201
|
Aleksieva N, Forbes SJ. Biliary-derived hepatocytes in chronic liver injury: Bringing new troops to the battlefield? J Hepatol 2019; 70:1051-1053. [PMID: 30979534 DOI: 10.1016/j.jhep.2019.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Niya Aleksieva
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, UK
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, UK.
| |
Collapse
|
202
|
Hyun J, Oh SH, Premont RT, Guy CD, Berg CL, Diehl AM. Dysregulated activation of fetal liver programme in acute liver failure. Gut 2019; 68:1076-1087. [PMID: 30670575 PMCID: PMC6580749 DOI: 10.1136/gutjnl-2018-317603] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Uncertainty about acute liver failure (ALF) pathogenesis limits therapy. We postulate that ALF results from excessive reactivation of a fetal liver programme that is induced in hepatocytes when acutely injured livers regenerate. To evaluate this hypothesis, we focused on two molecules with known oncofetal properties in the liver, Yes-associated protein-1 (YAP1) and Insulin-like growth factor-2 RNA-binding protein-3 (IGF2BP3). DESIGN We compared normal liver with explanted livers of patients with ALF to determine if YAP1 and IGF2BP3 were induced; assessed whether these factors are upregulated when murine livers regenerate; determined if YAP1 and IGF2BP3 cooperate to activate the fetal programme in adult hepatocytes; and identified upstream signals that control these factors and thereby hepatocyte maturity during recovery from liver injury. RESULTS Livers of patients with ALF were massively enriched with hepatocytes expressing IGF2BP3, YAP1 and other fetal markers. Less extensive, transient accumulation of similar fetal-like cells that were proliferative and capable of anchorage-independent growth occurred in mouse livers that were regenerating after acute injury. Fetal reprogramming of hepatocytes was YAP1-dependent and involved YAP1-driven reciprocal modulation of let7 microRNAs and IGF2BP3, factors that negatively regulate each other to control fate decisions in fetal cells. Directly manipulating IGF2BP3 expression controlled the fetal-like phenotype regardless of YAP1 activity, proving that IGF2BP3 is the proximal mediator of this YAP1-directed fate. CONCLUSION After acute liver injury, hepatocytes are reprogrammed to fetal-like cells by a YAP1-dependent mechanism that differentially regulates let7 and IGF2BP3, identifying novel therapeutic targets for ALF.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Regeneration Next, Duke University School of Medicine, Durham, North Carolina, USA
| | - Seh-Hoon Oh
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Richard T Premont
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Carl L Berg
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
203
|
Clerbaux LA, Manco R, Van Hul N, Bouzin C, Sciarra A, Sempoux C, Theise ND, Leclercq IA. Invasive Ductular Reaction Operates Hepatobiliary Junctions upon Hepatocellular Injury in Rodents and Humans. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1569-1581. [PMID: 31108103 DOI: 10.1016/j.ajpath.2019.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/18/2019] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Ductular reaction (DR) is observed in virtually all liver diseases in both humans and rodents. Depending on the injury, DR is confined within the periportal area or invades the parenchyma. On severe hepatocellular injury, invasive DR has been proposed to arise for supplying the liver with new hepatocytes. However, experimental data evidenced that DR contribution to hepatocyte repopulation is at the most modest, unless replicative capacity of hepatocytes is abrogated. Herein, we proposed that invasive DR could contribute to operating hepatobiliary junctions on hepatocellular injury. The choline-deficient ethionine-supplemented mouse model of hepatocellular injury and human liver samples were used to evaluate the hepatobiliary junctional role of the invasive form of DR. Choline-deficient ethionine-supplemented-induced DR expanded as biliary epithelium into the lobule and established new junctions with the canaliculi. By contrast, no new ductular-canalicular junctions were observed in mouse models of biliary obstructive injury exhibiting noninvasive DR. Similarly, in humans, an increased number of hepatobiliary junctions were observed in hepatocellular diseases (viral, drug induced, or metabolic) in which DR invaded the lobule but not in biliary diseases (obstruction or cholangitis) in which DR was contained within the portal mesenchyme. In conclusion, our data in rodents and humans support that invasive DR plays a hepatobiliary junctional role to maintain structural continuity between hepatocytes and ducts in disorders affecting hepatocytes.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Manco
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium
| | - Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Caroline Bouzin
- Imaging Platform, Institute of clinical and Experimental Research, Université Catholique de Louvain, Brussels, Belgium
| | - Amedeo Sciarra
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Neil D Theise
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Isabelle A Leclercq
- Laboratory of Gastroenterology, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
204
|
Wang F, Sun NN, Li LL, Zhu WW, Xiu J, Shen Y, Xu Q. Hepatic progenitor cell activation is induced by the depletion of the gut microbiome in mice. Microbiologyopen 2019; 8:e873. [PMID: 31094067 PMCID: PMC6813488 DOI: 10.1002/mbo3.873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
The homeostasis of the gut microbiome is crucial for human health and for liver function. However, it has not been established whether the gut microbiome influence hepatic progenitor cells (HPCs). HPCs are capable of self‐renewal and differentiate into hepatocytes and cholangiocytes; however, HPCs are normally quiescent and are rare in adults. After sustained liver damage, a ductular reaction occurs, and the number of HPCs is substantially increased. Here, we administered five broad‐spectrum antibiotics for 14 days to deplete the gut microbiomes of male C57BL/6 mice, and we measured the plasma aminotransferases and other biochemical indices. The expression levels of two HPC markers, SRY‐related high mobility group‐box gene 9 (Sox9) and cytokeratin (CK), were also measured. The plasma aminotransferase activities were not affected, but the triglyceride, lactate dehydrogenase, low‐density lipoprotein, and high‐density lipoprotein concentrations were significantly altered; this suggests that liver function is affected by the composition of the gut microbiome. The mRNA expression of Sox9 was significantly higher in the treated mice than it was in the control mice (p < 0.0001), and a substantial expression of Sox9 and CK was observed around the bile ducts. The mRNA expression levels of proinflammatory factors (interleukin [IL]‐1β, IL‐6, tumor necrosis factor [TNF]‐α, and TNF‐like weak inducer of apoptosis [Tweak]) were also significantly higher in the antibiotic‐treated mice than the levels in the control mice. These data imply that the depletion of the gut microbiome leads to liver damage, negatively impacts the hepatic metabolism and function, and activates HPCs. However, the underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan-Nan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lan-Lan Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wan-Wan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
205
|
Van Haele M, Snoeck J, Roskams T. Human Liver Regeneration: An Etiology Dependent Process. Int J Mol Sci 2019; 20:ijms20092332. [PMID: 31083462 PMCID: PMC6539121 DOI: 10.3390/ijms20092332] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Regeneration of the liver has been an interesting and well-investigated topic for many decades. This etiology and time-dependent mechanism has proven to be extremely challenging to investigate, certainly in human diseases. A reason for this challenge is found in the numerous interactions of different cell components, of which some are even only temporarily present (e.g., inflammatory cells). To orchestrate regeneration of the epithelial cells, their interaction with the non-epithelial components is of utmost importance. Hepatocytes, cholangiocytes, liver progenitor cells, and peribiliary glands have proven to be compartments of regeneration. The ductular reaction is a common denominator in virtually all liver diseases; however, it is predominantly found in late-stage hepatic and biliary diseases. Ductular reaction is an intriguing example of interplay between epithelial and non-epithelial cells and encompasses bipotential liver progenitor cells which are able to compensate for the loss of the exhausted hepatocytes and cholangiocytes in biliary and hepatocytic liver diseases. In this manuscript, we focus on the etiology-specific damage that is observed in different human diseases and how the liver regulates the regenerative response in an acute and chronic setting. Furthermore, we describe the importance of morphological keynotes in different etiologies and how spatial information is of relevance for every basic and translational research of liver regeneration.
Collapse
Affiliation(s)
- Matthias Van Haele
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Janne Snoeck
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
206
|
Single-Cell Analysis of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration. Cell Stem Cell 2019; 25:23-38.e8. [PMID: 31080134 DOI: 10.1016/j.stem.2019.04.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 02/04/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
The liver can substantially regenerate after injury, with both main epithelial cell types, hepatocytes and biliary epithelial cells (BECs), playing important roles in parenchymal regeneration. Beyond metabolic functions, BECs exhibit substantial plasticity and in some contexts can drive hepatic repopulation. Here, we performed single-cell RNA sequencing to examine BEC and hepatocyte heterogeneity during homeostasis and after injury. Instead of evidence for a transcriptionally defined progenitor-like BEC cell, we found significant homeostatic BEC heterogeneity that reflects fluctuating activation of a YAP-dependent program. This transcriptional signature defines a dynamic cellular state during homeostasis and is highly responsive to injury. YAP signaling is induced by physiological bile acids (BAs), required for BEC survival in response to BA exposure, and is necessary for hepatocyte reprogramming into biliary progenitors upon injury. Together, these findings uncover molecular heterogeneity within the ductal epithelium and reveal YAP as a protective rheostat and regenerative regulator in the mammalian liver.
