNA-LNP vaccines. Kounis syndrome, in which anaphylaxis triggers acute coronary syndrome (ACS), may also be responsible for these cardiovascular events. Furthermore, COVID-19 mRNA-LNP vaccines encompass adjuvants, such as LNPs, which trigger inflammatory cytokines, including interleukin (IL)-1β and IL-6. These vaccines also produce spike proteins which facilitate the release of inflammatory cytokines. Apart from this, histamine released from mast cells during allergic reactions plays a critical role in IL-6 secretion, which intensifies inflammatory responses. In light of these events, early reduction of IL-1β and IL-6 is imperative for managing post-vaccine cytokine storms, ACS, and myocarditis. Corticosteroids can restrict inflammatory cytokines and mitigate allergic responses, while colchicine, known for its IL-1β-reducing capabilities, could also prove effective. The anti-IL-6 antibody tocilizumab also displays promising treatment of cytokine release syndrome. Aside from its significance for treating anaphylaxis, epinephrine can induce coronary artery spasms and myocardial ischemia in Kounis syndrome, making accurate diagnosis essential. The upcoming self-amplifying COVID-19 mRNA-LNP vaccines also contain LNPs. Given that these vaccines can cause a cytokine storm and allergic reactions post vaccination, it is crucial to consider corticosteroids and measure IL-6 levels for effective management.
Collapse
Affiliation(s)
- Toru Awaya
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Hidehiko Hara
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
- Department of Internal Medicine, Misato Central General Hospital, Saitama 341-8526, Japan
| |
Collapse
|
241
|
Dong Z, Wang Y, Jin W. Liver cirrhosis: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e721. [PMID: 39290252 PMCID: PMC11406049 DOI: 10.1002/mco2.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Liver cirrhosis is the end-stage of chronic liver disease, characterized by inflammation, necrosis, advanced fibrosis, and regenerative nodule formation. Long-term inflammation can cause continuous damage to liver tissues and hepatocytes, along with increased vascular tone and portal hypertension. Among them, fibrosis is the necessary stage and essential feature of liver cirrhosis, and effective antifibrosis strategies are commonly considered the key to treating liver cirrhosis. Although different therapeutic strategies aimed at reversing or preventing fibrosis have been developed, the effects have not be more satisfactory. In this review, we discussed abnormal changes in the liver microenvironment that contribute to the progression of liver cirrhosis and highlighted the importance of recent therapeutic strategies, including lifestyle improvement, small molecular agents, traditional Chinese medicine, stem cells, extracellular vesicles, and gut remediation, that regulate liver fibrosis and liver cirrhosis. Meanwhile, therapeutic strategies for nanoparticles are discussed, as are their possible underlying broad application and prospects for ameliorating liver cirrhosis. Finally, we also reviewed the major challenges and opportunities of nanomedicine‒biological environment interactions. We hope this review will provide insights into the pathogenesis and molecular mechanisms of liver cirrhosis, thus facilitating new methods, drug discovery, and better treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Yeying Wang
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Weilin Jin
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| |
Collapse
|
242
|
Zhong C, Cohen K, Lin X, Schiller E, Sharma S, Hanna N. COVID-19 Vaccine mRNA Biodistribution: Maternal and Fetal Exposure Risks. Am J Reprod Immunol 2024; 92:e13934. [PMID: 39392236 DOI: 10.1111/aji.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
SARS-CoV-2 infection during pregnancy has severe consequences on maternal and neonatal health. Presently, vaccination stands as a critical preventive measure for mitigating infection-related risks. Although the initial clinical trials for the COVID-19 vaccines excluded pregnant women, subsequent investigations have indicated mRNA vaccinations' effectiveness and short-term safety during pregnancy. However, there is a lack of information regarding the potential biodistribution of the vaccine mRNA during pregnancy and lactation. Recent findings indicate that COVID-19 vaccine mRNA has been detected in breast milk, suggesting that its presence is not confined to the injection site and raises the possibility of similar distribution to the placenta and the fetus. Furthermore, the potential effects and responses of the placenta and fetus to the vaccine mRNA are still unknown. While potential risks might exist with the exposure of the placenta and fetus to the COVID-19 mRNA vaccine, the application of mRNA therapies for maternal and fetal conditions offers a groundbreaking prospect. Future research should leverage the unique opportunity provided by the first-ever application of mRNA vaccines in humans to understand their biodistribution and impact on the placenta and fetus in pregnant women. Such insights could substantially advance the development of safer and more effective future mRNA-based therapies during pregnancy.
