201
|
Li H, Ghorbani S, Ling CC, Yong VW, Xue M. The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis 2023; 186:106282. [PMID: 37683956 DOI: 10.1016/j.nbd.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stroke is the second leading cause of death worldwide and has two major subtypes: ischemic stroke and hemorrhagic stroke. Neuroinflammation is a pathological hallmark of ischemic stroke and intracerebral hemorrhage (ICH), contributing to the extent of brain injury but also in its repair. Neuroinflammation is intricately linked to the extracellular matrix (ECM), which is profoundly altered after brain injury and in aging. In the early stages after ischemic stroke and ICH, immune cells are involved in the deposition and remodeling of the ECM thereby affecting processes such as blood-brain barrier and cellular integrity. ECM components regulate leukocyte infiltration into the central nervous system, activate a variety of immune cells, and induce the elevation of matrix metalloproteinases (MMPs) after stroke. In turn, excessive MMPs may degrade ECM into components that are pro-inflammatory and injurious. Conversely, in the later stages after stroke, several ECM molecules may contribute to tissue recovery. For example, thrombospondin-1 and biglycan may promote activity of regulatory T cells, inhibit the synthesis of proinflammatory cytokines, and aid regenerative processes. We highlight these roles of the ECM in ischemic stroke and ICH and discuss their potential cellular and molecular mechanisms. Finally, we discuss therapeutics that could be considered to normalize the ECM in stroke. Our goal is to spur research on the ECM in order to improve the prognosis of ischemic stroke and ICH.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
202
|
Jung BK, Ryu KY. Lipocalin-2: a therapeutic target to overcome neurodegenerative diseases by regulating reactive astrogliosis. Exp Mol Med 2023; 55:2138-2146. [PMID: 37779143 PMCID: PMC10618504 DOI: 10.1038/s12276-023-01098-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Glial cell activation precedes neuronal cell death during brain aging and the progression of neurodegenerative diseases. Under neuroinflammatory stress conditions, lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin or 24p3, is produced and secreted by activated microglia and reactive astrocytes. Lcn2 expression levels are known to be increased in various cells, including reactive astrocytes, through the activation of the NF-κB signaling pathway. In the central nervous system, as LCN2 exerts neurotoxicity when secreted from reactive astrocytes, many researchers have attempted to identify various strategies to inhibit LCN2 production, secretion, and function to minimize neuroinflammation and neuronal cell death. These strategies include regulation at the transcriptional, posttranscriptional, and posttranslational levels, as well as blocking its functions using neutralizing antibodies or antagonists of its receptor. The suppression of NF-κB signaling is a strategy to inhibit LCN2 production, but it may also affect other cellular activities, raising questions about its effectiveness and feasibility. Recently, LCN2 was found to be a target of the autophagy‒lysosome pathway. Therefore, autophagy activation may be a promising therapeutic strategy to reduce the levels of secreted LCN2 and overcome neurodegenerative diseases. In this review, we focused on research progress on astrocyte-derived LCN2 in the central nervous system.
Collapse
Affiliation(s)
- Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
203
|
Cieri MB, Villarreal A, Gomez-Cuautle DD, Mailing I, Ramos AJ. Progression of reactive gliosis and astroglial phenotypic changes following stab wound-induced traumatic brain injury in mice. J Neurochem 2023; 167:183-203. [PMID: 37592830 DOI: 10.1111/jnc.15941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Astrocytes are the main homeostatic cells in the central nervous system (CNS) and they have an essential role in preserving neuronal physiology. After brain injury, astrocytes become reactive, and that involves a profound change in the astroglial gene expression program as well as intense cytoskeleton remodeling that has been classically shown by the up-regulation of glial fibrillary acidic protein (GFAP), a pan-reactive gene over-expressed in reactive astrocytes, independently of the type of injury. Using the stab wound rodent model of penetrating traumatic injury in the cortex, we here studied the reactive astroglial morphology and reactive microgliosis in detail at 1, 3, 7, 14, and 28 days post-injury (dpi). By combining immunohistochemistry, morphometrical parameters, and Sholl analysis, we segmented the astroglial cell population into clusters of reactive astrocytes that were localized in the core, penumbra, and distal regions of the stab wound. Specifically, highly reactive clusters with more complex morphology, increased C3, decreased aquaporin-4 (AQP4), and glutamine synthetase (GS) expression, were enriched at 7 dpi when behavioral alterations, microgliosis, and neuronal alterations in injured mice were most significant. While pro-inflammatory gain of function with peripheral lipopolysaccharide (LPS) administration immediately after a stab wound expanded these highly reactive astroglial clusters, the treatment with the NF-κB inhibitor sulfasalazine reduced the abundance of this highly reactive cluster. Increased neuronal loss and exacerbated reactive microgliosis at 7 dpi were associated with the expansion of the highly reactive astroglial cluster. We conclude that highly reactive astrocytes found in stab wound injury, but expanded in pro-inflammatory conditions, are a population of astrocytes that become engaged in pathological remodeling with a pro-inflammatory gain of function and loss of homeostatic capacity. Controlling this astroglial population may be a tempting strategy to reduce neuronal loss and neuroinflammation in the injured brain.
Collapse
Affiliation(s)
- Maria Belen Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante Daniel Gomez-Cuautle
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ingrid Mailing
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
204
|
Patil V, Bohara R, Krishna Kanala V, McMahon S, Pandit A. Models and approaches to comprehend and address glial inflammation following spinal cord injury. Drug Discov Today 2023; 28:103722. [PMID: 37482236 DOI: 10.1016/j.drudis.2023.103722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Spinal cord injury (SCI) culminates in chronic inflammation and glial scar formation driven by the activation of microglia and astrocytes. Current anti-inflammatory strategies to treat glial activation associated with SCI have several limitations. Existing in vitro and ex vivo models studying molecular mechanisms associated with inflammation focus only on the acute phase. However, the progression of glial cell-derived inflammation over the acute-to-chronic phases has not been assessed. Understanding this progression will help establish a framework for evaluating therapeutic strategies. Additionally, new models could be useful as high-throughput screening (HTS) platforms. This review aims to highlight currently available models and future methods that could facilitate screening of novel therapeutics for SCI.
Collapse
Affiliation(s)
- Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Vijaya Krishna Kanala
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Siobhan McMahon
- Anatomy, School of Medicine, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
205
|
Yao ZM, Sun XR, Huang J, Chen L, Dong SY. Astrocyte-Neuronal Communication and Its Role in Stroke. Neurochem Res 2023; 48:2996-3006. [PMID: 37329448 DOI: 10.1007/s11064-023-03966-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system. These cells are an important hub for intercellular communication. They participate in various pathophysiological processes, including synaptogenesis, metabolic transformation, scar production, and blood-brain barrier repair. The mechanisms and functional consequences of astrocyte-neuron signaling are more complex than previously thought. Stroke is a disease associated with neurons in which astrocytes also play an important role. Astrocytes respond to the alterations in the brain microenvironment after stroke, providing required substances to neurons. However, they can also have harmful effects. In this review, we have summarized the function of astrocytes, their association with neurons, and two paradigms of the inflammatory response, which suggest that targeting astrocytes may be an effective strategy for treating stroke.
Collapse
Affiliation(s)
- Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China.
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, China.
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui, China.
| |
Collapse
|
206
|
Reid MM, Belayev L, Khoutorova L, Mukherjee PK, Obenaus A, Shelvin K, Knowles S, Hong SH, Bazan NG. Integrated inflammatory signaling landscape response after delivering Elovanoid free-fatty-acid precursors leading to experimental stroke neuroprotection. Sci Rep 2023; 13:15841. [PMID: 37740008 PMCID: PMC10516907 DOI: 10.1038/s41598-023-42126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Despite efforts to identify modulatory neuroprotective mechanisms of damaging ischemic stroke cascade signaling, a void remains on an effective potential therapeutic. The present study defines neuroprotection by very long-chain polyunsaturated fatty acid (VLC-PUFA) Elovanoid (ELV) precursors C-32:6 and C-34:6 delivered intranasally following experimental ischemic stroke. We demonstrate that these precursors improved neurological deficit, decreased T2WI lesion volume, and increased SMI-71 positive blood vessels and NeuN positive neurons, indicating blood-brain barrier (BBB) protection and neurogenesis modulated by the free fatty acids (FFAs) C-32:6 and C-34:6. Gene expression revealed increased anti-inflammatory and pro-homeostatic genes and decreases in expression of pro-inflammatory genes in the subcortex. Additionally, the FFAs elicit a comprehensive downregulation of inflammatory microglia/monocyte-derived macrophages and astrocyte-associated genes in the subcortical region. Functional analysis reveals inhibition of immune-related pathways and production of upstream molecules related to detrimental signaling events in post-stroke acute and subacute phases.
Collapse
Affiliation(s)
- Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kierany Shelvin
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Stacey Knowles
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Sung-Ha Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
- UT Health, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| |
Collapse
|
207
|
Squair JW, Milano M, de Coucy A, Gautier M, Skinnider MA, James ND, Cho N, Lasne A, Kathe C, Hutson TH, Ceto S, Baud L, Galan K, Aureli V, Laskaratos A, Barraud Q, Deming TJ, Kohman RE, Schneider BL, He Z, Bloch J, Sofroniew MV, Courtine G, Anderson MA. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science 2023; 381:1338-1345. [PMID: 37733871 DOI: 10.1126/science.adi6412] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Axon regeneration can be induced across anatomically complete spinal cord injury (SCI), but robust functional restoration has been elusive. Whether restoring neurological functions requires directed regeneration of axons from specific neuronal subpopulations to their natural target regions remains unclear. To address this question, we applied projection-specific and comparative single-nucleus RNA sequencing to identify neuronal subpopulations that restore walking after incomplete SCI. We show that chemoattracting and guiding the transected axons of these neurons to their natural target region led to substantial recovery of walking after complete SCI in mice, whereas regeneration of axons simply across the lesion had no effect. Thus, reestablishing the natural projections of characterized neurons forms an essential part of axon regeneration strategies aimed at restoring lost neurological functions.