Collapse
|
207
|
Vicent S, Lieshout R, Saborowski A, Verstegen MMA, Raggi C, Recalcati S, Invernizzi P, van der Laan LJW, Alvaro D, Calvisi DF, Cardinale V. Experimental models to unravel the molecular pathogenesis, cell of origin and stem cell properties of cholangiocarcinoma. Liver Int 2019; 39 Suppl 1:79-97. [PMID: 30851232 DOI: 10.1111/liv.14094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Human cholangiocarcinoma (CCA) is an aggressive tumour entity arising from the biliary tree, whose molecular pathogenesis remains largely undeciphered. Over the last decade, the advent of high-throughput and cell-based techniques has significantly increased our knowledge on the molecular mechanisms underlying this disease while, at the same time, unravelling CCA complexity. In particular, it becomes clear that CCA displays pronounced inter- and intratumoural heterogeneity, which is presumably the consequence of the interplay between distinct tissues and cells of origin, the underlying diseases, and the associated molecular alterations. To better characterize these events and to design novel and more effective therapeutic strategies, a number of CCA experimental and preclinical models have been developed and are currently generated. This review summarizes the current knowledge and understanding of these models, critically underlining their translational usefulness and limitations. Furthermore, this review aims to provide a comprehensive overview on cells of origin, cancers stem cells and their dynamic interplay within CCA tissue.
Collapse
Affiliation(s)
- Silvestre Vicent
- Program in Solid Tumors, Center for Applied Applied Medical Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospita, l, University of Milano, Bicocca, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
208
|
Abstract
Cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, are highly specialized cells residing in a complex anatomic niche where they participate in bile production and homeostasis. Cholangiocytes are damaged in a variety of human diseases termed cholangiopathies, often causing advanced liver failure. The regulation of cholangiocyte transport properties is increasingly understood, as is their anatomical and functional heterogeneity along the biliary tract. Furthermore, cholangiocytes are pivotal in liver regeneration, especially when hepatocyte regeneration is compromised. The role of cholangiocytes in innate and adaptive immune responses, a critical subject relevant to immune-mediated cholangiopathies, is also emerging. Finally, reactive ductular cells are present in many cholestatic and other liver diseases. In chronic disease states, this repair response contributes to liver inflammation, fibrosis and carcinogenesis and is a subject of intense investigation. This Review highlights advances in cholangiocyte research, especially their role in development and liver regeneration, their functional and biochemical heterogeneity, their activation and involvement in inflammation and fibrosis and their engagement with the immune system. We aim to focus further attention on cholangiocyte pathobiology and the search for new disease-modifying therapies targeting the cholangiopathies.
Collapse
|
209
|
Teo YV, Rattanavirotkul N, Olova N, Salzano A, Quintanilla A, Tarrats N, Kiourtis C, Müller M, Green AR, Adams PD, Acosta JC, Bird TG, Kirschner K, Neretti N, Chandra T. Notch Signaling Mediates Secondary Senescence. Cell Rep 2019; 27:997-1007.e5. [PMID: 31018144 PMCID: PMC6486482 DOI: 10.1016/j.celrep.2019.03.104] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a tumor suppressive response to oncogene activation that can be transmitted to neighboring cells through secreted factors of the senescence-associated secretory phenotype (SASP). Currently, primary and secondary senescent cells are not considered functionally distinct endpoints. Using single-cell analysis, we observed two distinct transcriptional endpoints, a primary endpoint marked by Ras and a secondary endpoint marked by Notch activation. We find that secondary oncogene-induced senescence in vitro and in vivo requires Notch, rather than SASP alone, as previously thought. Moreover, Notch signaling weakens, but does not abolish, SASP in secondary senescence. Global transcriptomic differences, a blunted SASP response, and the induction of fibrillar collagens in secondary senescence point toward a functional diversification between secondary and primary senescence.
Collapse
Affiliation(s)
- Yee Voan Teo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Nattaphong Rattanavirotkul
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK; Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Nelly Olova
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Angela Salzano
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrea Quintanilla
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Nuria Tarrats
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Christos Kiourtis
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK; CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Anthony R Green
- Wellcome/MRC Cambridge Stem Cell Institute and Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK; CRUK Beatson Institute, Glasgow G61 1BD, UK; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Juan-Carlos Acosta
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Thomas G Bird
- CRUK Beatson Institute, Glasgow G61 1BD, UK; MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH164TJ, UK
| | - Kristina Kirschner
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK.
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02906, USA.
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
210
|
Russell JO, Ko S, Monga SP, Shin D. Notch Inhibition Promotes Differentiation of Liver Progenitor Cells into Hepatocytes via sox9b Repression in Zebrafish. Stem Cells Int 2019; 2019:8451282. [PMID: 30992706 PMCID: PMC6434270 DOI: 10.1155/2019/8451282] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/12/2019] [Indexed: 02/08/2023] Open
Abstract
Liver regeneration after most forms of injury is mediated through the proliferation of hepatocytes. However, when hepatocyte proliferation is impaired, such as during chronic liver disease, liver progenitor cells (LPCs) arising from the biliary epithelial cell (BEC) compartment can give rise to hepatocytes to mediate hepatic repair. Promotion of LPC-to-hepatocyte differentiation in patients with chronic liver disease could serve as a potentially new therapeutic option, but first requires the identification of the molecular mechanisms driving this process. Notch signaling has been identified as an important signaling pathway promoting the BEC fate during development and has also been implicated in regulating LPC differentiation during regeneration. SRY-related HMG box transcription factor 9 (Sox9) is a direct target of Notch signaling in the liver, and Sox9 has also been shown to promote the BEC fate during development. We have recently shown in a zebrafish model of LPC-driven liver regeneration that inhibition of Hdac1 activity through MS-275 treatment enhances sox9b expression in LPCs and impairs LPC-to-hepatocyte differentiation. Therefore, we hypothesized that inhibition of Notch signaling would promote LPC-to-hepatocyte differentiation by repressing sox9b expression in zebrafish. We ablated the hepatocytes of Tg(fabp10a:CFP-NTR) larvae and blocked Notch activation during liver regeneration through treatment with γ-secretase inhibitor LY411575 and demonstrated enhanced induction of Hnf4a in LPCs. Alternatively, enhancing Notch signaling via Notch3 intracellular domain (N3ICD) overexpression impaired Hnf4a induction. Hepatocyte ablation in sox9b heterozygous mutant embryos enhanced Hnf4a induction, while BEC-specific Sox9b overexpression impaired LPC-to-hepatocyte differentiation. Our results establish the Notch-Sox9b signaling axis as inhibitory to LPC-to-hepatocyte differentiation in a well-established in vivo LPC-driven liver regeneration model.
Collapse
Affiliation(s)
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh, Pittsburgh, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
211
|
Tsuchiya A, Ogawa M, Watanabe T, Takeuchi S, Kojima Y, Watanabe Y, Kimura N, Hayashi K, Yokoyama J, Terai S. Diverse perspectives to address for the future treatment of heterogeneous hepatocellular carcinoma. Heliyon 2019; 5:e01325. [PMID: 30911692 PMCID: PMC6416651 DOI: 10.1016/j.heliyon.2019.e01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/05/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinomas (HCCs), which often arise from chronic liver damage, have poor conditional 5-year survival and are recognized as heterogeneous tumors. Considering the heterogeneity of HCCs, diverse perspectives need to be addressed for treating such tumors, besides the findings of conventional imaging modalities and tumor markers. Data from the latest technologies, such as liquid biopsy, and the detection of the presence of cancer cells with stem/progenitor cell markers, gene mutations and diverse pathways, crosstalk with immune cells and cancer-associated fibroblasts, and mechanisms of epithelial–mesenchymal transition provide diverse lines of information. Integration of these data with clinical data might be necessary to develop effective therapies for precision medicine. Here, we review several aspects of dealing with the complexity of heterogeneous HCCs.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takayuki Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazunao Hayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junji Yokoyama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
212
|
Tsuchiya A, Lu WY. Liver stem cells: Plasticity of the liver epithelium. World J Gastroenterol 2019; 25:1037-1049. [PMID: 30862993 PMCID: PMC6406190 DOI: 10.3748/wjg.v25.i9.1037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
The liver has a high regenerative capacity after acute liver injury, but this is often impaired during chronic liver injury. The existence of a dedicated liver stem cell population that acts as a source of regeneration during chronic liver injury has been controversial. Recent advances in transgenic models and cellular reprogramming have provided new insights into the plasticity of the liver epithelium and directions for the development of future therapies. This article will highlight recent findings about the cellular source of regeneration during liver injury and the advances in promoting liver regeneration.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Wei-Yu Lu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, the University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
213
|
Farley AM, Braxton DR, Li J, Trounson K, Sakar-Dey S, Nayer B, Ikeda T, Lau KX, Hardikar W, Hasegawa K, Pera MF. Antibodies to a CA 19-9 Related Antigen Complex Identify SOX9 Expressing Progenitor Cells In Human Foetal Pancreas and Pancreatic Adenocarcinoma. Sci Rep 2019; 9:2876. [PMID: 30814526 PMCID: PMC6393509 DOI: 10.1038/s41598-019-38988-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
The Sialyl Lewis A antigen, or CA 19-9, is the prototype serum biomarker for adenocarcinoma of the pancreas. Despite extensive clinical study of CA 19-9 in gastrointestinal malignancies, surprisingly little is known concerning the specific cell types that express this marker during development, tissue regeneration and neoplasia. SOX9 is a transcription factor that plays a key role in these processes in foregut tissues. We report the biochemistry and tissue expression of the GCTM-5 antigen, a pancreatic cancer marker related to, but distinct from, CA19-9. This antigen, defined by two monoclonal antibodies recognising separate epitopes on a large glycoconjugate protein complex, is co-expressed with SOX9 by foregut ductal progenitors in the developing human liver and pancreas, and in pancreatic adenocarcinoma. These progenitors are distinct from cell populations identified by DCLK1, LGR5, or canonical markers of liver and pancreatic progenitor cells. Co-expression of this antigen complex and SOX9 also characterises the ductal metaplasia of submucosal glands that occurs during the development of Barrett’s oesophagus. The GCTM-5 antigen complex can be detected in the sera of patients with pancreatic adenocarcinoma. The GCTM-5 epitope shows a much more restricted pattern of expression in the normal adult pancreas relative to CA19-9. Our findings will aid in the identification, characterisation, and monitoring of ductal progenitor cells during development and progression of pancreatic adenocarcinoma in man.
