201
|
Komarnitsky PB, Michel B, Buratowski S. TFIID-specific yeast TAF40 is essential for the majority of RNA polymerase II-mediated transcription in vivo. Genes Dev 1999; 13:2484-9. [PMID: 10521393 PMCID: PMC317065 DOI: 10.1101/gad.13.19.2484] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1999] [Accepted: 08/11/1999] [Indexed: 11/24/2022]
Abstract
Many questions remain concerning the role of TFIID TBP-associated factors (TAFs) in transcription, including whether TAFs are required at most or only a small subset of promoters. It was shown previously that three histone-like TAFs are broadly required for transcription, but interpretation of this observation is complicated because these proteins are components of both TFIID and the SAGA histone acetyltransferase complex. Here we show that mutations in the yeast TFIID-specific protein Taf40 lead to a general cessation of transcription, even in the presence of excess TBP, suggesting that the TFIID complex is required at most promoters in vivo.
Collapse
Affiliation(s)
- P B Komarnitsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
202
|
Tudor M, Murray PJ, Onufryk C, Jaenisch R, Young RA. Ubiquitous expression and embryonic requirement for RNA polymerase II coactivator subunit Srb7 in mice. Genes Dev 1999; 13:2365-8. [PMID: 10500093 PMCID: PMC317028 DOI: 10.1101/gad.13.18.2365] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian RNA polymerase II complexes and coactivators containing homologs of yeast Srb/Med proteins have been isolated recently from tissue culture cells. The yeast Srb/Med complex is involved in global gene expression and is essential, but it is not yet known if its mammalian counterparts are broadly expressed in tissues or if they are essential. We have isolated the murine gene encoding Srb7, an Srb/Med complex protein whose sequence and function is highly conserved between yeast and humans. The mouse Srb7 gene is single copy, and Northern analysis showed that it is expressed in all tissues examined. Disruption of the gene in embryonic stem cells revealed that it is essential for cell viability and murine embryonic development. These results, together with evidence that murine Srb7 is associated exclusively with high molecular weight forms of RNA polymerase II in extracts, suggest that Srb7-containing polymerase complexes occur in most tissues and have essential roles in expression of protein coding genes.
Collapse
Affiliation(s)
- M Tudor
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 USA
| | | | | | | | | |
Collapse
|
203
|
Hannan RD, Cavanaugh A, Hempel WM, Moss T, Rothblum L. Identification of a mammalian RNA polymerase I holoenzyme containing components of the DNA repair/replication system. Nucleic Acids Res 1999; 27:3720-7. [PMID: 10471742 PMCID: PMC148628 DOI: 10.1093/nar/27.18.3720] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional models for transcription initiation by RNA polymerase I include a stepwise assembly of basic transcription factors/regulatory proteins on the core promoter to form a preinitiation complex. In contrast, we have identified a preassembled RNA polymerase I (RPI) complex that contains all the factors necessary and sufficient to initiate transcription from the rDNA promoter in vitro. The purified RPI holoenzyme contains the RPI homolog of TFIID, SL-1 and the rDNA transcription terminator factor (TTF-1), but lacks UBF, an activator of rDNA transcription. Certain components of the DNA repair/replication system, including Ku70/80, DNA topoisomerase I and PCNA, are also associated with the RPI complex. We have found that the holo-enzyme supported specific transcription and that specific transcription was stimulated by the RPI transcription activator UBF. These results support the hypothesis that a fraction of the RPI exists as a preassembled, transcriptionally competent complex that is readily recruited to the rDNA promoter, i.e. as a holoenzyme, and provide important new insights into the mechanisms governing initiation by RPI.
Collapse
Affiliation(s)
- R D Hannan
- Cancer Research Centre and Department of Biochemistry, Laval University, Hotel-Dieu de Quebec, 11 Cote du Palais, Quebec G1R 2J6, Canada
| | | | | | | | | |
Collapse
|
204
|
Yankulov K, Todorov I, Romanowski P, Licatalosi D, Cilli K, McCracken S, Laskey R, Bentley DL. MCM proteins are associated with RNA polymerase II holoenzyme. Mol Cell Biol 1999; 19:6154-63. [PMID: 10454562 PMCID: PMC84545 DOI: 10.1128/mcb.19.9.6154] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MCMs are a family of proteins related to ATP-dependent helicases that bind to origin recognition complexes and are required for initiation of DNA replication. We report that antibodies against MCM2(BM28) specifically inhibited transcription by RNA polymerase II (Pol II) in microinjected Xenopus oocytes. Consistent with this observation, MCM2 and other MCMs copurified with Pol II and general transcription factors (GTFs) in high-molecular-weight holoenzyme complexes isolated from Xenopus oocytes and HeLa cells. Pol II and GTFs also copurified with MCMs isolated by anti-MCM3 immunoaffinity chromatography. MCMs were specifically displaced from the holoenzyme complex by antibody against the C-terminal domain (CTD) of Pol II. In addition, MCMs bound to a CTD affinity column, suggesting that their association with holoenzyme depends in part on this domain of Pol II. These results suggest a new function for MCM proteins as components of the Pol II transcriptional apparatus.
Collapse
Affiliation(s)
- K Yankulov
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Makino Y, Yoshida T, Yogosawa S, Tanaka K, Muramatsu M, Tamura TA. Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120. Genes Cells 1999; 4:529-39. [PMID: 10526239 DOI: 10.1046/j.1365-2443.1999.00277.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND SUG1 belongs to proteasomal ATPase. Previous studies have demonstrated that SUG1 is associated with TBP. It is assumed to be involved in transcriptional regulation in addition to proteolysis. In this study, we investigated the association of mammalian SUG1 with TBP in more detail. RESULTS Pull-down experiments with TBP revealed multiple TBP-interacting proteins (TIPs) that were recovered dependent upon the presence of C-terminal conserved domain of TBP. By 2-D electrophoresis, we identified SUG1 in TIPs. By using far-Western analysis, we identified two proteins that could directly bind to TBP: SUG1 and another proteasomal ATPase (S4). Protein microsequencing and Western blotting identified all the remaining proteasomal ATPases (MSS1, TBP1, TBP7, and SUG2) in the TIP preparations. We present evidence that TBP and at least SUG1, MSS1, and S4 form a complex in the cell. However, no evidence of association of TBP with the 26S proteasome or its 19S regulatory unit was obtained. The molecular mass of the TBP/ATPases-complex, which also included a novel transcription regulatory factor, TIP120, was estimated to be approximately 800 kDa. CONCLUSION These results suggest that there is a novel multisubunit complex containing TBP and proteasomal ATPases. Based on our findings, we hypothesize that proteasomal ATPases are involved in transcriptional regulation in addition to proteolysis.