Collapse
Affiliation(s)
- Jordan W Squair
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Marco Milano
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Alexandra de Coucy
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Matthieu Gautier
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Michael A Skinnider
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Nicholas D James
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Newton Cho
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Anna Lasne
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Claudia Kathe
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Thomas H Hutson
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, 1202 Geneva, Switzerland
| | - Steven Ceto
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Laetitia Baud
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Katia Galan
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Viviana Aureli
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
| | - Achilleas Laskaratos
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
| | - Quentin Barraud
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
| | - Timothy J Deming
- Departments of Bioengineering, Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richie E Kohman
- Wyss Center for Bio and Neuroengineering, 1202 Geneva, Switzerland
| | - Bernard L Schneider
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Bertarelli Platform for Gene Therapy, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jocelyne Bloch
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gregoire Courtine
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Department of Neurosurgery, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
| | - Mark A Anderson
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CHUV/UNIL/EPFL, 1005 Lausanne, Switzerland
- Wyss Center for Bio and Neuroengineering, 1202 Geneva, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1005 Lausanne, Switzerland
| |
Collapse
|
208
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
209
|
Chandra B, Voas MG, Davies EL, Roberts-Galbraith RH. Ets-1 transcription factor regulates glial cell regeneration and function in planarians. Development 2023; 150:dev201666. [PMID: 37665145 PMCID: PMC10508700 DOI: 10.1242/dev.201666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Glia play multifaceted roles in nervous systems in response to injury. Depending on the species, extent of injury and glial cell type in question, glia can help or hinder the regeneration of neurons. Studying glia in the context of successful regeneration could reveal features of pro-regenerative glia that could be exploited for new human therapies. Planarian flatworms completely regenerate their nervous systems after injury - including glia - and thus provide a strong model system for exploring glia in the context of regeneration. Here, we report that planarian glia regenerate after neurons, and that neurons are required for correct glial numbers and localization during regeneration. We also identify the planarian transcription factor-encoding gene ets-1 as a key regulator of glial cell maintenance and regeneration. Using ets-1 (RNAi) to perturb glia, we show that glial loss is associated with altered neuronal gene expression, impeded animal movement and impaired nervous system architecture - particularly within the neuropil. Importantly, our work reveals the inter-relationships of glia and neurons in the context of robust neural regeneration.
Collapse
Affiliation(s)
- Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew G. Voas
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin L. Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
210
|
Wang X, Jiang Y, Feng B, Ma X, Zhang K, Yang F, Liu Z, Yang L, Yue J, Lu L, Song D, Guo Q, Qi J, Li X, Wang M, Zhang H, Huang J, Zhao M, Liu S. PJA1 mediates the effects of astrocytic GPR30 on learning and memory in female mice. J Clin Invest 2023; 133:e165812. [PMID: 37712419 PMCID: PMC10503807 DOI: 10.1172/jci165812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/19/2023] [Indexed: 09/16/2023] Open
Abstract
Hormone replacement therapy (HRT) is not recommended for treating learning and memory decline in menopausal women because it exerts adverse effects by activating classic estrogen receptors ERα and ERβ. The membrane estrogen receptor G protein-coupled receptor 30 (GPR30) has been reported to be involved in memory modulation; however, the underlying mechanisms are poorly understood. Here, we found that GPR30 deletion in astrocytes, but not in neurons, impaired learning and memory in female mice. Astrocytic GPR30 depletion induced A1 phenotype transition, impairing neuronal function. Further exploration revealed that Praja1 (PJA1), a RING ubiquitin ligase, mediated the effects of astrocytic GPR30 on learning and memory by binding to Serpina3n, which is a molecular marker of neuroinflammation in astrocytes. GPR30 positively modulated PJA1 expression through the CREB signaling pathway in cultured murine and human astrocytes. Additionally, the mRNA levels of GPR30 and PJA1 were reduced in exosomes isolated from postmenopausal women while Serpina3n levels were increased in the plasma. Together, our findings suggest a key role for astrocytic GPR30 in the learning and memory abilities of female mice and identify GPR30/PJA1/Serpina3n as potential therapeutic targets for learning and memory loss in peri- and postmenopausal women.
Collapse
Affiliation(s)
| | - Yongli Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy and
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy and
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy and
| | - Fan Yang
- Department of Pharmacology, School of Pharmacy and
| | - Zhenguo Liu
- Department of Pharmacy, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiao Yue
- Department of Pharmacology, School of Pharmacy and
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy and
| | - Dake Song
- Department of Pharmacology, School of Pharmacy and
| | - Qingjuan Guo
- Department of Pharmacology, School of Pharmacy and
| | - Jingyu Qi
- Department of Pharmacology, School of Pharmacy and
| | - Xubo Li
- Department of Pharmacology, School of Pharmacy and
| | - Min Wang
- Department of Pharmacology, School of Pharmacy and
| | - Huinan Zhang
- Department of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jing Huang
- Department of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuibing Liu
- Department of Pharmacology, School of Pharmacy and
| |
Collapse
|
211
|
Ma H, Wang C, Han L, Kong F, Liu Z, Zhang B, Chu W, Wang H, Wang L, Li Q, Peng W, Yang H, Han C, Lu X. Tofacitinib Promotes Functional Recovery after Spinal Cord Injury by Regulating Microglial Polarization via JAK/STAT Signaling Pathway. Int J Biol Sci 2023; 19:4865-4882. [PMID: 37781508 PMCID: PMC10539697 DOI: 10.7150/ijbs.84564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Background: The JAK/STAT signaling pathway is the main inflammatory signal transduction pathway, whether JAK/STAT contributes the pathology of SCI and targeting the pathway will alleviate SCI needs to be addressed. Here, we explored the therapeutic effect of pan-JAK inhibitor tofacitinib (TOF) on secondary injury after SCI and explained the underlying mechanisms. Methods: SCI model in rat was established to evaluate the therapeutic effects of TOF treatment in vivo. Histological and behavioral analyses were performed at different time points after SCI. In vitro, the effects of TOF on pro-inflammatory activation of primary microglia and BV2 cells were analyzed by western blot analysis, fluorescent staining, qPCR and flow cytometry. The neuroprotection of TOF was detected using a co-culture system with primary neurons and microglia. Results: TOF can effectively improve motor dysfunction caused by spinal cord injury in rats. TOF administration in the early stage of inflammation can effectively inhibit neuronal apoptosis and scar tissue formation, and promote the repair of axons and nerve fibers. Further studies have demonstrated that TOF suppresses inflammation caused by spinal cord injury by inhibiting the activation of microglia to pro-inflammatory phenotype in vivo and in vitro. Additionally, an interesting phenomenon is revealed in our results that TOF exhibits superior neuronal protection during inflammation in vitro. Conclusions: Our study showed that TOF could regulate microglial activation via JAK / STAT pathway and promote the recovery of motor function after SCI, which is of great significance for the immunotherapy of SCI.
Collapse
Affiliation(s)
- Hongdao Ma
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Chenfeng Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Lin Han
- Department of Orthopaedics, Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Fanqi Kong
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Zhixiao Liu
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Bangke Zhang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Wenxiang Chu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Haibin Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Liang Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Qisheng Li
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Weilin Peng
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Haisong Yang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Chaofeng Han
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai 200003, China
| |
Collapse
|
212
|
Collyer E, Blanco-Suarez E. Astrocytes in stroke-induced neurodegeneration: a timeline. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1240862. [PMID: 39086680 PMCID: PMC11285566 DOI: 10.3389/fmmed.2023.1240862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 08/02/2024]
Abstract
Stroke is a condition characterized by sudden deprivation of blood flow to a brain region and defined by different post-injury phases, which involve various molecular and cellular cascades. At an early stage during the acute phase, fast initial cell death occurs, followed by inflammation and scarring. This is followed by a sub-acute or recovery phase when endogenous plasticity mechanisms may promote spontaneous recovery, depending on various factors that are yet to be completely understood. At later time points, stroke leads to greater neurodegeneration compared to healthy controls in both clinical and preclinical studies, this is evident during the chronic phase when recovery slows down and neurodegenerative signatures appear. Astrocytes have been studied in the context of ischemic stroke due to their role in glutamate re-uptake, as components of the neurovascular unit, as building blocks of the glial scar, and synaptic plasticity regulators. All these roles render astrocytes interesting, yet understudied players in the context of stroke-induced neurodegeneration. With this review, we provide a summary of previous research, highlight astrocytes as potential therapeutic targets, and formulate questions about the role of astrocytes in the mechanisms during the acute, sub-acute, and chronic post-stroke phases that may lead to neurorestoration or neurodegeneration.