Collapse
Affiliation(s)
- Alison M Farley
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - David R Braxton
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Li
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Karl Trounson
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Bhavana Nayer
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Tatsuhiko Ikeda
- Institute for Integrated Cell-Materials Science, Kyoto University, Kyoto, Japan
| | - Kevin X Lau
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Winita Hardikar
- Royal Childrens Hospital, Parkville, Victoria, Australia.,Childrens Medical Research Institute, Parkville, Victoria, Australia
| | - Kouichi Hasegawa
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Institute for Integrated Cell-Materials Science, Kyoto University, Kyoto, Japan
| | - Martin F Pera
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia. .,Florey Neuroscience and Mental Health Institute, Parkville, Victoria, Australia. .,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| |
Collapse
|
214
|
Wang J, Sun M, Liu W, Li Y, Li M. Stem Cell-Based Therapies for Liver Diseases: An Overview and Update. Tissue Eng Regen Med 2019; 16:107-118. [PMID: 30989038 DOI: 10.1007/s13770-019-00178-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver disease is one of the top causes of death globally. Although liver transplantation is a very effective treatment strategy, the shortage of available donor organs, waiting list mortality, and high costs of surgery remain huge problems. Stem cells are undifferentiated cells that can differentiate into a variety of cell types. Scientists are exploring the possibilities of generating hepatocytes from stem cells as an alternative for the treatment of liver diseases. METHODS In this review, we summarized the updated researches in the field of stem cell-based therapies for liver diseases as well as the current challenges and future expectations for a successful cell-based liver therapy. RESULTS Several cell types have been investigated for liver regeneration, such as embryonic stem cells, induced pluripotent stem cells, liver stem cells, mesenchymal stem cells, and hematopoietic stem cells. In vitro and in vivo studies have demonstrated that stem cells are promising cell sources for the liver regeneration. CONCLUSION Stem cell-based therapy could be a promising therapeutic method for patients with end-stage liver disease, which may alleviate the need for liver transplantation in the future.
Collapse
Affiliation(s)
- Jie Wang
- 1Department of Neurology, The China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033 Jilin China
| | - Meiyan Sun
- Medical Examination College, Jilin Medical University, No. 5 Jilin Street, Changchun, Jilin, 132013 China
| | - Wei Liu
- Medical Examination College, Jilin Medical University, No. 5 Jilin Street, Changchun, Jilin, 132013 China
| | - Yan Li
- Medical Examination College, Jilin Medical University, No. 5 Jilin Street, Changchun, Jilin, 132013 China
| | - Miao Li
- 3Department of Neurosurgery, The China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033 China
| |
Collapse
|
215
|
Liu W, Wang Y, Sun Y, Wu Y, Ma Q, Shi Y, He R, Zhang T, Ma Y, Zuo W, Wu Z. Clonal expansion of hepatic progenitor cells and differentiation into hepatocyte-like cells. Dev Growth Differ 2019; 61:203-211. [PMID: 30786319 DOI: 10.1111/dgd.12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Hepatic progenitor cells (HPCs) in adult liver are promising for treatment of liver diseases. A biliary-derived HPC population in adult mice has been characterized by co-expression of stem cell marker Sry (sex determining region Y)-box 9 (SOX9) and biliary marker cytokeratin 7 (CK7). However, isolation of these HPCs in adult healthy liver without any selection procedures remains a big challenge in this field. Here, by establishing a simple and efficient method to isolate and expand the CK7+ SOX9+ HPCs in vitro as clones, we acquired a stable and largely scalable cell source. The CK7+ SOX9+ progenitor cells were then further induced to differentiate into hepatocyte-like cells with expression of mature hepatocyte markers albumin (Alb) and hepatocyte nuclear factor 4 alpha (HNF4α), both in vitro and in vivo in the presence of hepatocyte growth factor (HGF) and fibroblast growth factor 9 (FGF9). Furthermore, we found that the HPCs are highly responsive to transforming growth factor-beta (TGF-β) signals. Collectively, we identified and harvested a CK7+ SOX9+ progenitor cell population from adult mouse liver by a simple and efficient approach. The exploration of this HPC population offers an alternative strategy of generating hepatocyte-like cells for cell-based therapies of acute and chronic liver disorders.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Kiangnan Stem Cell Institute, Hangzhou, China
| | - Yujia Wang
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yufen Sun
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingchuan Wu
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiwang Ma
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Shi
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruoxu He
- Kiangnan Stem Cell Institute, Hangzhou, China
| | - Ting Zhang
- Kiangnan Stem Cell Institute, Hangzhou, China
| | - Yu Ma
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zuo
- Kiangnan Stem Cell Institute, Hangzhou, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
216
|
Han X, Wang Y, Pu W, Huang X, Qiu L, Li Y, Yu W, Zhao H, Liu X, He L, Zhang L, Ji Y, Lu J, Lui KO, Zhou B. Lineage Tracing Reveals the Bipotency of SOX9 + Hepatocytes during Liver Regeneration. Stem Cell Reports 2019; 12:624-638. [PMID: 30773487 PMCID: PMC6409431 DOI: 10.1016/j.stemcr.2019.01.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Elucidation of the role of different cell lineages in the liver could offer avenues to drive liver regeneration. Previous studies showed that SOX9+ hepatocytes can differentiate into ductal cells after liver injuries. It is unclear whether SOX9+ hepatocytes are uni- or bipotent progenitors at a single-cell level during liver injury. Here, we developed a genetic tracing system to delineate the lineage potential of SOX9+ hepatocytes during liver homeostasis and regeneration. Fate-mapping data showed that these SOX9+ hepatocytes respond specifically to different liver injuries, with some contributing to a substantial number of ductal cells. Clonal analysis demonstrated that a single SOX9+ hepatocyte gives rise to both hepatocytes and ductal cells after liver injury. This study provides direct evidence that SOX9+ hepatocytes can serve as bipotent progenitors after liver injury, producing both hepatocytes and ductal cells for liver repair and regeneration. SOX9+ hepatocytes respond distinctly to different liver injuries Generation of a Confetti reporter responsive to dual recombinases SOX9+ hepatocytes can serve as bipotent progenitors after liver injury
Collapse
Affiliation(s)
- Ximeng Han
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Wang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjuan Pu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuzhen Huang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Qiu
- Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Zhao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuxiu Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Libo Zhang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Ji
- The Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211100, China; Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing 211100, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Kathy O Lui
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Nutrition and Metabolism, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; The Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211100, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
217
|
Russell JO, Lu W, Okabe H, Abrams M, Oertel M, Poddar M, Singh S, Forbes SJ, Monga SP. Hepatocyte-Specific β-Catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to Differentiate Into Hepatocytes. Hepatology 2019; 69:742-759. [PMID: 30215850 PMCID: PMC6351199 DOI: 10.1002/hep.30270] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022]
Abstract
Liver regeneration after injury is normally mediated by proliferation of hepatocytes, although recent studies have suggested biliary epithelial cells (BECs) can differentiate into hepatocytes during severe liver injury when hepatocyte proliferation is impaired. We investigated the effect of hepatocyte-specific β-catenin deletion in recovery from severe liver injury and BEC-to-hepatocyte differentiation. To induce liver injury, we administered choline-deficient, ethionine-supplemented (CDE) diet to three different mouse models, the first being mice with deletion of β-catenin in both BECs and hepatocytes (Albumin-Cre; Ctnnb1flox/flox mice). In our second model, we performed hepatocyte lineage tracing by injecting Ctnnb1flox/flox ; Rosa-stopflox/flox -EYFP mice with the adeno-associated virus serotype 8 encoding Cre recombinase under the control of the thyroid binding globulin promoter, a virus that infects only hepatocytes. Finally, we performed BEC lineage tracing via Krt19-CreERT ; Rosa-stopflox/flox -tdTomato mice. To observe BEC-to-hepatocyte differentiation, mice were allowed to recover on normal diet following CDE diet-induced liver injury. Livers were collected from all mice and analyzed by quantitative real-time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. We show that mice with lack of β-catenin in hepatocytes placed on the CDE diet develop severe liver injury with impaired hepatocyte proliferation, creating a stimulus for BECs to differentiate into hepatocytes. In particular, we use both hepatocyte and BEC lineage tracing to show that BECs differentiate into hepatocytes, which go on to repopulate the liver during long-term recovery. Conclusion: β-catenin is important for liver regeneration after CDE diet-induced liver injury, and BEC-derived hepatocytes can permanently incorporate into the liver parenchyma to mediate liver regeneration.