Collapse
Affiliation(s)
- Y Makino
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | |
Collapse
|
206
|
Wu SY, Thomas MC, Hou SY, Likhite V, Chiang CM. Isolation of mouse TFIID and functional characterization of TBP and TFIID in mediating estrogen receptor and chromatin transcription. J Biol Chem 1999; 274:23480-90. [PMID: 10438527 DOI: 10.1074/jbc.274.33.23480] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIID is a general transcription factor required for the assembly of the transcription machinery on most eukaryotic promoters transcribed by RNA polymerase II. Although the TATA-binding subunit (TBP) of TFIID is able to support core promoter and activator-dependent transcription under some circumstances, the roles of TBP-associated factors (TAF(II)s) in TFIID-mediated activation remain unclear. To define the evolutionarily conserved function of TFIID and to elucidate the roles of TAF(II)s in gene activation, we have cloned the mouse TAF(II)55 subunit of TFIID and further isolated mouse TFIID from a murine FM3A-derived cell line that constitutively expresses FLAG-tagged mouse TAF(II)55. Both mouse and human TFIIDs are capable of mediating transcriptional activation by Gal4 fusions containing different activation domains in a highly purified human cell-free transcription system devoid of TFIIA and Mediator. Although TAF(II)-independent activation by Gal4-VP16 can also be observed in this highly purified human transcription system with either mouse or yeast TBP, TAF(II)s are strictly required for estrogen receptor-mediated activation independently of the core promoter sequence. In addition, TAF(II)s are necessary for transcription from a preassembled chromatin template. These findings clearly demonstrate an essential role of TAF(II)s as a transcriptional coactivator for estrogen receptor and in chromatin transcription.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
207
|
Bangur CS, Faitar SL, Folster JP, Ponticelli AS. An interaction between the N-terminal region and the core domain of yeast TFIIB promotes the formation of TATA-binding protein-TFIIB-DNA complexes. J Biol Chem 1999; 274:23203-9. [PMID: 10438492 DOI: 10.1074/jbc.274.33.23203] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor IIB (TFIIB) plays an essential role in transcription of protein-coding genes by eukaryotic RNA polymerase II. We previously identified a yeast TFIIB mutant (R64E) that exhibited increased activity in the formation of stable TATA-binding protein-TFIIB-DNA (DB) complexes in vitro. We report here that the homologous human TFIIB mutant (R53E) also displayed increased activity in DB complex formation in vitro. Biochemical analyses revealed that the increased activity of the R64E mutant in DB complex formation was associated with an altered protease sensitivity of the protein and an enhanced interaction between the N-terminal region and the C-terminal core domain. These results suggest that the intramolecular interaction in yeast TFIIB stabilizes a productive conformation of the protein for the association with promoter-bound TATA-binding protein.
Collapse
Affiliation(s)
- C S Bangur
- Department of Biochemistry and the Center for Advanced Molecular Biology and Immunology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | | | |
Collapse
|
208
|
Rossignol M, Keriel A, Staub A, Egly JM. Kinase activity and phosphorylation of the largest subunit of TFIIF transcription factor. J Biol Chem 1999; 274:22387-92. [PMID: 10428810 DOI: 10.1074/jbc.274.32.22387] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The largest subunit of the human basal transcription factor TFIIFalpha (also called RAP74) was reported previously to be the target of some phospho/dephosphorylation process. We show that TFIIFalpha possesses a serine/threonine kinase activity, allowing an autophosphorylation of the two residues at position serine 385 and threonine 389. Mutation analysis strongly suggests that autophosphorylation of both sites regulates the transcription elongation process. Moreover we also evidence three additional phosphorylation sites located at positions 207-230, 271-283, and 335-344. These sites are phosphorylated by casein kinase II-like kinases and TAF(II)250, a component of TFIID.
Collapse
Affiliation(s)
- M Rossignol
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, B. P.163, 67404 Illkirch Cedex, Communaute Urbaine de Strasbourg, France
| | | | | | | |
Collapse
|
209
|
Kimura H, Tao Y, Roeder RG, Cook PR. Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol Cell Biol 1999; 19:5383-92. [PMID: 10409729 PMCID: PMC84381 DOI: 10.1128/mcb.19.8.5383] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Various complexes that contain the core subunits of RNA polymerase II associated with different transcription factors have been isolated from eukaryotes; their precise molecular constitution depends on the purification procedure. We estimated the numbers of various components of such complexes in an HeLa cell by quantitative immunoblotting. The cells were lysed with saponin in a physiological buffer; approximately 140,000 unengaged polymerases (mainly of form IIA) were released. Only approximately 4,000 of these soluble molecules sedimented in glycerol gradients as holoenzyme-sized complexes. About 180,000 molecules of polymerases (approximately 110,000 molecules of form IIO) and 10,000 to 30,000 molecules of each of TFIIB, TFIIEalpha, TFIIEbeta, TFIIF-RAP74, TFIIF-RAP30, and TFIIH-MAT1 remained tightly associated with the nuclear substructure. Most proteins and run-on activity were retained when approximately 50% of the chromatin was detached with a nuclease, but approximately 45,000 molecules of bound TATA binding protein (TBP) were detached. Similar results were obtained after cross-linking living cells with formaldehyde. The results provide little support for the existence of a large pool of soluble holoenzyme; they are consistent with TBP-promoter complexes in nuclease-sensitive chromatin being assembled into preinitiation complexes attached to the underlying structure.
Collapse
Affiliation(s)
- H Kimura
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
210
|
Seydoux G, Strome S. Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 1999; 126:3275-83. [PMID: 10393107 DOI: 10.1242/dev.126.15.3275] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One hundred years after Weismann's seminal observations, the mechanisms that distinguish the germline from the soma still remain poorly understood. This review describes recent studies in Caenorhabditis elegans, which suggest that germ cells utilize unique mechanisms to regulate gene expression. In particular, mechanisms that repress the production of mRNAs appear to be essential to maintain germ cell fate and viability.
Collapse
Affiliation(s)
- G Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
211
|
Douziech M, Forget D, Greenblatt J, Coulombe B. Topological localization of the carboxyl-terminal domain of RNA polymerase II in the initiation complex. J Biol Chem 1999; 274:19868-73. [PMID: 10391932 PMCID: PMC4492719 DOI: 10.1074/jbc.274.28.19868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) functions at multiple stages of transcription and is involved in the coupling of transcription to pre-mRNA processing. We have used site-specific protein-DNA photocross-linking to determine the position of the CTD along promoter DNA in the transcriptional pre-initiation complex. Comparison of the promoter contacts made by RNAP II with or without the CTD indicate that the CTD approaches promoter DNA downstream of the transcriptional initiation site between positions +16 and +26. Incubation of pre-assembled initiation complexes with antibodies to the CTD prior to UV irradiation led to specific photocross-linking of the IgG heavy chain to nucleotide +17, indicating that the CTD is accessible for protein-protein interactions in a complex containing RNAP II and the general initiation factors. In conjunction with previously published observations, our structural data are fully compatible with the notion that DNA wrapping around RNAP II places the CTD and the RNA exit channel into juxtaposition and provide a rationale for contacts between the SRB-mediator complex and core RNAP II observed in the RNAP II holoenzyme.
