201
|
Fischer M, Rikeit P, Knaus P, Coirault C. YAP-Mediated Mechanotransduction in Skeletal Muscle. Front Physiol 2016; 7:41. [PMID: 26909043 PMCID: PMC4754448 DOI: 10.3389/fphys.2016.00041] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional coactivator downstream of the Hippo pathway and its paralog, the transcriptional co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction.
Collapse
Affiliation(s)
- Martina Fischer
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Center for Research in Myology, Sorbonne Universités Université Pierre et Marie Curie University Paris 06Paris, France; Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Paul Rikeit
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Catherine Coirault
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Center for Research in Myology, Sorbonne Universités Université Pierre et Marie Curie University Paris 06 Paris, France
| |
Collapse
|
202
|
Hsiao C, Lampe M, Nillasithanukroh S, Han W, Lian X, Palecek SP. Human pluripotent stem cell culture density modulates YAP signaling. Biotechnol J 2016; 11:662-75. [PMID: 26766309 DOI: 10.1002/biot.201500374] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cell (hPSC) density is an important factor in self-renewal and differentiation fates; however, the mechanisms through which hPSCs sense cell density and process this information in making cell fate decisions remain to be fully understood. One particular pathway that may prove important in density-dependent signaling in hPSCs is the Hippo pathway, which is regulated by cell-cell contact and mechanosensing through the cytoskeleton and has been linked to the maintenance of stem cell pluripotency. To probe regulation of Hippo pathway activity in hPSCs, we assessed whether Hippo pathway transcriptional activator YAP was differentially modulated by cell density. At higher cell densities, YAP phosphorylation and localization to the cytoplasm increased, which led to decreased YAP-mediated transcriptional activity. Furthermore, total YAP protein levels diminished at high cell density due to the phosphorylation-targeted degradation of YAP. Inducible shRNA knockdown of YAP reduced expression of YAP target genes and pluripotency genes. Finally, the density-dependent increase of neuroepithelial cell differentiation was mitigated by shRNA knockdown of YAP. Our results suggest a pivotal role of YAP in cell density-mediated fate decisions in hPSCs.
Collapse
Affiliation(s)
- Cheston Hsiao
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Michael Lampe
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Songkhun Nillasithanukroh
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Wenqing Han
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Xiaojun Lian
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA.
| |
Collapse
|
203
|
Cellular Mechanisms of Ciliary Length Control. Cells 2016; 5:cells5010006. [PMID: 26840332 PMCID: PMC4810091 DOI: 10.3390/cells5010006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT) system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.
Collapse
|
204
|
Das A, Fischer RS, Pan D, Waterman CM. YAP Nuclear Localization in the Absence of Cell-Cell Contact Is Mediated by a Filamentous Actin-dependent, Myosin II- and Phospho-YAP-independent Pathway during Extracellular Matrix Mechanosensing. J Biol Chem 2016; 291:6096-110. [PMID: 26757814 DOI: 10.1074/jbc.m115.708313] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
Cell-cell contact inhibition and the mechanical environment of cells have both been shown to regulate YAP nuclear localization to modulate cell proliferation. Changes in cellular contractility by genetic, pharmacological, and matrix stiffness perturbations regulate YAP nuclear localization. However, because contractility and F-actin organization are interconnected cytoskeletal properties, it remains unclear which of these distinctly regulates YAP localization. Here we show that in the absence of cell-cell contact, actomyosin contractility suppresses YAP phosphorylation at Ser(112), however, neither loss of contractility nor increase in YAP phosphorylation is sufficient for its nuclear exclusion. We find that actin cytoskeletal integrity is essential for YAP nuclear localization, and can override phosphoregulation or contractility-mediated regulation of YAP nuclear localization. This actin-mediated regulation is conserved during mechanotransduction, as substrate compliance increased YAP phosphorylation and reduced cytoskeletal integrity leading to nuclear exclusion of both YAP and Ser(P)(112)-YAP. These data provide evidence for two actin-mediated pathways for YAP regulation; one in which actomyosin contractility regulates YAP phosphorylation, and a second that involves cytoskeletal integrity-mediated regulation of YAP nuclear localization independent of contractility. We suggest that in non-contact inhibited cells, this latter mechanism may be important in low stiffness regimes, such as may be encountered in physiological environments.
Collapse
Affiliation(s)
- Arupratan Das
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and the Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert S Fischer
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Duojia Pan
- the Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Clare M Waterman
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
205
|
Mukherjee K, Ishii K, Pillalamarri V, Kammin T, Atkin JF, Hickey SE, Xi QJ, Zepeda CJ, Gusella JF, Talkowski ME, Morton CC, Maas RL, Liao EC. Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†. Hum Mol Genet 2016; 25:1255-70. [PMID: 26758871 DOI: 10.1093/hmg/ddw006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb(-/-) mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb(-/-) mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb(-/-) mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis.
Collapse
Affiliation(s)
- Kusumika Mukherjee
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Kana Ishii
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo, Tokyo 113-0022, Japan, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Vamsee Pillalamarri
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Kammin
- Department of Obstetrics, Gynecology and Reproductive Biology
| | - Joan F Atkin
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA, Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA, Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Qiongchao J Xi
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | | | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA and Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Cynthia C Morton
- Department of Obstetrics, Gynecology and Reproductive Biology, Department of Pathology and Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA and Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Richard L Maas
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| |
Collapse
|
206
|
Bosveld F, Guirao B, Wang Z, Rivière M, Bonnet I, Graner F, Bellaïche Y. Modulation of junction tension by tumor-suppressors and proto-oncogenes regulates cell-cell contacts. Development 2016; 143:623-34. [DOI: 10.1242/dev.127993] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
Abstract
Tumor-suppressor and proto-oncogenes play critical roles in tissue proliferation. Furthermore, deregulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in somatic clones shape correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical elasticity. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor-suppressor and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, Fat (Ft) and Dachsous (Ds) tumor-suppressors regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the time evolution of ft mutant cells and clones, we show that ft clones reduce their cell-cell contact with surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposite changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tensions is modulated by the activation of Yorkie, Myc and Ras yielding similar contact reductions with wt cells. Together our data highlight mechanical roles for proto-oncogene and tumor-suppressor pathways in cell-cell interactions.
Collapse
Affiliation(s)
- Floris Bosveld
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Boris Guirao
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Zhimin Wang
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Mathieu Rivière
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Isabelle Bonnet
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - François Graner
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- Present address: Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Yohanns Bellaïche
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
207
|
Affiliation(s)
- Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| |
Collapse
|
208
|
Kimura TE, Duggirala A, Smith MC, White S, Sala-Newby GB, Newby AC, Bond M. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. J Mol Cell Cardiol 2016; 90:1-10. [PMID: 26625714 PMCID: PMC4727789 DOI: 10.1016/j.yjmcc.2015.11.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/05/2015] [Accepted: 11/20/2015] [Indexed: 12/30/2022]
Abstract
AIMS Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. METHODS AND RESULTS Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. CONCLUSION Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention.
