201
|
Nieminuszczy J, Broderick R, Bellani MA, Smethurst E, Schwab RA, Cherdyntseva V, Evmorfopoulou T, Lin YL, Minczuk M, Pasero P, Gagos S, Seidman MM, Niedzwiedz W. EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2. Mol Cell 2019; 75:605-619.e6. [PMID: 31255466 PMCID: PMC6695479 DOI: 10.1016/j.molcel.2019.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/15/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.
Collapse
Affiliation(s)
| | | | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | | | | - Veronica Cherdyntseva
- Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Evmorfopoulou
- Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Sarantis Gagos
- Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | |
Collapse
|
202
|
Yang Z, Pan Q, Zhang D, Chen J, Qiu Y, Chen X, Zheng F, Lin F. Silibinin restores the sensitivity of cisplatin and taxol in A2780-resistant cell and reduces drug-induced hepatotoxicity. Cancer Manag Res 2019; 11:7111-7122. [PMID: 31440098 PMCID: PMC6668021 DOI: 10.2147/cmar.s201341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Ovarian cancer is the most lethal cancer among all gynaecological malignancies. The combination theraputics of cisplatin and taxol is widely used in clinicals for ovarian cancer treatment. However, long-term use of cisplatin and taxol induces strong tolerance and hepatotoxicity. Since silibinin is a commonly used anti-hepatotoxic drug in Europe and Asia, the aim of this study was to determine whether silibinin could restore the sensitivity of combination use of cisplatin and taxol in drug-resistant human ovarian cancer cells and reduce drug-induced hepatotoxicity. PATIENTS AND METHODS Normal hepatocyte LO2 cells and A2780/DDP cells were treated with silibinin, cisplatin, taxol, cisplatin and taxol plus silibinin for 48 h. Cell viability was determined by MTT and long-term proliferation assay, while apoptosis and cell cycle progression were assessed by flow cytometric analysis. DNA damage was evluated by immunofluorescence assays. The metastatic activity of A2780/DDP was determined by cell adhesion assay. RESULTS The addition of silibinin on cisplatin and/or toxal could sensitize the antitumor activity of cisplatin and toxal on A2780/DDP cells, supress cell-matrix adhesion of A2780/DDP, inhibit the cell proliferation, result in A2780/DDP cells apoptosis. In addition, silibinin could effectively reduce cisplatin and/or toxal-induced hepatotoxicity by protecting DNA from damage and restoring the potential of cell proliferation in cisplatin and/or toxal-treated LO2 cells. CONCLUSION Our results suggest that silibinin could restore the sensitivity of cisplatin and taxol in drug-resistant human ovarian cancer cells and reduce durg-induced hepatotoxicity in cell level.
Collapse
Affiliation(s)
- Zhichun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Qionghui Pan
- Department of Gynecology, Wenzhou People’s Hospital, Wenzhou325027, Zhejiang, People’s Republic of China
| | - Dingfang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou325035, Zhejiang, People’s Republic of China
| | - Jianqiang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou325035, Zhejiang, People’s Republic of China
| | - Yinda Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou325035, Zhejiang, People’s Republic of China
| | - Xiaojing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou325035, Zhejiang, People’s Republic of China
| | - Feiyun Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Feng Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| |
Collapse
|
203
|
Mediani L, Guillén-Boixet J, Vinet J, Franzmann TM, Bigi I, Mateju D, Carrà AD, Morelli FF, Tiago T, Poser I, Alberti S, Carra S. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J 2019; 38:e101341. [PMID: 31271238 PMCID: PMC6669919 DOI: 10.15252/embj.2018101341] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022] Open
Abstract
Nuclear protein aggregation has been linked to genome instability and disease. The main source of aggregation‐prone proteins in cells is defective ribosomal products (DRiPs), which are generated by translating ribosomes in the cytoplasm. Here, we report that DRiPs rapidly diffuse into the nucleus and accumulate in nucleoli and PML bodies, two membraneless organelles formed by liquid–liquid phase separation. We show that nucleoli and PML bodies act as dynamic overflow compartments that recruit protein quality control factors and store DRiPs for later clearance. Whereas nucleoli serve as constitutive overflow compartments, PML bodies are stress‐inducible overflow compartments for DRiPs. If DRiPs are not properly cleared by chaperones and proteasomes due to proteostasis impairment, nucleoli undergo amyloidogenesis and PML bodies solidify. Solid PML bodies immobilize 20S proteasomes and limit the recycling of free ubiquitin. Ubiquitin depletion, in turn, compromises the formation of DNA repair compartments at fragile chromosomal sites, ultimately threatening cell survival.
Collapse
Affiliation(s)
- Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ilaria Bigi
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Arianna D Carrà
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Dresden, Germany
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
204
|
Liu X, Wang XS, Lee BJ, Wu-Baer FK, Lin X, Shao Z, Estes VM, Gautier J, Baer R, Zha S. CtIP is essential for early B cell proliferation and development in mice. J Exp Med 2019; 216:1648-1663. [PMID: 31097467 PMCID: PMC6605744 DOI: 10.1084/jem.20181139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/10/2018] [Accepted: 04/24/2019] [Indexed: 11/08/2022] Open
Abstract
B cell development requires efficient proliferation and successful assembly and modifications of the immunoglobulin gene products. CtIP is an essential gene implicated in end resection and DNA repair. Here, we show that CtIP is essential for early B cell development but dispensable in naive B cells. CtIP loss is well tolerated in G1-arrested B cells and during V(D)J recombination, but in proliferating B cells, CtIP loss leads to a progressive cell death characterized by ATM hyperactivation, G2/M arrest, genomic instability, and 53BP1 nuclear body formation, indicating that the essential role of CtIP during proliferation underscores its stage-specific requirement in B cells. B cell proliferation requires phosphorylation of CtIP at T847 presumably by CDK, but not its interaction with CtBP or Rb or its nuclease activity. CtIP phosphorylation by ATM/ATR at T859 (T855 in mice) promotes end resection in G1-arrested cells but is dispensable for B cell development and class switch recombination, suggesting distinct roles for T859 and T847 phosphorylation in B cell development.
Collapse
Affiliation(s)
- Xiangyu Liu
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Pathobiology and Human Disease Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Foon K Wu-Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jean Gautier
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| |
Collapse
|
205
|
Wang H, Xiang D, Liu B, He A, Randle HJ, Zhang KX, Dongre A, Sachs N, Clark AP, Tao L, Chen Q, Botchkarev VV, Xie Y, Dai N, Clevers H, Li Z, Livingston DM. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell 2019; 178:135-151.e19. [PMID: 31251913 PMCID: PMC6716369 DOI: 10.1016/j.cell.2019.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
Loss of BRCA1 p220 function often results in basal-like breast cancer (BLBC), but the underlying disease mechanism is largely opaque. In mammary epithelial cells (MECs), BRCA1 interacts with multiple proteins, including NUMB and HES1, to form complexes that participate in interstrand crosslink (ICL) DNA repair and MEC differentiation control. Unrepaired ICL damage results in aberrant transdifferentiation to a mesenchymal state of cultured, human basal-like MECs and to a basal/mesenchymal state in primary mouse luminal MECs. Loss of BRCA1, NUMB, or HES1 or chemically induced ICL damage in primary murine luminal MECs results in persistent DNA damage that triggers luminal to basal/mesenchymal transdifferentiation. In vivo single-cell analysis revealed a time-dependent evolution from normal luminal MECs to luminal progenitor-like tumor cells with basal/mesenchymal transdifferentiation during murine BRCA1 BLBC development. Growing DNA damage accompanied this malignant transformation.