Collapse
Affiliation(s)
- M Douziech
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
| | | | | | | |
Collapse
|
212
|
Garcia-Higuera I, Kuang Y, Näf D, Wasik J, D'Andrea AD. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol Cell Biol 1999; 19:4866-73. [PMID: 10373536 PMCID: PMC84285 DOI: 10.1128/mcb.19.7.4866] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A to H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but their cellular function remains unknown. We have previously demonstrated that the FANCA and FANCC proteins interact and form a nuclear complex in normal cells, suggesting that the proteins cooperate in a nuclear function. In this report, we demonstrate that the recently cloned FANCG/XRCC9 protein is required for binding of the FANCA and FANCC proteins. Moreover, the FANCG protein is a component of a nuclear protein complex containing FANCA and FANCC. The amino-terminal region of the FANCA protein is required for FANCG binding, FANCC binding, nuclear localization, and functional activity of the complex. Our results demonstrate that the three cloned FA proteins cooperate in a large multisubunit complex. Disruption of this complex results in the specific cellular and clinical phenotype common to most FA complementation groups.
Collapse
Affiliation(s)
- I Garcia-Higuera
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
213
|
Kobor MS, Archambault J, Lester W, Holstege FC, Gileadi O, Jansma DB, Jennings EG, Kouyoumdjian F, Davidson AR, Young RA, Greenblatt J. An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell 1999; 4:55-62. [PMID: 10445027 DOI: 10.1016/s1097-2765(00)80187-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II is phosphorylated soon after transcriptional initiation. We show here that the essential FCP1 gene of S. cerevisiae is linked genetically to RNA polymerase II and encodes a CTD phosphatase essential for dephosphorylation of RNA polymerase II in vivo. Fcp1p contains a phosphatase motif, psi psi psi DXDX(T/V)psi psi, which is novel for eukaryotic protein phosphatases and essential for Fcp1p to function in vivo. This motif is also required for recombinant Fcp1p to dephosphorylate the RNA polymerase II CTD or the artificial substrate p-nitrophenylphosphate in vitro. The effects of fcp1 mutations in global run-on and genome-wide expression studies show that transcription by RNA polymerase II in S. cerevisiae generally requires CTD phosphatase.
Collapse
Affiliation(s)
- M S Kobor
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Suñé C, Garcia-Blanco MA. Transcriptional cofactor CA150 regulates RNA polymerase II elongation in a TATA-box-dependent manner. Mol Cell Biol 1999; 19:4719-28. [PMID: 10373521 PMCID: PMC84270 DOI: 10.1128/mcb.19.7.4719] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat protein strongly activates transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) by enhancing the elongation efficiency of RNA polymerase II complexes. Tat-mediated transcriptional activation requires cellular cofactors and specific cis-acting elements within the HIV-1 promoter, among them a functional TATA box. Here, we have investigated the mechanism by which one of these cofactors, termed CA150, regulates HIV-1 transcription in vivo. We present a series of functional assays that demonstrate that the regulation of the HIV-1 LTR by CA150 has the same functional requirements as the activation by Tat. We found that CA150 affects elongation of transcription complexes assembled on the HIV-1 promoter in a TATA-box-dependent manner. We discuss the data in terms of the involvement of CA150 in the regulation of Tat-activated HIV-1 gene expression. In addition, we also provide evidence suggesting a role for CA150 in the regulation of cellular transcriptional processes.
Collapse
Affiliation(s)
- C Suñé
- Departments of Pharmacology and Cancer Biology, Levine Science Research Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
215
|
Abstract
A central problem in eukaryotic transcription is how proteins gain access to DNA packaged in nucleosomes. Research on the interplay between chromatin and transcription has progressed with the use of yeast genetics as a useful tool to characterize factors involved in this process. These factors have both positive and negative effects on the stability of nucleosomes, thereby controlling the role of chromatin in transcription in vivo. The negative effectors include the structural components of chromatin, the histones and non-histone chromatin associated proteins, as well as regulatory components like chromatin assembly factors and histone deacetylase complexes. The positive factors are involved in remodeling chromatin and several multiprotein complexes have been described: Swi/Snf, Srb/mediator and SAGA. The components of each of these complexes, as well as the functional relationships between them are covered by this review.
Collapse
Affiliation(s)
- J Pérez-Martín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
216
|
Wahi M, Komachi K, Johnson AD. Gene regulation by the yeast Ssn6-Tup1 corepressor. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:447-57. [PMID: 10384309 DOI: 10.1101/sqb.1998.63.447] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M Wahi
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
217
|
Ellwood K, Chi T, Huang W, Mitsouras K, Carey M. Cooperative assembly of RNA polymerase II transcription complexes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:253-61. [PMID: 10384289 DOI: 10.1101/sqb.1998.63.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K Ellwood
- Department of Biological Chemistry, University of California School of Medicine, Los Angeles 90095-1737, USA
| | | | | | | | | |
Collapse
|
218
|
Roeder RG. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:201-18. [PMID: 10384284 DOI: 10.1101/sqb.1998.63.201] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R G Roeder
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
219
|
Kuras L, Struhl K. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 1999; 399:609-13. [PMID: 10376605 DOI: 10.1038/21239] [Citation(s) in RCA: 393] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, transcriptional activators have been proposed to function by recruiting the RNA polymerase II (Pol II) machinery, by altering the conformation of this machinery, or by affecting steps after initiation, but the evidence is not definitive. Genomic footprinting of yeast TATA-box elements reveals activator-dependent alterations of chromatin structure and activator-independent protection, but little is known about the association of specific components of the Pol II machinery with promoters in vivo. Here we analyse TATA-box-binding-protein (TBP) occupancy of 30 yeast promoters in vivo. We find that TBP association with promoters is stimulated by activators and inhibited by the Cyc8-Tup1 repressor, and that transcriptional activity correlates strongly with the degree of TBP occupancy. In a small subset of promoters, TBP occupancy is higher than expected when gene activity is low, and the activator-dependent increase is modest. TBP association depends on the Pol II holoenzyme component Srb4, but not on the Kin28 subunit of the transcription factor TFIIH, even though both proteins are generally required for transcription. Thus in yeast cells, TBP association with promoters occurs in concert with the Pol II holoenzyme, activator-dependent recruitment of the Pol II machinery occurs at the vast majority of promoters, and Kin28 acts after the initial recruitment.
Collapse
Affiliation(s)
- L Kuras
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
220
|
Abstract
Nuclear receptor coregulators are coactivators or corepressors that are required by nuclear receptors for efficient transcripitonal regulation. In this context, we define coactivators, broadly, as molecules that interact with nuclear receptors and enhance their transactivation. Analogously, we refer to nuclear receptor corepressors as factors that interact with nuclear receptors and lower the transcription rate at their target genes. Most coregulators are, by definition, rate limiting for nuclear receptor activation and repression, but do not significantly alter basal transcription. Recent data have indicated multiple modes of action of coregulators, including direct interactions with basal transcription factors and covalent modification of histones and other proteins. Reflecting this functional diversity, many coregulators exist in distinct steady state precomplexes, which are thought to associate in promoter-specific configurations. In addition, these factors may function as molecular gates to enable integration of diverse signal transduction pathways at nuclear receptor-regulated promoters. This review will summarize selected aspects of our current knowledge of the cellular and molecular biology of nuclear receptor coregulators.