Collapse
Affiliation(s)
- Jacquelyn O. Russell
- Department of PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of Pittsburgh and University of Pittsburgh Medical CenterPittsburghPA
| | - Wei‐Yu Lu
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
- Centre for Liver ResearchUniversity of BirminghamBirminghamUK
| | - Hirohisa Okabe
- Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
- Department of Gastroenterological SurgeryKumamoto UniversityKumamotoJapan
| | | | - Michael Oertel
- Department of PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of Pittsburgh and University of Pittsburgh Medical CenterPittsburghPA
| | - Minakshi Poddar
- Department of PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of Pittsburgh and University of Pittsburgh Medical CenterPittsburghPA
| | - Sucha Singh
- Department of PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of Pittsburgh and University of Pittsburgh Medical CenterPittsburghPA
| | - Stuart J. Forbes
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Satdarshan P. Monga
- Department of PathologyUniversity of PittsburghPittsburghPA
- Pittsburgh Liver Research CenterUniversity of Pittsburgh and University of Pittsburgh Medical CenterPittsburghPA
- Department of MedicineUniversity of Pittsburgh School of Medicine and University of Pittsburgh Medical CenterPittsburghPA
- Department of Gastroenterological SurgeryKumamoto UniversityKumamotoJapan
| |
Collapse
|
218
|
Perugorria MJ, Olaizola P, Banales JM. Cholangiocyte-to-Hepatocyte Differentiation: A Context-Dependent Process and an Opportunity for Regenerative Medicine. Hepatology 2019; 69:480-483. [PMID: 30296341 DOI: 10.1002/hep.30305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III," ISCIII), Spain.,IKERBASQUE, Basque Foundation, for Science, Bilbao, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III," ISCIII), Spain.,IKERBASQUE, Basque Foundation, for Science, Bilbao, Spain
| |
Collapse
|
219
|
Govaere O, Cockell S, Van Haele M, Wouters J, Van Delm W, Van den Eynde K, Bianchi A, van Eijsden R, Van Steenbergen W, Monbaliu D, Nevens F, Roskams T. High-throughput sequencing identifies aetiology-dependent differences in ductular reaction in human chronic liver disease. J Pathol 2019; 248:66-76. [PMID: 30584802 DOI: 10.1002/path.5228] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/27/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Abstract
Ductular reaction (DR) represents the activation of hepatic progenitor cells (HPCs) and has been associated with features of advanced chronic liver disease; yet it is not clear whether these cells contribute to disease progression and how the composition of their micro-environment differs depending on the aetiology. This study aimed to identify HPC-associated signalling pathways relevant in different chronic liver diseases using a high-throughput sequencing approach. DR/HPCs were isolated using laser microdissection from patient samples diagnosed with HCV or primary sclerosing cholangitis (PSC), as models for hepatocellular or biliary regeneration. Key signals were validated at the protein level for a cohort of 56 patients (20 early and 36 advanced stage). In total, 330 genes were significantly differentially expressed between the HPCs in HCV and PSC. Recruitment and homing of inflammatory cells were distinctly different depending on the aetiology. HPCs in PSC were characterised by a response to oxidative stress (e.g. JUN, VNN1) and neutrophil-attractant chemokines (CXCL5, CXCL6, IL-8), whereas HPCs in HCV were identified by T- and B-lymphocyte infiltration. Moreover, we found that communication between HPCs and macrophages was aetiology driven. In PSC, a high frequency of CCL28-positive macrophages was observed in the portal infiltrate, already in early disease in the absence of advanced fibrosis, while in HCV, HPCs showed a strong expression of the macrophage scavenger receptor MARCO. Interestingly, DR/HPCs in PSC showed more deposition of ECM (e.g. FN1, LAMC2, collagens) compared to HCV, where an increase of pro-invasive genes (e.g. PDGFRA, IGF2) was observed. Additionally, endothelial cells in the vicinity of DR/HPCs showed differential immunopositivity (e.g. IGF2 and INHBA expression). In conclusion, our data shine light on the role of DR/HPCs in immune signalling, fibrogenesis and angiogenesis in chronic liver disease. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Van Haele
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Jasper Wouters
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Kathleen Van den Eynde
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Arianna Bianchi
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Diethard Monbaliu
- Department of Abdominal Transplant Surgery, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Frederik Nevens
- Department of Hepatology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
220
|
Katsuda T, Ochiya T. Chemically Induced Liver Progenitors (CLiPs): A Novel Cell Source for Hepatocytes and Biliary Epithelial Cells. Methods Mol Biol 2019; 1905:117-130. [PMID: 30536095 DOI: 10.1007/978-1-4939-8961-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bipotent liver progenitor cells (LPCs) are promising cell sources for cell transplantation therapy in hepatic disorders as well as biliary dysfunctions. Using a cocktail of small molecules, we recently reported a novel approach to generate bipotent LPCs, named chemically induced liver progenitors (CLiPs), from adult rat hepatocytes. In this chapter, we describe a detailed protocol for the induction of rat CLiPs. We first describe the method to isolate primary rat hepatocytes and then describe how to induce CLiPs from the hepatocytes. In addition, we describe methods to induce the generated CLiPs to differentiate into hepatocytes and biliary epithelial cells.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
221
|
Wang YM, Li K, Dou XG, Bai H, Zhao XP, Ma X, Li LJ, Chen ZS, Huang YC. Treatment of AECHB and Severe Hepatitis (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498915 DOI: 10.1007/978-94-024-1603-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the general treatment and immune principles and internal management for AECHB and HBV ACLF, including ICU monitoring, general supportive medications/nutrition/nursing, immune therapy, artificial liver supportive systems, hepatocyte/stem cell, and liver transplant, management for special populations, frequently clinical complications and the utilization of Chinese traditional medicines.Early clinical indicators of severe hepatitis B include acratia, gastrointestinal symptoms, a daily increase in serum bilirubin >1 mg/dL, toxic intestinal paralysis, bleeding tendency and mild mind anomaly or character change, and the presence of other diseases inducing severe hepatitis. Laboratory indicators include T-Bil, PTA, cholinesterase, pre-albumin and albumin. The roles of immune indicators (such as IL-6, TNF-α, and fgl2), gene polymorphisms, HBV genotypes, and gene mutations as early clinical indicators. Intensive Care Unit monitor patients with severe hepatitis include intracranial pressure, infection, blood dynamics, respiratory function, renal function, blood coagulation function, nutritional status and blood purification process. Nursing care should not only include routine care, but psychological and special care (complications). Nutrition support and nursing care should be maintained throughout treatment for severe hepatitis. Common methods of evaluating nutritional status include direct human body measurement, creatinine height index (CHI) and subject global assessment of nutrition (SGA). Malnourished patients should receive enteral or parenteral nutrition support. Immune therapies for severe hepatitis include promoting hepatocyte regeneration (e.g. with glucagon, hepatocyte growth factor and prostaglandin E1), glucocorticoid suppressive therapy, and targeting molecular blocking. Corticosteroid treatment should be early and sufficient, and adverse drug reactions monitored. Treatments currently being investigated are those targeting Toll-like receptors, NK cell/NK cell receptors, macrophage/immune coagulation system, CTLA-4/PD-1 and stem cell transplantation. In addition to conventional drugs and radioiodine, corticosteroids and artificial liver treatment can also be considered for severe hepatitis patients with hyperthyreosis. Patients with gestational severe hepatitis require preventive therapy for fetal growth restriction, and it is necessary to choose the timing and method of fetal delivery. For patients with both diabetes and severe hepatitis, insulin is preferred to oral antidiabetic agents to control blood glucose concentration. Liver toxicity of corticosteroids and immune suppressors should be monitored during treatment for severe hepatitis in patients with connective tissue diseases including SLE, RA and sicca syndrome. Patient with connective tissue diseases should preferably be started after the antiviral treatment with nucleos(t)ide analogues. An artificial liver can improve patients’ liver function; remove endotoxins, blood ammonia and other toxins; correct amino acid metabolism and coagulation disorders; and reverse internal environment imbalances. Non-bioartificial livers are suitable for patients with early and middle stage severe hepatitis; for late-stage patients waiting for liver transplantation; and for transplanted patients with rejection reaction or transplant failure. The type of artificial liver should be determined by each patient’s condition and previous treatment purpose, and patients should be closely monitored for adverse reactions and complications. Bio- and hybrid artificial livers are still under development. MELD score is the international standard for choosing liver transplantation. Surgical methods mainly include the in situ classic type and the piggyback type; transplantation includes no liver prophase, no liver phase or new liver phase. Preoperative preparation, management of intraoperative and postoperative complications and postoperative long-term treatment are keys to success. Severe hepatitis belongs to the categories of “acute jaundice”, “scourge jaundice”, and “hot liver” in traditional Chinese medicine. Treatment methods include Chinese traditional medicines, acupuncture and acupoint injection, external application of drugs, umbilical compress therapy, drip, blow nose therapy, earpins, and clysis. Dietary care is also an important part of traditional Chinese medicine treatment.
Collapse
|
222
|
Ko S, Shin D. Chemical Screening Using a Zebrafish Model for Liver Progenitor Cell-Driven Liver Regeneration. Methods Mol Biol 2019; 1905:83-90. [PMID: 30536092 DOI: 10.1007/978-1-4939-8961-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Following massive hepatocyte ablation in zebrafish, biliary epithelial cells can extensively give rise to hepatocytes through liver progenitor cells (LPCs). The zebrafish liver injury model is an important system to elucidate the molecular mechanisms underlying LPC-driven liver regeneration. Here, we describe a chemical screening method using the zebrafish model for identifying small molecules that can modulate LPC-driven liver regeneration.