Collapse
Affiliation(s)
- Hua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ben Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Aina He
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helena J Randle
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Norman Sachs
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qing Chen
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir V Botchkarev
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ning Dai
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, New Brunswick, NJ 08901, USA
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
206
|
Hjorth-Jensen K, Maya-Mendoza A, Dalgaard N, Sigurðsson JO, Bartek J, Iglesias-Gato D, Olsen JV, Flores-Morales A. SPOP promotes transcriptional expression of DNA repair and replication factors to prevent replication stress and genomic instability. Nucleic Acids Res 2019; 46:9484-9495. [PMID: 30124983 PMCID: PMC6182143 DOI: 10.1093/nar/gky719] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations in SPOP, the gene most frequently point-mutated in primary prostate cancer, are associated with a high degree of genomic instability and deficiency in homologous recombination repair of DNA but the underlying mechanisms behind this defect are currently unknown. Here we demonstrate that SPOP knockdown leads to spontaneous replication stress and impaired recovery from replication fork stalling. We show that this is associated with reduced expression of several key DNA repair and replication factors including BRCA2, ATR, CHK1 and RAD51. Consequently, SPOP knockdown impairs RAD51 foci formation and activation of CHK1 in response to replication stress and compromises recovery from replication fork stalling. An SPOP interactome analysis shows that wild type (WT) SPOP but not mutant SPOP associates with multiple proteins involved in transcription, mRNA splicing and export. Consistent with the association of SPOP with transcription, splicing and RNA export complexes, the decreased expression of BRCA2, ATR, CHK1 and RAD51 occurs at the level of transcription.
Collapse
Affiliation(s)
- Kim Hjorth-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Nanna Dalgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jón O Sigurðsson
- Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amilcar Flores-Morales
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Translational Cancer Research Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
207
|
Feng Y, Liu H, Duan B, Liu Z, Abbruzzese J, Walsh KM, Zhang X, Wei Q. Potential functional variants in SMC2 and TP53 in the AURORA pathway genes and risk of pancreatic cancer. Carcinogenesis 2019; 40:521-528. [PMID: 30794721 PMCID: PMC6556704 DOI: 10.1093/carcin/bgz029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/02/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
The AURORA pathway participates in mitosis and cell division, and alterations in mitosis and cell division can lead to carcinogenesis. Therefore, genetic variants in the AURORA pathway genes may be associated with susceptibility to pancreatic cancer. To test this hypothesis, we used three large publically available pancreatic cancer genome-wide association study (GWAS) datasets (PanScan I, II/III and PanC4) to assess the associations of 7168 single nucleotide polymorphisms (SNPs) in a set of 62 genes of this pathway with pancreatic cancer risk in 8477 cases and 6946 controls of European ancestry. We identify 15 significant pancreatic cancer risk-associated SNPs in three genes (SMC2, ARHGEF7 and TP53) after correction for multiple comparisons by a false discovery rate < 0.20. Through further linkage disequilibrium analysis, SNP functional prediction and stepwise logistic regression analysis, we focused on three SNPs: rs3818626 in SMC2, rs79447092 in ARHGEF7 and rs9895829 in TP53. We found that these three SNPs were associated with pancreatic cancer risk [odds ratio (OR) = 1.12, 95% confidence interval (CI) = 1.07-1.17 and P = 2.20E-06 for the rs3818626 C allele; OR = 0.76, CI = 0.66-0.88 and P = 1.46E-04 for the rs79447092 A allele and OR = 0.82, CI = 0.74-0.91 and P = 1.51E-04 for the rs9895829 G allele]. Their joint effect as the number of protective genotypes also showed a significant association with pancreatic cancer risk (trend test P ≤ 0.001). Finally, we performed an expression quantitative trait loci analysis and found that rs3818626 and rs9895829 were significantly associated with SMC2 and TP53 messenger RNA expression levels in 373 lymphoblastoid cell lines, respectively. In conclusion, these three representative SNPs may be potentially susceptibility loci for pancreatic cancer and warrant additional validation.
Collapse
Affiliation(s)
- Yun Feng
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Bensong Duan
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Gastroenterology, Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - James Abbruzzese
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Xuefeng Zhang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
208
|
Young LA, O'Connor LO, de Renty C, Veldman-Jones MH, Dorval T, Wilson Z, Jones DR, Lawson D, Odedra R, Maya-Mendoza A, Reimer C, Bartek J, Lau A, O'Connor MJ. Differential Activity of ATR and WEE1 Inhibitors in a Highly Sensitive Subpopulation of DLBCL Linked to Replication Stress. Cancer Res 2019; 79:3762-3775. [DOI: 10.1158/0008-5472.can-18-2480] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/23/2018] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
|
209
|
Luo Y, Wu J, Zou J, Cao Y, He Y, Ling H, Zeng T. BCL10 in cell survival after DNA damage. Clin Chim Acta 2019; 495:301-308. [PMID: 31047877 DOI: 10.1016/j.cca.2019.04.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
Abstract
The complex defense mechanism of the DNA damage response (DDR) developed by cells during long-term evolution is an important mechanism for maintaining the stability of the genome. Defects in the DDR pathway can lead to the occurrence of various diseases, including tumor development. Most cancer treatments cause DNA damage and apoptosis. However, cancer cells have the natural ability to repair this damage and inhibit apoptosis, ultimately leading to the development of drug resistance. Therefore, investigating the mechanism of DNA damage may contribute markedly to the future treatment of cancer. The CARMA-BCL10-MALT1 (CBM) complex formed by B cell lymphoma/leukemia 10 (BCL10) regulates apoptosis by activating NF-κB signaling. BCL10 is involved in the formation of complexes that antagonize apoptosis and contribute to cell survival after DNA damage, with cytoplasmic BCL10 entering the nucleus to promote DNA damage repair, including histone ubiquitination and the recruitment of homologous recombination (HR) repair factors. This article reviews the role of BCL10 in cell survival following DNA damage.
Collapse
Affiliation(s)
- Yichen Luo
- Key Laboratory of Tumor Cellular & Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China,Hengyang, Hunan 421001, China; Hunan Provincial Education Department document (Approval number: 2014-405], Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Jing Wu
- Key Laboratory of Tumor Cellular & Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China,Hengyang, Hunan 421001, China; Hunan Provincial Education Department document (Approval number: 2014-405], Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China,Hengyang, Hunan 421001, China; Hunan Provincial Education Department document (Approval number: 2014-405], Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yijing Cao
- Key Laboratory of Tumor Cellular & Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China,Hengyang, Hunan 421001, China; Hunan Provincial Education Department document (Approval number: 2014-405], Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yan He
- Key Laboratory of Tumor Cellular & Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China,Hengyang, Hunan 421001, China; Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong 518000, China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China,Hengyang, Hunan 421001, China; Hunan Provincial Education Department document (Approval number: 2014-405], Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| | - Tiebing Zeng
- Hunan Provincial Education Department document (Approval number: 2014-405], Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China; Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
210
|
Leimbacher PA, Jones SE, Shorrocks AMK, de Marco Zompit M, Day M, Blaauwendraad J, Bundschuh D, Bonham S, Fischer R, Fink D, Kessler BM, Oliver AW, Pearl LH, Blackford AN, Stucki M. MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Mol Cell 2019; 74:571-583.e8. [PMID: 30898438 PMCID: PMC6509287 DOI: 10.1016/j.molcel.2019.02.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/30/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
In mitosis, cells inactivate DNA double-strand break (DSB) repair pathways to preserve genome stability. However, some early signaling events still occur, such as recruitment of the scaffold protein MDC1 to phosphorylated histone H2AX at DSBs. Yet, it remains unclear whether these events are important for maintaining genome stability during mitosis. Here, we identify a highly conserved protein-interaction surface in MDC1 that is phosphorylated by CK2 and recognized by the DNA-damage response mediator protein TOPBP1. Disruption of MDC1-TOPBP1 binding causes a specific loss of TOPBP1 recruitment to DSBs in mitotic but not interphase cells, accompanied by mitotic radiosensitivity, increased micronuclei, and chromosomal instability. Mechanistically, we find that TOPBP1 forms filamentous structures capable of bridging MDC1 foci in mitosis, indicating that MDC1-TOPBP1 complexes tether DSBs until repair is reactivated in the following G1 phase. Thus, we reveal an important, hitherto-unnoticed cooperation between MDC1 and TOPBP1 in maintaining genome stability during cell division.