Collapse
Affiliation(s)
- N J McKenna
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
221
|
Ranallo RT, Struhl K, Stargell LA. A TATA-binding protein mutant defective for TFIID complex formation in vivo. Mol Cell Biol 1999; 19:3951-7. [PMID: 10330135 PMCID: PMC104354 DOI: 10.1128/mcb.19.6.3951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Using an intragenic complementation screen, we have identified a temperature-sensitive TATA-binding protein (TBP) mutant (K151L, K156Y) that is defective for interaction with certain yeast TBP-associated factors (TAFs) at the restrictive temperature. The K151L,K156Y mutant appears to be functional for RNA polymerase I (Pol I) and Pol III transcription, and it is capable of supporting Gal4-activated and Gcn4-activated transcription by Pol II. However, transcription from certain TATA-containing and TATA-less Pol II promoters is reduced at the restrictive temperature. Immunoprecipitation analysis of extracts prepared after culturing cells at the restrictive temperature for 1 h indicates that the K151L,K156Y derivative is severely compromised in its ability to interact with TAF130, TAF90, TAF68/61, and TAF25 while remaining functional for interaction with TAF60 and TAF30. Thus, a TBP mutant that is compromised in its ability to form TFIID can support the response to Gcn4 but is defective for transcription from specific promoters in vivo.
Collapse
Affiliation(s)
- R T Ranallo
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
222
|
Franklin GC. Mechanisms of transcriptional regulation. Results Probl Cell Differ 1999; 25:171-87. [PMID: 10339746 DOI: 10.1007/978-3-540-69111-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- G C Franklin
- Department of Animal Development & Genetics, Uppsala University, Sweden
| |
Collapse
|
223
|
Stagljar I, Hübscher U, Barberis A. Activation of DNA replication in yeast by recruitment of the RNA polymerase II transcription complex. Biol Chem 1999; 380:525-30. [PMID: 10384958 DOI: 10.1515/bc.1999.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activators of transcription are known to also play an important and direct role in activating DNA replication. However, the mechanism whereby they stimulate replication has remained elusive. One model suggests that, in the context of replication origins, transcriptional activators work by interacting with replication factors. We show that a defined, single interaction between a DNA-bound derivative of the activator Gal4 and Gal11P, a mutant form of the RNA polymerase II holoenzyme component Gal11, suffices for stimulating DNA replication as it does for transcription. Moreover, recruitment of TBP, which can activate transcription from a gene promoter, also stimulates DNA replication from an origin site. These results strongly argue that transcriptional activators may not necessarily need to contact DNA replication factors directly, but can stimulate replication by recruiting the RNA polymerase II transcription complex to DNA.
Collapse
Affiliation(s)
- I Stagljar
- Institute for Veterinary Biochemistry, University of Zürich, Switzerland
| | | | | |
Collapse
|
224
|
Ellwood K, Huang W, Johnson R, Carey M. Multiple layers of cooperativity regulate enhanceosome-responsive RNA polymerase II transcription complex assembly. Mol Cell Biol 1999; 19:2613-23. [PMID: 10082527 PMCID: PMC84054 DOI: 10.1128/mcb.19.4.2613] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two coordinate forms of transcriptional synergy mediate eukaryotic gene regulation: the greater-than-additive transcriptional response to multiple promoter-bound activators, and the sigmoidal response to increasing activator concentration. The mechanism underlying the sigmoidal response has not been elucidated but is almost certainly founded on the cooperative binding of activators and the general machinery to DNA. Here we explore that mechanism by using highly purified transcription factor preparations and a strong Epstein-Barr virus promoter, BHLF-1, regulated by the virally encoded activator ZEBRA. We demonstrate that two layers of cooperative binding govern transcription complex assembly. First, the architectural proteins HMG-1 and -2 mediate cooperative formation of an enhanceosome containing ZEBRA and cellular Sp1. This enhanceosome then recruits transcription factor IIA (TFIIA) and TFIID to the promoter to form the DA complex. The DA complex, however, stimulates assembly of the enhanceosome itself such that the entire reaction can occur in a highly concerted manner. The data reveal the importance of reciprocal cooperative interactions among activators and the general machinery in eukaryotic gene regulation.
Collapse
Affiliation(s)
- K Ellwood
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | |
Collapse
|
225
|
Abstract
1999 marks the 30th anniversary of the reported discovery of sigma factor and the bacterial RNA polymerase holoenzyme. In 1994, an RNA polymerase II complex was discovered in yeast - mammalian complexes were subsequently identified. Recent developments regarding the composition and function of RNA polymerase II complexes suggest, however, that the concept of the holoenzyme, as defined in bacteria, might not be relevant to eukaryotes.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA.
| | | |
Collapse
|
226
|
Gaudreau L, Keaveney M, Nevado J, Zaman Z, Bryant GO, Struhl K, Ptashne M. Transcriptional activation by artificial recruitment in yeast is influenced by promoter architecture and downstream sequences. Proc Natl Acad Sci U S A 1999; 96:2668-73. [PMID: 10077568 PMCID: PMC15826 DOI: 10.1073/pnas.96.6.2668] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The idea that recruitment of the transcriptional machinery to a promoter suffices for gene activation is based partly on the results of "artificial recruitment" experiments performed in vivo. Artificial recruitment can be effected by a "nonclassical" activator comprising a DNA-binding domain fused to a component of the transcriptional machinery. Here we show that activation by artificial recruitment in yeast can be sensitive to any of three factors: position of the activator-binding elements, sequence of the promoter, and coding sequences downstream of the promoter. In contrast, classical activators worked efficiently at all promoters tested. In all cases the "artificial recruitment" fusions synergized well with classical activators. A classical activator evidently differs from a nonclassical activator in that the former can touch multiple sites on the transcriptional machinery, and we propose that that difference accounts for the broader spectrum of activity of the typical classical activator. A similar conclusion is reached from studies in mammalian cells in the accompanying paper [Nevado, J., Gaudreau, L., Adam, M. & Ptashne, M. (1999) Proc. Natl. Acad. Sci. USA 96, 2674-2677].
Collapse
Affiliation(s)
- L Gaudreau
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
227
|
Huh JR, Park JM, Kim M, Carlson BA, Hatfield DL, Lee BJ. Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro. Biochem Biophys Res Commun 1999; 256:45-51. [PMID: 10066420 DOI: 10.1006/bbrc.1999.0280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eukaryotic transcriptional activators may function, at least in part, to facilitate the assembly of the RNA polymerase II (pol II) preinitiation complex at the core promoter region through their interaction with a subset of components of the basal transcription machinery. Previous studies have shown that artificial tethering of TATA-binding protein (TBP) to the promoter region is sufficient to stimulate pol II transcription in yeast. To test whether this phenomenon is a general one in eukaryotic pol II transcription, the DNA-binding domain of yeast GAL4 was fused to either Xenopus laevis TBP or TFIIB in order to enable these factors to be efficiently positioned near the transcription start site in a GAL4-binding site-dependent manner. We found that GAL4-xTBP as well as GAL4-xTFIIB directed an increased level of transcription without involvement of the transcriptional activator, suggesting that incorporation of these basal factors into a preinitiation complex (PIC) is a major rate-limiting step accelerated by activator proteins in metazoans. These results show that transcription activation by artificial recruitment of basal transcription machinery can be observed in general among eukaryotic transcription both in vivo and in vitro. Furthermore, failure of recovery of transcription by adding GAL4-xTFIIB after depletion of endogenous TBP with TATA oligo competitor suggests that recruitment of TBP cannot be bypassed for Pol II transcription.