Collapse
Affiliation(s)
- Connie Zhong
- New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Koral Cohen
- New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Xinhua Lin
- Women and Children's Research Laboratory, Departments of Foundations of Medicine, New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Emily Schiller
- New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Surendra Sharma
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nazeeh Hanna
- Women and Children's Research Laboratory, Departments of Foundations of Medicine, New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
- Department of Pediatrics, Division of Neonatology, New York University Langone Hospital-Long Island, New York University-Grossman Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
243
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
244
|
Mao M, Yang W, Zhang X. Current mRNA-based vaccine strategies for glioma treatment. Crit Rev Oncol Hematol 2024; 202:104459. [PMID: 39097247 DOI: 10.1016/j.critrevonc.2024.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Gliomas are one of the most aggressive types of brain tumors and are associated with high morbidity and mortality rates. Currently, conventional treatments for gliomas such as surgical resection, radiotherapy, and chemotherapy have limited effectiveness, and new approaches are needed to improve patient outcomes. mRNA-based vaccines represent a promising therapeutic strategy for cancer treatment, including gliomas. Recent advances in immunotherapy using mRNA-based dendritic cell vaccines have shown great potential in preclinical and clinical trials. Dendritic cells are professional antigen-presenting cells that play a crucial role in initiating and regulating immune responses. In this review, we summarize the current progress of mRNA-based vaccines for gliomas, with a focus on recent advances in dendritic cell-based mRNA vaccines. We also discuss the feasibility and safety of mRNA-based clinical applications for gliomas.
Collapse
Affiliation(s)
- Mengqian Mao
- Neuroscience & Metabolism Research, Department of Neurosurgery, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wanchun Yang
- Neuroscience & Metabolism Research, Department of Neurosurgery, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xuefeng Zhang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
245
|
Zhang D, Zhao H, Li P, Wu X, Liang Y. Research Progress on Liposome Pulmonary Delivery of Mycobacterium tuberculosis Nucleic Acid Vaccine and Its Mechanism of Action. J Aerosol Med Pulm Drug Deliv 2024; 37:284-298. [PMID: 38669118 PMCID: PMC11502632 DOI: 10.1089/jamp.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.