Collapse
Affiliation(s)
- Pia-Amata Leimbacher
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Samuel E Jones
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ann-Marie K Shorrocks
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Mara de Marco Zompit
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Jordy Blaauwendraad
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Diana Bundschuh
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Fink
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Antony W Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Laurence H Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Andrew N Blackford
- Department of Oncology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Manuel Stucki
- Department of Gynecology, University Hospital and University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland.
| |
Collapse
|
211
|
Wallace HA, Rana V, Nguyen HQ, Bosco G. Condensin II subunit NCAPH2 associates with shelterin protein TRF1 and is required for telomere stability. J Cell Physiol 2019; 234:20755-20768. [PMID: 31026066 PMCID: PMC6767372 DOI: 10.1002/jcp.28681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
Abstract
Condensin II subunits are known to be expressed and localized to interphase nuclei of eukaryotic cells. Although some studies have shown that condensin II likely exerts axial compaction forces, organizes chromosome territories, and has possible transcriptional modulatory functions, the full range of condensin II interphase activities are not known. In particular, it is not known if condensin II interphase activities are generally genome‐wide or if they have additional local activities unique to specific chromosomal structures such as telomeres. Here, we find that NCAPH2 interacts with TRF1 and these two proteins co‐localize at telomeres. Depletion of NCAPH2 leads to ATR‐dependent accumulation of 53BP1 and γH2AX DNA damage foci, including damage specific to telomeres. Furthermore, depletion of NCAPH2 results in a fragile telomere phenotype and apparent sister‐telomere fusions only days after NCAPH2 depletion. Taken together these observations suggest that NCAPH2 promotes telomere stability, possibly through a direct interaction with the TRF1 shelterin component, and prevents telomere dysfunction resulting from impaired DNA replication. Because proper telomere function is essential for chromosome integrity these observations reveal a previously unappreciated function for NCAPH2 in ensuring genome and telomere stability.
Collapse
Affiliation(s)
| | - Vibhuti Rana
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Huy Q Nguyen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Giovanni Bosco
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
212
|
Marabitti V, Lillo G, Malacaria E, Palermo V, Sanchez M, Pichierri P, Franchitto A. ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res 2019; 47:3485-3502. [PMID: 30657978 PMCID: PMC6468170 DOI: 10.1093/nar/gkz025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/22/2023] Open
Abstract
Werner syndrome (WS) is a cancer-prone disease caused by deficiency of Werner protein (WRN). WRN maintains genome integrity by promoting replication-fork stability after various forms of replication stress. Under mild replication stress, WS cells show impaired ATR-mediated CHK1 activation. However, it remains unclear if WS cells elicit other repair pathway. We demonstrate that loss of WRN leads to enhanced ATM phosphorylation upon prolonged exposure to aphidicolin, a specific inhibitor of DNA polymerases, resulting in CHK1 activation. Moreover, we find that loss of WRN sensitises cells to replication-transcription collisions and promotes accumulation of R-loops, which undergo XPG-dependent cleavage responsible for ATM signalling activation. Importantly, we observe that ATM pathway limits chromosomal instability in WS cells. Finally, we prove that, in WS cells, genomic instability enhanced upon chemical inhibition of ATM kinase activity is counteracted by direct or indirect suppression of R-loop formation or by XPG abrogation. Together, these findings suggest a potential role of WRN as regulator of R-loop-associated genomic instability, strengthening the notion that conflicts between replication and transcription can affect DNA replication, leading to human disease and cancer.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Giorgia Lillo
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Eva Malacaria
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Valentina Palermo
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Massimo Sanchez
- Department of Cell Biology and Neurosciences, Section of Gene and Cell Therapy, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Pietro Pichierri
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| | - Annapaola Franchitto
- Department of Environment and Health, Section of Mechanisms Biomarkers and Models, Istituto Superiore di Sanita’, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
213
|
Lukášová E, Řezáčová M, Bačíková A, Šebejová L, Vávrová J, Kozubek S. Distinct cellular responses to replication stress leading to apoptosis or senescence. FEBS Open Bio 2019; 9:870-890. [PMID: 30982228 PMCID: PMC6487726 DOI: 10.1002/2211-5463.12632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Replication stress (RS) is a major driver of genomic instability and tumorigenesis. Here, we investigated whether RS induced by the nucleotide analog fludarabine and specific kinase inhibitors [e.g. targeting checkpoint kinase 1 (Chk1) or ataxia telangiectasia and Rad3‐related (ATR)] led to apoptosis or senescence in four cancer cell lines differing in TP53 mutation status and expression of lamin A/C (LA/C). RS resulted in uneven chromatin condensation in all cell types, as evidenced by the presence of metaphasic chromosomes with unrepaired DNA damage, as well as detection of less condensed chromatin in the same nucleus, frequent ultrafine anaphase bridges, and micronuclei. We observed that responses to these chromatin changes may be distinct in individual cell types, suggesting that expression of lamin A/C and lamin B1 (LB1) may play an important role in the transition of damaged cells to senescence. MCF7 mammary carcinoma cells harboring wild‐type p53 (WT‐p53) and LA/C responded to RS by transition to senescence with a significant reduction of lamin B receptor and LB1 proteins. In contrast, a lymphoid cancer cell line WSU‐NHL (WT‐p53) lacking LA/C and expressing low levels of LB1 died after several hours, while lines MEC‐1 and SU‐DHL‐4, both with mutated p53, and SU‐DHL‐4 with mutations in LA/C, died at different rates by apoptosis. Our results show that, in addition to being influenced by p53 mutation status, the response to RS (apoptosis or senescence) may also be influenced by lamin A/C and LB1 status.
Collapse
Affiliation(s)
- Emilie Lukášová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Alena Bačíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Ludmila Šebejová
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiřina Vávrová
- Department of Radiobiology, Faculty of Military Health Sciences Hradec Králové, University of Defence Brno, Hradec Králové, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
214
|
Ubhi T, Brown GW. Exploiting DNA Replication Stress for Cancer Treatment. Cancer Res 2019; 79:1730-1739. [PMID: 30967400 DOI: 10.1158/0008-5472.can-18-3631] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Complete and accurate DNA replication is fundamental to cellular proliferation and genome stability. Obstacles that delay, prevent, or terminate DNA replication cause the phenomena termed DNA replication stress. Cancer cells exhibit chronic replication stress due to the loss of proteins that protect or repair stressed replication forks and due to the continuous proliferative signaling, providing an exploitable therapeutic vulnerability in tumors. Here, we outline current and pending therapeutic approaches leveraging tumor-specific replication stress as a target, in addition to the challenges associated with such therapies. We discuss how replication stress modulates the cell-intrinsic innate immune response and highlight the integration of replication stress with immunotherapies. Together, exploiting replication stress for cancer treatment seems to be a promising strategy as it provides a selective means of eliminating tumors, and with continuous advances in our knowledge of the replication stress response and lessons learned from current therapies in use, we are moving toward honing the potential of targeting replication stress in the clinic.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
215
|
Vancurova M, Hanzlikova H, Knoblochova L, Kosla J, Majera D, Mistrik M, Burdova K, Hodny Z, Bartek J. PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. DNA Repair (Amst) 2019; 78:114-127. [PMID: 31009828 DOI: 10.1016/j.dnarep.2019.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Abstract
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.