Collapse
Affiliation(s)
- J R Huh
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | |
Collapse
|
228
|
Kuhlman TC, Cho H, Reinberg D, Hernandez N. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol Cell Biol 1999; 19:2130-41. [PMID: 10022900 PMCID: PMC84006 DOI: 10.1128/mcb.19.3.2130] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.
Collapse
Affiliation(s)
- T C Kuhlman
- Graduate Program in Molecular and Cellular Pharmacology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
229
|
Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol Cell 1999; 3:361-70. [PMID: 10198638 DOI: 10.1016/s1097-2765(00)80463-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The human thyroid hormone receptor-associated protein (TRAP) complex, an earlier described coactivator for nuclear receptors, and an SRB- and MED-containing cofactor complex (SMCC) that mediates activation by Gal4-p53 are shown to be virtually the same with respect to specific polypeptide subunits, coactivator functions, and mechanisms of action (activator interactions). In parallel with ligand-dependent interactions of nuclear receptors with the TRAP220 subunit, p53 and VP16 activation domains interact directly with a newly cloned TRAP80 subunit. These results indicate novel pathways for the function of nuclear receptors and other activators (p53 and VP16) through a common coactivator complex that is likely to target RNA polymerase II. Identification of the TRAP230 subunit as a previously predicted gene product also suggests a coactivator-related transcription defect in certain disease states.
Collapse
Affiliation(s)
- M Ito
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Xiao H, Tao Y, Roeder RG. The human homologue of Drosophila TRF-proximal protein is associated with an RNA polymerase II-SRB complex. J Biol Chem 1999; 274:3937-40. [PMID: 9933582 DOI: 10.1074/jbc.274.7.3937] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian RNA polymerase II holoenzymes are large complexes that have been reported to contain, in addition to RNA polymerase II, homologues of several yeast SRBs, various general transcription factors, and other polypeptides. On the basis of its copurification with an SRB-containing RNA polymerase II complex by conventional chromatography procedures, we have identified a human homologue of Drosophila TRF-proximal protein, designated hTRFP, and isolated its cognate cDNA. Antibody specific for SRB7 can immunoprecipitate hTRFP and RNA polymerase II and, reciprocally, antibody specific for hTRFP can immunoprecipitate RNA polymerase II and SRB7. These data indicate that hTRFP is an integral component of an RNA polymerase II-SRB complex. Whereas the precise function of hTRFP remains to be determined, the hTRFP-containing RNA polymerase II-SRB complex supports basal level transcription and, relative to RNA polymerase II alone, enhances transcriptional activation by Gal4-VP16 in the presence of cofactor PC4. Thus, hTRFP may regulate transcription of class II genes through association with the RNA polymerase II-SRB complex.
Collapse
Affiliation(s)
- H Xiao
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
231
|
Grummt I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:109-54. [PMID: 9932453 DOI: 10.1016/s0079-6603(08)60506-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
All cells, from prokaryotes to vertebrates, synthesize vast amounts of ribosomal RNA to produce the several million new ribosomes per generation that are required to maintain the protein synthetic capacity of the daughter cells. Ribosomal gene (rDNA) transcription is governed by RNA polymerase I (Pol I) assisted by a dedicated set of transcription factors that mediate the specificity of transcription and are the targets of the pleiotrophic pathways the cell uses to adapt rRNA synthesis to cell growth. In the past few years we have begun to understand the specific functions of individual factors involved in rDNA transcription and to elucidate on a molecular level how transcriptional regulation is achieved. This article reviews our present knowledge of the molecular mechanism of rDNA transcriptional regulation.
Collapse
Affiliation(s)
- I Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
232
|
Ossipow V, Fonjallaz P, Schibler U. An RNA polymerase II complex containing all essential initiation factors binds to the activation domain of PAR leucine zipper transcription factor thyroid embryonic factor. Mol Cell Biol 1999; 19:1242-50. [PMID: 9891058 PMCID: PMC116053 DOI: 10.1128/mcb.19.2.1242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription initiation of protein-encoding genes involves the assembly of RNA polymerase II and a number of general transcription factors at the promoter. A mammalian RNA polymerase II complex containing all of the components required for promoter-specific transcription initiation can be isolated by immunopurification with a monoclonal antibody directed against the cyclin-dependent kinase CDK7, a subunit of the general transcription factor TFIIH. In vitro transcription by this immunopurified RNA polymerase II complex is effectively stimulated by thyroid embryonic factor (TEF), a basic leucine zipper transcription factor. Thus, the RNA polymerase II complex must also contain components required for activated transcription that interact with the transactivation domain of TEF. This conjecture was verified by affinity selection experiments in which the TEF transcription activation domain was used as a bait. Indeed, an RNA polymerase II complex containing all of the accessory proteins required for transcription initiation can be enriched by its affinity to recombinant proteins containing the TEF transactivation domain. These results are compatible with a mechanism by which TEF can recruit an RNA polymerase II holoenzyme to the promoter in a single step.
Collapse
Affiliation(s)
- V Ossipow
- Département de Biologie Moléculaire Sciences II, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
233
|
Chang M, French-Cornay D, Fan HY, Klein H, Denis CL, Jaehning JA. A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol Cell Biol 1999; 19:1056-67. [PMID: 9891041 PMCID: PMC116036 DOI: 10.1128/mcb.19.2.1056] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1998] [Accepted: 10/27/1998] [Indexed: 11/20/2022] Open
Abstract
Yeast contains at least two complex forms of RNA polymerase II (Pol II), one including the Srbps and a second biochemically distinct form defined by the presence of Paf1p and Cdc73p (X. Shi et al., Mol. Cell. Biol. 17:1160-1169, 1997). In this work we demonstrate that Ccr4p and Hpr1p are components of the Paf1p-Cdc73p-Pol II complex. We have found many synthetic genetic interactions between factors within the Paf1p-Cdc73p complex, including the lethality of paf1Delta ccr4Delta, paf1Delta hpr1Delta, ccr4Delta hpr1Delta, and ccr4Delta gal11Delta double mutants. In addition, paf1Delta and ccr4Delta are lethal in combination with srb5Delta, indicating that the factors within and between the two RNA polymerase II complexes have overlapping essential functions. We have used differential display to identify several genes whose expression is affected by mutations in components of the Paf1p-Cdc73p-Pol II complex. Additionally, as previously observed for hpr1Delta, deleting PAF1 or CDC73 leads to elevated recombination between direct repeats. The paf1Delta and ccr4Delta mutations, as well as gal11Delta, demonstrate sensitivity to cell wall-damaging agents, rescue of the temperature-sensitive phenotype by sorbitol, and reduced expression of genes involved in cell wall biosynthesis. This unusual combination of effects on recombination and cell wall integrity has also been observed for mutations in genes in the Pkc1p-Mpk1p kinase cascade. Consistent with a role for this novel form of RNA polymerase II in the Pkc1p-Mpk1p signaling pathway, we find that paf1Delta mpk1Delta and paf1Delta pkc1Delta double mutants do not demonstrate an enhanced phenotype relative to the single mutants. Our observation that the Mpk1p kinase is fully active in a paf1Delta strain indicates that the Paf1p-Cdc73p complex may function downstream of the Pkc1p-Mpk1p cascade to regulate the expression of a subset of yeast genes.