Collapse
Affiliation(s)
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
213
|
Zhang D, Chen X, Liu B, Yuan Y, Cui W, Zhu D, Zhu J, Duan S, Li C. The Temporal and Spatial Changes of Autophagy and PI3K Isoforms in Different Neural Cells After Hypoxia/Reoxygenation Injury. Mol Neurobiol 2023; 60:5366-5377. [PMID: 37316758 DOI: 10.1007/s12035-023-03421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
There are limited therapeutic options for patient with traumatic spinal cord injury (SCI). Phosphoinositide 3-kinase family (PI3Ks) are the key molecules for regulating cell autophagy, which is a possible way of treating SCI. As we know, PI3K family are composed of eight isoforms, which are distributed into three classes. While the role of PI3Ks in regulating autophagy is controversial and the effects may be in a cell-specific manner. Different isoforms do not distribute in neural cells consistently and it is not clear how the PI3K isoforms regulate and interact with autophagy. Therefore, we explored the distributions and expression of different PI3K isoforms in two key neural cells (PC12 cells and astrocytes). The results showed that the expression of LC3II/I and p62, which are the markers of autophagy, changed in different patterns in PC12 cells and astrocytes after hypoxia/reoxygenation injury (H/R). Furthermore, the mRNA level of eight PI3K isoforms did not change in the same way, and even for the same isoform the mRNA activities are different between PC12 cells and astrocytes. What is more, the results of western blot of PI3K isoforms after H/R were inconsistent with the relevant mRNA. Based on this study, the therapeutic effects of regulating autophagy on SCI are not confirmed definitely, and its molecular mechanisms may be related with different temporal and spatial patterns of activation and distributions of PI3K isoforms.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xuanyu Chen
- Department of Orthopedics, Capital Medical University Electric Power Hospital, Beijing, 100073, China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, 100068, China
| | - Wei Cui
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jichao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shuo Duan
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chenxi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
214
|
Ugidos IF, González-Rodríguez P, Santos-Galdiano M, Font-Belmonte E, Anuncibay-Soto B, Pérez-Rodríguez D, Gonzalo-Orden JM, Fernández-López A. Neuroprotective effects of meloxicam on transient brain ischemia in rats: the two faces of anti-inflammatory treatments. Neural Regen Res 2023; 18:1961-1967. [PMID: 36926720 PMCID: PMC10233777 DOI: 10.4103/1673-5374.367846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 01/22/2023] Open
Abstract
The inflammatory response plays an important role in neuroprotection and regeneration after ischemic insult. The use of non-steroidal anti-inflammatory drugs has been a matter of debate as to whether they have beneficial or detrimental effects. In this context, the effects of the anti-inflammatory agent meloxicam have been scarcely documented after stroke, but its ability to inhibit both cyclooxygenase isoforms (1 and 2) could be a promising strategy to modulate post-ischemic inflammation. This study analyzed the effect of meloxicam in a transient focal cerebral ischemia model in rats, measuring its neuroprotective effect after 48 hours and 7 days of reperfusion and the effects of the treatment on the glial scar and regenerative events such as the generation of new progenitors in the subventricular zone and axonal sprouting at the edge of the damaged area. We show that meloxicam's neuroprotective effects remained after 7 days of reperfusion even if its administration was restricted to the two first days after ischemia. Moreover, meloxicam treatment modulated glial scar reactivity, which matched with an increase in axonal sprouting. However, this treatment decreased the formation of neuronal progenitor cells. This study discusses the dual role of anti-inflammatory treatments after stroke and encourages the careful analysis of both the neuroprotective and the regenerative effects in preclinical studies.
Collapse
Affiliation(s)
- Irene Fernández Ugidos
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Paloma González-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - María Santos-Galdiano
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Neural Therapies SL. Edif. Institutos de Investigación. Planta baja. Local B43. Campus de Vegazana s/n. León. Spain
| | - Enrique Font-Belmonte
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Diego Pérez-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - José Manuel Gonzalo-Orden
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Department of Medicina, Cirugía y Anatomía Veterinaria, University of León, León, Spain
| | - Arsenio Fernández-López
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| |
Collapse
|
215
|
Tsang CK, Mi Q, Su G, Hwa Lee G, Xie X, D'Arcangelo G, Huang L, Steven Zheng XF. Maf1 is an intrinsic suppressor against spontaneous neural repair and functional recovery after ischemic stroke. J Adv Res 2023; 51:73-90. [PMID: 36402285 PMCID: PMC10491990 DOI: 10.1016/j.jare.2022.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Spontaneous recovery after CNS injury is often very limited and incomplete, leaving most stroke patients with permanent disability. Maf1 is known as a key growth suppressor in proliferating cells. However, its role in neuronal cells after stroke remains unclear. OBJECTIVE We aimed to investigate the mechanistic role of Maf1 in spontaneous neural repair and evaluated the therapeutic effect of targeting Maf1 on stroke recovery. METHODS We used mouse primary neurons to determine the signaling mechanism of Maf1, and the cleavage-under-targets-and-tagmentation-sequencing to map the whole-genome promoter binding sites of Maf1 in isolated mature cortical neurons. Photothrombotic stroke model was used to determine the therapeutic effect on neural repair and functional recovery by AAV-mediated Maf1 knockdown. RESULTS We found that Maf1 mediates mTOR signaling to regulate RNA polymerase III (Pol III)-dependent rRNA and tRNA transcription in mouse cortical neurons. mTOR regulates neuronal Maf1 phosphorylation and subcellular localization. Maf1 knockdown significantly increases Pol III transcription, neurite outgrowth and dendritic spine formation in neurons. Conversely, Maf1 overexpression suppresses such activities. In response to photothrombotic stroke in mice, Maf1 expression is increased and accumulates in the nucleus of neurons in the peripheral region of infarcted cortex, which is the key region for neural remodeling and repair during spontaneous recovery. Intriguingly, Maf1 knockdown in the peri-infarct cortex significantly enhances neural plasticity and functional recovery. Mechanistically, Maf1 not only interacts with the promoters and represses Pol III-transcribed genes, but also those of CREB-associated genes that are critical for promoting plasticity during neurodevelopment and neural repair. CONCLUSION These findings indicate Maf1 as an intrinsic neural repair suppressor against regenerative capability of mature CNS neurons, and suggest that Maf1 is a potential therapeutic target for enhancing functional recovery after ischemic stroke and other CNS injuries.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Qiongjie Mi
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Guangpu Su
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gum Hwa Lee
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xuemin Xie
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li'an Huang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University Guangzhou, Guangdong, China.
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
216
|
Zhang S, Zhai M, Xu Y, Han J, Chen J, Xiong Y, Pan S, Wang Q, Yu C, Rao Z, Sun Q, Sui Y, Fan K, Li H, Guo W, Liu C, Bai Y, Zhou J, Quan D, Zhang X. Decellularised spinal cord matrix manipulates glial niche into repairing phase via serglycin-mediated signalling pathway. Cell Prolif 2023; 56:e13429. [PMID: 36807637 PMCID: PMC10472524 DOI: 10.1111/cpr.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Astrocytes are the most abundant and widespread glial cells in the central nervous system. The heterogeneity of astrocytes plays an essential role in spinal cord injury (SCI) repair. Decellularised spinal cord matrix (DSCM) is advantageous for repairing SCI, but little is known regarding the exact mechanisms and niche alterations. Here, we investigated the DSCM regulatory mechanism of glial niche in the neuro-glial-vascular unit using single-cell RNA sequencing. Our single cell sequencing, molecular and biochemical experiments validated that DSCM facilitated the differentiation of neural progenitor cells through increasing the number of immature astrocytes. Upregulation of mesenchyme-related genes, which maintained astrocyte immaturity, causing insensitivity to inflammatory stimuli. Subsequently, we identified serglycin (SRGN) as a functional component of DSCM, which involves inducing CD44-AKT signalling to trigger human spinal cord-derived primary astrocytes (hspASCs) proliferation and upregulation of genes related to epithelial-mesenchymal transition, thus impeding astrocyte maturation. Finally, we verified that SRGN-COLI and DSCM had similar functions in the human primary cell co-culture system to mimic the glia niche. In conclusion, our work revealed that DSCM reverted astrocyte maturation and altered the glia niche into the repairing phase through the SRGN-mediated signalling pathway.