Collapse
Affiliation(s)
- Sungjin Ko
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
223
|
Rubio-Tomás T, Aguilar-Bravo B, Sancho-Bru P. Genetic Lineage Tracing of Biliary Epithelial Cells. Methods Mol Biol 2019; 1905:45-57. [PMID: 30536089 DOI: 10.1007/978-1-4939-8961-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lineage tracing of liver cells is a powerful tool to understand liver embryonic development, healthy liver cell homeostasis, tissue repair, and regeneration. Lineage tracing of biliary epithelial cells (BECs) in the adult liver has been used to assess the contribution of the biliary epithelium to liver injury, regeneration, and disease. These studies have shown the contribution of BECs to the expansion of ductular reaction (DR) and liver progenitor cells (LPCs) and eventually the generation of new hepatocytes. Few genetic lineage-tracing mouse models have been proved to trace BECs. This chapter is focused on lineage tracing of BECs in mouse models of liver injury and regeneration. First, we mention different existing approaches to trace the biliary epithelium based on proteins specifically expressed by BECs such as sex-determining region Y-box 9 (SOX9), osteopontin (OPN), and cytokeratin-19 (KRT19). Second, we describe mouse models that can be used to evaluate cell fate during liver injury and regeneration (i.e., partial hepatectomy (PHx), acute liver injury models, and chronic liver damage models such as 3,5-diethoxycarbonyl-1,4-dihydro-collidin (DDC) diet, choline-deficient ethionine-supplemented (CDE) diet, or chronic carbon tetrachloride (CCl4) administration). Third, we suggest possible readouts to assess BECs fate based on immunofluorescence analysis.
Collapse
Affiliation(s)
- Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
224
|
Ko S, Russell JO, Tian J, Gao C, Kobayashi M, Feng R, Yuan X, Shao C, Ding H, Poddar M, Singh S, Locker J, Weng HL, Monga SP, Shin D. Hdac1 Regulates Differentiation of Bipotent Liver Progenitor Cells During Regeneration via Sox9b and Cdk8. Gastroenterology 2019; 156:187-202.e14. [PMID: 30267710 PMCID: PMC6309465 DOI: 10.1053/j.gastro.2018.09.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Upon liver injury in which hepatocyte proliferation is compromised, liver progenitor cells (LPCs), derived from biliary epithelial cells (BECs), differentiate into hepatocytes. Little is known about the mechanisms of LPC differentiation. We used zebrafish and mouse models of liver injury to study the mechanisms. METHODS We used transgenic zebrafish, Tg(fabp10a:CFP-NTR), to study the effects of compounds that alter epigenetic factors on BEC-mediated liver regeneration. We analyzed zebrafish with disruptions of the histone deacetylase 1 gene (hdac1) or exposed to MS-275 (an inhibitor of Hdac1, Hdac2, and Hdac3). We also analyzed zebrafish with mutations in sox9b, fbxw7, kdm1a, and notch3. Zebrafish larvae were collected and analyzed by whole-mount immunostaining and in situ hybridization; their liver tissues were collected for quantitative reverse transcription polymerase chain reaction. We studied mice in which hepatocyte-specific deletion of β-catenin (Ctnnb1flox/flox mice injected with Adeno-associated virus serotype 8 [AAV8]-TBG-Cre) induces differentiation of LPCs into hepatocytes after a choline-deficient, ethionine-supplemented (CDE) diet. Liver tissues were collected and analyzed by immunohistochemistry and immunoblots. We performed immunohistochemical analyses of liver tissues from patients with compensated or decompensated cirrhosis or acute on chronic liver failure (n = 15). RESULTS Loss of Hdac1 activity in zebrafish blocked differentiation of LPCs into hepatocytes by increasing levels of sox9b mRNA and reduced differentiation of LPCs into BECs by increasing levels of cdk8 mRNA, which encodes a negative regulator gene of Notch signaling. We identified Notch3 as the receptor that regulates differentiation of LPCs into BECs. Loss of activity of Kdm1a, a lysine demethylase that forms repressive complexes with Hdac1, produced the same defects in differentiation of LPCs into hepatocytes and BECs as observed in zebrafish with loss of Hdac1 activity. Administration of MS-275 to mice with hepatocyte-specific loss of β-catenin impaired differentiation of LPCs into hepatocytes after the CDE diet. HDAC1 was expressed in reactive ducts and hepatocyte buds of liver tissues from patients with cirrhosis. CONCLUSIONS Hdac1 regulates differentiation of LPCs into hepatocytes via Sox9b and differentiation of LPCs into BECs via Cdk8, Fbxw7, and Notch3 in zebrafish with severe hepatocyte loss. HDAC1 activity was also required for differentiation of LPCs into hepatocytes in mice with liver injury after the CDE diet. These pathways might be manipulated to induce LPC differentiation for treatment of patients with advanced liver diseases.
Collapse
Affiliation(s)
- Sungjin Ko
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania; Department of Pathology, Pittsburgh, Pennsylvania.
| | | | - Jianmin Tian
- Department of Pathology, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Ce Gao
- Ministry of Education Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rilu Feng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaodong Yuan
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | | | - Sucha Singh
- Department of Pathology, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Satdarshan P Monga
- Department of Pathology, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
225
|
Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G. Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology 2019; 69:420-430. [PMID: 30070383 PMCID: PMC6324973 DOI: 10.1002/hep.30150] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Ductular reaction (DR) is characterized by the proliferation of reactive bile ducts induced by liver injuries. DR is pathologically recognized as bile duct hyperplasia and is commonly observed in biliary disorders. It can also be identified in various liver disorders including nonalcoholic fatty liver disease. DR is associated with liver fibrosis and damage, and the extent of DR parallels to patient mortality. DR raises scientific interests because it is associated with transdifferentiation of liver cells and may play an important role in hepatic regeneration. The origin of active cells during DR can be cholangiocytes, hepatocytes, or hepatic progenitor cells, and associated signaling pathways could differ depending on the specific liver injury or animal models used in the study. Although further studies are needed to elucidate detailed mechanisms and the functional roles in liver diseases, DR can be a therapeutic target to inhibit liver fibrosis and to promote liver regeneration. This review summarizes previous studies of DR identified in patients and animal models as well as currently understood mechanisms of DR.
Collapse
Affiliation(s)
- Keisaku Sato
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti - University Hospital, Ancona, Italy
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
- Academic Research Integration, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX 76504
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, TX 76504
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Healthcare, Temple, TX 76504
| |
Collapse
|
226
|
Kaylan KB, Berg IC, Biehl MJ, Brougham-Cook A, Jain I, Jamil SM, Sargeant LH, Cornell NJ, Raetzman LT, Underhill GH. Spatial patterning of liver progenitor cell differentiation mediated by cellular contractility and Notch signaling. eLife 2018; 7:e38536. [PMID: 30589410 PMCID: PMC6342520 DOI: 10.7554/elife.38536] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022] Open
Abstract
The progenitor cells of the developing liver can differentiate toward both hepatocyte and biliary cell fates. In addition to the established roles of TGFβ and Notch signaling in this fate specification process, there is increasing evidence that liver progenitors are sensitive to mechanical cues. Here, we utilized microarrayed patterns to provide a controlled biochemical and biomechanical microenvironment for mouse liver progenitor cell differentiation. In these defined circular geometries, we observed biliary differentiation at the periphery and hepatocytic differentiation in the center. Parallel measurements obtained by traction force microscopy showed substantial stresses at the periphery, coincident with maximal biliary differentiation. We investigated the impact of downstream signaling, showing that peripheral biliary differentiation is dependent not only on Notch and TGFβ but also E-cadherin, myosin-mediated cell contractility, and ERK. We have therefore identified distinct combinations of microenvironmental cues which guide fate specification of mouse liver progenitors toward both hepatocyte and biliary fates.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ian C Berg
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Matthew J Biehl
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Aidan Brougham-Cook
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | | | | | | - Lori T Raetzman
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | |
Collapse
|
227
|
Ivanova ON, Snezhkina AV, Krasnov GS, Valuev-Elliston VT, Khomich OA, Khomutov AR, Keinanen TA, Alhonen L, Bartosch B, Kudryavtseva AV, Kochetkov SN, Ivanov AV. Activation of Polyamine Catabolism by N¹,N 11-Diethylnorspermine in Hepatic HepaRG Cells Induces Dedifferentiation and Mesenchymal-Like Phenotype. Cells 2018; 7:275. [PMID: 30567412 PMCID: PMC6316793 DOI: 10.3390/cells7120275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022] Open
Abstract
Tumorigenesis is accompanied by the metabolic adaptation of cells to support enhanced proliferation rates and to optimize tumor persistence and amplification within the local microenvironment. In particular, cancer cells exhibit elevated levels of biogenic polyamines. Inhibitors of polyamine biosynthesis and inducers of their catabolism have been evaluated as antitumor drugs, however, their efficacy and safety remain controversial. Our goal was to investigate if drug-induced modulation of polyamine metabolism plays a role in dedifferentiation using differentiated human hepatocyte-like HepaRG cell cultures. N¹,N11-diethylnorspermine (DENSpm), a potent inducer of polyamine catabolism, triggered an epithelial-mesenchymal transition (EMT)-like dedifferentiation in HepaRG cultures, as shown by down-regulation of mature hepatocytes markers and upregulation of classical EMT markers. Albeit the fact that polyamine catabolism produces H2O2, DENSpm-induced de-differentiation was not affected by antioxidants. Use of a metabolically stable spermidine analogue showed furthermore, that spermidine is a key regulator of hepatocyte differentiation. Comparative transcriptome analyses revealed, that the DENSpm-triggered dedifferentiation of HepaRG cells was accompanied by dramatic metabolic adaptations, exemplified by down-regulation of the genes of various metabolic pathways and up-regulation of the genes involved in signal transduction pathways. These results demonstrate that polyamine metabolism is tightly linked to EMT and differentiation of liver epithelial cells.