Collapse
Affiliation(s)
- Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Ping Li
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
246
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
247
|
Wang P, Hong S, Cao C, Guo S, Wang C, Chen X, Wang X, Song P, Li N, Xu R. Ethosomes-mediated tryptanthrin delivery as efficient anti-psoriatic nanotherapy by enhancing topical drug absorption and lipid homeostasis. J Nanobiotechnology 2024; 22:584. [PMID: 39334378 PMCID: PMC11438247 DOI: 10.1186/s12951-024-02860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Psoriasis is a chronic, relapsing, and refractory immune-mediated skin disease with the etiology and pharmaceutical targets remaining unsatisfactorily addressed. Topical herbal-derived compounds, such as tryptanthrin (Tryp), have been considered as an alternative therapy for psoriasis due to their lower costs and fewer side effects compared to other therapies. However, the effectiveness of topically administered drugs is substantially limited by the thickened pathological skin barrier and the low bioavailability of drugs in the deeper layers of the lesion. Ethosomes, being a novel phospholipid-based vesicle system with high content of ethanol, have been implicated in enhancing topical drug absorption and restoring psoriatic lesions. In this study, taking advantages of ethosomes as a soft and malleable drug carrier, we constructed the Tryp-loaded ethosome (Tryp-ES) through a one-step microfluidics-based technique. The optimal formulation of Tryp-ES was achieved by adding amino-acid-derived surfactant sodium lauroyl glutamate, and Tryp-ES exhibited homogeneous particle size and favorable stability at room temperature. In vitro evaluations showed that Tryp of Tryp-ES could be easily internalized into cells and accumulated in cell nuclei, hence inhibited the abnormally proliferated keratinocytes by inducing apoptosis. In vivo and in vitro assessment using psoritic skin of mice revealed that Tryp-ES had preferred skin retention and permeation of loaded drugs within the initial 1 h of topical administration, which could be attributed to transient disintegrations of cell membranes by ethosomes, thus improved cellular fluidity and permeability. Notably, a synergistic effect of ethosomes and Tryp was found in psoriatic mice. Tryp-ES-treated mice showed substantially ameliorated symptoms of psoriasis and reduced pathological alterations due to hyperplasia, inflammation and angiogenesis, without detectable local or systemic toxicities. Interestingly, lipidomics analysis confirmed that the supplementation of phospholipids, as in the form of ethosome vehicles, was an alterantive strategy to relieve psoriatic pathologies. Taken together, this study provides a novel impact for ethosomal topical delivery of Tryp and underlines their potential as an effective therapy for the management of psoriasis.
Collapse
Affiliation(s)
- Pengyu Wang
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shihao Hong
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Can Cao
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shijie Guo
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Wang
- Central Instrument Facility, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xi Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinnan Wang
- Central Instrument Facility, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
248
|
Wang Q, Jia S, Wang Z, Chen H, Jiang X, Li Y, Ji P. Nanogene editing drug delivery systems in the treatment of liver fibrosis. Front Med (Lausanne) 2024; 11:1418786. [PMID: 39386741 PMCID: PMC11461213 DOI: 10.3389/fmed.2024.1418786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Liver fibrosis is a group of diseases that seriously affect the health of the world's population. Despite significant progress in understanding the mechanisms of liver fibrogenesis, the technologies and drugs used to treat liver fibrosis have limited efficacy. As a revolutionary genetic tool, gene editing technology brings new hope for treating liver fibrosis. Combining nano-delivery systems with gene editing tools to achieve precise delivery and efficient expression of gene editing tools that can be used to treat liver fibrosis has become a rapidly developing field. This review provides a comprehensive overview of the principles and methods of gene editing technology and commonly used gene editing targets for liver fibrosis. We also discuss recent advances in common gene editing delivery vehicles and nano-delivery formulations in liver fibrosis research. Although gene editing technology has potential advantages in liver fibrosis, it still faces some challenges regarding delivery efficiency, specificity, and safety. Future studies need to address these issues further to explore the potential and application of liver fibrosis technologies in treating liver fibrosis.