Collapse
Affiliation(s)
- Tomomi E Kimura
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Aparna Duggirala
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Madeleine C Smith
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Stephen White
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Graciela B Sala-Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Andrew C Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Mark Bond
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK.
| |
Collapse
|
209
|
Li S, Cho YS, Yue T, Ip YT, Jiang J. Overlapping functions of the MAP4K family kinases Hppy and Msn in Hippo signaling. Cell Discov 2015; 1:15038. [PMID: 27462435 PMCID: PMC4860773 DOI: 10.1038/celldisc.2015.38] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 01/26/2023] Open
Abstract
The Hippo (Hpo) tumor suppressor pathway is an evolutionarily conserved signaling pathway that controls tissue growth and organ size in species ranging from Drosophila to human, and its malfunction has been implicated in many types of human cancer. In this study, we conducted a kinome screen and identified Happyhour (Hppy)/MAP4K3 as a novel player in the Hpo pathway. Our biochemical study showed that Hppy binds and phosphorylates Wts. Our genetic experiments suggest that Hppy acts in parallel and partial redundantly with Misshapen (Msn)/MAP4K4 to regulate Yki nuclear localization and Hpo target gene expression in Drosophila wing imaginal discs. Furthermore, we showed that cytoskeleton stress restricts Yki nuclear localization through Hppy and Msn when Hpo activity is compromised, thus providing an explanation for the Wts-dependent but Hpo-independent regulation of Yki in certain contexts. Our study has unraveled an additional layer of complexity in the Hpo signaling pathway and laid down a foundation for exploring how different upstream regulators feed into the core Hpo pathway.
Collapse
Affiliation(s)
- Shuangxi Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA
| | - Yong Suk Cho
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA
| | - Tao Yue
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Center for the genetics and Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School , Worcester, MA, USA
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallars, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallars, TX, USA
| |
Collapse
|
210
|
Kim M, Kim M, Park SJ, Lee C, Lim DS. Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep 2015; 17:64-78. [PMID: 26598551 DOI: 10.15252/embr.201540809] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022] Open
Abstract
LATS1/2 (large tumor suppressor) kinases and the Angiomotin family proteins are potent inhibitors of the YAP (yes-associated protein) oncoprotein, but the underlying molecular mechanism is not fully understood. Here, we report for the first time that USP9X is a deubiquitinase of Angiomotin-like 2 (AMOTL2) and that AMOTL2 mono-ubiquitination is required for YAP inhibition. USP9X knockdown increased the LATS-mediated phosphorylation of YAP and decreased the transcriptional output of YAP. Conversely, over-expression of USP9X reactivated YAP in densely cultured cells. Both genetic and biochemical approaches identified AMOTL2 as a target of USP9X. AMOTL2 was found to be ubiquitinated at K347 and K408, which both reside in the protein's coiled-coil domain. The AMOTL2 K347/408R mutant, which cannot be ubiquitinated, was impaired in its ability to inhibit YAP. Furthermore, ubiquitinated AMOTL2 can bind to the UBA domain of LATS kinase, and this domain is required for the function of LATS. Our results provide novel insights into the activation mechanisms of core Hippo pathway components.
Collapse
Affiliation(s)
- Miju Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Minchul Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seong-Jun Park
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Seoul, Korea Department of Biological Chemistry, University of Science and Technology, Daejeon, Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
211
|
Fernandez-Sanchez ME, Brunet T, Röper JC, Farge E. Mechanotransduction's Impact on Animal Development, Evolution, and Tumorigenesis. Annu Rev Cell Dev Biol 2015; 31:373-97. [DOI: 10.1146/annurev-cellbio-102314-112441] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| | - Thibaut Brunet
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
- Evolution of the Nervous System in Bilateria Group, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jens-Christian Röper
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumor Development Team, CNRS UMR 168 Physicochimie Curie, Institut Curie Centre de Recherche, PSL Research University; Fondation Pierre-Gilles de Gennes; and INSERM, F-75005 Paris, France;
| |
Collapse
|
212
|
Hariharan IK. Organ Size Control: Lessons from Drosophila. Dev Cell 2015; 34:255-65. [PMID: 26267393 DOI: 10.1016/j.devcel.2015.07.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 12/23/2022]
Abstract
Of fundamental interest to biologists is how organs achieve a reproducible size during development. Studies of the developing Drosophila wing have provided many key insights that will help give a conceptual understanding of the process beyond the fly. In the wing, there is evidence for both "top-down" mechanisms, in which signals emanating from small subsets of cells direct global proliferation, and "bottom-up" mechanisms, in which the final size is an emergent property of local cell-cell interactions. Mechanical forces also appear to have an important role along with the Hippo pathway, which may integrate multiple types of inputs to regulate the extent of growth.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
213
|
Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 2015; 343:42-53. [PMID: 26524510 DOI: 10.1016/j.yexcr.2015.10.034] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022]
Abstract
Signalling from the extracellular matrix (ECM) is a fundamental cellular input that sustains proliferation, opposes cell death and regulates differentiation. Through integrins, cells perceive both the chemical composition and physical properties of the ECM. In particular, cell behaviour is profoundly influenced by the mechanical elasticity or stiffness of the ECM, which regulates the ability of cells to develop forces through their contractile actomyosin cytoskeleton and to mature focal adhesions. This mechanosensing ability affects fundamental cellular functions, such that alterations of ECM stiffness is nowadays considered not a simple consequence of pathology, but a causative input driving aberrant cell behaviours. We here discuss recent advances on how mechanical signals intersect nuclear transcription and in particular the activity of YAP/TAZ transcriptional coactivators, known downstream transducers of the Hippo pathway and important effectors of ECM mechanical cues.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, via Bassi 58/B, 35131 Padua, Italy.
| |
Collapse
|
214
|
Leferink AM, Chng YC, van Blitterswijk CA, Moroni L. Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds. Front Bioeng Biotechnol 2015; 3:169. [PMID: 26557644 PMCID: PMC4617101 DOI: 10.3389/fbioe.2015.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/08/2015] [Indexed: 12/28/2022] Open
Abstract
One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow-derived mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering-based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs) seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.