Collapse
Affiliation(s)
- Sheng Zhang
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Man Zhai
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yiwei Xu
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jiandong Han
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Jiaxin Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Shihua Pan
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Qizheng Wang
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Chunlai Yu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Qi Sun
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Yufei Sui
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ke Fan
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Heying Li
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Wenjing Guo
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Cuicui Liu
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Jing Zhou
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhouChina
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative BiologyGuangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
217
|
Nakamura K, Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J Atheroscler Thromb 2023; 30:1085-1094. [PMID: 37394570 PMCID: PMC10499454 DOI: 10.5551/jat.rv22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
There are still many patients suffering from ischemic stroke and related disabilities worldwide. To develop a treatment that promotes functional recovery after acute ischemic stroke, we need to elucidate endogenous tissue repair mechanisms. The concept of a neurovascular unit (NVU) indicates the importance of a complex orchestration of cell-cell interactions and their microenvironment in the physiology and pathophysiology of various central nervous system diseases, particularly ischemic stroke. In this concept, microvascular pericytes play a crucial role in regulating the blood-brain barrier integrity, cerebral blood flow (CBF), and vascular stability. Recent evidence suggests that pericytes are also involved in the tissue repair leading to functional recovery following acute ischemic stroke through the interaction with other cell types constituting the NVU; pericytes may organize CBF recovery, macrophage-mediated clearance of myelin debris, intrainfarct fibrosis, and periinfarct astrogliosis and remyelination. In this review, we will discuss the physiological and pathophysiological functions of pericytes, their involvement in the molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke, and a therapeutic strategy to promote endogenous regeneration.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
218
|
Rao YL, Ganaraja B, Suresh PK, Joy T, Ullal SD, Manjrekar PA, Murlimanju BV, Sharma BG. Effect of resveratrol and combination of resveratrol and donepezil on the expression of microglial cells and astrocytes in Wistar albino rats of colchicine-induced Alzheimer's disease. 3 Biotech 2023; 13:319. [PMID: 37641690 PMCID: PMC10460340 DOI: 10.1007/s13205-023-03743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Aim The goal was to evaluate the effect of resveratrol (RS) and combination therapy of RS and donepezil (DPZ), on the numerical expression of microglial cells and astrocytes, in the frontal cortex, regions of the hippocampus in colchicine-induced Alzheimer's disease (AD) model. Methods The study involved male albino Wistar rats of three months, age and consisted of 6 groups, with six animals each. The immunohistochemical staining with mouse monoclonal anti-human CD 68 and mouse monoclonal anti-GFAP was performed to assess the number of microglial cells and astrocytes, respectively. Results AD group showed an increase in the number of microglia, and the numbers declined in the treatment groups, RS 10, RS 20, RS10/10 and DPZ + RS (p < 0.001). Astrocyte count was increased in the treatment groups in contrast to the AD group (p < 0.05). The DPZ + RS combination group revealed substantial elevation in the number of astrocytes and decreased microglial number among all the groups (p < 0.001). Conclusion RS administration has diminished the microglial number and elevated the number of astrocytes. The elevated reactive astrocytes have decreased the microglial population. However, the limitation of our study is utilizing the colchicine for the induction of neurodegeneration. Using the transgenic models of AD may give a better insight into the pathogenesis and effect of RS. Another limitation of this study is the administration of RS and DPZ through different routes. The prospects of this research include studying the probiotic nature of RS and the effect of RS in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Y. Lakshmisha Rao
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Ganaraja
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Pooja K. Suresh
- Department of Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Coolidge, Antigua, West Indies Antigua and Barbuda
| | - Sheetal D. Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Poornima A. Manjrekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. V. Murlimanju
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - B. Gaurav Sharma
- Senior Registrar in Trauma and Orthopaedic Surgery, Hampshire Hospitals NHS Foundation Trust, Basingstoke and North Hampshire Hospital, Aldermaston Road, Basingstoke, RG24 9NA UK
| |
Collapse
|
219
|
Gan C, Li W, Xu J, Pang L, Tang L, Yu S, Li A, Ge H, Huang R, Cheng H. Advances in the study of the molecular biological mechanisms of radiation-induced brain injury. Am J Cancer Res 2023; 13:3275-3299. [PMID: 37693137 PMCID: PMC10492106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
Radiation therapy is one of the most commonly used treatments for head and neck cancers, but it often leads to radiation-induced brain injury. Patients with radiation-induced brain injury have a poorer quality of life, and no effective treatments are available. The pathogenesis of this condition is unknown. This review summarizes the molecular biological mechanism of radiation-induced brain injury and provides research directions for future studies. The molecular mechanisms of radiation-induced brain injury are diverse and complex. Radiation-induced chronic neuroinflammation, destruction of the blood-brain barrier, oxidative stress, neuronal damage, and physiopathological responses caused by specific exosome secretion lead to radiation-induced brain injury.
Collapse
Affiliation(s)
- Chen Gan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Anhui Medical UniversityHefei, Anhui, China
- Department of Oncology, Shenzhen Hospital of Southern Medical UniversityShenzhen, Guangdong, China
| |
Collapse
|
220
|
Cigliola V, Shoffner A, Lee N, Ou J, Gonzalez TJ, Hoque J, Becker CJ, Han Y, Shen G, Faw TD, Abd-El-Barr MM, Varghese S, Asokan A, Poss KD. Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer. Nat Commun 2023; 14:4857. [PMID: 37567873 PMCID: PMC10421883 DOI: 10.1038/s41467-023-40486-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Unlike adult mammals, zebrafish regenerate spinal cord tissue and recover locomotor ability after a paralyzing injury. Here, we find that ependymal cells in zebrafish spinal cords produce the neurogenic factor Hb-egfa upon transection injury. Animals with hb-egfa mutations display defective swim capacity, axon crossing, and tissue bridging after spinal cord transection, associated with disrupted indicators of neuron production. Local recombinant human HB-EGF delivery alters ependymal cell cycling and tissue bridging, enhancing functional regeneration. Epigenetic profiling reveals a tissue regeneration enhancer element (TREE) linked to hb-egfa that directs gene expression in spinal cord injuries. Systemically delivered recombinant AAVs containing this zebrafish TREE target gene expression to crush injuries of neonatal, but not adult, murine spinal cords. Moreover, enhancer-based HB-EGF delivery by AAV administration improves axon densities after crush injury in neonatal cords. Our results identify Hb-egf as a neurogenic factor necessary for innate spinal cord regeneration and suggest strategies to improve spinal cord repair in mammals.
Collapse
Affiliation(s)
- Valentina Cigliola
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| | - Adam Shoffner
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nutishia Lee
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaul Hoque
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Clayton J Becker
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Yanchao Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Grace Shen
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Timothy D Faw
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | | | - Shyni Varghese
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kenneth D Poss
- Duke Regeneration Center, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
221
|
Cheng J, Wang W, Xia Y, Li Y, Jia J, Xiao G. Regulators of phagocytosis as pharmacologic targets for stroke treatment. Front Pharmacol 2023; 14:1122527. [PMID: 37601043 PMCID: PMC10433754 DOI: 10.3389/fphar.2023.1122527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Stroke, including ischemic and hemorrhagic stroke, causes massive cell death in the brain, which is followed by secondary inflammatory injury initiated by disease-associated molecular patterns released from dead cells. Phagocytosis, a cellular process of engulfment and digestion of dead cells, promotes the resolution of inflammation and repair following stroke. However, professional or non-professional phagocytes also phagocytose stressed but viable cells in the brain or excessively phagocytose myelin sheaths or prune synapses, consequently exacerbating brain injury and impairing repair following stroke. Phagocytosis includes the smell, eating and digestion phases. Notably, efficient phagocytosis critically depends on phagocyte capacity to take up dead cells continually due to the limited number of phagocytes vs. dead cells after injury. Moreover, phenotypic polarization of phagocytes occurring after phagocytosis is also essential to the proresolving and prorepair properties of phagocytosis. Much has been learned about the molecular signals and regulatory mechanisms governing the sense and recognition of dead cells by phagocytes during the smell and eating phase following stroke. However, some key areas remain extremely understudied, including the mechanisms involved in digestion regulation, continual phagocytosis and phagocytosis-induced phenotypic switching following stroke. Here, we summarize new discoveries related to the molecular mechanisms and multifaceted effects of phagocytosis on brain injury and repair following stroke and highlight the knowledge gaps in poststroke phagocytosis. We suggest that advancing the understanding of poststroke phagocytosis will help identify more biological targets for stroke treatment.
Collapse
Affiliation(s)
- Jian Cheng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqing Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guodong Xiao
- Suzhou Clinical Research Center of Neurological Disease, Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
222
|
Xie X, Liu J. New role of astrocytes in neuroprotective mechanisms after ischemic stroke. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:748-755. [PMID: 37647906 PMCID: PMC10468254 DOI: 10.1055/s-0043-1770352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/15/2023] [Indexed: 09/01/2023]
Abstract
Astrocytes are the most abundant cell subtypes in the central nervous system. Previous studies believed that astrocytes are supporting cells in the brain, which only provide nutrients for neurons. However, recent studies have found that astrocytes have more crucial and complex functions in the brain, such as neurogenesis, phagocytosis, and ischemic tolerance. After an ischemic stroke, the activated astrocytes can exert neuroprotective or neurotoxic effects through a variety of pathways. In this review, we will discuss the neuroprotective mechanisms of astrocytes in cerebral ischemia, and mainly focus on reactive astrocytosis or glial scar, neurogenesis, phagocytosis, and cerebral ischemic tolerance, for providing new strategies for the clinical treatment of stroke.
Collapse
Affiliation(s)
- Xiaoyun Xie
- Guangxi Medical University, The First Affiliated Hospital, Department of Neurology, Nanning, Guangxi, China.
| | - Jingli Liu
- Guangxi Medical University, The First Affiliated Hospital, Department of Neurology, Nanning, Guangxi, China.
| |
Collapse
|
223
|
Nguyen TT, Camp CR, Doan JK, Traynelis SF, Sloan SA, Hall RA. GPR37L1 controls maturation and organization of cortical astrocytes during development. Glia 2023; 71:1921-1946. [PMID: 37029775 PMCID: PMC10315172 DOI: 10.1002/glia.24375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.
Collapse
Affiliation(s)
| | - Chad R. Camp
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Juleva K. Doan
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Stephen F. Traynelis
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Steven A. Sloan
- Emory University School of Medicine, Department of Human Genetics
| | - Randy A. Hall
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| |
Collapse
|
224
|
Zheng J, Wu H, Wang X, Zhang G, Lu J, Xu W, Xu S, Fang Y, Zhang A, Shao A, Chen S, Zhao Z, Zhang J, Yu J. Temporal dynamics of microglia-astrocyte interaction in neuroprotective glial scar formation after intracerebral hemorrhage. J Pharm Anal 2023; 13:862-879. [PMID: 37719195 PMCID: PMC10499589 DOI: 10.1016/j.jpha.2023.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
The role of glial scar after intracerebral hemorrhage (ICH) remains unclear. This study aimed to investigate whether microglia-astrocyte interaction affects glial scar formation and explore the specific function of glial scar. We used a pharmacologic approach to induce microglial depletion during different ICH stages and examine how ablating microglia affects astrocytic scar formation. Spatial transcriptomics (ST) analysis was performed to explore the potential ligand-receptor pair in the modulation of microglia-astrocyte interaction and to verify the functional changes of astrocytic scars at different periods. During the early stage, sustained microglial depletion induced disorganized astrocytic scar, enhanced neutrophil infiltration, and impaired tissue repair. ST analysis indicated that microglia-derived insulin like growth factor 1 (IGF1) modulated astrocytic scar formation via mechanistic target of rapamycin (mTOR) signaling activation. Moreover, repopulating microglia (RM) more strongly activated mTOR signaling, facilitating a more protective scar formation. The combination of IGF1 and osteopontin (OPN) was necessary and sufficient for RM function, rather than IGF1 or OPN alone. At the chronic stage of ICH, the overall net effect of astrocytic scar changed from protective to destructive and delayed microglial depletion could partly reverse this. The vital insight gleaned from our data is that sustained microglial depletion may not be a reasonable treatment strategy for early-stage ICH. Inversely, early-stage IGF1/OPN treatment combined with late-stage PLX3397 treatment is a promising therapeutic strategy. This prompts us to consider the complex temporal dynamics and overall net effect of microglia and astrocytes, and develop elaborate treatment strategies at precise time points after ICH.