Collapse
Affiliation(s)
- M Chang
- Department of Biochemistry and Molecular Genetics and Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
234
|
Ge H, Si Y, Wolffe AP. A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol Cell 1999; 2:751-9. [PMID: 9885563 DOI: 10.1016/s1097-2765(00)80290-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that pre-mRNA splicing can take place cotranscriptionally in vivo. However, insight into how these two processes are linked has been lacking. Here, we describe that a novel transcriptional coactivator, p52, interacts not only with transcriptional activators and general transcription factors to enhance activated transcription but also with the essential splicing factor ASF/SF2 both in vitro and in vivo to modulate ASF/SF2-mediated pre-mRNA splicing. Furthermore, immunofluorescence studies indicate that the majority of endogenous p52 is colocalized with ASF/SF2 in the nucleoplasm of HeLa cells. Together, these observations suggest that, in addition to functioning as a transcriptional coactivator, p52 may also act as an adaptor to coordinate pre-mRNA splicing and transcriptional activation of class II genes.
Collapse
Affiliation(s)
- H Ge
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
235
|
Haile DT, Parvin JD. Activation of transcription in vitro by the BRCA1 carboxyl-terminal domain. J Biol Chem 1999; 274:2113-7. [PMID: 9890972 DOI: 10.1074/jbc.274.4.2113] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The breast and ovarian specific tumor suppressor protein, BRCA1, has been shown to be a transcription factor because its carboxyl terminus, when fused to the GAL4 DNA binding domain, activates gene expression in cells. In this study, purified GAL4-BRCA1 protein functions in transcriptional activation assays using a minimal in vitro system. When compared with a standard activator, GAL4-VP16, the levels of activation produced by the BRCA1 fusion protein were stronger when in the presence of certain coactivators. The transcriptional activation by BRCA1 is maximal when in the presence of the PC4 (positive component 4) coactivator but not HMG2 (high mobility group protein 2) and when the template is negatively supercoiled. By contrast, transcriptional activation by VP16 was highest in the presence of HMG2 as well as PC4 and when DNA templates had linear topology. Activation by VP16 was largely unaffected by the concentration of TFIIH, whereas activation by BRCA1 was strongly affected by TFIIH concentrations. The differing cofactor and template requirements suggest that GAL4-BRCA1 and GAL4-VP16 regulate different steps in the pathways that lead to transcriptional activation.
Collapse
Affiliation(s)
- D T Haile
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
236
|
Balciunas D, Gälman C, Ronne H, Björklund S. The Med1 subunit of the yeast mediator complex is involved in both transcriptional activation and repression. Proc Natl Acad Sci U S A 1999; 96:376-81. [PMID: 9892641 PMCID: PMC15144 DOI: 10.1073/pnas.96.2.376] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mediator complex is essential for regulated transcription in vitro. In the yeast Saccharomyces cerevisiae, mediator comprises >15 subunits and interacts with the C-terminal domain of the largest subunit of RNA polymerase II, thus forming an RNA polymerase II holoenzyme. Here we describe the molecular cloning of the MED1 cDNA encoding the 70-kDa subunit of the mediator complex. Yeast cells lacking the MED1 gene are viable but show a complex phenotype including partial defects in both repression and induction of the GAL genes. Together with results on other mediator subunits, this implies that the mediator is involved in both transcriptional activation and repression. Similar to mutations in the SRB10 and SRB11 genes encoding cyclin C and the cyclin C-dependent kinase, a disruption of the MED1 gene can partially suppress loss of the Snf1 protein kinase. We further found that a lexA-Med1 fusion protein is a strong activator in srb11 cells, which suggests a functional link between Med1 and the Srb10/11 complex. Finally, we show that the Med2 protein is lost from the mediator on purification from Med1-deficient cells, indicating a physical interaction between Med1 and Med2.
Collapse
Affiliation(s)
- D Balciunas
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Center, Box 582, 751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
237
|
Myers LC, Gustafsson CM, Hayashibara KC, Brown PO, Kornberg RD. Mediator protein mutations that selectively abolish activated transcription. Proc Natl Acad Sci U S A 1999; 96:67-72. [PMID: 9874773 PMCID: PMC15094 DOI: 10.1073/pnas.96.1.67] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/1998] [Indexed: 11/18/2022] Open
Abstract
Deletion of any one of three subunits of the yeast Mediator of transcriptional regulation, Med2, Pgd1 (Hrs1), and Sin4, abolished activation by Gal4-VP16 in vitro. By contrast, other Mediator functions, stimulation of basal transcription and of TFIIH kinase activity, were unaffected. A different but overlapping Mediator subunit dependence was found for activation by Gcn4. The genetic requirements for activation in vivo were closely coincident with those in vitro. A whole genome expression profile of a Deltamed2 strain showed diminished transcription of a subset of inducible genes but only minor effects on "basal" transcription. These findings make an important connection between transcriptional activation in vitro and in vivo, and identify Mediator as a "global" transcriptional coactivator.
Collapse
Affiliation(s)
- L C Myers
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
238
|
Holstege FC, Young RA. Transcriptional regulation: contending with complexity. Proc Natl Acad Sci U S A 1999; 96:2-4. [PMID: 9874759 PMCID: PMC33537 DOI: 10.1073/pnas.96.1.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- F C Holstege
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
239
|
Albert AC, Denton M, Kermekchiev M, Pikaard CS. Histone acetyltransferase and protein kinase activities copurify with a putative Xenopus RNA polymerase I holoenzyme self-sufficient for promoter-dependent transcription. Mol Cell Biol 1999; 19:796-806. [PMID: 9858602 PMCID: PMC83936 DOI: 10.1128/mcb.19.1.796] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mounting evidence suggests that eukaryotic RNA polymerases preassociate with multiple transcription factors in the absence of DNA, forming RNA polymerase holoenzyme complexes. We have purified an apparent RNA polymerase I (Pol I) holoenzyme from Xenopus laevis cells by sequential chromatography on five columns: DEAE-Sepharose, Biorex 70, Sephacryl S300, Mono Q, and DNA-cellulose. Single fractions from every column programmed accurate promoter-dependent transcription. Upon gel filtration chromatography, the Pol I holoenzyme elutes at a position overlapping the peak of Blue Dextran, suggesting a molecular mass in the range of approximately 2 MDa. Consistent with its large mass, Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels reveal approximately 55 proteins in fractions purified to near homogeneity. Western blotting shows that TATA-binding protein precisely copurifies with holoenzyme activity, whereas the abundant Pol I transactivator upstream binding factor does not. Also copurifying with the holoenzyme are casein kinase II and a histone acetyltransferase activity with a substrate preference for histone H3. These results extend to Pol I the suggestion that signal transduction and chromatin-modifying activities are associated with eukaryotic RNA polymerases.