Collapse
Affiliation(s)
- Anne M Leferink
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| | | | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede , Netherlands ; Department of Complex Tissue Regeneration, Faculty of Health, Medicine and Life Sciences, Maastricht University , Maastricht , Netherlands
| |
Collapse
|
215
|
Hirate Y, Hirahara S, Inoue KI, Kiyonari H, Niwa H, Sasaki H. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Dev Growth Differ 2015; 57:544-56. [PMID: 26450797 PMCID: PMC11520972 DOI: 10.1111/dgd.12235] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/11/2015] [Accepted: 07/12/2015] [Indexed: 12/24/2022]
Abstract
In preimplantation mouse embryos, the Hippo signaling pathway plays a central role in regulating the fates of the trophectoderm (TE) and the inner cell mass (ICM). In early blastocysts with more than 32 cells, the Par-aPKC system controls polarization of the outer cells along the apicobasal axis, and cell polarity suppresses Hippo signaling. Inactivation of Hippo signaling promotes nuclear accumulation of a coactivator protein, Yap, leading to induction of TE-specific genes. However, whether similar mechanisms operate at earlier stages is not known. Here, we show that slightly different mechanisms operate in 16-cell stage embryos. Similar to 32-cell stage embryos, disruption of the Par-aPKC system activated Hippo signaling and suppressed nuclear Yap and Cdx2 expression in the outer cells. However, unlike 32-cell stage embryos, 16-cell stage embryos with a disrupted Par-aPKC system maintained apical localization of phosphorylated Ezrin/Radixin/Moesin (p-ERM), and the effects on Yap and Cdx2 were weak. Furthermore, normal 16-cell stage embryos often contained apolar cells in the outer position. In these cells, the Hippo pathway was strongly activated and Yap was excluded from the nuclei, thus resembling inner cells. Dissociated blastomeres of 8-cell stage embryos form polar-apolar couplets, which exhibit different levels of nuclear Yap, and the polar cell engulfed the apolar cell. These results suggest that cell polarization at the 16-cell stage is regulated by both Par-aPKC-dependent and -independent mechanisms. Asymmetric cell division is involved in cell polarity control, and cell polarity regulates cell positioning and most likely controls Hippo signaling.
Collapse
Affiliation(s)
- Yoshikazu Hirate
- Department of Cell Fate Control, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shino Hirahara
- Laboratory for Embryonic Induction, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Ken-Ichi Inoue
- Animal Resource Development Unit, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Niwa
- Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hiroshi Sasaki
- Department of Cell Fate Control, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
- Laboratory for Embryogenesis, Graduate School of Frontier BioSciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
216
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015. [PMID: 26389119 DOI: 10.3389/fmed.2015.00059.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
217
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
218
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015; 2:59. [PMID: 26389119 PMCID: PMC4558529 DOI: 10.3389/fmed.2015.00059] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
219
|
Deel MD, Li JJ, Crose LES, Linardic CM. A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas. Front Oncol 2015; 5:190. [PMID: 26389076 PMCID: PMC4557106 DOI: 10.3389/fonc.2015.00190] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway is an evolutionarily conserved developmental network vital for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. The Hippo pathway has also been shown to have tumor suppressor properties. Hippo transduction involves a series of kinases and scaffolding proteins that are intricately connected to proteins in developmental cascades and in the tissue microenvironment. This network governs the downstream Hippo transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs, as well as other transcription factors responsible for cellular proliferation, self-renewal, differentiation, and survival. Surprisingly, there are few oncogenic mutations within the core components of the Hippo pathway. Instead, dysregulated Hippo signaling is a versatile accomplice to commonly mutated cancer pathways. For example, YAP and TAZ can be activated by oncogenic signaling from other pathways, or serve as co-activators for classical oncogenes. Emerging evidence suggests that Hippo signaling couples cell density and cytoskeletal structural changes to morphogenic signals and conveys a mesenchymal phenotype. While much of Hippo biology has been described in epithelial cell systems, it is clear that dysregulated Hippo signaling also contributes to malignancies of mesenchymal origin. This review will summarize the known molecular alterations within the Hippo pathway in sarcomas and highlight how several pharmacologic compounds have shown activity in modulating Hippo components, providing proof-of-principle that Hippo signaling may be harnessed for therapeutic application in sarcomas.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA
| | - Jenny J Li
- Duke University School of Medicine , Durham, NC , USA
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA ; Department of Pharmacology and Cancer Biology, Duke University School of Medicine , Durham, NC , USA
| |
Collapse
|
220
|
Di Cara F, Maile TM, Parsons BD, Magico A, Basu S, Tapon N, King-Jones K. The Hippo pathway promotes cell survival in response to chemical stress. Cell Death Differ 2015; 22:1526-39. [PMID: 26021298 PMCID: PMC4532776 DOI: 10.1038/cdd.2015.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/18/2022] Open
Abstract
Cellular stress defense mechanisms have evolved to maintain homeostasis in response to a broad variety of environmental challenges. Stress signaling pathways activate multiple cellular programs that range from the activation of survival pathways to the initiation of cell death when cells are damaged beyond repair. To identify novel players acting in stress response pathways, we conducted a cell culture RNA interference (RNAi) screen using caffeine as a xenobiotic stress-inducing agent, as this compound is a well-established inducer of detoxification response pathways. Specifically, we examined how caffeine affects cell survival when Drosophila kinases and phosphatases were depleted via RNAi. Using this approach, we identified and validated 10 kinases and 4 phosphatases that are essential for cell survival under caffeine-induced stress both in cell culture and living flies. Remarkably, our screen yielded an enrichment of Hippo pathway components, indicating that this pathway regulates cellular stress responses. Indeed, we show that the Hippo pathway acts as a potent repressor of stress-induced cell death. Further, we demonstrate that Hippo activation is necessary to inhibit a pro-apoptotic program triggered by the interaction of the transcriptional co-activator Yki with the transcription factor p53 in response to a range of stress stimuli. Our in vitro and in vivo loss-of-function data therefore implicate Hippo signaling in the transduction of cellular survival signals in response to chemical stress.
Collapse
Affiliation(s)
- F Di Cara
- Department of Cell Biology, Medical Sciences Building, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - T M Maile
- Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - B D Parsons
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton AB T6G 2E1, Alberta, Canada
| | - A Magico
- Department of Pediatrics, Faculty of Medicine & Dentistry, Katz Group Centre, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - S Basu
- Centre for Molecular Oncology, Institute of Cancer, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - N Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - K King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg, Edmonton T6G 2E9, Alberta, Canada
| |
Collapse
|
221
|
Saito A, Nagase T. Hippo and TGF-β interplay in the lung field. Am J Physiol Lung Cell Mol Physiol 2015; 309:L756-67. [PMID: 26320155 DOI: 10.1152/ajplung.00238.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway is comprised of a kinase cascade that involves mammalian Ste20-like serine/threonine kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) and leads to inactivation of transcriptional coactivator with PDZ-binding motif (TAZ) and yes-associated protein (YAP). Protein stability and subcellular localization of TAZ/YAP determine its ability to regulate a diverse array of biological processes, including proliferation, apoptosis, differentiation, stem/progenitor cell properties, organ size control, and tumorigenesis. These actions are enabled by interactions with various transcription factors or through cross talk with other signaling pathways. Interestingly, mechanical stress has been shown to be an upstream regulator of TAZ/YAP activity, and this finding provides a novel clue for understanding how mechanical forces influence a broad spectrum of biological processes, which involve cytoskeletal structure, cell adhesion, and extracellular matrix (ECM) organization. Transforming growth factor-β (TGF-β) pathway is a critical component of lung development and the progression of lung diseases including emphysema, fibrosis, and cancer. In addition, TGF-β is a key regulator of ECM remodeling and cell differentiation processes such as epithelial-mesenchymal transition. In this review, we summarize the current knowledge of the Hippo pathway regarding lung development and diseases, with an emphasis on its interplay with TGF-β signaling.