Collapse
Affiliation(s)
- Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Guoqiang Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jia'nan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Shenbin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
- Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
225
|
Hernandez VG, Lechtenberg KJ, Peterson TC, Zhu L, Lucas TA, Bradshaw KP, Owah JO, Dorsey AI, Gentles AJ, Buckwalter MS. Translatome analysis reveals microglia and astrocytes to be distinct regulators of inflammation in the hyperacute and acute phases after stroke. Glia 2023; 71:1960-1984. [PMID: 37067534 PMCID: PMC10330240 DOI: 10.1002/glia.24377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Neuroinflammation is a hallmark of ischemic stroke, which is a leading cause of death and long-term disability. Understanding the exact cellular signaling pathways that initiate and propagate neuroinflammation after stroke will be critical for developing immunomodulatory stroke therapies. In particular, the precise mechanisms of inflammatory signaling in the clinically relevant hyperacute period, hours after stroke, have not been elucidated. We used the RiboTag technique to obtain microglia and astrocyte-derived mRNA transcripts in a hyperacute (4 h) and acute (3 days) period after stroke, as these two cell types are key modulators of acute neuroinflammation. Microglia initiated a rapid response to stroke at 4 h by adopting an inflammatory profile associated with the recruitment of immune cells. The hyperacute astrocyte profile was marked by stress response genes and transcription factors, such as Fos and Jun, involved in pro-inflammatory pathways such as TNF-α. By 3 days, microglia shift to a proliferative state and astrocytes strengthen their inflammatory response. The astrocyte pro-inflammatory response at 3 days is partially driven by the upregulation of the transcription factors C/EBPβ, Spi1, and Rel, which comprise 25% of upregulated transcription factor-target interactions. Surprisingly, few sex differences across all groups were observed. Expression and log2 fold data for all sequenced genes are available on a user-friendly website for researchers to examine gene changes and generate hypotheses for stroke targets. Taken together, our data comprehensively describe the microglia and astrocyte-specific translatome response in the hyperacute and acute period after stroke and identify pathways critical for initiating neuroinflammation.
Collapse
Affiliation(s)
- Victoria G Hernandez
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Kendra J Lechtenberg
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Todd C Peterson
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Li Zhu
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Tawaun A Lucas
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Karen P Bradshaw
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Justice O Owah
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Alanna I Dorsey
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
| | - Andrew J Gentles
- Department of Pathology, Stanford University, Stanford, California, USA
- Department of Medicine - Biomedical Informatics Research, Stanford University, Stanford, California, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, California, USA
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California, USA
| |
Collapse
|
226
|
Forston MD, Wei G, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. RESEARCH SQUARE 2023:rs.3.rs-3164618. [PMID: 37546871 PMCID: PMC10402259 DOI: 10.21203/rs.3.rs-3164618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
| | - George Wei
- University of Louisville School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Achenbach P, Hillerbrand L, Gerardo-Nava JL, Dievernich A, Hodde D, Sechi AS, Dalton PD, Pich A, Weis J, Altinova H, Brook GA. Function Follows Form: Oriented Substrate Nanotopography Overrides Neurite-Repulsive Schwann Cell-Astrocyte Barrier Formation in an In Vitro Model of Glial Scarring. NANO LETTERS 2023; 23:6337-6346. [PMID: 37459449 DOI: 10.1021/acs.nanolett.3c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Schwann cell (SC) transplantation represents a promising therapeutic approach for traumatic spinal cord injury but is frustrated by barrier formation, preventing cell migration, and axonal regeneration at the interface between grafted SCs and reactive resident astrocytes (ACs). Although regenerating axons successfully extend into SC grafts, only a few cross the SC-AC interface to re-enter lesioned neuropil. To date, research has focused on identifying and modifying the molecular mechanisms underlying such scarring cell-cell interactions, while the influence of substrate topography remains largely unexplored. Using a recently modified cell confrontation assay to model SC-AC barrier formation in vitro, highly oriented poly(ε-caprolactone) nanofibers were observed to reduce AC reactivity, induce extensive oriented intermingling between SCs and ACs, and ultimately enable substantial neurite outgrowth from the SC compartment into the AC territory. It is anticipated that these findings will have important implications for the future design of biomaterial-based scaffolds for nervous tissue repair.
Collapse
Affiliation(s)
- Pascal Achenbach
- Department of Neurology, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Laura Hillerbrand
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, 97070 Würzburg, Germany
| | - José L Gerardo-Nava
- DWI - Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Axel Dievernich
- FEG Textiltechnik Forschungs- und Entwicklungsgesellschaft mbH, 52070 Aachen, Germany
| | - Dorothee Hodde
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
- University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Antonio S Sechi
- Department of Cell and Tumor Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Haktan Altinova
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Department of Neurosurgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Gary A Brook
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
228
|
Cullen PF, Sun D. Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217137. [PMID: 37829657 PMCID: PMC10569075 DOI: 10.3389/fopht.2023.1217137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.
Collapse
Affiliation(s)
- Paul F. Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
229
|
Hall CM, Lasli S, Serwinski B, Djordjevic B, Sheridan GK, Moeendarbary E. Hippocampus of the APP NL-G-F mouse model of Alzheimer's disease exhibits region-specific tissue softening concomitant with elevated astrogliosis. Front Aging Neurosci 2023; 15:1212212. [PMID: 37547743 PMCID: PMC10398960 DOI: 10.3389/fnagi.2023.1212212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Widespread neurodegeneration, enlargement of cerebral ventricles, and atrophy of cortical and hippocampal brain structures are classic hallmarks of Alzheimer's disease (AD). Prominent macroscopic disturbances to the cytoarchitecture of the AD brain occur alongside changes in the mechanical properties of brain tissue, as reported in recent magnetic resonance elastography (MRE) measurements of human brain mechanics. Whilst MRE has many advantages, a significant shortcoming is its spatial resolution. Higher resolution "cellular scale" assessment of the mechanical alterations to brain regions involved in memory formation, such as the hippocampus, could provide fresh new insight into the etiology of AD. Characterization of brain tissue mechanics at the cellular length scale is the first stepping-stone to understanding how mechanosensitive neurons and glia are impacted by neurodegenerative disease-associated changes in their microenvironment. To provide insight into the microscale mechanics of aging brain tissue, we measured spatiotemporal changes in the mechanical properties of the hippocampus using high resolution atomic force microscopy (AFM) indentation tests on acute brain slices from young and aged wild-type mice and the APPNL-G-F mouse model. Several hippocampal regions in APPNL-G-F mice are significantly softer than age-matched wild-types, notably the dentate granule cell layer and the CA1 pyramidal cell layer. Interestingly, regional softening coincides with an increase in astrocyte reactivity, suggesting that amyloid pathology-mediated alterations to the mechanical properties of brain tissue may impact the function of mechanosensitive astrocytes. Our data also raise questions as to whether aberrant mechanotransduction signaling could impact the susceptibility of neurons to cellular stressors in their microenvironment.
Collapse
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering, University College London, London, United Kingdom
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Soufian Lasli
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
- Faculty of Social Sciences, Northeastern University London, London, United Kingdom
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
| | - Graham K. Sheridan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
230
|
Perez-Gianmarco L, Kukley M. Understanding the Role of the Glial Scar through the Depletion of Glial Cells after Spinal Cord Injury. Cells 2023; 12:1842. [PMID: 37508505 PMCID: PMC10377788 DOI: 10.3390/cells12141842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is a condition that affects between 8.8 and 246 people in a million and, unlike many other neurological disorders, it affects mostly young people, causing deficits in sensory, motor, and autonomic functions. Promoting the regrowth of axons is one of the most important goals for the neurological recovery of patients after SCI, but it is also one of the most challenging goals. A key event after SCI is the formation of a glial scar around the lesion core, mainly comprised of astrocytes, NG2+-glia, and microglia. Traditionally, the glial scar has been regarded as detrimental to recovery because it may act as a physical barrier to axon regrowth and release various inhibitory factors. However, more and more evidence now suggests that the glial scar is beneficial for the surrounding spared tissue after SCI. Here, we review experimental studies that used genetic and pharmacological approaches to ablate specific populations of glial cells in rodent models of SCI in order to understand their functional role. The studies showed that ablation of either astrocytes, NG2+-glia, or microglia might result in disorganization of the glial scar, increased inflammation, extended tissue degeneration, and impaired recovery after SCI. Hence, glial cells and glial scars appear as important beneficial players after SCI.
Collapse
Affiliation(s)
- Lucila Perez-Gianmarco
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, PC, Spain
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, PC, Spain
- IKERBASQUE Basque Foundation for Science, 48009 Bilbao, PC, Spain
| |
Collapse
|
231
|
Abstract
Astrocyte endfeet enwrap the entire vascular tree within the central nervous system, where they perform important functions in regulating the blood-brain barrier (BBB), cerebral blood flow, nutrient uptake, and waste clearance. Accordingly, astrocyte endfeet contain specialized organelles and proteins, including local protein translation machinery and highly organized scaffold proteins, which anchor channels, transporters, receptors, and enzymes critical for astrocyte-vascular interactions. Many neurological diseases are characterized by the loss of polarization of specific endfoot proteins, vascular dysregulation, BBB disruption, altered waste clearance, or, in extreme cases, loss of endfoot coverage. A role for astrocyte endfeet has been demonstrated or postulated in many of these conditions. This review provides an overview of the development, composition, function, and pathological changes of astrocyte endfeet and highlights the gaps in our knowledge that future research should address.