Collapse
Affiliation(s)
- Marketa Vancurova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Hanzlikova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Knoblochova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kosla
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic
| | - Kamila Burdova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic; Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czech Republic; Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden.
| |
Collapse
|
216
|
Ha GH, Ji JH, Chae S, Park J, Kim S, Lee JK, Kim Y, Min S, Park JM, Kang TH, Lee H, Cho H, Lee CW. Pellino1 regulates reversible ATM activation via NBS1 ubiquitination at DNA double-strand breaks. Nat Commun 2019; 10:1577. [PMID: 30952868 PMCID: PMC6450972 DOI: 10.1038/s41467-019-09641-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
DNA double-strand break (DSB) signaling and repair are critical for genome integrity. They rely on highly coordinated processes including posttranslational modifications of proteins. Here we show that Pellino1 (Peli1) is a DSB-responsive ubiquitin ligase required for the accumulation of DNA damage response proteins and efficient homologous recombination (HR) repair. Peli1 is activated by ATM-mediated phosphorylation. It is recruited to DSB sites in ATM- and γH2AX-dependent manners. Interaction of Peli1 with phosphorylated histone H2AX enables it to bind to and mediate the formation of K63-linked ubiquitination of NBS1, which subsequently results in feedback activation of ATM and promotes HR repair. Collectively, these results provide a DSB-responsive factor underlying the connection between ATM kinase and DSB-induced ubiquitination. Occurrence of DNA double-strand break (DSB) repair is important for genome integrity. Here, the authors reveal that Pellino1 is a DSB-responsive ubiquitin ligase required for promoting the accumulation of ATM and MRN complex at DSB sites via NBS1 ubiquitination.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Sunyoung Chae
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jihyun Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Suhyeon Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin-Kwan Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sunwoo Min
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Min Park
- Department of Biological Science, Dong-A University, Pusan, 49201, Republic of Korea
| | - Tae-Hong Kang
- Department of Biological Science, Dong-A University, Pusan, 49201, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeseong Cho
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 16499, Republic of Korea. .,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
217
|
The RIF1-PP1 Axis Controls Abscission Timing in Human Cells. Curr Biol 2019; 29:1232-1242.e5. [DOI: 10.1016/j.cub.2019.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/12/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023]
|
218
|
Chao HX, Fakhreddin RI, Shimerov HK, Kedziora KM, Kumar RJ, Perez J, Limas JC, Grant GD, Cook JG, Gupta GP, Purvis JE. Evidence that the human cell cycle is a series of uncoupled, memoryless phases. Mol Syst Biol 2019; 15:e8604. [PMID: 30886052 PMCID: PMC6423720 DOI: 10.15252/msb.20188604] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/03/2023] Open
Abstract
The cell cycle is canonically described as a series of four consecutive phases: G1, S, G2, and M. In single cells, the duration of each phase varies, but the quantitative laws that govern phase durations are not well understood. Using time-lapse microscopy, we found that each phase duration follows an Erlang distribution and is statistically independent from other phases. We challenged this observation by perturbing phase durations through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Despite large changes in durations in cell populations, phase durations remained uncoupled in individual cells. These results suggested that the independence of phase durations may arise from a large number of molecular factors that each exerts a minor influence on the rate of cell cycle progression. We tested this model by experimentally forcing phase coupling through inhibition of cyclin-dependent kinase 2 (CDK2) or overexpression of cyclin D. Our work provides an explanation for the historical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states.
Collapse
Affiliation(s)
- Hui Xiao Chao
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum for Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randy I Fakhreddin
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hristo K Shimerov
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rashmi J Kumar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanna Perez
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juanita C Limas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gavin D Grant
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum for Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
219
|
Deng L, Wu RA, Sonneville R, Kochenova OV, Labib K, Pellman D, Walter JC. Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements. Mol Cell 2019; 73:915-929.e6. [PMID: 30849395 PMCID: PMC6410736 DOI: 10.1016/j.molcel.2018.12.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
220
|
Spies J, Lukas C, Somyajit K, Rask MB, Lukas J, Neelsen KJ. 53BP1 nuclear bodies enforce replication timing at under-replicated DNA to limit heritable DNA damage. Nat Cell Biol 2019; 21:487-497. [PMID: 30804506 DOI: 10.1038/s41556-019-0293-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/21/2019] [Indexed: 01/13/2023]
Abstract
Failure to complete DNA replication is a stochastic by-product of genome doubling in almost every cell cycle. During mitosis, under-replicated DNA (UR-DNA) is converted into DNA lesions, which are inherited by daughter cells and sequestered in 53BP1 nuclear bodies (53BP1-NBs). The fate of such cells remains unknown. Here, we show that the formation of 53BP1-NBs interrupts the chain of iterative damage intrinsically embedded in UR-DNA. Unlike clastogen-induced 53BP1 foci that are repaired throughout interphase, 53BP1-NBs restrain replication of the embedded genomic loci until late S phase, thus enabling the dedicated RAD52-mediated repair of UR-DNA lesions. The absence or malfunction of 53BP1-NBs causes premature replication of the affected loci, accompanied by genotoxic RAD51-mediated recombination. Thus, through adjusting replication timing and repair pathway choice at under-replicated loci, 53BP1-NBs enable the completion of genome duplication of inherited UR-DNA and prevent the conversion of stochastic under-replications into genome instability.
Collapse
Affiliation(s)
- Julian Spies
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Somyajit
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj-Britt Rask
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kai John Neelsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
221
|
Nassrally MS, Lau A, Wise K, John N, Kotecha S, Lee KL, Brooks RF. Cell cycle arrest in replicative senescence is not an immediate consequence of telomere dysfunction. Mech Ageing Dev 2019; 179:11-22. [PMID: 30710559 DOI: 10.1016/j.mad.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022]
Abstract
In replicative senescence, cells with critically-short telomeres activate a DNA-damage response leading to cell-cycle arrest, while those without telomere dysfunction would be expected to cycle normally. However, population growth declines more gradually than such a simple binary switch between cycling and non-cycling states would predict. We show here that late-passage cultures of human fibroblasts are not a simple mixture of cycling and non-cycling cells. Rather, although some cells had short cycle times comparable to those of younger cells, others continued to divide but with greatly extended cycle times, indicating a more-gradual approach to permanent arrest. Remarkably, in late passage cells, the majority showed prominent DNA-damage foci positive for 53BP1, yet many continued to divide. Evidently, the DNA-damage-response elicited by critically-short telomeres is not initially strong enough for complete cell-cycle arrest. A similar continuation of the cell cycle in the face of an active DNA-damage response was also seen in cells treated with a low dose of doxorubicin sufficient to produce multiple 53BP1 foci in all nuclei. Cell cycle checkpoint engagement in response to DNA damage is thus weaker than generally supposed, explaining why an accumulation of dysfunctional telomeres is needed before marked cell cycle elongation or permanent arrest is achieved.
Collapse
Affiliation(s)
- M Shamim Nassrally
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Ashley Lau
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Katherine Wise
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Noah John
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Sanjeev Kotecha
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Kar Lai Lee
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Robert F Brooks
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK; St George's, University of London, Molecular and Clinical Sciences Research Institute, Mailpoint J2A, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
222
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
223
|
Teloni F, Michelena J, Lezaja A, Kilic S, Ambrosi C, Menon S, Dobrovolna J, Imhof R, Janscak P, Baubec T, Altmeyer M. Efficient Pre-mRNA Cleavage Prevents Replication-Stress-Associated Genome Instability. Mol Cell 2019; 73:670-683.e12. [PMID: 30639241 PMCID: PMC6395949 DOI: 10.1016/j.molcel.2018.11.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.
Collapse
Affiliation(s)
- Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School (LSZGS), 8057 Zurich, Switzerland
| | - Jone Michelena
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School (LSZGS), 8057 Zurich, Switzerland
| | - Sinan Kilic
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Christina Ambrosi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School (LSZGS), 8057 Zurich, Switzerland
| | - Shruti Menon
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School (LSZGS), 8057 Zurich, Switzerland
| | - Jana Dobrovolna
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 143 00 Czech Republic
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Pavel Janscak
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 143 00 Czech Republic
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
224
|
Byrum AK, Carvajal-Maldonado D, Mudge MC, Valle-Garcia D, Majid MC, Patel R, Sowa ME, Gygi SP, Harper JW, Shi Y, Vindigni A, Mosammaparast N. Mitotic regulators TPX2 and Aurora A protect DNA forks during replication stress by counteracting 53BP1 function. J Cell Biol 2019; 218:422-432. [PMID: 30602538 PMCID: PMC6363440 DOI: 10.1083/jcb.201803003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/13/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
The TPX2/Aurora A heterodimeric kinase canonically orchestrates mitotic events. Byrum et al. identify two new roles for this complex in regulating DNA double-stranded break repair and the protection of DNA forks during replication stress. 53BP1 is a chromatin-associated protein that regulates the DNA damage response. In this study, we identify the TPX2/Aurora A heterodimer, nominally considered a mitotic kinase complex, as a novel binding partner of 53BP1. We find that TPX2/Aurora A plays a previously unrecognized role in DNA damage repair and replication fork stability by counteracting 53BP1 function. Loss of TPX2 or Aurora A compromises DNA end resection, BRCA1 and Rad51 recruitment, and homologous recombination. Furthermore, loss of TPX2 or Aurora A causes deprotection of stalled replication forks upon replication stress induction. This fork protection pathway counteracts MRE11 nuclease activity but functions in parallel to BRCA1. Strikingly, concurrent loss of 53BP1 rescues not only BRCA1/Rad51 recruitment but also the fork instability induced upon TPX2 loss. Our work suggests the presence of a feedback mechanism by which 53BP1 is regulated by a novel binding partner and uncovers a unique role for 53BP1 in replication fork stability.