Collapse
Affiliation(s)
- Olga N Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | | | - Olga A Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69000 Lyon, France.
| | - Alexey R Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Tuomo A Keinanen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Leena Alhonen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69000 Lyon, France.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
228
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
229
|
Raven A, Forbes SJ. Hepatic progenitors in liver regeneration. J Hepatol 2018; 69:1394-1395. [PMID: 30391027 DOI: 10.1016/j.jhep.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Raven
- Scottish Centre for Regenerative Medicine, Edinburgh University, Edinburgh, United Kingdom
| | - Stuart J Forbes
- Scottish Centre for Regenerative Medicine, Edinburgh University, Edinburgh, United Kingdom.
| |
Collapse
|
230
|
Loss of trefoil factor 1 inhibits biliary regeneration but accelerates the hepatic differentiation of progenitor cells in mice. Biochem Biophys Res Commun 2018; 506:12-19. [DOI: 10.1016/j.bbrc.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023]
|
231
|
Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res 2018; 29:8-22. [PMID: 30361550 PMCID: PMC6318298 DOI: 10.1038/s41422-018-0103-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
The study of pathophysiological mechanisms in human liver disease has been constrained by the inability to expand primary hepatocytes in vitro while maintaining proliferative capacity and metabolic function. We and others have previously shown that mouse mature hepatocytes can be converted to liver progenitor-like cells in vitro with defined chemical factors. Here we describe a protocol achieving efficient conversion of human primary hepatocytes into liver progenitor-like cells (HepLPCs) through delivery of developmentally relevant cues, including NAD + -dependent deacetylase SIRT1 signaling. These HepLPCs could be expanded significantly during in vitro passage. The expanded cells can readily be converted back into metabolically functional hepatocytes in vitro and upon transplantation in vivo. Under three-dimensional culture conditions, differentiated cells generated from HepLPCs regained the ability to support infection or reactivation of hepatitis B virus (HBV). Our work demonstrates the utility of the conversion between hepatocyte and liver progenitor-like cells for studying HBV biology and antiviral therapies. These findings will facilitate the study of liver diseases and regenerative medicine.
Collapse
|
232
|
Overi D, Carpino G, Cardinale V, Franchitto A, Safarikia S, Onori P, Alvaro D, Gaudio E. Contribution of Resident Stem Cells to Liver and Biliary Tree Regeneration in Human Diseases. Int J Mol Sci 2018; 19:ijms19102917. [PMID: 30257529 PMCID: PMC6213374 DOI: 10.3390/ijms19102917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression.
Collapse
Affiliation(s)
- Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy.
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Samira Safarikia
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy.
| |
Collapse
|
233
|
Alternative splicing rewires Hippo signaling pathway in hepatocytes to promote liver regeneration. Nat Struct Mol Biol 2018; 25:928-939. [PMID: 30250226 PMCID: PMC6173981 DOI: 10.1038/s41594-018-0129-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
During liver regeneration, most new hepatocytes arise via self-duplication; yet, the underlying mechanisms that drive hepatocyte proliferation following injury remain poorly defined. By combining high-resolution transcriptome- and polysome-profiling of hepatocytes purified from quiescent and toxin-injured mouse livers, we uncover pervasive alterations in the mRNA translation of metabolic and RNA processing factors, which modulate the protein levels of a set of splicing regulators. Specifically, downregulation of ESRP2 activates a neonatal alternative splicing program that rewires the Hippo signaling pathway in regenerating hepatocytes. We show that production of neonatal splice isoforms attenuates Hippo signaling, enables greater transcriptional activation of downstream target genes, and facilitates liver regeneration. We further demonstrate that ESRP2 deletion in mice causes excessive hepatocyte proliferation upon injury, whereas forced expression of ESRP2 inhibits proliferation by suppressing the expression of neonatal Hippo pathway isoforms. Thus, our findings reveal an ESRP2-Hippo pathway-alternative splicing axis that supports regeneration following chronic liver injury.
Collapse
|
234
|
Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies - Towards a molecular understanding. EBioMedicine 2018; 35:381-393. [PMID: 30236451 PMCID: PMC6161480 DOI: 10.1016/j.ebiom.2018.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Liver diseases constitute an important medical problem, and a number of these diseases, termed cholangiopathies, affect the biliary system of the liver. In this review, we describe the current understanding of the causes of cholangiopathies, which can be genetic, viral or environmental, and the few treatment options that are currently available beyond liver transplantation. We then discuss recent rapid progress in a number of areas relevant for decoding the disease mechanisms for cholangiopathies. This includes novel data from analysis of transgenic mouse models and organoid systems, and we outline how this information can be used for disease modeling and potential development of novel therapy concepts. We also describe recent advances in genomic and transcriptomic analyses and the importance of such studies for improving diagnosis and determining whether certain cholangiopathies should be viewed as distinct or overlapping disease entities.
Collapse
Affiliation(s)
- Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong.
| | - Rachel S Yiu
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
235
|
Carbone M, Nardi A, Flack S, Carpino G, Varvaropoulou N, Gavrila C, Spicer A, Badrock J, Bernuzzi F, Cardinale V, Ainsworth HF, Heneghan MA, Thorburn D, Bathgate A, Jones R, Neuberger JM, Battezzati PM, Zuin M, Taylor-Robinson S, Donato MF, Kirby J, Mitchell-Thain R, Floreani A, Sampaziotis F, Muratori L, Alvaro D, Marzioni M, Miele L, Marra F, Giannini E, Gaudio E, Ronca V, Bonato G, Cristoferi L, Malinverno F, Gerussi A, Stocken DD, Cordell HJ, Hirschfield GM, Alexander GJ, Sandford RN, Jones DE, Invernizzi P, Mells GF. Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: development and validation of the UDCA Response Score. Lancet Gastroenterol Hepatol 2018; 3:626-634. [PMID: 30017646 PMCID: PMC6962055 DOI: 10.1016/s2468-1253(18)30163-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Treatment guidelines recommend a stepwise approach to primary biliary cholangitis: all patients begin treatment with ursodeoxycholic acid (UDCA) monotherapy and those with an inadequate biochemical response after 12 months are subsequently considered for second-line therapies. However, as a result, patients at the highest risk can wait the longest for effective treatment. We determined whether UDCA response can be accurately predicted using pretreatment clinical parameters. METHODS We did logistic regression analysis of pretreatment variables in a discovery cohort of patients in the UK with primary biliary cholangitis to derive the best-fitting model of UDCA response, defined as alkaline phosphatase less than 1·67 times the upper limit of normal (ULN), measured after 12 months of treatment with UDCA. We validated the model in an external cohort of patients with primary biliary cholangitis and treated with UDCA in Italy. Additionally, we assessed correlations between model predictions and key histological features, such as biliary injury and fibrosis, on liver biopsy samples. FINDINGS 2703 participants diagnosed with primary biliary cholangitis between Jan 1, 1998, and May 31, 2015, were included in the UK-PBC cohort for derivation of the model. The following pretreatment parameters were associated with lower probability of UDCA response: higher alkaline phosphatase concentration (p<0·0001), higher total bilirubin concentration (p=0·0003), lower aminotransferase concentration (p=0·0012), younger age (p<0·0001), longer interval from diagnosis to the start of UDCA treatment (treatment time lag, p<0·0001), and worsening of alkaline phosphatase concentration from diagnosis (p<0·0001). Based on these variables, we derived a predictive score of UDCA response. In the external validation cohort, 460 patients diagnosed with primary biliary cholangitis were treated with UDCA, with follow-up data until May 31, 2016. In this validation cohort, the area under the receiver operating characteristic curve for the score was 0·83 (95% CI 0·79-0·87). In 20 liver biopsy samples from patients with primary biliary cholangitis, the UDCA response score was associated with ductular reaction (r=-0·556, p=0·0130) and intermediate hepatocytes (probability of response was 0·90 if intermediate hepatocytes were absent vs 0·51 if present). INTERPRETATION We have derived and externally validated a model based on pretreatment variables that accurately predicts UDCA response. Association with histological features provides face validity. This model provides a basis to explore alternative approaches to treatment stratification in patients with primary biliary cholangitis. FUNDING UK Medical Research Council and University of Milan-Bicocca.