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan; and Division for Health Service Promotion, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan; and
| |
Collapse
|
222
|
Cell mixing induced by myc is required for competitive tissue invasion and destruction. Nature 2015; 524:476-80. [DOI: 10.1038/nature14684] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
|
223
|
A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell Res 2015; 25:997-1012. [PMID: 26272168 PMCID: PMC4559818 DOI: 10.1038/cr.2015.98] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Organ size determination is one of the most intriguing unsolved mysteries in biology. Aberrant activation of the major effector and transcription co-activator YAP in the Hippo pathway causes drastic organ enlargement in development and underlies tumorigenesis in many human cancers. However, how robust YAP activation is achieved during organ size control remains elusive. Here we report that the YAP signaling is sustained through a novel microRNA-dependent positive feedback loop. miR-130a, which is directly induced by YAP, could effectively repress VGLL4, an inhibitor of YAP activity, thereby amplifying the YAP signals. Inhibition of miR-130a reversed liver size enlargement induced by Hippo pathway inactivation and blocked YAP-induced tumorigenesis. Furthermore, the Drosophila Hippo pathway target bantam functionally mimics miR-130a by repressing the VGLL4 homolog SdBP/Tgi. These findings reveal an evolutionarily conserved positive feedback mechanism underlying robustness of the Hippo pathway in size control and tumorigenesis.
Collapse
|
224
|
Abstract
Mechanical forces shape biological tissues. They are the effectors of the developmental programs that orchestrate morphogenesis. A lot of effort has been devoted to understanding morphogenetic processes in mechanical terms. In this review, we focus on the interplay between tissue mechanics and growth. We first describe how tissue mechanics affects growth, by influencing the orientation of cell divisions and the signaling pathways that control the rate of volume increase and proliferation. We then address how the mechanical state of a tissue is affected by the patterns of growth. The forward and reverse interactions between growth and mechanics must be investigated in an integrative way if we want to understand how tissues grow and shape themselves. To illustrate this point, we describe examples in which growth homeostasis is achieved by feedback mechanisms that use mechanical forces.
Collapse
Affiliation(s)
- Loïc LeGoff
- National Center for Scientific Research, Developmental Biology Institute of Marseille-Luminy, Aix Marseille Université, 13009 Marseille, France
| | - Thomas Lecuit
- National Center for Scientific Research, Developmental Biology Institute of Marseille-Luminy, Aix Marseille Université, 13009 Marseille, France
| |
Collapse
|
225
|
Abstract
Fibronectin adhesion stimulation of focal adhesion kinase (FAK)–Src–PI3K is an upstream regulatory branch of the Hippo pathway and stimulates the activity and nuclear localization of YAP in a Lats-dependent manner. The Hippo pathway is involved in the regulation of contact inhibition of proliferation and responses to various physical and chemical stimuli. Recently, several upstream negative regulators of Hippo signaling, including epidermal growth factor receptor ligands and lysophosphatidic acid, have been identified. We show that fibronectin adhesion stimulation of focal adhesion kinase (FAK)-Src signaling is another upstream negative regulator of the Hippo pathway. Inhibition of FAK or Src in MCF-10A cells plated at low cell density prevented the activation of Yes-associated protein (YAP) in a large tumor suppressor homologue (Lats)–dependent manner. Attachment of serum-starved MCF-10A cells to fibronectin, but not poly-d-lysine or laminin, induced YAP nuclear accumulation via the FAK–Src–phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K) signaling pathway. Attenuation of FAK, Src, PI3K, or PDK1 activity blocked YAP nuclear accumulation stimulated by adhesion to fibronectin. This negative regulation of the Hippo pathway by fibronectin adhesion signaling can, at least in part, explain the effects of cell spreading on YAP nuclear localization and represents a Lats-dependent component of the response to cell adhesion.
Collapse
Affiliation(s)
- Nam-Gyun Kim
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Barry M Gumbiner
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| |
Collapse
|
226
|
Turkel N, Portela M, Poon C, Li J, Brumby AM, Richardson HE. Cooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in Drosophila epithelial tumorigenesis. Biol Open 2015; 4:1024-39. [PMID: 26187947 PMCID: PMC4542289 DOI: 10.1242/bio.012815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cell polarity regulator Scribble (Scrib) and overexpression of the BTB-ZF protein Abrupt (Ab). Herein, we show that co-expression of ab with actin cytoskeletal regulators, RhoGEF2 or Src64B, in the developing eye-antennal epithelial tissue results in the formation of overgrown amorphous tumours, whereas ab and DRac1 co-expression leads to non-cell autonomous overgrowth. Together with ab, these genes affect the expression of differentiation genes, resulting in tumours locked in a progenitor cell fate. Finally, we show that the expression of two mammalian genes related to ab, Bcl6 and ZBTB7A, which are oncogenes in mammalian epithelial cancers, significantly correlate with the upregulation of cytoskeletal genes or downregulation of apico-basal cell polarity neoplastic tumour suppressor genes in colorectal, lung and other human epithelial cancers. Altogether, this analysis has revealed that upregulation of cytoskeletal regulators cooperate with Abrupt in Drosophila epithelial tumorigenesis, and that high expression of human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant correlations with cytoskeletal and cell polarity gene expression in specific epithelial tumour types. This highlights the need for further investigation of the cooperation between these genes in mammalian systems.
Collapse
Affiliation(s)
- Nezaket Turkel
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Marta Portela
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Carole Poon
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Jason Li
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Anthony M Brumby
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Helena E Richardson
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia School of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
227
|
The Hippo transducers TAZ and YAP in breast cancer: oncogenic activities and clinical implications. Expert Rev Mol Med 2015; 17:e14. [PMID: 26136233 DOI: 10.1017/erm.2015.12] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hippo signalling is emerging as a tumour suppressor pathway whose function is regulated by an intricate network of intracellular and extracellular cues. Defects in the signal cascade lead to the activation of the Hippo transducers TAZ and YAP. Compelling preclinical evidence showed that TAZ/YAP are often aberrantly engaged in breast cancer (BC), where their hyperactivation culminates into a variety of tumour-promoting functions such as epithelial-to-mesenchymal transition, cancer stem cell generation and therapeutic resistance. Having acquired a more thorough understanding in the biology of TAZ/YAP, and the molecular outputs they elicit, has prompted a first wave of exploratory, clinically-focused analyses aimed at providing initial hints on the prognostic/predictive significance of their expression. In this review, we discuss oncogenic activities linked with TAZ/YAP in BC, and we propose clinical strategies for investigating their role as biomarkers in the clinical setting. Finally, we address the therapeutic potential of TAZ/YAP targeting and the modalities that, in our opinion, should be pursued in order to further study the biological and clinical consequences of their inhibition.