Collapse
Affiliation(s)
- Blanca Díaz-Castro
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK;
| | - Stefanie Robel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| | - Anusha Mishra
- Department of Neurology Jungers Center for Neurosciences Research and Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA;
| |
Collapse
|
232
|
Ribeiro BF, da Cruz BC, de Sousa BM, Correia PD, David N, Rocha C, Almeida RD, Ribeiro da Cunha M, Marques Baptista AA, Vieira SI. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential. Brain 2023; 146:2672-2693. [PMID: 36848323 DOI: 10.1093/brain/awad047] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/23/2022] [Accepted: 01/29/2023] [Indexed: 03/01/2023] Open
Abstract
Spinal cord injury (SCI) is an as yet untreatable neuropathology that causes severe dysfunction and disability. Cell-based therapies hold neuroregenerative and neuroprotective potential, but, although being studied in SCI patients for more than two decades, long-term efficacy and safety remain unproven, and which cell types result in higher neurological and functional recovery remains under debate. In a comprehensive scoping review of 142 reports and registries of SCI cell-based clinical trials, we addressed the current therapeutical trends and critically analysed the strengths and limitations of the studies. Schwann cells, olfactory ensheathing cells (OECs), macrophages and various types of stem cells have been tested, as well as combinations of these and other cells. A comparative analysis between the reported outcomes of each cell type was performed, according to gold-standard efficacy outcome measures like the ASIA impairment scale, motor and sensory scores. Most of the trials were in the early phases of clinical development (phase I/II), involved patients with complete chronic injuries of traumatic aetiology and did not display a randomized comparative control arm. Bone marrow stem cells and OECs were the most commonly tested cells, while open surgery and injection were the main methods of delivering cells into the spinal cord or submeningeal spaces. Transplantation of support cells, such as OECs and Schwann cells, resulted in the highest ASIA Impairment Scale (AIS) grade conversion rates (improvements in ∼40% of transplanted patients), which surpassed the spontaneous improvement rate expected for complete chronic SCI patients within 1 year post-injury (5-20%). Some stem cells, such as peripheral blood-isolated and neural stem cells, offer potential for improving patient recovery. Complementary treatments, particularly post-transplantation rehabilitation regimes, may contribute highly to neurological and functional recovery. However, unbiased comparisons between the tested therapies are difficult to draw, given the great heterogeneity of the design and outcome measures used in the SCI cell-based clinical trials and how these are reported. It is therefore crucial to standardize these trials when aiming for higher value clinical evidence-based conclusions.
Collapse
Affiliation(s)
- Beatriz F Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruna C da Cruz
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia D Correia
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno David
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Camila Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Ribeiro da Cunha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Spinal Cord Injury Rehabilitation Unit, Centro de Reabilitação do Norte (CRN), Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - António A Marques Baptista
- Department of Neurosurgery, Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNG/E), 4400-129 Vila Nova de Gaia, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
233
|
Patani R, Hardingham GE, Liddelow SA. Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 2023; 19:395-409. [PMID: 37308616 DOI: 10.1038/s41582-023-00822-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Despite advances in uncovering the mechanisms that underlie neuroinflammation and neurodegenerative disease, therapies that prevent neuronal loss remain elusive. Targeting of disease-defining markers in conditions such as Alzheimer disease (amyloid-β and tau) or Parkinson disease (α-synuclein) has been met with limited success, suggesting that these proteins do not act in isolation but form part of a pathological network. This network could involve phenotypic alteration of multiple cell types in the CNS, including astrocytes, which have a major neurosupportive, homeostatic role in the healthy CNS but adopt reactive states under acute or chronic adverse conditions. Transcriptomic studies in human patients and disease models have revealed the co-existence of many putative reactive sub-states of astrocytes. Inter-disease and even intra-disease heterogeneity of reactive astrocytic sub-states are well established, but the extent to which specific sub-states are shared across different diseases is unclear. In this Review, we highlight how single-cell and single-nuclei RNA sequencing and other 'omics' technologies can enable the functional characterization of defined reactive astrocyte states in various pathological scenarios. We provide an integrated perspective, advocating cross-modal validation of key findings to define functionally important sub-states of astrocytes and their triggers as tractable therapeutic targets with cross-disease relevance.
Collapse
Affiliation(s)
- Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, Human Stem Cells and Neurodegeneration Laboratory, London, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
234
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
235
|
Liu JA, Tam KW, Chen YL, Feng X, Chan CWL, Lo ALH, Wu KLK, Hui MN, Wu MH, Chan KKK, Cheung MPL, Cheung CW, Shum DKY, Chan YS, Cheung M. Transplanting Human Neural Stem Cells with ≈50% Reduction of SOX9 Gene Dosage Promotes Tissue Repair and Functional Recovery from Severe Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205804. [PMID: 37296073 PMCID: PMC10369238 DOI: 10.1002/advs.202205804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/30/2023] [Indexed: 06/12/2023]
Abstract
Neural stem cells (NSCs) derived from human pluripotent stem cells (hPSCs) are considered a major cell source for reconstructing damaged neural circuitry and enabling axonal regeneration. However, the microenvironment at the site of spinal cord injury (SCI) and inadequate intrinsic factors limit the therapeutic potential of transplanted NSCs. Here, it is shown that half dose of SOX9 in hPSCs-derived NSCs (hNSCs) results in robust neuronal differentiation bias toward motor neuron lineage. The enhanced neurogenic potency is partly attributed to the reduction of glycolysis. These neurogenic and metabolic properties retain after transplantation of hNSCs with reduced SOX9 expression in a contusive SCI rat model without the need for growth factor-enriched matrices. Importantly, the grafts exhibit excellent integration properties, predominantly differentiate into motor neurons, reduce glial scar matrix accumulation to facilitate long-distance axon growth and neuronal connectivity with the host as well as dramatically improve locomotor and somatosensory function in recipient animals. These results demonstrate that hNSCs with half SOX9 gene dosage can overcome extrinsic and intrinsic barriers, representing a powerful therapeutic potential for transplantation treatments for SCI.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Neuroscience, Tat Chee Avenue, City University of Hong Kong, Hong Kong, China
| | - Kin Wai Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong Long Chen
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xianglan Feng
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christy Wing Lam Chan
- Department of Neuroscience, Tat Chee Avenue, City University of Hong Kong, Hong Kong, China
| | - Amos Lok Hang Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth Lap-Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Ning Hui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming-Hoi Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ken Kwok-Keung Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Daisy Kwok-Yan Shum
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
236
|
Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, Nekounam H, Mahmoodi N. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater Today Bio 2023; 20:100614. [PMID: 37008830 PMCID: PMC10050787 DOI: 10.1016/j.mtbio.2023.100614] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, 2 Royal College Street, London, UK
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
237
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
238
|
Franklin ME, Bennett C, Arboite M, Alvarez-Ciara A, Corrales N, Verdelus J, Dietrich WD, Keane RW, de Rivero Vaccari JP, Prasad A. Activation of inflammasomes and their effects on neuroinflammation at the microelectrode-tissue interface in intracortical implants. Biomaterials 2023; 297:122102. [PMID: 37015177 PMCID: PMC10614166 DOI: 10.1016/j.biomaterials.2023.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Invasive neuroprosthetics rely on microelectrodes (MEs) to record or stimulate the activity of large neuron assemblies. However, MEs are subjected to tissue reactivity in the central nervous system (CNS) due to the foreign body response (FBR) that contribute to chronic neuroinflammation and ultimately result in ME failure. An endogenous, acute set of mechanisms responsible for the recognition and targeting of foreign objects, called the innate immune response, immediately follows the ME implant-induced trauma. Inflammasomes are multiprotein structures that play a critical role in the initiation of an innate immune response following CNS injuries. The activation of inflammasomes facilitates a range of innate immune response cascades and results in neuroinflammation and programmed cell death. Despite our current understanding of inflammasomes, their roles in the context of neural device implantation remain unknown. In this study, we implanted a non-functional Utah electrode array (UEA) into the rat somatosensory cortex and studied the inflammasome signaling and the corresponding downstream effects on inflammatory cytokine expression and the inflammasome-mediated cell death mechanism of pyroptosis. Our results not only demonstrate the continuous activation of inflammasomes and their contribution to neuroinflammation at the electrode-tissue interface but also reveal the therapeutic potential of targeting inflammasomes to attenuate the FBR in invasive neuroprosthetics.