Collapse
Affiliation(s)
- Andrea K Byrum
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Denisse Carvajal-Maldonado
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO
| | - Miranda C Mudge
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - David Valle-Garcia
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Department of Medicine, Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Boston, MA
| | - Mona C Majid
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Romil Patel
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| | - Mathew E Sowa
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Yang Shi
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Department of Medicine, Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Boston, MA
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, MO
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
225
|
Lafarga V, Sung HM, Haneke K, Roessig L, Pauleau AL, Bruer M, Rodriguez-Acebes S, Lopez-Contreras AJ, Gruss OJ, Erhardt S, Mendez J, Fernandez-Capetillo O, Stoecklin G. TIAR marks nuclear G2/M transition granules and restricts CDK1 activity under replication stress. EMBO Rep 2019; 20:e46224. [PMID: 30538118 PMCID: PMC6322364 DOI: 10.15252/embr.201846224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The G2/M checkpoint coordinates DNA replication with mitosis and thereby prevents chromosome segregation in the presence of unreplicated or damaged DNA Here, we show that the RNA-binding protein TIAR is essential for the G2/M checkpoint and that TIAR accumulates in nuclear foci in late G2 and prophase in cells suffering from replication stress. These foci, which we named G2/M transition granules (GMGs), occur at low levels in normally cycling cells and are strongly induced by replication stress. In addition to replication stress response proteins, GMGs contain factors involved in RNA metabolism as well as CDK1. Depletion of TIAR accelerates mitotic entry and leads to chromosomal instability in response to replication stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or inhibition of CDK1. Since TIAR retains CDK1 in GMGs and attenuates CDK1 activity, we propose that the assembly of GMGs may represent a so far unrecognized mechanism that contributes to the activation of the G2/M checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Vanesa Lafarga
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Hsu-Min Sung
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina Haneke
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Roessig
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anne-Laure Pauleau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging University of Copenhagen, Copenhagen, Denmark
| | - Marius Bruer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andres J Lopez-Contreras
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Oliver J Gruss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging University of Copenhagen, Copenhagen, Denmark
| | - Juan Mendez
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georg Stoecklin
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
226
|
Debatisse M, Rosselli F. A journey with common fragile sites: From S phase to telophase. Genes Chromosomes Cancer 2018; 58:305-316. [PMID: 30387289 DOI: 10.1002/gcc.22704] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Some regions of the genome, notably common fragile sites (CFSs), are hypersensitive to replication stress and often involved in the generation of gross chromosome rearrangements in cancer cells. CFSs nest within very large genes and display cell-type-dependent instability. Fragile or not, large genes tend to replicate late in S-phase. A number of data now show that transcription perturbs replication completion across the body of large genes, particularly upon replication stress. However, the molecular mechanisms by which transcription elicits such under-replication and subsequent instability remain unclear. We present here our view of the mechanisms responsible for CFS under-replication and those allowing the cells to cope with this problem in G2 and mitosis. We notably focus on the major role played by the FANC proteins in the protection of CFSs from S phase up to late mitosis. We finally discuss a possible rationale for the conservation of large genes across vertebrate evolution.
Collapse
Affiliation(s)
- Michelle Debatisse
- CNRS UMR 8200, Equipe labellisée "La ligue Contre le Cancer", Villejuif, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Gustave Roussy Cancer Center, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR 8200, Equipe labellisée "La ligue Contre le Cancer", Villejuif, France.,Gustave Roussy Cancer Center, Villejuif, France.,Université Paris Saclay - Paris Sud, Orsay, France
| |
Collapse
|
227
|
Bouwman BAM, Crosetto N. Endogenous DNA Double-Strand Breaks during DNA Transactions: Emerging Insights and Methods for Genome-Wide Profiling. Genes (Basel) 2018; 9:E632. [PMID: 30558210 PMCID: PMC6316733 DOI: 10.3390/genes9120632] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) jeopardize genome integrity and can-when repaired unfaithfully-give rise to structural rearrangements associated with cancer. Exogenous agents such as ionizing radiation or chemotherapy can invoke DSBs, but a vast amount of breakage arises during vital endogenous DNA transactions, such as replication and transcription. Additionally, chromatin looping involved in 3D genome organization and gene regulation is increasingly recognized as a possible contributor to DSB events. In this review, we first discuss insights into the mechanisms of endogenous DSB formation, showcasing the trade-off between essential DNA transactions and the intrinsic challenges that these processes impose on genomic integrity. In the second part, we highlight emerging methods for genome-wide profiling of DSBs, and discuss future directions of research that will help advance our understanding of genome-wide DSB formation and repair.
Collapse
Affiliation(s)
- Britta A M Bouwman
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17165 Stockholm, Sweden.
| |
Collapse
|
228
|
Mohni KN, Wessel SR, Zhao R, Wojciechowski AC, Luzwick JW, Layden H, Eichman BF, Thompson PS, Mehta KPM, Cortez D. HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA. Cell 2018; 176:144-153.e13. [PMID: 30554877 DOI: 10.1016/j.cell.2018.10.055] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.
Collapse
Affiliation(s)
- Kareem N Mohni
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah R Wessel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Runxiang Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C Wojciechowski
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jessica W Luzwick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hillary Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Petria S Thompson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
229
|
The Unresolved Problem of DNA Bridging. Genes (Basel) 2018; 9:genes9120623. [PMID: 30545131 PMCID: PMC6316547 DOI: 10.3390/genes9120623] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Accurate duplication and transmission of identical genetic information into offspring cells lies at the heart of a cell division cycle. During the last stage of cellular division, namely mitosis, the fully replicated DNA molecules are condensed into X-shaped chromosomes, followed by a chromosome separation process called sister chromatid disjunction. This process allows for the equal partition of genetic material into two newly born daughter cells. However, emerging evidence has shown that faithful chromosome segregation is challenged by the presence of persistent DNA intertwining structures generated during DNA replication and repair, which manifest as so-called ultra-fine DNA bridges (UFBs) during anaphase. Undoubtedly, failure to disentangle DNA linkages poses a severe threat to mitosis and genome integrity. This review will summarize the possible causes of DNA bridges, particularly sister DNA inter-linkage structures, in an attempt to explain how they may be processed and how they influence faithful chromosome segregation and the maintenance of genome stability.
Collapse
|
230
|
Abstract
The instability of chromosome fragile sites is implicated as a causative factor in several human diseases, including cancer [for common fragile sites (CFSs)] and neurological disorders [for rare fragile sites (RFSs)]. Previous studies have indicated that problems arising during DNA replication are the underlying source of this instability. Although the role of replication stress in promoting instability at CFSs is well documented, much less is known about how the fragility of RFSs arises. Many RFSs, as exemplified by expansion of a CGG trinucleotide repeat sequence in the fragile X syndrome-associated FRAXA locus, exhibit fragility in response to folate deficiency or other forms of "folate stress." We hypothesized that such folate stress, through disturbing the replication program within the pathologically expanded repeats within FRAXA, would lead to mitotic abnormalities that exacerbate locus instability. Here, we show that folate stress leads to a dramatic increase in missegregation of FRAXA coupled with the formation of single-stranded DNA bridges in anaphase and micronuclei that contain the FRAXA locus. Moreover, chromosome X aneuploidy is seen when these cells are exposed to folate deficiency for an extended period. We propose that problematic FRAXA replication during interphase leads to a failure to disjoin the sister chromatids during anaphase. This generates further instability not only at FRAXA itself but also of chromosome X. These data have wider implications for the effects of folate deficiency on chromosome instability in human cells.