Collapse
|
228
|
Zhang C, Robinson BS, Xu W, Yang L, Yao B, Zhao H, Byun PK, Jin P, Veraksa A, Moberg KH. The ecdysone receptor coactivator Taiman links Yorkie to transcriptional control of germline stem cell factors in somatic tissue. Dev Cell 2015; 34:168-80. [PMID: 26143992 DOI: 10.1016/j.devcel.2015.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The Hippo pathway is a conserved signaling cascade that modulates tissue growth. Although its core elements are well defined, factors modulating Hippo transcriptional outputs remain elusive. Here we show that components of the steroid-responsive ecdysone (Ec) pathway modulate Hippo transcriptional effects in imaginal disc cells. The Ec receptor coactivator Taiman (Tai) interacts with the Hippo transcriptional coactivator Yorkie (Yki) and promotes expression of canonical Yki-responsive genes. Tai enhances Yki-driven growth, while Tai loss, or a form of Tai unable to bind Yki, suppresses Yki-driven tissue growth. This growth suppression is not correlated with impaired induction of canonical Hippo-responsive genes but with suppression of a distinct pro-growth program of Yki-induced/Tai-dependent genes, including the germline stem cell factors nanos and piwi. These data reveal Hippo/Ec pathway crosstalk in the form a Yki-Tai complex that collaboratively induces germline genes as part of a transcriptional program that is normally repressed in developing somatic epithelia.
Collapse
Affiliation(s)
- Can Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian S Robinson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenjian Xu
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Liu Yang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Phil K Byun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
229
|
Enomoto M, Kizawa D, Ohsawa S, Igaki T. JNK signaling is converted from anti- to pro-tumor pathway by Ras-mediated switch of Warts activity. Dev Biol 2015; 403:162-71. [DOI: 10.1016/j.ydbio.2015.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 02/07/2023]
|
230
|
Romanova-Michaelides M, Aguilar-Hidalgo D, Jülicher F, Gonzalez-Gaitan M. The wing and the eye: a parsimonious theory for scaling and growth control? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:591-608. [PMID: 26108346 DOI: 10.1002/wdev.195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 11/07/2022]
Abstract
How a developing organ grows and patterns to its final shape is an important question in developmental biology. Studies of growth and patterning in the Drosophila wing imaginal disc have identified a key player, the morphogen Decapentaplegic (Dpp). These studies provided insights into our understanding of growth control and scaling: expansion of the Dpp gradient correlated with the growth of the tissue. A recent report on growth of a Drosophila organ other than the wing, the eye imaginal disc, prompts a reconsideration of our models of growth control. Despite striking differences between the two, the Dpp gradient scales with the target tissues of both organs and the growth of both the wing and the eye is controlled by Dpp. The goal of this review is to discuss whether a parsimonious model of scaling and growth control can explain the relationship between the Dpp gradient and growth in these two different developmental systems.
Collapse
Affiliation(s)
| | - Daniel Aguilar-Hidalgo
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Frank Jülicher
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
231
|
Abstract
The heart is the first organ formed during mammalian development. A properly sized and functional heart is vital throughout the entire lifespan. Loss of cardiomyocytes because of injury or diseases leads to heart failure, which is a major cause of human morbidity and mortality. Unfortunately, regenerative potential of the adult heart is limited. The Hippo pathway is a recently identified signaling cascade that plays an evolutionarily conserved role in organ size control by inhibiting cell proliferation, promoting apoptosis, regulating fates of stem/progenitor cells, and in some circumstances, limiting cell size. Interestingly, research indicates a key role of this pathway in regulation of cardiomyocyte proliferation and heart size. Inactivation of the Hippo pathway or activation of its downstream effector, the Yes-associated protein transcription coactivator, improves cardiac regeneration. Several known upstream signals of the Hippo pathway such as mechanical stress, G-protein-coupled receptor signaling, and oxidative stress are known to play critical roles in cardiac physiology. In addition, Yes-associated protein has been shown to regulate cardiomyocyte fate through multiple transcriptional mechanisms. In this review, we summarize and discuss current findings on the roles and mechanisms of the Hippo pathway in heart development, injury, and regeneration.
Collapse
Affiliation(s)
- Qi Zhou
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Li Li
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Bin Zhao
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| | - Kun-Liang Guan
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| |
Collapse
|
232
|
Li Y, Zhou H, Li F, Chan SW, Lin Z, Wei Z, Yang Z, Guo F, Lim CJ, Xing W, Shen Y, Hong W, Long J, Zhang M. Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway. Cell Res 2015; 25:801-17. [PMID: 26045165 PMCID: PMC4493278 DOI: 10.1038/cr.2015.69] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor Merlin/NF2 functions upstream of the core Hippo pathway kinases Lats1/2 and Mst1/2, as well as the nuclear E3 ubiquitin ligase CRL4(DCAF1). Numerous mutations of Merlin have been identified in Neurofibromatosis type 2 and other cancer patients. Despite more than two decades of research, the upstream regulator of Merlin in the Hippo pathway remains unknown. Here we show by high-resolution crystal structures that the Lats1/2-binding site on the Merlin FERM domain is physically blocked by Merlin's auto-inhibitory tail. Angiomotin binding releases the auto-inhibition and promotes Merlin's binding to Lats1/2. Phosphorylation of Ser518 outside the Merlin's auto-inhibitory tail does not obviously alter Merlin's conformation, but instead prevents angiomotin from binding and thus inhibits Hippo pathway kinase activation. Cancer-causing mutations clustered in the angiomotin-binding domain impair angiomotin-mediated Merlin activation. Our findings reveal that angiomotin and Merlin respectively interface cortical actin filaments and core kinases in Hippo signaling, and allow construction of a complete Hippo signaling pathway.
Collapse
Affiliation(s)
- Youjun Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong, China
| | - Hao Zhou
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Fengzhi Li
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Siew Wee Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Zhijie Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong, China
| | - Zhiyi Wei
- 1] Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong, China [2] Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Zhou Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong, China
| | - Fusheng Guo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Chun Jye Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wancai Xing
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuequan Shen
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jiafu Long
- 1] State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China [2] College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Mingjie Zhang
- 1] Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong, China [2] Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
233
|
Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harb Perspect Biol 2015; 7:7/6/a019224. [PMID: 26032720 DOI: 10.1101/cshperspect.a019224] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell-cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved.
Collapse
|
234
|
Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T, Morita H, Hata S, Sasaki T, Krens SG, Osada Y, Asaka S, Momoi A, Linton S, Miesfeld JB, Link BA, Senga T, Shimizu N, Nagase H, Matsuura S, Bagby S, Kondoh H, Nishina H, Heisenberg CP, Furutani-Seiki M. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 2015; 521:217-221. [PMID: 25778702 PMCID: PMC4720436 DOI: 10.1038/nature14215] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/29/2014] [Indexed: 01/08/2023]
Abstract
Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.