Collapse
Affiliation(s)
- Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
249
|
Vinales I, Silva-Espinoza JC, Medina BA, Urbay JEM, Beltran MA, Salinas DE, Ramirez-Ramos MA, Maldonado RA, Poon W, Penichet ML, Almeida IC, Michael K. Selective Transfection of a Transferrin Receptor-Expressing Cell Line with DNA-Lipid Nanoparticles. ACS OMEGA 2024; 9:39533-39545. [PMID: 39346819 PMCID: PMC11425831 DOI: 10.1021/acsomega.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024]
Abstract
Despite considerable progress in using lipid nanoparticle (LNP) vehicles for gene delivery, achieving selective transfection of specific cell types remains a significant challenge, hindering the advancement of new gene or gene-editing therapies. Although LNPs have been equipped with ligands aimed at targeting specific cellular receptors, achieving complete selectivity continues to be elusive. The exact reasons for this limited selectivity are not fully understood, as cell targeting involves a complex interplay of various cellular factors. Assessing how much ligand/receptor binding contributes to selectivity is challenging due to these additional influencing factors. Nonetheless, such data are important for developing new nanocarriers and setting realistic expectations for selectivity. Here, we have quantified the selective, targeted transfection using two uniquely engineered cell lines that eliminate unpredictable and interfering cellular influences. We have compared the targeted transfection of Chinese ovary hamster (CHO) cells engineered to express the human transferrin receptor 1 (hTfR1), CHO-TRVb-hTfR1, with CHO cells that completely lack any transferrin receptor, CHO-TRVb-neo cells (negative control). Thus, the two cell lines differ only in the presence/absence of hTfR1. The transfection was performed with pDNA-encapsulating LNPs equipped with the DT7 peptide ligand that specifically binds to hTfR1 and enables targeted transfection. The LNP's pDNA encoded for the monomeric GreenLantern (mGL) reporter protein, whose fluorescence was used to quantify transfection. We report a novel LNP composition designed to achieve an optimal particle size and ζ-potential, efficient pDNA encapsulation, hTfR1-targeting capability, and sufficient polyethylene glycol sheltering to minimize random cell targeting. The transfection efficiency was quantified in both cell lines separately through flow cytometry based on the expression of the fluorescent gene product. Our results demonstrated an LNP dose-dependent mGL expression, with a 5-fold preference for the CHO-TRVb-hTfR1 when compared to CHO-TRVb-neo. In another experiment, when both cell lines were mixed at a 1:1 ratio, the DT7-decorated LNP achieved a 3-fold higher transfection of the CHO-TRVb-hTfR1 over the CHO-TRVb-neo cells. Based on the low-level transfection of the CHO-TRVb-neo cells in both experiments, our results suggest that 17-25% of the transfection occurred in a nonspecific manner. The observed transfection selectivity for the CHO-TRVb-hTfR1 cells was based entirely on the hTfR1/DT7 interaction. This work showed that the platform of two engineered cell lines which differ only in the hTfR1 can greatly facilitate the development of LNPs with hTfR1-targeting ligands.
Collapse
Affiliation(s)
- Irodiel Vinales
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan Carlos Silva-Espinoza
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Bryan A. Medina
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Juan E. M. Urbay
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| | - Miguel A. Beltran
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Dante E. Salinas
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Marco A. Ramirez-Ramos
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rosa A. Maldonado
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Wilson Poon
- Department
of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Manuel L. Penichet
- Division
of Surgical Oncology, Department of Surgery, David Geffen School of
Medicine, University of California, Los
Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Microbiology, Immunology and Molecular Genetics, David Geffen School
of Medicine, University of California, Los
Angeles (UCLA), Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- The Molecular
Biology Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive
Cancer Center, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Igor C. Almeida
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
- Department
of Biological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United States
| | - Katja Michael
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, El Paso, Texas 79968, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
250
|
Hourihane E, Hixon KR. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics (Basel) 2024; 9:574. [PMID: 39329596 PMCID: PMC11430251 DOI: 10.3390/biomimetics9090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have become a recent source of interest for treating CF and CF-related conditions, and many formulations have been created thus far. This paper is intended to provide an overview of CF and the effect it has on the lungs, the barriers in using NP drug delivery vehicles for treatment, and three common material class choices for these NP formulations: metals, polymers, and lipids. The materials to be discussed include gold, silver, and iron oxide metallic NPs; polyethylene glycol, chitosan, poly lactic-co-glycolic acid, and alginate polymeric NPs; and lipid-based NPs. The novelty of this review comes from a less specific focus on nanoparticle examples, with the focus instead being on the general theory behind material function, why or how a material might be used, and how it may be preferable to other materials used in treating CF. Finally, this paper ends with a short discussion of the two FDA-approved NPs for treatment of CF-related conditions and a recommendation for the future usage of NPs in people with Cystic Fibrosis (pwCF).
Collapse
Affiliation(s)
- Eoin Hourihane
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|