Collapse
Affiliation(s)
- A C Albert
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
240
|
Gu W, Malik S, Ito M, Yuan CX, Fondell JD, Zhang X, Martinez E, Qin J, Roeder RG. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol Cell 1999; 3:97-108. [PMID: 10024883 DOI: 10.1016/s1097-2765(00)80178-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel human complex that can either repress activator-dependent transcription mediated by PC4, or, at limiting TFIIH, act synergistically with PC4 to enhance activator-dependent transcription has been purified. This complex contains homologs of a subset of yeast mediator/holoenzyme components (including SRB7, SRB10, SRB11, MED6, and RGR1), homologs of other yeast transcriptional regulatory factors (SOH1 and NUT2), and, significantly, some components (TRAP220, TRAP170/hRGR1, and TRAP100) of a human thyroid hormone receptor-associated coactivator complex. The complex shows direct activator interactions but, unlike yeast mediator, can act independently of the RNA polymerase II CTD. These findings demonstrate both positive and negative functional capabilities for the human complex, emphasize novel (CTD-independent) regulatory mechanisms, and link the complex to other human coactivator complexes.
Collapse
Affiliation(s)
- W Gu
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Kershnar E, Wu SY, Chiang CM. Immunoaffinity purification and functional characterization of human transcription factor IIH and RNA polymerase II from clonal cell lines that conditionally express epitope-tagged subunits of the multiprotein complexes. J Biol Chem 1998; 273:34444-53. [PMID: 9852112 DOI: 10.1074/jbc.273.51.34444] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purification of multiprotein complexes such as transcription factor (TF) IIH and RNA polymerase II (pol II) has been a tedious task by conventional chromatography. To facilitate the purification, we have developed an effective scheme that allows human TFIIH and pol II to be isolated from HeLa-derived cell lines that conditionally express the FLAG-tagged p62 subunit of human TFIIH and the RPB9 subunit of human pol II, respectively. An approximate 2000-fold enrichment of FLAG-tagged TFIIH and a 1000-fold enhancement of total pol II are achieved by a one-step immunoaffinity purification. The purified complexes are functional in mediating basal and activated transcription, regardless of whether TATA-binding protein or TFIID is used as the TATA-binding factor. Interestingly, repression of basal transcription by the positive cofactor PC4 is alleviated by increasing amounts of TFIID, TFIIH, and pol II holoenzyme, suggesting that phosphorylation of PC4 by these proteins may cause a conformational change in the structure of PC4 that allows for preinitiation complex formation and initiation of transcription. Furthermore, pol II complexes with different phosphorylation states on the carboxyl-terminal domain of the largest subunit are selectively purified from the inducible pol II cell line, making it possible to dissect the role of carboxyl-terminal domain phosphorylation in the transcription process in a highly defined in vitro transcription system.
Collapse
Affiliation(s)
- E Kershnar
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
242
|
Dorjsuren D, Lin Y, Wei W, Yamashita T, Nomura T, Hayashi N, Murakami S. RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol Cell Biol 1998; 18:7546-55. [PMID: 9819440 PMCID: PMC109335 DOI: 10.1128/mcb.18.12.7546] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To modulate transcription, regulatory factors communicate with basal transcription factors and/or RNA polymerases in a variety of ways. Previously, it has been reported that RNA polymerase II subunit 5 (RPB5) is one of the targets of hepatitis B virus X protein (HBx) and that both HBx and RPB5 specifically interact with general transcription factor IIB (TFIIB), implying that RPB5 is one of the communicating subunits of RNA polymerase II involved in transcriptional regulation. In this context, we screened for a host protein(s) that interacts with RPB5. By far-Western blot screening, we cloned a novel gene encoding a 508-amino-acid-residue RPB5-binding protein from a HepG2 cDNA library and designated it RPB5-mediating protein (RMP). Expression of RMP mRNA was detected ubiquitously in various tissues. Bacterially expressed recombinant RMP strongly bound RPB5 but neither HBx nor TATA-binding protein in vitro. Endogenous RMP was immunologically detected interacting with assembled RPB5 in RNA polymerase in mammalian cells. The central part of RMP is responsible for RPB5 binding, and the RMP-binding region covers both the TFIIB- and HBx-binding sites of RPB5. Overexpression of RMP, but not mutant RMP lacking the RPB5-binding region, inhibited HBx transactivation of reporters with different HBx-responsive cis elements in transiently transfected cells. The repression by RMP was counteracted by HBx in a dose-dependent manner. Furthermore, RMP has an inhibitory effect on transcriptional activation by VP16 in the absence of HBx. These results suggest that RMP negatively modulates RNA polymerase II function by binding to RPB5 and that HBx counteracts the negative role of RMP on transcription indirectly by interacting with RPB5.
Collapse
Affiliation(s)
- D Dorjsuren
- Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | |
Collapse
|
243
|
Kotani T, Miyake T, Tsukihashi Y, Hinnebusch AG, Nakatani Y, Kawaichi M, Kokubo T. Identification of highly conserved amino-terminal segments of dTAFII230 and yTAFII145 that are functionally interchangeable for inhibiting TBP-DNA interactions in vitro and in promoting yeast cell growth in vivo. J Biol Chem 1998; 273:32254-64. [PMID: 9822704 DOI: 10.1074/jbc.273.48.32254] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIID is a multiprotein complex composed of TBP and several TAFIIs. Small amino-terminal segments (TAF N-terminal domain (TAND)) of Drosophila TAFII230 (dTAFII230) and yeast TAFII145 (yTAFII145) bind strongly to TBP and inhibit TBP-DNA interactions. yTAFII145 TAND (yTAND) was divided into two subdomains, yTANDI10-37 and yTANDII46-71, that function cooperatively. Here, we identify dTANDII within the amino terminus of dTAFII230 at 118-143 amino acids in addition to dTANDI18-77, reported previously. dTANDII exhibits pronounced sequence similarity to yTANDII, and the two were shown to be functionally equivalent in binding to TBP and inhibiting TBP-DNA interactions in vitro. Alanine scanning mutation analysis demonstrated that Phe-57 (yTANDII) and Tyr-129 (dTANDII) are critically required for the interaction with TBP. Yeast strains containing mutant yTAFII145 lacking yTANDI or yTANDII showed a temperature-sensitive growth phenotype. The conserved core of dTANDII could substitute for the yTANDII core, and Phe-57 or Tyr-129 described above was critically required for the function of this segment in promoting normal cell growth at 37 degreesC. In these respects, the impact of yTANDII mutations on cell growth paralleled their effects on TBP binding in vitro, strongly suggesting that the yTAFII145-TBP interaction and its negative effects on TFIID binding to core promoters are physiologically important.
Collapse
Affiliation(s)
- T Kotani
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
244
|
Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 1998; 95:717-28. [PMID: 9845373 DOI: 10.1016/s0092-8674(00)81641-4] [Citation(s) in RCA: 1476] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genome-wide expression analysis was used to identify genes whose expression depends on the functions of key components of the transcription initiation machinery in yeast. Components of the RNA polymerase II holoenzyme, the general transcription factor TFIID, and the SAGA chromatin modification complex were found to have roles in expression of distinct sets of genes. The results reveal an unanticipated level of regulation which is superimposed on that due to gene-specific transcription factors, a novel mechanism for coordinate regulation of specific sets of genes when cells encounter limiting nutrients, and evidence that the ultimate targets of signal transduction pathways can be identified within the initiation apparatus.