Collapse
Affiliation(s)
- Sean Porazinski
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Huijia Wang
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Martin Behrndt
- IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hitoshi Morita
- IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Shoji Hata
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Takashi Sasaki
- Department of Molecular Biology, School of Medicine, Keio University, Tokyo 160-8582 Japan
| | | | - Yumi Osada
- Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto, 606-8305, Japan
| | - Satoshi Asaka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Akihiro Momoi
- Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto, 606-8305, Japan
| | - Sarah Linton
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Joel B. Miesfeld
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, School of Medicine, Keio University, Tokyo 160-8582 Japan
| | - Hideaki Nagase
- Matrix Biology Section, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Shinya Matsuura
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Stefan Bagby
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Hisato Kondoh
- Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto, 606-8305, Japan
- Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | | | - Makoto Furutani-Seiki
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
- Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto, 606-8305, Japan
| |
Collapse
|
235
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
236
|
Fletcher GC, Elbediwy A, Khanal I, Ribeiro PS, Tapon N, Thompson BJ. The Spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J 2015; 34:940-54. [PMID: 25712476 PMCID: PMC4388601 DOI: 10.15252/embj.201489642] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors.
Collapse
Affiliation(s)
- Georgina C Fletcher
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Ichha Khanal
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Paulo S Ribeiro
- Apoptosis and Cell Proliferation Laboratory, Cancer Research UK - London Research Institute, London, UK Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nic Tapon
- Apoptosis and Cell Proliferation Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| |
Collapse
|
237
|
Deng H, Wang W, Yu J, Zheng Y, Qing Y, Pan D. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. eLife 2015; 4:e06567. [PMID: 25826608 PMCID: PMC4412106 DOI: 10.7554/elife.06567] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway controls tissue growth through a core kinase cascade that impinges on the transcription of growth-regulatory genes. Understanding how this pathway is regulated in development remains a major challenge. Recent studies suggested that Hippo signaling can be modulated by cytoskeletal tension through a Rok-myosin II pathway. How cytoskeletal tension is regulated or its relationship to the other known upstream regulators of the Hippo pathway remains poorly defined. In this study, we identify spectrin, a contractile protein at the cytoskeleton-membrane interface, as an upstream regulator of the Hippo signaling pathway. We show that, in contrast to canonical upstream regulators such as Crumbs, Kibra, Expanded, and Merlin, spectrin regulates Hippo signaling in a distinct way by modulating cortical actomyosin activity through non-muscle myosin II. These results uncover an essential mediator of Hippo signaling by cytoskeleton tension, providing a new entry point to dissecting how mechanical signals regulate Hippo signaling in living tissues. DOI:http://dx.doi.org/10.7554/eLife.06567.001 Organs including the liver, eyes, and lungs are made up of millions of cells, and how these organs stop growing once they reach their final size has fascinated scientists for decades. The cells in developing organs must communicate with each other and respond appropriately to the signals that they receive from other cells. This requires so-called “signaling pathways”. One such pathway that involves a protein called Hippo is known to control when cells should grow and divide and when they should stop. If this pathway does not work correctly, it can cause too many cells to be formed, which may result in cancer. The Hippo signaling pathway can also be regulated by an extensive network of protein filaments found within cells, called the cytoskeleton. This network can exert forces on the cells, which can have a major impact on cell growth. However, the mechanism behind the interaction between the cytoskeleton and the Hippo signaling pathway is poorly understood. Now, Deng et al. have engineered fruit flies in which the expression of individual genes had been artificially reduced, and looked for flies that had enlarged wings. Three genes identified in these experiments encode different subunits of a large spring-like protein, called spectrin, which is part of the cytoskeleton. This suggests that normally spectrin limits wing size. Furthermore, spectrin was also found to control the size of other organs in the fruit flies, such as the eyes and ovaries. In all of these organs, the Hippo signaling pathway failed to work properly in the absence of spectrin. Deng et al. then further explored the relationship between spectrin and Hippo signaling and found that cells without spectrin show abnormally high levels of tension in their cytoskeleton. When flies that lacked spectrin were engineered to reduce this tension, these flies developed normal sized organs. These findings reveal the importance of cytoskeleton tension in controlling tissue growth, and provide a new entry point to understand how normal tissues grow to their characteristic size and how such process goes awry in cancer. DOI:http://dx.doi.org/10.7554/eLife.06567.002
Collapse
Affiliation(s)
- Hua Deng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Wei Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jianzhong Yu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yonggang Zheng
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yun Qing
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
238
|
Gokhale RH, Shingleton AW. Size control: the developmental physiology of body and organ size regulation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:335-56. [PMID: 25808999 DOI: 10.1002/wdev.181] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/08/2015] [Accepted: 01/29/2015] [Indexed: 01/04/2023]
Abstract
The developmental regulation of final body and organ size is fundamental to generating a functional and correctly proportioned adult. Research over the last two decades has identified a long list of genes and signaling pathways that, when perturbed, influence final body size. However, body and organ size are ultimately a characteristic of the whole organism, and how these myriad genes and pathways function within a physiological context to control size remains largely unknown. In this review, we first describe the major size-regulatory signaling pathways: the Insulin/IGF-, RAS/RAF/MAPK-, TOR-, Hippo-, and JNK-signaling pathways. We then explore what is known of how these pathways regulate five major aspects of size regulation: growth rate, growth duration, target size, negative growth and growth coordination. While this review is by no means exhaustive, our goal is to provide a conceptual framework for integrating the mechanisms of size control at a molecular-genetic level with the mechanisms of size control at a physiological level.
Collapse
Affiliation(s)
- Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, Lake Forest, IL, USA.,Department of Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
239
|
Wei Z, Li Y, Ye F, Zhang M. Structural basis for the phosphorylation-regulated interaction between the cytoplasmic tail of cell polarity protein crumbs and the actin-binding protein moesin. J Biol Chem 2015; 290:11384-92. [PMID: 25792740 DOI: 10.1074/jbc.m115.643791] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Indexed: 11/06/2022] Open
Abstract
The type I transmembrane protein crumbs (Crb) plays critical roles in the establishment and maintenance of cell polarities in diverse tissues. As such, mutations of Crb can cause different forms of cancers. The cell intrinsic role of Crb in cell polarity is governed by its conserved, 37-residue cytoplasmic tail (Crb-CT) via binding to moesin and protein associated with Lin7-1 (PALS1). However, the detailed mechanism governing the Crb·moesin interaction and the balance of Crb in binding to moesin and PALS1 are not well understood. Here we report the 1.5 Å resolution crystal structure of the moesin protein 4.1/ezrin/radixin/moesin (FERM)·Crb-CT complex, revealing that both the canonical FERM binding motif and the postsynaptic density protein-95/Disc large-1/Zonula occludens-1 (PDZ) binding motif of Crb contribute to the Crb·moesin interaction. We further demonstrate that phosphorylation of Crb-CT by atypical protein kinase C (aPKC) disrupts the Crb·moesin association but has no impact on the Crb·PALS1 interaction. The above results indicate that, upon the establishment of the apical-basal polarity in epithelia, apical-localized aPKC can actively prevent the Crb·moesin complex formation and thereby shift Crb to form complex with PALS1 at apical junctions. Therefore, Crb may serve as an aPKC-mediated sensor in coordinating contact-dependent cell growth inhibition in epithelial tissues.