Collapse
Affiliation(s)
- Melissa E Franklin
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cassie Bennett
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Maelle Arboite
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | | | - Natalie Corrales
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Jennifer Verdelus
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.
| |
Collapse
|
239
|
Cai M, Chen L, Wang T, Liang Y, Zhao J, Zhang X, Li Z, Wu H. Hydrogel scaffolds in the treatment of spinal cord injury: a review. Front Neurosci 2023; 17:1211066. [PMID: 37325033 PMCID: PMC10266534 DOI: 10.3389/fnins.2023.1211066] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system often caused by accidents, and its prognosis is unsatisfactory, with long-term adverse effects on patients' lives. The key to its treatment lies in the improvement of the microenvironment at the injury and the reconstruction of axons, and tissue repair is a promising therapeutic strategy. Hydrogel is a three-dimensional mesh structure with high water content, which has the advantages of biocompatibility, degradability, and adjustability, and can be used to fill pathological defects by injectable flowing hydrophilic material in situ to accurately adapt to the size and shape of the injury. Hydrogels mimic the natural extracellular matrix for cell colonization, guide axon extension, and act as a biological scaffold, which can be used as an excellent carrier to participate in the treatment of SCI. The addition of different materials to make composite hydrogel scaffolds can further enhance their performance in all aspects. In this paper, we introduce several typical composite hydrogels and review the research progress of hydrogel for SCI to provide a reference for the clinical application of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Manqi Cai
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Yinru Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jie Zhao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaomin Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyi Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
240
|
Wei H, Wu X, Withrow J, Cuevas-Diaz Duran R, Singh S, Chaboub LS, Rakshit J, Mejia J, Rolfe A, Herrera JJ, Horner PJ, Wu JQ. Glial progenitor heterogeneity and key regulators revealed by single-cell RNA sequencing provide insight to regeneration in spinal cord injury. Cell Rep 2023; 42:112486. [PMID: 37149868 PMCID: PMC10511029 DOI: 10.1016/j.celrep.2023.112486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/12/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Recent studies have revealed the heterogeneous nature of astrocytes; however, how diverse constituents of astrocyte-lineage cells are regulated in adult spinal cord after injury and contribute to regeneration remains elusive. We perform single-cell RNA sequencing of GFAP-expressing cells from sub-chronic spinal cord injury models and identify and compare with the subpopulations in acute-stage data. We find subpopulations with distinct functional enrichment and their identities defined by subpopulation-specific transcription factors and regulons. Immunohistochemistry, RNAscope experiments, and quantification by stereology verify the molecular signature, location, and morphology of potential resident neural progenitors or neural stem cells in the adult spinal cord before and after injury and uncover the populations of the intermediate cells enriched in neuronal genes that could potentially transition into other subpopulations. This study has expanded the knowledge of the heterogeneity and cell state transition of glial progenitors in adult spinal cord before and after injury.
Collapse
Affiliation(s)
- Haichao Wei
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Joseph Withrow
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, Mexico
| | - Simranjit Singh
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jyotirmoy Rakshit
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Julio Mejia
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Andrew Rolfe
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Jia Qian Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
241
|
Huang LY, Sun X, Pan HX, Wang L, He CQ, Wei Q. Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells: Advances and challenges. World J Stem Cells 2023; 15:385-399. [PMID: 37342219 PMCID: PMC10277963 DOI: 10.4252/wjsc.v15.i5.385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/26/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with complex pathological mechanisms that lead to sensory, motor, and autonomic dysfunction below the site of injury. To date, no effective therapy is available for the treatment of SCI. Recently, bone marrow-derived mesenchymal stem cells (BMMSCs) have been considered to be the most promising source for cellular therapies following SCI. The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI. In this work, we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects: Neuroprotection, axon sprouting and/or regeneration, myelin regeneration, inhibitory microenvironments, glial scar formation, immunomodulation, and angiogenesis. Additionally, we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.
Collapse
Affiliation(s)
- Li-Yi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Hong-Xia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| |
Collapse
|
242
|
Ivanova M, Porta FM, Giugliano F, Frascarelli C, Sajjadi E, Venetis K, Cursano G, Mazzarol G, Guerini-Rocco E, Curigliano G, Criscitiello C, Fusco N. Breast Cancer with Brain Metastasis: Molecular Insights and Clinical Management. Genes (Basel) 2023; 14:1160. [PMID: 37372340 DOI: 10.3390/genes14061160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy worldwide and the leading cause of cancer-related death among women. Brain metastases are a primary contributor to mortality, as they often go undetected until late stages due to their dormant nature. Moreover, the clinical management of brain metastases is complicated by the relevant issue of blood-brain barrier penetration. The molecular pathways involved in the formation, progression, and colonization of primary breast tumors and subsequent brain metastases are diverse, posing significant hurdles due to the heterogeneous nature of breast cancer subtypes. Despite advancements in primary breast cancer treatments, the prognosis for patients with brain metastases remains poor. In this review, we aim to highlight the biological mechanisms of breast cancer brain metastases by evaluating multi-step genetic pathways and to discuss currently available and emerging treatment strategies to propose a prospective overview of the management of this complex disease.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Maria Porta
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Federica Giugliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giovanni Mazzarol
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
243
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
244
|
Valles SL, Singh SK, Campos-Campos J, Colmena C, Campo-Palacio I, Alvarez-Gamez K, Caballero O, Jorda A. Functions of Astrocytes under Normal Conditions and after a Brain Disease. Int J Mol Sci 2023; 24:ijms24098434. [PMID: 37176144 PMCID: PMC10179527 DOI: 10.3390/ijms24098434] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
In the central nervous system (CNS) there are a greater number of glial cells than neurons (between five and ten times more). Furthermore, they have a greater number of functions (more than eight functions). Glia comprises different types of cells, those of neural origin (astrocytes, radial glia, and oligodendroglia) and differentiated blood monocytes (microglia). During ontogeny, neurons develop earlier (at fetal day 15 in the rat) and astrocytes develop later (at fetal day 21 in the rat), which could indicate their important and crucial role in the CNS. Analysis of the phylogeny reveals that reptiles have a lower number of astrocytes compared to neurons and in humans this is reversed, as there have a greater number of astrocytes compared to neurons. These data perhaps imply that astrocytes are important and special cells, involved in many vital functions, including memory, and learning processes. In addition, astrocytes are involved in different mechanisms that protect the CNS through the production of antioxidant and anti-inflammatory proteins and they clean the extracellular environment and help neurons to communicate correctly with each other. The production of inflammatory mediators is important to prevent changes in brain homeostasis. On the contrary, excessive, or continued production appears as a characteristic element in many diseases, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and in neurodevelopmental diseases, such as bipolar disorder, schizophrenia, and autism. Furthermore, different drugs and techniques have been developed to reverse oxidative stress and/or excess of inflammation that occurs in many CNS diseases, but much remains to be investigated. This review attempts to highlight the functional relevance of astrocytes in normal and neuropathological conditions by showing the molecular and cellular mechanisms of their role in the CNS.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Juan Campos-Campos
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| | - Carlos Colmena
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Ignacio Campo-Palacio
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Kenia Alvarez-Gamez
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Oscar Caballero
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
245
|
Yang F, Yang L, Fang X, Deng Y, Mao R, Yan A, Wei W. Increased Cerebrospinal Fluid Levels of Soluble Triggering Receptor Expressed on Myeloid Cells 2 and Chitinase-3-Like Protein 1 in Idiopathic Normal-Pressure Hydrocephalus. J Alzheimers Dis 2023:JAD221180. [PMID: 37182875 DOI: 10.3233/jad-221180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Neurodegenerative disease pathology is associated with neuroinflammation, but evidence on idiopathic normal pressure hydrocephalus (iNPH) remains limited and cerebrospinal fluid (CSF) biomarker profiles need to be elucidated. OBJECTIVE To investigate whether iNPH pathological mechanisms are associated with greater CSF markers of core Alzheimer's disease pathology (amyloid-β42 (Aβ 42), phosphorylated tau (P-tau)), neurodegeneration (total tau (T-tau)), and neuroinflammation (soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 (YKL-40)). METHODS The study analyzed lumbar CSF samples from 63 patients with iNPH and 20 age-matched orthopedic surgery patients who had no preoperative gait or cognitive impairment (control group). Aβ 42, T-tau, P-tau, sTREM2, and YKL-40 in different subgroups were investigated. RESULTS CSF sTREM2 levels were significantly higher in the iNPH group than in the control group, but no significant between-group difference was noted in YKL-40. Moreover, YKL-40 levels were significantly higher in the tap test non-responders than in the tap test responders (p = 0.021). At the 1-year follow-up after shunt surgery, the CSF P-tau levels were significantly lower (p = 0.020) in those with gait improvement and the CSF sTREM2 levels were significantly lower (p = 0.041) in those with cognitive improvement. In subgroup analysis, CSF sTREM2 levels were strongly correlated with CSF YKL-40 in the iNPH group (r = 0.443, p < 0.001), especially in the tap test non-responders (r = 0.653, p = 0.002). CONCLUSION YKL-40 and sTREM2 are disease-specific markers of neuroinflammation, showing higher CSF levels in iNPH. In addition, sTREM2 is positively associated with YKL-40, indicating that interactions of glial cells play an important role in iNPH pathogenesis.
Collapse
Affiliation(s)
- Fuxia Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lu Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yao Deng
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
246
|
Zheng B, He Y, Yin S, Zhu X, Zhao Q, Yang H, Wang Z, Zhu R, Cheng L. Unresolved Excess Accumulation of Myelin-Derived Cholesterol Contributes to Scar Formation after Spinal Cord Injury. RESEARCH (WASHINGTON, D.C.) 2023; 6:0135. [PMID: 37223476 PMCID: PMC10202378 DOI: 10.34133/research.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Spinal cord injury triggers complex pathological cascades, resulting in destructive tissue damage and incomplete tissue repair. Scar formation is generally considered a barrier for regeneration in the central nervous system. However, the intrinsic mechanism of scar formation after spinal cord injury has not been fully elucidated. Here, we report that excess cholesterol accumulates in phagocytes and is inefficiently removed from spinal cord lesions in young adult mice. Interestingly, we observed that excessive cholesterol also accumulates in injured peripheral nerves but is subsequently removed by reverse cholesterol transport. Meanwhile, preventing reverse cholesterol transport leads to macrophage accumulation and fibrosis in injured peripheral nerves. Furthermore, the neonatal mouse spinal cord lesions are devoid of myelin-derived lipids and can heal without excess cholesterol accumulation. We found that transplantation of myelin into neonatal lesions disrupts healing with excessive cholesterol accumulation, persistent macrophage activation, and fibrosis. Myelin internalization suppresses macrophage apoptosis mediated by CD5L expression, indicating that myelin-derived cholesterol plays a critical role in impaired wound healing. Taken together, our data suggest that the central nervous system lacks an efficient approach for cholesterol clearance, resulting in excessive accumulation of myelin-derived cholesterol, thereby inducing scar formation after injury.