Collapse
|
231
|
Voutsinos V, Munk SHN, Oestergaard VH. Common Chromosomal Fragile Sites-Conserved Failure Stories. Genes (Basel) 2018; 9:E580. [PMID: 30486458 PMCID: PMC6315858 DOI: 10.3390/genes9120580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
In order to pass on an intact copy of the genome during cell division, complete and faithful DNA replication is crucial. Yet, certain areas of the genome are intrinsically challenging to replicate, which manifests as high local mutation propensity. Such regions include trinucleotide repeat sequences, common chromosomal fragile sites (CFSs), and early replicating fragile sites (ERFSs). Despite their genomic instability CFSs are conserved, suggesting that they have a biological function. To shed light on the potential function of CFSs, this review summarizes the similarities and differences of the regions that challenge DNA replication with main focus on CFSs. Moreover, we review the mechanisms that operate when CFSs fail to complete replication before entry into mitosis. Finally, evolutionary perspectives and potential physiological roles of CFSs are discussed with emphasis on their potential role in neurogenesis.
Collapse
Affiliation(s)
- Vasileios Voutsinos
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Sebastian H N Munk
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
232
|
Tonzi P, Yin Y, Lee CWT, Rothenberg E, Huang TT. Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery. eLife 2018; 7:41426. [PMID: 30422114 PMCID: PMC6251625 DOI: 10.7554/elife.41426] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
DNA replication stress is often defined by the slowing or stalling of replication fork progression leading to local or global DNA synthesis inhibition. Failure to resolve replication stress in a timely manner contribute toward cell cycle defects, genome instability and human disease; however, the mechanism for fork recovery remains poorly defined. Here, we show that the translesion DNA polymerase (Pol) kappa, a DinB orthologue, has a unique role in both protecting and restarting stalled replication forks under conditions of nucleotide deprivation. Importantly, Pol kappa-mediated DNA synthesis during hydroxyurea (HU)-dependent fork restart is regulated by both the Fanconi Anemia (FA) pathway and PCNA polyubiquitination. Loss of Pol kappa prevents timely rescue of stalled replication forks, leading to replication-associated genomic instability, and a p53-dependent cell cycle defect. Taken together, our results identify a previously unanticipated role for Pol kappa in promoting DNA synthesis and replication stress recovery at sites of stalled forks.
Collapse
Affiliation(s)
- Peter Tonzi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Yandong Yin
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Chelsea Wei Ting Lee
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Eli Rothenberg
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, United States
| |
Collapse
|
233
|
Courtot L, Hoffmann JS, Bergoglio V. The Protective Role of Dormant Origins in Response to Replicative Stress. Int J Mol Sci 2018; 19:ijms19113569. [PMID: 30424570 PMCID: PMC6274952 DOI: 10.3390/ijms19113569] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Genome stability requires tight regulation of DNA replication to ensure that the entire genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin activation is controlled in space and time by a cell-specific and robust program called replication timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but only 20⁻30% of them are active during the DNA replication of a given cell in the synthesis (S) phase. When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell must activate some of the inactive or "dormant" origins to complete replication on time. Thus, the many origins that may be activated are probably key to protect the genome against replication stress. This review aims to discuss the role of these dormant origins as safeguards of the human genome during replicative stress.
Collapse
Affiliation(s)
- Lilas Courtot
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| |
Collapse
|
234
|
CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Mol Cell 2018; 72:568-582.e6. [DOI: 10.1016/j.molcel.2018.09.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/08/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022]
|
235
|
Bártová E, Legartová S, Krejčí J, Řezníčková P, Kovaříková AS, Suchánková J, Fedr R, Smirnov E, Hornáček M, Raška I. Depletion of A-type lamins and Lap2α reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2α protein is responsible for compactness of irradiated chromatin. J Cell Biochem 2018; 119:8146-8162. [PMID: 29923310 DOI: 10.1002/jcb.26770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
We studied how deficiency in lamins A/C and lamina-associated polypeptide 2α (Lap2α) affects DNA repair after irradiation. A-type lamins and Lap2α were not recruited to local DNA lesions and did not accumulate to γ-irradiation-induced foci (IRIF), as it is generally observed for well-known marker of DNA lesions, 53BP1 protein. At micro-irradiated chromatin of lmna double knockout (dn) and Lap2α dn cells, 53BP1 protein levels were reduced, compared to locally irradiated wild-type counterpart. Decreased levels of 53BP1 we also observed in whole populations of lmna dn and Lap2α dn cells, irradiated by UV light. We also studied distribution pattern of 53BP1 protein in a genome outside micro-irradiated region. In Lap2α deficient cells, identical fluorescence of mCherry-tagged 53BP1 protein was found at both microirradiated region and surrounding chromatin. However, a well-known marker of double strand breaks, γH2AX, was highly abundant in the lesion-surrounding genome of Lap2α deficient cells. Described changes, induced by irradiation in Lap2α dn cells, were not accompanied by cell cycle changes. In Lap2α dn cells, we additionally performed analysis by FLIM (Fluorescence Lifetime Imaging Microscopy) that showed different dynamic behavior of mCherry-tagged 53BP1 protein pools when it was compared with wild-type (wt) fibroblasts. This analysis revealed three different fractions of mCherry-53BP1 protein. Two of them showed identical exponential decay times (τ1 and τ3), but the decay rate of τ2 and amplitudes of fluorescence decays (A1-A3) were statistically different in wt and Lap2α dn fibroblasts. Moreover, γ-irradiation weakened an interaction between A-type lamins and Lap2α. Together, our results demonstrate how depletion of Lap2α affects DNA damage response (DDR) and how chromatin compactness is changed in Lap2α deficient cells exposed to radiation.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petra Řezníčková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Jana Suchánková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Evgeny Smirnov
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Matúš Hornáček
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ivan Raška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
236
|
Sadler JBA, Wenzel DM, Strohacker LK, Guindo-Martínez M, Alam SL, Mercader JM, Torrents D, Ullman KS, Sundquist WI, Martin-Serrano J. A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proc Natl Acad Sci U S A 2018; 115:E8900-E8908. [PMID: 30181294 PMCID: PMC6156662 DOI: 10.1073/pnas.1805504115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokinetic abscission facilitates the irreversible separation of daughter cells. This process requires the endosomal-sorting complexes required for transport (ESCRT) machinery and is tightly regulated by charged multivesicular body protein 4C (CHMP4C), an ESCRT-III subunit that engages the abscission checkpoint (NoCut) in response to mitotic problems such as persisting chromatin bridges within the midbody. Importantly, a human polymorphism in CHMP4C (rs35094336, CHMP4CT232) increases cancer susceptibility. Here, we explain the structural and functional basis for this cancer association: The CHMP4CT232 allele unwinds the C-terminal helix of CHMP4C, impairs binding to the early-acting ESCRT factor ALIX, and disrupts the abscission checkpoint. Cells expressing CHMP4CT232 exhibit increased levels of DNA damage and are sensitized to several conditions that increase chromosome missegregation, including DNA replication stress, inhibition of the mitotic checkpoint, and loss of p53. Our data demonstrate the biological importance of the abscission checkpoint and suggest that dysregulation of abscission by CHMP4CT232 may synergize with oncogene-induced mitotic stress to promote genomic instability and tumorigenesis.