Collapse
Affiliation(s)
- Marco Carbone
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK; Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy.
| | - Alessandra Nardi
- Department of Mathematics, University of Rome Tor Vergata, Rome, Italy
| | - Steve Flack
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | | | - Ann Spicer
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Jonathan Badrock
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Francesca Bernuzzi
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Holly F Ainsworth
- Institute of Health & Society, Newcastle University, Newcastle-upon-Tyne, UK
| | - Michael A Heneghan
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Douglas Thorburn
- Sheila Sherlock Liver Centre, The Royal Free London NHS Foundation Trust, London, UK
| | - Andrew Bathgate
- Scottish Liver Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Rebecca Jones
- Liver Unit, St James's University Hospital, Leeds, UK
| | | | | | - Massimo Zuin
- Division of Internal Medicine and Liver Unit, Ospedale San Paolo, Milan, Italy
| | - Simon Taylor-Robinson
- Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Maria F Donato
- CRC "AM e A Migliavacca" Center for the Study of Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - John Kirby
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Fotios Sampaziotis
- Department of Surgery, Wellcome Trust-Medical Research Council Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK
| | - Luigi Muratori
- Liver Unit, Policlinico di Sant'Orsola-Malpighi, Bologna, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Division of Gastroenterology and Hepatology, Ospedali Riuniti University Hospital, Ancona, Italy
| | - Luca Miele
- Department of Internal Medicine and Gastroenterology, Gemelli University Hospital, Rome, Italy
| | - Fabio Marra
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Edoardo Giannini
- Division of Gastroenterology, Department of Internal Medicine, IRCCS-Azienda Ospedaliera Universitaria San Martino-IST, Genoa, Italy
| | - Eugenio Gaudio
- Department of Anatomy, Histology, Legal Medicine, and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Ronca
- Division of Internal Medicine and Liver Unit, Ospedale San Paolo, Milan, Italy
| | - Giulia Bonato
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Laura Cristoferi
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Federica Malinverno
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Alessio Gerussi
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Deborah D Stocken
- Institute of Health & Society, Newcastle University, Newcastle-upon-Tyne, UK
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Gideon M Hirschfield
- NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Richard N Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - David E Jones
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Pietro Invernizzi
- Division of Gastroenterology and Hepatology, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - George F Mells
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
236
|
Addante A, Roncero C, Almalé L, Lazcanoiturburu N, García-Álvaro M, Fernández M, Sanz J, Hammad S, Nwosu ZC, Lee SJ, Fabregat I, Dooley S, ten Dijke P, Herrera B, Sánchez A. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury. Liver Int 2018; 38:1664-1675. [PMID: 29751359 PMCID: PMC6693351 DOI: 10.1111/liv.13879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. METHODS WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. RESULTS Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. CONCLUSIONS We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases.
Collapse
Affiliation(s)
- Annalisa Addante
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Cesáreo Roncero
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Laura Almalé
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Nerea Lazcanoiturburu
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - María García-Álvaro
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Margarita Fernández
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Julián Sanz
- Department Pathology, Hospital Clínico San Carlos, Madrid, Spain
| | - Seddik Hammad
- Medical Faculty Mannheim, Department Medicine II, Heidelberg University, Manhheim, Germany
| | - Zeribe C. Nwosu
- Medical Faculty Mannheim, Department Medicine II, Heidelberg University, Manhheim, Germany
| | - Se-Jin Lee
- Department Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Steven Dooley
- Medical Faculty Mannheim, Department Medicine II, Heidelberg University, Manhheim, Germany
| | - Peter ten Dijke
- Department Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Blanca Herrera
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Aránzazu Sánchez
- Faculty of Pharmacy, Department Biochemistry and Molecular Biology, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
237
|
Pascale RM, Feo F, Calvisi DF. The complex role of bone morphogenetic protein 9 in liver damage and regeneration: New evidence from in vivo and in vitro studies. Liver Int 2018; 38:1547-1549. [PMID: 30145848 DOI: 10.1111/liv.13925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rosa M Pascale
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Diego F Calvisi
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
238
|
Khaliq M, Ko S, Liu Y, Wang H, Sun Y, Solnica-Krezel L, Shin D. Stat3 Regulates Liver Progenitor Cell-Driven Liver Regeneration in Zebrafish. Gene Expr 2018; 18:157-170. [PMID: 29690953 PMCID: PMC6190120 DOI: 10.3727/105221618x15242506133273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After liver injury, regeneration manifests as either (1) hepatocytes proliferating to restore the lost hepatocyte mass or (2) if hepatocyte proliferation is compromised, biliary epithelial cells (BECs) dedifferentiating into liver progenitor cells (LPCs), which subsequently differentiate into hepatocytes. Following pharmacogenetic ablation of hepatocytes in Tg(fabp10a:CFP-NTR) zebrafish, resulting in severe liver injury, signal transducer and activator of transcription 3 (Stat3) and its target gene and negative regulator, socs3a, were upregulated in regenerating livers. Using either Stat3 inhibitors, JSI-124 and S3I-201, or stat3 zebrafish mutants, we investigated the role of Stat3 in LPC-driven liver regeneration. Although Stat3 suppression reduced the size of regenerating livers, BEC dedifferentiation into LPCs was unaffected. However, regenerating livers displayed a delay in LPC-to-hepatocyte differentiation and a significant reduction in the number of BECs. While no difference in cell death was detected, Stat3 inhibition significantly reduced LPC proliferation. Notably, stat3 mutants phenocopied the effects of Stat3 chemical inhibitors, although the mutant phenotype was incompletely penetrant. Intriguingly, a subset of socs3a mutants also displayed a lower number of BECs in regenerating livers. We conclude that the Stat3/Socs3a pathway is necessary for the proper timing of LPC-to-hepatocyte differentiation and establishing the proper number of BECs during LPC-driven liver regeneration.
Collapse
Affiliation(s)
- Mehwish Khaliq
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sungjin Ko
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yinzi Liu
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hualin Wang
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Yonghua Sun
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Lila Solnica-Krezel
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donghun Shin
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
239
|
Bird TG, Müller M, Boulter L, Vincent DF, Ridgway RA, Lopez-Guadamillas E, Lu WY, Jamieson T, Govaere O, Campbell AD, Ferreira-Gonzalez S, Cole AM, Hay T, Simpson KJ, Clark W, Hedley A, Clarke M, Gentaz P, Nixon C, Bryce S, Kiourtis C, Sprangers J, Nibbs RJB, Van Rooijen N, Bartholin L, McGreal SR, Apte U, Barry ST, Iredale JP, Clarke AR, Serrano M, Roskams TA, Sansom OJ, Forbes SJ. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci Transl Med 2018; 10:eaan1230. [PMID: 30111642 PMCID: PMC6420144 DOI: 10.1126/scitranslmed.aan1230] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/04/2017] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Abstract
Liver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence may underlie this regenerative failure. In human acute liver disease, and murine models, p21-dependent hepatocellular senescence was proportionate to disease severity and was associated with impaired regeneration. In an acetaminophen injury mouse model, a transcriptional signature associated with the induction of paracrine senescence was observed within 24 hours and was followed by one of impaired proliferation. In mouse genetic models of hepatocyte injury and senescence, we observed transmission of senescence to local uninjured hepatocytes. Spread of senescence depended on macrophage-derived transforming growth factor-β1 (TGFβ1) ligand. In acetaminophen poisoning, inhibition of TGFβ receptor 1 (TGFβR1) improved mouse survival. TGFβR1 inhibition reduced senescence and enhanced liver regeneration even when delivered beyond the therapeutic window for treating acetaminophen poisoning. This mechanism, in which injury-induced senescence impairs liver regeneration, is an attractive therapeutic target for developing treatments for acute liver failure.
Collapse
Affiliation(s)
- Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK.
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
| | - Miryam Müller
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Luke Boulter
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | | | | | - Elena Lopez-Guadamillas
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Wei-Yu Lu
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | | | - Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, B-3000 Leuven, Belgium
| | | | - Sofía Ferreira-Gonzalez
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Alicia M Cole
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Trevor Hay
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Kenneth J Simpson
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Mairi Clarke
- Institute for Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Pauline Gentaz
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Steven Bryce
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Joep Sprangers
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Robert J B Nibbs
- Institute for Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Nico Van Rooijen
- Vrije Universiteit Medical Center, Department of Molecular Cell Biology, Van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands
| | - Laurent Bartholin
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052, CNRS 5286, Lyon I University UMR S 1052, 69373 Lyon Cedex 08, France
| | - Steven R McGreal
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Simon T Barry
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge CB2 0AA, UK
| | - John P Iredale
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
- University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Alan R Clarke
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, and Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Tania A Roskams
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Stuart J Forbes
- Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
| |
Collapse
|
240
|
Miura Y, Matsui S, Miyata N, Harada K, Kikkawa Y, Ohmuraya M, Araki K, Tsurusaki S, Okochi H, Goda N, Miyajima A, Tanaka M. Differential expression of Lutheran/BCAM regulates biliary tissue remodeling in ductular reaction during liver regeneration. eLife 2018; 7:36572. [PMID: 30059007 PMCID: PMC6107333 DOI: 10.7554/elife.36572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023] Open
Abstract
Under chronic or severe liver injury, liver progenitor cells (LPCs) of biliary origin are known to expand and contribute to the regeneration of hepatocytes and cholangiocytes. This regeneration process is called ductular reaction (DR), which is accompanied by dynamic remodeling of biliary tissue. Although the DR shows apparently distinct mode of biliary extension depending on the type of liver injury, the key regulatory mechanism remains poorly understood. Here, we show that Lutheran (Lu)/Basal cell adhesion molecule (BCAM) regulates the morphogenesis of DR depending on liver disease models. Lu+ and Lu- biliary cells isolated from injured liver exhibit opposite phenotypes in cell motility and duct formation capacities in vitro. By overexpression of Lu, Lu- biliary cells acquire the phenotype of Lu+ biliary cells. Lu-deficient mice showed severe defects in DR. Our findings reveal a critical role of Lu in the control of phenotypic heterogeneity of DR in distinct liver disease models. Bile is a green to yellow liquid that the body uses to break down and digest fatty molecules. The substance is produced by the liver, and then it is collected and transported to the small bowel by a series of tubes known as the bile duct. When the liver is damaged, the ‘biliary’ cells that line the duct orchestrate the repair of the organ. In fact, the duct often reorganizes itself differently depending on the type of disease the liver is experiencing. For example, the biliary cells can form thin tube-like structures that deeply invade liver tissues, or they can grow into several robust pipes near the existing bile duct. However, it remains largely unknown which protein – or proteins – drive these different types of remodeling. Miura et al. find that, in mice, the biliary cells which invade an injured liver have a large amount of a protein called Lutheran at their surface, but that the cells that form robust ducts do not. This protein helps a cell attach to its surroundings. In addition, the biliary cells can adopt different types of repairing behaviors depending on the amount of Lutheran in their environment. Further experiments show that it is difficult for genetically modified mice without the protein to reshape their bile duct after liver injury. Finally, Miura et al. also detect Lutheran in the remodeling livers of patients with liver disease. Taken together, these results suggest that Lutheran plays an important role in tailoring the repairing roles of the biliary cells to a particular disease. The next step would be to clarify how different liver conditions coordinate the amount of Lutheran in biliary cells to create the right type of remodeling.