Collapse
Affiliation(s)
- Zhiyi Wei
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Youjun Li
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Fei Ye
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and
| | - Mingjie Zhang
- From the Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, Center of Systems Biology and Human Health, School of Science and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China, and
| |
Collapse
|
240
|
Gaspar P, Holder MV, Aerne BL, Janody F, Tapon N. Zyxin antagonizes the FERM protein expanded to couple F-actin and Yorkie-dependent organ growth. Curr Biol 2015; 25:679-689. [PMID: 25728696 DOI: 10.1016/j.cub.2015.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/17/2014] [Accepted: 01/02/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Coordinated multicellular growth during development is achieved by the sensing of spatial and nutritional boundaries. The conserved Hippo (Hpo) signaling pathway has been proposed to restrict tissue growth by perceiving mechanical constraints through actin cytoskeleton networks. The actin-associated LIM proteins Zyxin (Zyx) and Ajuba (Jub) have been linked to the control of tissue growth via regulation of Hpo signaling, but the study of Zyx has been hampered by a lack of genetic tools. RESULTS We generated a zyx mutant in Drosophila using TALEN endonucleases and used this to show that Zyx antagonizes the FERM-domain protein Expanded (Ex) to control tissue growth, eye differentiation, and F-actin accumulation. Zyx membrane targeting promotes the interaction between the transcriptional co-activator Yorkie (Yki) and the transcription factor Scalloped (Sd), leading to activation of Yki target gene expression and promoting tissue growth. Finally, we show that Zyx's growth-promoting function is dependent on its interaction with the actin-associated protein Enabled (Ena) via a conserved LPPPP motif and is antagonized by Capping Protein (CP). CONCLUSIONS Our results show that Zyx is a functional antagonist of Ex in growth control and establish a link between actin filament polymerization and Yki activity.
Collapse
Affiliation(s)
- Pedro Gaspar
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Maxine V Holder
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Birgit L Aerne
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Florence Janody
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
241
|
Letteboer TGW, Benzinou M, Merrick CB, Quigley DA, Zhau K, Kim IJ, To MD, Jablons DM, van Amstel JKP, Westermann CJJ, Giraud S, Dupuis-Girod S, Lesca G, Berg JH, Balmain A, Akhurst RJ. Genetic variation in the functional ENG allele inherited from the non-affected parent associates with presence of pulmonary arteriovenous malformation in hereditary hemorrhagic telangiectasia 1 (HHT1) and may influence expression of PTPN14. Front Genet 2015; 6:67. [PMID: 25815003 PMCID: PMC4357294 DOI: 10.3389/fgene.2015.00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/09/2015] [Indexed: 01/09/2023] Open
Abstract
HHT shows clinical variability within and between families. Organ site and prevalence of arteriovenous malformations (AVMs) depend on the HHT causative gene and on environmental and genetic modifiers. We tested whether variation in the functional ENG allele, inherited from the unaffected parent, alters risk for pulmonary AVM in HHT1 mutation carriers who are ENG haploinsufficient. Genetic association was found between rs10987746 of the wild type ENG allele and presence of pulmonary AVM [relative risk = 1.3 (1.0018-1.7424)]. The rs10987746-C at-risk allele associated with lower expression of ENG RNA in a panel of human lymphoblastoid cell lines (P = 0.004). Moreover, in angiogenically active human lung adenocarcinoma tissue, but not in uninvolved quiescent lung, rs10987746-C was correlated with expression of PTPN14 (P = 0.004), another modifier of HHT. Quantitative TAQMAN expression analysis in a panel of normal lung tissues from 69 genetically heterogeneous inter-specific backcross mice, demonstrated strong correlation between expression levels of Eng, Acvrl1, and Ptpn14 (r2 = 0.75-0.9, P < 1 × 10(-12)), further suggesting a direct or indirect interaction between these three genes in lung in vivo. Our data indicate that genetic variation within the single functional ENG gene influences quantitative and/or qualitative differences in ENG expression that contribute to risk of pulmonary AVM in HHT1, and provide correlative support for PTPN14 involvement in endoglin/ALK1 lung biology in vivo. PTPN14 has been shown to be a negative regulator of Yap/Taz signaling, which is implicated in mechanotransduction, providing a possible molecular link between endoglin/ALK1 signaling and mechanical stress. EMILIN2, which showed suggestive genetic association with pulmonary AVM, is also reported to interact with Taz in angiogenesis. Elucidation of the molecular mechanisms regulating these interactions in endothelial cells may ultimately provide more rational choices for HHT therapy.