Collapse
Affiliation(s)
- Jessica B A Sadler
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Dawn M Wenzel
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Lauren K Strohacker
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Marta Guindo-Martínez
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Steven L Alam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Josep M Mercader
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Program in Metabolism, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - David Torrents
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112;
| | - Juan Martin-Serrano
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, SE1 9RT London, United Kingdom;
| |
Collapse
|
237
|
Johnson TI, Costa ASH, Ferguson AN, Frezza C. Fumarate hydratase loss promotes mitotic entry in the presence of DNA damage after ionising radiation. Cell Death Dis 2018; 9:913. [PMID: 30190474 PMCID: PMC6127199 DOI: 10.1038/s41419-018-0912-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
An altered response to DNA damage is commonly associated with genomic instability, a hallmark of cancer. Fumarate hydratase (FH) was recently characterised as a DNA repair factor required in non-homologous end-joining (NHEJ) through the local production of fumarate. Inactivating germline mutations in FH cause hereditary leiomyomatosis and renal cell cancer (HLRCC), a cancer syndrome characterised by accumulation of fumarate. Recent data indicate that, in FH-deficient cells, fumarate suppresses homologous recombination DNA repair upon DNA double-strand breaks, compromising genome integrity. Here, we show that FH loss confers resistance to DNA damage caused by ionising radiation (IR), and promotes early mitotic entry after IR in a fumarate-specific manner, even in the presence of unrepaired damage, by suppressing checkpoint maintenance. We also showed that higher levels of DNA damage foci are detectable in untreated FH-deficient cells. Overall, these data indicate that FH loss and fumarate accumulation lead to a weakened G2 checkpoint that predisposes to endogenous DNA damage and confers resistance to IR.
Collapse
Affiliation(s)
- Timothy I Johnson
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC research centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC research centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Ashley N Ferguson
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC research centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC research centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|
238
|
El-Arabey AA, Salama SA, Abd-Allah AR. CENP-E as a target for cancer therapy: Where are we now? Life Sci 2018; 208:192-200. [PMID: 30031812 DOI: 10.1016/j.lfs.2018.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 01/29/2023]
Abstract
In 2015, more than 1.6 million new cancer cases with 589,430 deaths were estimated over worldwide. Cancer is a complex disease with abnormal cell growth control which is hallmarked by chromosome misalignment and consequently genomic instability. Mitosis is a well-known target for chemotherapy as taxol and colchicines inhibit tumor cell division by inhibiting mitotic spindle plasticity. Accumulating evidence has revealed that the Centromere-associated Protein E (CENP-E) is expressed during mitosis and plays critical roles in inaccurate chromosome alignment. Thus, CENP-E might represent a druggable target for several solid tumors which do not have targeted therapy. Moreover, CENP-E appears during the mitotic phase of cell cycle and not implicates in the neuronal function. Hence, we will shed light on CENP-E as an emerging target for chemotherapy in clinical oncology and highlight challenges and excitement down the road.
Collapse
Affiliation(s)
- Amr Ahmed El-Arabey
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Salama Abdu Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Adel Rashad Abd-Allah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
239
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
240
|
MRE11 inhibition highlights a replication stress-dependent vulnerability of MYCN-driven tumors. Cell Death Dis 2018; 9:895. [PMID: 30166519 PMCID: PMC6117286 DOI: 10.1038/s41419-018-0924-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors.
Collapse
|
241
|
Abstract
The Restriction Point was originally defined as the moment that cells commit to the cell cycle and was later suggested to coincide with hyperphosphorylation of the retinoblastoma protein (Rb). Current cell cycle models posit that cells exit mitosis into a pre-Restriction Point state, where they have low cyclin-dependent kinase (CDK) activity and hypophosphorylated Rb; passage through the Restriction Point then occurs in late G1. Recent single-cell studies have challenged the current paradigm, raising questions about the location of the Restriction Point and the notion that cells exit mitosis into a pre-Restriction Point state. Here, we use a variety of single-cell techniques to show that both noncancer and cancer cells bifurcate into two subpopulations after anaphase, marked by increasing vs. low CDK2 activity and hyper- vs. hypophosphorylation of Rb. Notably, subpopulations with hyper- and hypophosphorylated Rb are present within minutes after anaphase, delineating one subpopulation that never "uncrosses" the Restriction Point and continues cycling and another subpopulation that exits mitosis into an uncommitted pre-Restriction Point state. We further show that the CDK inhibitor p21 begins rising in G2 in mother cells whose daughters exit mitosis into the pre-Restriction Point, CDK2low state. Furthermore, degradation of p21 coincides with escape from the CDK2low state and passage through the Restriction Point. Together, these data support a model in which only a subset of cells returns to a pre-Restriction Point state after mitosis and where the Restriction Point is sensitive to not only mitogens, but also inherited DNA replication stress via p21.
Collapse
Affiliation(s)
- Justin Moser
- Department of Biochemistry, University of Colorado-Boulder, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80309
| | - Iain Miller
- Department of Biochemistry, University of Colorado-Boulder, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80309
| | - Dylan Carter
- Department of Biochemistry, University of Colorado-Boulder, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80309
| | - Sabrina L Spencer
- Department of Biochemistry, University of Colorado-Boulder, Boulder, CO 80303;
- BioFrontiers Institute, University of Colorado-Boulder, Boulder, CO 80309
| |
Collapse
|
242
|
Abstract
Flaws in the DNA replication process have emerged as a leading driver of genome instability in human diseases. Alteration to replication fork progression is a defining feature of replication stress and the consequent failure to maintain fork integrity and complete genome duplication within a single round of S-phase compromises genetic integrity. This includes increased mutation rates, small and large scale genomic rearrangement and deleterious consequences for the subsequent mitosis that result in the transmission of additional DNA damage to the daughter cells. Therefore, preserving fork integrity and replication competence is an important aspect of how cells respond to replication stress and avoid genetic change. Homologous recombination is a pivotal pathway in the maintenance of genome integrity in the face of replication stress. Here we review our recent understanding of the mechanisms by which homologous recombination acts to protect, restart and repair replication forks. We discuss the dynamics of these genetically distinct functions and their contribution to faithful mitoticsegregation.
Collapse
|
243
|
Saldivar JC, Hamperl S, Bocek MJ, Chung M, Bass TE, Cisneros-Soberanis F, Samejima K, Xie L, Paulson JR, Earnshaw WC, Cortez D, Meyer T, Cimprich KA. An intrinsic S/G 2 checkpoint enforced by ATR. Science 2018; 361:806-810. [PMID: 30139873 PMCID: PMC6365305 DOI: 10.1126/science.aap9346] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/07/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G1/S, G2/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G2 transition. Here we show that cells transactivate the mitotic gene network as they exit the S phase through a CDK1 (cyclin-dependent kinase 1)-directed FOXM1 phosphorylation switch. During normal DNA replication, the checkpoint kinase ATR (ataxia-telangiectasia and Rad3-related) is activated by ETAA1 to block this switch until the S phase ends. ATR inhibition prematurely activates FOXM1, deregulating the S/G2 transition and leading to early mitosis, underreplicated DNA, and DNA damage. Thus, ATR couples DNA replication with mitosis and preserves genome integrity by enforcing an S/G2 checkpoint.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Stephan Hamperl
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Thomas E Bass
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Fernanda Cisneros-Soberanis
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México; Insituto Nacional de Cancerología, México City 14080, Mexico
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - James R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| |
Collapse
|
244
|
Schmid JA, Berti M, Walser F, Raso MC, Schmid F, Krietsch J, Stoy H, Zwicky K, Ursich S, Freire R, Lopes M, Penengo L. Histone Ubiquitination by the DNA Damage Response Is Required for Efficient DNA Replication in Unperturbed S Phase. Mol Cell 2018; 71:897-910.e8. [PMID: 30122534 DOI: 10.1016/j.molcel.2018.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/01/2018] [Accepted: 07/11/2018] [Indexed: 01/16/2023]
Abstract
Chromatin ubiquitination by the ubiquitin ligase RNF168 is critical to regulate the DNA damage response (DDR). DDR deficiencies lead to cancer-prone syndromes, but whether this reflects DNA repair defects is still elusive. We identified key factors of the RNF168 pathway as essential mediators of efficient DNA replication in unperturbed S phase. We found that loss of RNF168 leads to reduced replication fork progression and to reversed fork accumulation, particularly evident at repetitive sequences stalling replication. Slow fork progression depends on MRE11-dependent degradation of reversed forks, implicating RNF168 in reversed fork protection and restart. Consistent with regular nucleosomal organization of reversed forks, the replication function of RNF168 requires H2A ubiquitination. As this novel function is shared with the key DDR players ATM, γH2A.X, RNF8, and 53BP1, we propose that double-stranded ends at reversed forks engage classical DDR factors, suggesting an alternative function of this pathway in preventing genome instability and human disease.