Collapse
Affiliation(s)
- Bolin Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Yijing He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Xu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Science and Technology,
Tongji University, Shanghai 200092, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Science and Technology,
Tongji University, Shanghai 200092, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research,
Tongji University, Shanghai 200092, China
| |
Collapse
|
247
|
Wang Z, Shen H, Xiong W, Zhang X, Hou J. Method for Diagnosing Bearing Faults in Electromechanical Equipment Based on Improved Prototypical Networks. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094485. [PMID: 37177689 PMCID: PMC10181651 DOI: 10.3390/s23094485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Due to the complexity of electromechanical equipment and the difficulties in obtaining large-scale health monitoring datasets, as well as the long-tailed distribution of data, existing methods ignore certain characteristics of health monitoring data. In order to solve these problems, this paper proposes a method for the fault diagnosis of rolling bearings in electromechanical equipment based on an improved prototypical network-the weight prototypical networks (WPorNet). The main contributions of this paper are as follows: (1) the prototypical networks, which perform well on small-sample classification tasks, were improved by calculating the different levels of influence of support sample distributions in order to achieve the prototypical calculation. The change in sample influence was calculated using the Kullback-Leibler divergence of the sample distribution. The influence change in a specific sample can be measured by assessing how much the distribution changes in the absence of that sample; and (2) The Gramian Angular Field (GAF) algorithm was used to transform one-dimensional time series into two-dimensional vibration images, which greatly improved the application effect of the 2D convolutional neural network (CNN). Through experiments on MAFAULDA and CWRU bearing datasets, it was shown that this network effectively solves the shortcomings of a small number of valid samples and a long-tail distribution in health monitoring data, it enhances the dependency between the samples and the global data, it improves the model's feature extraction ability, and it enhances the accuracy of model classification. Compared with the prototypical network, the improved network model increased the performance of the 2-way 10-shot, 2-way 20-shot, and 2-way 50-shot classification tasks by 5.23%, 5.74%, and 4.37%, respectively, and it increased the performance of the 4-way 10-shot, 4-way 20-shot, and 4-way 50-shot classification tasks by 12.02%, 10.47%, and 4.66%, respectively. Experimental results show that the improved prototypical network model has higher sample classification accuracy and stronger anti-interference ability compared with traditional small-sample classification models.
Collapse
Affiliation(s)
- Zilong Wang
- Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Honghai Shen
- Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenzhuo Xiong
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xueming Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinghua Hou
- Jiuquan Satellite Launch Centre, Jiuquan 732750, China
| |
Collapse
|
248
|
Gramatiuk SM, Ivanova YV, Hudyma AA, Sargsyan K, Kryvoruchko IA, Puliaieva IS. Differentiation of neurosphere after transplantation into the damaged spinal cord. J Med Life 2023; 16:689-698. [PMID: 37520471 PMCID: PMC10375341 DOI: 10.25122/jml-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/26/2023] [Indexed: 08/01/2023] Open
Abstract
This study aimed to compare the differentiation and survival of human neural stem/progenitor cells of various origins in vitro and after transplantation into the injured spinal cord of laboratory animals. Rats with simulated spinal cord injury were transplanted with neurosphere cells obtained by directed differentiation of HUES6 cell lines. Fluorescence microscopy was used to visualize the obtained results. HUES6#1 and iPSC#1 neurospheres showed a wide range of markers associated with glial differentiation. The expression of the proliferation marker Ki67 did not exceed 25%, both in the lines of early and late neurospheres. Although neurospheres did not fully differentiate into astrocytes in vitro, they massively approached the GFAP+ astrocyte phenotype when exposed to the transplanted environment. PSC-derived neurospheres transplanted into the site of SM injury without additional growth factors showed only moderate survival, a significant degree of differentiation into astrocytes, and moderate differentiation into neurons. The difference in the survival and differentiation of HUES6#1 and iPSC#1 neurospheres, both in vitro and in vivo, can be explained by the difference in the regulatory behavior of signaling molecules corresponding to the source of origin of PSCs. Derivatives of human PSCs of various origins obtained according to the described differentiation protocol did not mature into astrocytic populations, nor did the glycogenic transition of PSC-derived NSCs occur in vitro. The study demonstrated the impact of the injured spinal cord microenvironment on the differentiation of transplanted HUES6#1 and iPSC#1 into astrocytes. The results showed that HUES6-derived neurospheres generated 90% of GFAP+ astrocytes and 5-10% of early neurons, while iPSC-derived neurospheres generated an average of 74% GFAP+ astrocytes and 5% of early neurons in vivo.
Collapse
Affiliation(s)
- Svetlana Mykolaiivna Gramatiuk
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
- Department of Biotechnology, Louisiana State University, Baton Rouge, Louisiana, USA
- International Biobanking and Education, Medical University of Graz, Graz, Austria
| | - Yulia Viktorovna Ivanova
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
- Department of Surgery No.1, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Arsen Arsenievich Hudyma
- Emergency Medical Care, Ternopil National Medical University named after I. Ya. Gorbachevsky, Ternopil, Ukraine
| | - Karine Sargsyan
- International Biobanking and Education, Medical University of Graz, Graz, Austria
- Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| | | | - Inna Sergeevna Puliaieva
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
| |
Collapse
|
249
|
Xu Y, Zhu ZH, Xu X, Sun HT, Zheng HM, Zhang JL, Wang HH, Fang JW, Liu YZ, Huang LL, Song ZW, Liu JB. Neuron-Derived Exosomes Promote the Recovery of Spinal Cord Injury by Modulating Nerve Cells in the Cellular Microenvironment of the Lesion Area. Mol Neurobiol 2023:10.1007/s12035-023-03341-8. [PMID: 37106222 DOI: 10.1007/s12035-023-03341-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
During spinal cord injury (SCI), the homeostasis of the cellular microenvironment in the injured area is seriously disrupted, which makes it extremely difficult for injured neurons with regenerative ability to repair, emphasizing the importance of restoring the cellular microenvironment at the injury site. Neurons interact closely with other nerve cells in the central nervous system (CNS) and regulate these cells. However, the specific mechanisms by which neurons modulate the cellular microenvironment remain unclear. Exosomes were isolated from the primary neurons, and their effects on astrocytes, microglia, oligodendrocyte progenitor cells (OPCs), neurons, and neural stem cells were investigated by quantifying the expression of related proteins and mRNA. A mouse SCI model was established, and neuron-derived exosomes were injected into the mice by the caudal vein to observe the recovery of motor function in mice and the changes in the nerve cells in the lesion area. Neuron-derived exosomes could reverse the activation of microglia and astrocytes and promote the maturation of OPCs in vivo and in vitro. In addition, neuron-derived exosomes promoted neurite outgrowth of neurons and the differentiation of neural stem cells into neurons. Moreover, our experiments showed that neuron-derived exosomes enhanced motor function recovery and nerve regeneration in mice with SCI. Our findings highlight that neuron-derived exosomes could promote the repair of the injured spinal cord by regulating the cellular microenvironment of neurons and could be a promising treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yi Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zheng-Huan Zhu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hai-Tao Sun
- Department of Spinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong-Ming Zheng
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jin-Long Zhang
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hong-Hai Wang
- Department of Orthopedics, The NO.2 People's Hospital of Fuyang, Fuyang, China
| | - Jia-Wei Fang
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ya-Zheng Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lin-Ling Huang
- National Engineer Laboratory for Modern Silk, College of Textile and Clothing Engineer, Soochow University, Suzhou, China
| | - Zhi-Wen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Jin-Bo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
250
|
Liu A, Yu L, Li X, Zhang K, Zhang W, So KF, Tissir F, Qu Y, Zhou L. Celsr2-mediated morphological polarization and functional phenotype of reactive astrocytes in neural repair. Glia 2023. [PMID: 37186402 DOI: 10.1002/glia.24378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Neural repair is highly influenced by reactive astrocytes. Atypical cadherin Celsr2 regulates neuron development and axon regeneration, while its role in glial cells remains unexplored. In this study, we show that Celsr2 is highly expressed in spinal astrocytes of adult mice, and knockout of Celsr2 results in reactive astrocytes with longer protrusions preferentially orientated towards lesion borders in culture scratch assay and injured spinal cord, and elevation of total and active Cdc42 and Rac1 protein in western blots. Inactivation of Celsr2 enhances calcium influx in reactive astrocytes in time-lapse imaging. Morphological phenotypes of cultured Celsr2-/- astrocytes are rescued by Cdc42 or Rac1 inhibitors. Following spinal cord injury (SCI), Celsr2-/- mice exhibit smaller lesion cavity and glial scar, enhanced fiber regeneration, weaker microglial response, and improved functional recovery than control animals. Similar phenotypes are found in mice with conditional knockout of Celsr2 in astrocytes. In Celsr2-/- mice, astrocyte phenotype is changed and neuroinflammation is alleviated after injury. Inhibiting Cdc42/Rac1 activities compromises astrocyte polarization and the improvement of neural repair and functional recovery in Celsr2-/- mice with SCI. In conclusion, Celsr2 regulates morphological polarization and functional phenotype of reactive astrocytes and inactivating Celsr2 is a potential therapeutic strategy for neural repair.
Collapse
Affiliation(s)
- Aimei Liu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
| | - Lingtai Yu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Xuejun Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Kejiao Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Wei Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Fadel Tissir
- Institute of Neuroscience, Developmental Neurobiology, Université catholique de Louvain, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yibo Qu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|