Collapse
Affiliation(s)
- Tom G W Letteboer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Medical Genetics, University Medical Centre Utrecht Utrecht, Netherlands
| | - Michael Benzinou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Christopher B Merrick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Clinical Genetics, University of Dundee Dundee, UK
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Kechen Zhau
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Il-Jin Kim
- Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Minh D To
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | - David M Jablons
- Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | | | | | - Sophie Giraud
- Department of Medical Genetics, Lyon University Hospital Lyon, France
| | | | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital Lyon, France
| | - Jonathan H Berg
- Department of Clinical Genetics, University of Dundee Dundee, UK
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Biochemistry and Biophysics, University of California, San Francisco San Francisco, CA, USA ; Institute of Human Genetics, University of California, San Francisco San Francisco, CA, USA
| | - Rosemary J Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Institute of Human Genetics, University of California, San Francisco San Francisco, CA, USA ; Department of Anatomy, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
242
|
Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, Lim DS, Guan KL. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 2015; 17:500-10. [PMID: 25751140 PMCID: PMC4380774 DOI: 10.1038/ncb3111] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
Abstract
YAP (Yes-associated protein) is a transcription co-activator in the Hippo tumor suppressor pathway and controls cell growth, tissue homeostasis, and organ size. YAP is inhibited by the kinase Lats, which phosphorylates YAP to induce its cytoplasmic localization and proteasomal degradation. YAP induces gene expression by binding to the TEAD family transcription factors. Dysregulation of the Hippo-YAP pathway is frequently observed in human cancers. Here we show that cellular energy stress induces YAP phosphorylation, in part due to AMPK-dependent Lats activation, thereby inhibiting YAP activity. Moreover, AMPK directly phosphorylates YAP S94, a residue essential for the interaction with TEAD, thus disrupting the YAP-TEAD interaction. AMPK-induced YAP inhibition can suppress oncogenic transformation of Lats-null cells with high YAP activity. Our study establishes a molecular mechanism and functional significance of AMPK in linking cellular energy status to the Hippo-YAP pathway.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Young Chul Kim
- Department of Cardiology, Veterans Medical Research Foundation, 3350 La Jolla Village Dr., San Diego, California 92161, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Carsten Gram Hansen
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Soohyun Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Dae-Sik Lim
- National Creative Research Initiatives Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
243
|
|
244
|
Cheng Y, Feng Y, Jansson L, Sato Y, Deguchi M, Kawamura K, Hsueh AJ. Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J 2015; 29:2423-30. [PMID: 25690654 DOI: 10.1096/fj.14-267856] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/27/2015] [Indexed: 11/11/2022]
Abstract
Hippo signaling pathway consists of conserved serine/threonine kinases to maintain optimal organ sizes. Studies have demonstrated that fragmentation of murine ovaries increases actin polymerization and disrupts Hippo signaling, leading to nuclear translocation of Hippo signaling effector Yes-associated protein (YAP) in ovarian follicles and follicle growth. For patients with polycystic ovarian syndrome showing follicle arrest, ovarian wedge resection and laser drilling promote follicle growth. Because these damaging procedures likely involve actin polymerization, we tested whether actin polymerization-promoting drugs could promote YAP translocation and stimulate follicle growth. Treatment of murine ovaries with μM Jasplakinolide (JASP), an actin polymerization-promoting cyclic peptide, or sphingosine-1-phosphate (S1P), a follicular fluid constituent known to promote actin polymerization, increased the conversion of globular actin to the filamentous form, followed by increased nuclear YAP and expression of downstream connective tissue growth factor (CCN2). After short-term treatments with JASP or S1P, in vitro cultured and in vivo grafted ovaries showed follicle growth. Furthermore, induction of constitutively active YAP in ovarian grafts of transgenic mice enhanced follicle development, whereas treatment of human ovarian cortices with JASP or S1P increased CCN2 expression. Thus, JASP and S1P stimulate follicle growth and are potential therapeutic agents for treating polycystic ovarian syndrome and other ovarian disorders.
Collapse
Affiliation(s)
- Yuan Cheng
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yi Feng
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Lina Jansson
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yorino Sato
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Masashi Deguchi
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuhiro Kawamura
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Aaron J Hsueh
- *Department of Obstetrics and Gynecology and Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA; Department of Obstetrics and Gynecology, St. Mariana University, Kawasaki, Japan; and Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
245
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
246
|
Abstract
Cell-cell adhesions are necessary for structural integrity and barrier formation of the epidermis. Here, we discuss insights from genetic and cell biological studies into the roles of individual cell-cell junctions and their composite proteins in regulating epidermal development and function. In addition to individual adhesive functions, we will discuss emerging ideas on mechanosensation/transduction of junctions in the epidermis, noncanonical roles for adhesion proteins, and crosstalk/interdependencies between the junctional systems. These studies have revealed that cell adhesion proteins are connected to many aspects of tissue physiology including growth control, differentiation, and inflammation.
Collapse
Affiliation(s)
- Kaelyn D Sumigray
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
247
|
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China 200032
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| | - Steven W. Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
248
|
Guo L, Teng L. YAP/TAZ for cancer therapy: opportunities and challenges (review). Int J Oncol 2015; 46:1444-52. [PMID: 25652178 DOI: 10.3892/ijo.2015.2877] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/23/2015] [Indexed: 01/14/2023] Open
Abstract
YAP (Yes-associated protein) and its paralog TAZ (transcriptional co-activator with PDZ-binding motif) are the main downstream effectors of the Hippo signaling pathway. This pathway is an evolutionally conserved signal cascade, which plays pivotal roles in organ size control and tumorigenesis from Drosophila to mammals. Functionally, when the Hippo pathway is activated, YAP and TAZ will be sequestered in the cytoplasm and degraded. Conversely, when the Hippo pathway is deactivated, YAP and TAZ will translocate into nucleus and promote transcription of downstream genes by forming complexes with transcription factors, such as transcriptional enhancer factors (TEF; also referred to as TEAD), runt-domain transcription factors (Runx) and others. Most of these transcription factors belong to growth promoting or apoptosis-inhibition genes. It has been reported that the deactivation of the Hippo pathway, as well as up-regulation of YAP and TAZ was observed in many human cancers with a high frequency, which suggests that the Hippo pathway may be a potent target for developing anticancer drugs. In this review, we provide an overview of the Hippo pathway and summarize recent advances with respect to the role of YAP and TAZ in Hippo signaling pathway and cancer development. Furthermore, we describe the opportunities and challenges for exploit YAP and TAZ as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Liwen Guo
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lisong Teng
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
249
|
Abstract
Although hormonal regulation of ovarian follicle development has been extensively investigated, most studies concentrate on the development of early antral follicles to the preovulatory stage, leading to the successful use of exogenous FSH for infertility treatment. Accumulating data indicate that preantral follicles are under stringent regulation by FSH and local intraovarian factors, thus providing the possibility to develop new therapeutic approaches. Granulosa cell-derived C-type natriuretic factor not only suppresses the final maturation of oocytes to undergo germinal vesicle breakdown before ovulation but also promotes preantral and antral follicle growth. In addition, several oocyte- and granulosa cell-derived factors stimulate preantral follicle growth by acting through wingless, receptor tyrosine kinase, receptor serine kinase, and other signaling pathways. In contrast, the ovarian Hippo signaling pathway constrains follicle growth and disruption of Hippo signaling promotes the secretion of downstream CCN growth factors capable of promoting follicle growth. Although the exact hormonal factors involved in primordial follicle activation has yet to be elucidated, the protein kinase B (AKT) and mammalian target of rapamycin signaling pathways are important for the activation of dormant primordial follicles. Hippo signaling disruption after ovarian fragmentation, combined with treating ovarian fragments with phosphatase and tensin homolog (PTEN) inhibitors and phosphoinositide-3-kinase stimulators to augment AKT signaling, promote the growth of preantral follicles in patients with primary ovarian insufficiency, leading to a new infertility intervention for such patients. Elucidation of intraovarian mechanisms underlying early folliculogenesis may allow the development of novel therapeutic strategies for patients diagnosed with primary ovarian insufficiency, polycystic ovary syndrome, and poor ovarian response to FSH stimulation, as well as for infertile women of advanced reproductive age.
Collapse
Affiliation(s)
- Aaron J W Hsueh
- Program of Reproductive and Stem Cell Biology (A.J.W.H., Y.C.), Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317; Department of Obstetrics and Gynecology (K.K.), St. Mariana University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan; Department of Reproductive Medicine & Gynecology (B.C.J.M.F.), University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
250
|
Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules. Proc Natl Acad Sci U S A 2015; 112:1785-90. [PMID: 25624491 DOI: 10.1073/pnas.1420850112] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.
Collapse
|