Collapse
Affiliation(s)
- F C Holstege
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Gustafsson CM, Myers LC, Beve J, Spåhr H, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD. Identification of new mediator subunits in the RNA polymerase II holoenzyme from Saccharomyces cerevisiae. J Biol Chem 1998; 273:30851-4. [PMID: 9812975 DOI: 10.1074/jbc.273.47.30851] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator was isolated from yeast on the basis of its requirement for transcriptional activation in a fully defined system. We have now identified three new members of mediator in the low molecular mass range by peptide sequence determination. These are the products of the NUT2, CSE2, and MED11 genes. The product of the NUT1 gene is evidently a component of mediator as well. NUT1 and NUT2 were earlier identified as negative regulators of the HO promoter, whereas mutations in CSE2 affect chromosome segregation. MED11 is a previously uncharacterized gene. The existence of these proteins in the mediator complex was verified by copurification and co-immunoprecipitation with RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- C M Gustafsson
- Department of Clinical Chemistry and Transfusion Medicine, Göteborg University, Bruna Stråket 16, 413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Ge H, Si Y, Roeder RG. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 1998; 17:6723-9. [PMID: 9822615 PMCID: PMC1171017 DOI: 10.1093/emboj/17.22.6723] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcriptional activation in human cell-free systems containing RNA polymerase II and general initiation factors requires the action of one or more additional coactivators. Here, we report the isolation of cDNAs encoding two novel human transcriptional coactivators (p52 and p75) that are derived from alternatively spliced products of a single gene and share a region of 325 residues, but show distinct coactivator properties. p52 and p75 both show strong interactions with the VP16 activation domain and several components of the general transcriptional machinery. p52, like the previously described PC4, is a potent broad-specificity coactivator, whereas p75 is less active for most activation domains. These results suggest that p52 is a general transcriptional coactivator that mediates functional interactions between upstream sequence-specific activators and the general transcription apparatus, possibly through a novel mechanism.
Collapse
Affiliation(s)
- H Ge
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
247
|
Ford E, Strubin M, Hernandez N. The Oct-1 POU domain activates snRNA gene transcription by contacting a region in the SNAPc largest subunit that bears sequence similarities to the Oct-1 coactivator OBF-1. Genes Dev 1998; 12:3528-40. [PMID: 9832505 PMCID: PMC317248 DOI: 10.1101/gad.12.22.3528] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1998] [Accepted: 09/29/1998] [Indexed: 11/24/2022]
Abstract
The RNA polymerases II and III snRNA gene promoters contain an octamer sequence as part of the enhancer and a proximal sequence element (PSE) as part of the core promoter. The octamer and the PSE bind the POU domain activator Oct-1 and the basal transcription factor SNAPc, respectively. Oct-1, but not Oct-1 with a single E7R mutation within the POU domain, binds cooperatively with SNAPc and, in effect, recruits SNAPc to the PSE. Here, we show that SNAPc recruitment is mediated by an interaction between the Oct-1 POU domain and a small region of the largest subunit of SNAPc, SNAP190. This SNAP190 region is strikingly similar to a region in the B-cell-specific Oct-1 coactivator, OBF-1, that is required for interaction with octamer-bound Oct-1 POU domain. The Oct-1 POU domain-SNAP190 interaction is a direct protein-protein contact as determined by the isolation of a switched specificity SNAP190 mutant that interacts with Oct-1 POU E7R but not with wild-type Oct-1 POU. We also show that this direct protein-protein contact results in activation of transcription. Thus, we have identified an activation target of a human activator, Oct-1, within its cognate basal transcription complex.
Collapse
Affiliation(s)
- E Ford
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA
| | | | | |
Collapse
|
248
|
Natarajan K, Jackson BM, Rhee E, Hinnebusch AG. yTAFII61 has a general role in RNA polymerase II transcription and is required by Gcn4p to recruit the SAGA coactivator complex. Mol Cell 1998; 2:683-92. [PMID: 9844640 DOI: 10.1016/s1097-2765(00)80166-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We obtained a recessive insertion mutation in the gene encoding yeast TBP-associated factor yTAFII61/68 that impairs Gcn4p-independent and Gcn4p-activated HIS3 transcription. This mutation also reduces transcription of seven other class II genes, thus indicating a broad role for this yTAFII in RNA polymerase II transcription. The Gcn4p activation domain interacts with multiple components of the SAGA complex in cell extracts, including the yTAFII proteins associated with SAGA, but not with two yTAFIIs restricted to TFIID. The taf61-1 mutation impairs binding of Gcn4p to SAGA/yTAFII subunits but not to components of holoenzyme mediator. Our results provide strong evidence that recruitment of SAGA, in addition to holoenzyme, is crucial for activation by Gcn4p in vivo and that yTAFII61 plays a key role in this process.
Collapse
Affiliation(s)
- K Natarajan
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
249
|
Abstract
In yeast cells, independent depletion of TAFs (130, 67, 40, and 19) found specifically in TFIID results in selective effects on transcription, including a common effect on his3 core promoter function. In contrast, depletion of TAF17, which is also present in the SAGA histone acetylase complex, causes a decrease in transcription of most genes. However, TAF17-depleted cells maintain Ace1-dependent activation, and they induce de novo activation by heat shock factor in a manner predominantly associated with the activator, not the core promoter. Thus, TAF17 is broadly, but not universally, required for transcription in yeast, TAF17 depletion and TAF130 depletion each disrupt TFIID integrity yet cause different transcriptional consequences, suggesting that the widespread influence of TAF17 might not be due solely to its function in TFIID.
Collapse
Affiliation(s)
- Z Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
250
|
Cairns BR, Erdjument-Bromage H, Tempst P, Winston F, Kornberg RD. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol Cell 1998; 2:639-51. [PMID: 9844636 DOI: 10.1016/s1097-2765(00)80162-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Saccharomyces cerevisiae contains two related chromatin-remodeling complexes, RSC and SWI/SNF, which are shown to share the actin-related proteins Arp7 and Arp9. Depending on the genetic background tested, arp7 delta and arp9 delta mutants are either inviable or show greatly impaired growth and Swi-/Snf- mutant phenotypes. Unlike swi/snf mutants, viable arp7 delta or arp9 delta mutants have an Spt- phenotype, suggesting that RSC affects transcription. Temperature-sensitive mutations in ARP7 and ARP9 were isolated, and the amino acid changes support the structural relationship of Arp7 and Arp9 to actin. However, site-directed mutations predicted to impair ATP binding or hydrolysis did not detectably affect Arp7 or Arp9 function. Our results suggest that actin-related proteins perform important roles in chromatin-remodeling complexes by virtue of structural rather than enzymatic similarities to actin.
Collapse
Affiliation(s)
- B R Cairns
- Department of Structural Biology, Stanford University School of Medicine, California 94305, USA.
| | | | | | | | | |
Collapse
|