Collapse
Affiliation(s)
- Jonas Andreas Schmid
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Matteo Berti
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Franziska Walser
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Maria Chiara Raso
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Fabian Schmid
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Katharina Zwicky
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Sebastian Ursich
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, La Cuesta, La Laguna, Tenerife 38320, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland.
| | - Lorenza Penengo
- Institute of Molecular Cancer Research, University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
245
|
Martin CA, Sarlós K, Logan CV, Thakur RS, Parry DA, Bizard AH, Leitch A, Cleal L, Ali NS, Al-Owain MA, Allen W, Altmüller J, Aza-Carmona M, Barakat BAY, Barraza-García J, Begtrup A, Bogliolo M, Cho MT, Cruz-Rojo J, Dhahrabi HAM, Elcioglu NH, Gorman GS, Jobling R, Kesterton I, Kishita Y, Kohda M, Le Quesne Stabej P, Malallah AJ, Nürnberg P, Ohtake A, Okazaki Y, Pujol R, Ramirez MJ, Revah-Politi A, Shimura M, Stevens P, Taylor RW, Turner L, Williams H, Wilson C, Yigit G, Zahavich L, Alkuraya FS, Surralles J, Iglesias A, Murayama K, Wollnik B, Dattani M, Heath KE, Hickson ID, Jackson AP. Mutations in TOP3A Cause a Bloom Syndrome-like Disorder. Am J Hum Genet 2018; 103:221-231. [PMID: 30057030 PMCID: PMC6080766 DOI: 10.1016/j.ajhg.2018.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.
Collapse
Affiliation(s)
- Carol-Anne Martin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Clare V Logan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Roshan Singh Thakur
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - David A Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Andrea Leitch
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Louise Cleal
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Mohammed A Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics and Skeletal dysplasia multidisciplinary Unit, Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPaz, Madrid 28046, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain
| | | | - Jimena Barraza-García
- Institute of Medical and Molecular Genetics and Skeletal dysplasia multidisciplinary Unit, Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPaz, Madrid 28046, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain
| | - Amber Begtrup
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Massimo Bogliolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Megan T Cho
- GeneDx, 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Jaime Cruz-Rojo
- Department of Pediatric Endocrinology & Dysmorphology, Hospital 12 Octubre, Madrid 28041, Spain
| | | | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul 34722, Turkey
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, School of Medical Education, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Ian Kesterton
- Cytogenetics Department, Viapath Analytics, Guy's Hospital, London SE1 9RT, UK
| | - Yoshihito Kishita
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masakazu Kohda
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Yasushi Okazaki
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Roser Pujol
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria José Ramirez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Paul Stevens
- Cytogenetics Department, Viapath Analytics, Guy's Hospital, London SE1 9RT, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, School of Medical Education, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lesley Turner
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Hywel Williams
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Laura Zahavich
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Jordi Surralles
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Department of Genetics and Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Alejandro Iglesias
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mehul Dattani
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Karen E Heath
- Institute of Medical and Molecular Genetics and Skeletal dysplasia multidisciplinary Unit, Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPaz, Madrid 28046, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid 28029, Spain
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
246
|
|
247
|
Michelena J, Lezaja A, Teloni F, Schmid T, Imhof R, Altmeyer M. Analysis of PARP inhibitor toxicity by multidimensional fluorescence microscopy reveals mechanisms of sensitivity and resistance. Nat Commun 2018; 9:2678. [PMID: 29992957 PMCID: PMC6041334 DOI: 10.1038/s41467-018-05031-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
Exploiting the full potential of anti-cancer drugs necessitates a detailed understanding of their cytotoxic effects. While standard omics approaches are limited to cell population averages, emerging single cell techniques currently lack throughput and are not applicable for compound screens. Here, we employed a versatile and sensitive high-content microscopy-based approach to overcome these limitations and quantify multiple parameters of cytotoxicity at the single cell level and in a cell cycle resolved manner. Applied to PARP inhibitors (PARPi) this approach revealed an S-phase-specific DNA damage response after only 15 min, quantitatively differentiated responses to several clinically important PARPi, allowed for cell cycle resolved analyses of PARP trapping, and predicted conditions of PARPi hypersensitivity and resistance. The approach illuminates cellular mechanisms of drug synergism and, through a targeted multivariate screen, could identify a functional interaction between PARPi olaparib and NEDD8/SCF inhibition, which we show is dependent on PARP1 and linked to PARP1 trapping. Methods to study anti-cancer drugs cytotoxicity are often low throughput and rely on population average. Here the authors present an automated image-based cytometry method to quantify multiple cytotoxicity parameters in single cells, and use it to study the effect of PARP inhibitors in cancer cells.
Collapse
Affiliation(s)
- Jone Michelena
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Thomas Schmid
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
248
|
Lemmens B, Hegarat N, Akopyan K, Sala-Gaston J, Bartek J, Hochegger H, Lindqvist A. DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation. Mol Cell 2018; 71:117-128.e3. [PMID: 30008317 PMCID: PMC6039720 DOI: 10.1016/j.molcel.2018.05.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/26/2022]
Abstract
To maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Nadia Hegarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joan Sala-Gaston
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden; Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK.
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
249
|
Cánovas B, Igea A, Sartori AA, Gomis RR, Paull TT, Isoda M, Pérez-Montoyo H, Serra V, González-Suárez E, Stracker TH, Nebreda AR. Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells. Cancer Cell 2018; 33:1094-1110.e8. [PMID: 29805078 DOI: 10.1016/j.ccell.2018.04.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 01/18/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related death among women. Here we report a role for the protein kinase p38α in coordinating the DNA damage response and limiting chromosome instability during breast tumor progression, and identify the DNA repair regulator CtIP as a p38α substrate. Accordingly, decreased p38α signaling results in impaired ATR activation and homologous recombination repair, with concomitant increases in replication stress, DNA damage, and chromosome instability, leading to cancer cell death and tumor regression. Moreover, we show that pharmacological inhibition of p38α potentiates the effects of taxanes by boosting chromosome instability in murine models and patient-derived xenografts, suggesting the potential interest of combining p38α inhibitors with chemotherapeutic drugs that induce chromosome instability.
Collapse
Affiliation(s)
- Begoña Cánovas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Ana Igea
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Alessandro A Sartori
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Roger R Gomis
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain; Universitat de Barcelona and CIBERONC, Barcelona, Spain
| | - Tanya T Paull
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
| | - Michitaka Isoda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Héctor Pérez-Montoyo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Eva González-Suárez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
250
|
Parisotto M, Grelet E, El Bizri R, Dai Y, Terzic J, Eckert D, Gargowitsch L, Bornert JM, Metzger D. PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J Exp Med 2018; 215:1749-1763. [PMID: 29743291 PMCID: PMC5987915 DOI: 10.1084/jem.20171207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 02/03/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic ablation of the tumor suppressor PTEN in prostatic epithelial cells (PECs) induces cell senescence. However, unlike oncogene-induced senescence, no hyperproliferation phase and no signs of DNA damage response (DDR) were observed in PTEN-deficient PECs; PTEN loss-induced senescence (PICS) was reported to be a novel type of cellular senescence. Our study reveals that PTEN ablation in prostatic luminal epithelial cells of adult mice stimulates PEC proliferation, followed by a progressive growth arrest with characteristics of cell senescence. Importantly, we also show that proliferating PTEN-deficient PECs undergo replication stress and mount a DDR leading to p53 stabilization, which is however delayed by Mdm2-mediated p53 down-regulation. Thus, even though PTEN-deficiency induces cellular senescence that restrains tumor progression, as it involves replication stress, strategies promoting PTEN loss-induced senescence are at risk for cancer prevention and therapy.
Collapse
Affiliation(s)
- Maxime Parisotto
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| | - Elise Grelet
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| | - Rana El Bizri
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| | - Yongyuan Dai
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| | - Julie Terzic
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| | - Doriane Eckert
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| | - Laetitia Gargowitsch
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| | - Jean-Marc Bornert
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| | - Daniel Metzger
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch Cedex, France
| |
Collapse
|