Collapse
Affiliation(s)
- Yasushi Miura
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Satoshi Matsui
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Miyata
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Hyogo, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Laboratory of Stem Cell Regulation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Laboratory of Stem Cell Regulation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
241
|
Athwal VS, Pritchett J, Llewellyn J, Martin K, Camacho E, Raza SM, Phythian-Adams A, Birchall LJ, Mullan AF, Su K, Pearmain L, Dolman G, Zaitoun AM, Friedman SL, MacDonald A, Irving WL, Guha IN, Hanley NA, Piper Hanley K. SOX9 predicts progression toward cirrhosis in patients while its loss protects against liver fibrosis. EMBO Mol Med 2018; 9:1696-1710. [PMID: 29109128 PMCID: PMC5709769 DOI: 10.15252/emmm.201707860] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fibrosis and organ failure is a common endpoint for many chronic liver diseases. Much is known about the upstream inflammatory mechanisms provoking fibrosis and downstream potential for tissue remodeling. However, less is known about the transcriptional regulation in vivo governing fibrotic matrix deposition by liver myofibroblasts. This gap in understanding has hampered molecular predictions of disease severity and clinical progression and restricted targets for antifibrotic drug development. In this study, we show the prevalence of SOX9 in biopsies from patients with chronic liver disease correlated with fibrosis severity and accurately predicted disease progression toward cirrhosis. Inactivation of Sox9 in mice protected against both parenchymal and biliary fibrosis, and improved liver function and ameliorated chronic inflammation. SOX9 was downstream of mechanosignaling factor, YAP1. These data demonstrate a role for SOX9 in liver fibrosis and open the way for the transcription factor and its dependent pathways as new diagnostic, prognostic, and therapeutic targets in patients with liver fibrosis.
Collapse
Affiliation(s)
- Varinder S Athwal
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - James Pritchett
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Jessica Llewellyn
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Katherine Martin
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Elizabeth Camacho
- Centre for Health Economics, Institute of Population Health, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sayyid Ma Raza
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Alexander Phythian-Adams
- Manchester Centre for Collaborative Inflammation Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Lindsay J Birchall
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Aoibheann F Mullan
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Kim Su
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Laurence Pearmain
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Grace Dolman
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Abed M Zaitoun
- Department of Cellular Pathology, Nottingham Digestive Diseases Centre and National Institute of Health Research Biomedical Research Unit in Gastroenterology and Liver Disease, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew MacDonald
- Manchester Centre for Collaborative Inflammation Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - William L Irving
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK.,School of Life Sciences, Nottingham Digestive Diseases Centre and National Institute of Health Research Biomedical Research Unit in Gastroenterology and Liver Disease, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Indra N Guha
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Neil A Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Karen Piper Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK .,Research & Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
242
|
Abstract
In this issue of Cell Stem Cell and recently in Nature, Deng et al. (2018) and Schaub et al. (2018) (respectively) demonstrate that following acute liver injury, hepatocytes and cholangiocytes restore liver mass and function. When proliferative capacity of either cell type is impaired, the other cell type will transdifferentiate to restore full regeneration and hepatic histology.
Collapse
|
243
|
Gu Y, Wei W, Cheng Y, Wan B, Ding X, Wang H, Zhang Y, Jin M. A pivotal role of BEX1 in liver progenitor cell expansion in mice. Stem Cell Res Ther 2018; 9:164. [PMID: 29907129 PMCID: PMC6002993 DOI: 10.1186/s13287-018-0905-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023] Open
Abstract
Background The activation and expansion of bipotent liver progenitor cells (LPCs) are indispensable for liver regeneration after severe or chronic liver injury. However, the underlying molecular mechanisms regulating LPCs and LPC-mediated liver regeneration remain elusive. Methods Hepatic brain-expressed X-linked 1 (BEX1) expression was evaluated using microarray screening, real-time polymerase chain reaction, immunoblotting and immunofluorescence. LPC activation and liver injury were studied following a choline-deficient, ethionine-supplemented (CDE) diet in wild-type (WT) and Bex1−/− mice. Proliferation, apoptosis, colony formation and hepatic differentiation were examined in LPCs from WT and Bex1−/− mice. Peroxisome proliferator-activated receptor gamma was detected in Bex1-deficient LPCs and mouse livers, and was silenced to analyse the expansion of LPCs from WT and Bex1−/− mice. Results Hepatic BEX1 expression was increased during CDE diet-induced liver injury and was highly elevated primarily in LPCs. Bex1−/− mice fed a CDE diet displayed impaired LPC expansion and liver regeneration. Bex1 deficiency inhibited LPC proliferation and enhanced LPC apoptosis in vitro. Additionally, Bex1 deficiency inhibited the colony formation of LPCs but had no effect on their hepatic differentiation. Mechanistically, BEX1 inhibited peroxisome proliferator-activated receptor gamma to promote LPC expansion. Conclusion Our findings indicate that BEX1 plays a pivotal role in LPC activation and expansion during liver regeneration, potentially providing novel targets for liver regeneration and chronic liver disease therapies. Electronic supplementary material The online version of this article (10.1186/s13287-018-0905-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuting Gu
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China.,Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Wei
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yiji Cheng
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Bing Wan
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xinyuan Ding
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hui Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yanyun Zhang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Min Jin
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
244
|
Alison MR. The many ways to mend your liver: A critical appraisal. Int J Exp Pathol 2018; 99:106-112. [PMID: 29882223 DOI: 10.1111/iep.12272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
In the latter half of the 20th century, our understanding of mammalian liver regeneration was shaped by the manner of compensatory hyperplasia occurring after a partial rat liver resection. This response involves almost all hepatocytes and thus is unlikely to be the outcome of the multiple cycling of a small stem cell population. It was most intense in the outer third of lobule, the location closest to the afferent arterial blood supply. With the advent of heritable genetic labelling techniques, usually applied to mice, hitherto unrecognized hepatocytes with clonogenic potential have been discovered, contributing to homoeostatic renewal and/or regenerative responses after tissue loss. This review combines observations from cell lineage tracing studies with other data to summarize the Four proposed anatomical locations for hepatocyte stem cells: the periportal zone, the pericentral zone, a randomized distribution and finally within the intrahepatic biliary tree. As in other endodermal-derived tissues, it appears that there are both homoeostatic stem cells and regenerative stem cells, while some normally homoeostatic stem cells can become more active to boost regeneration.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|
245
|
Ilic Z, Mondal TK, Guest I, Crawford DR, Sell S. Participation of liver stem cells in cholangiocarcinogenesis after aflatoxin B1 exposure of glutathione S-transferase A3 knockout mice. Tumour Biol 2018; 40:1010428318777344. [DOI: 10.1177/1010428318777344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aflatoxin B1, arguably the most potent human carcinogen, induces liver cancer in humans, rats, trout, ducks, and so on, but adult mice are totally resistant. This resistance is because of a detoxifying enzyme, mouse glutathione S-transferase A3, which binds to and inactivates aflatoxin B1 epoxide, preventing the epoxide from binding to DNA and causing mutations. Glutathione S-transferase A3 or its analog has not been detected in any of the sensitive species, including humans. The generation of a glutathione S-transferase A3 knockout (represented as KO or -/-) mice has allowed us to study the induction of liver cancer in mice by aflatoxin B1. In contrast to the induction of hepatocellular carcinomas in other species, aflatoxin B1 induces cholangiocarcinomas in GSTA3-/- mice. In other species and in knockout mice, the induction of liver cancer is preceded by extensive proliferation of small oval cells, providing additional evidence that oval cells are bipolar stem cells and may give rise to either hepatocellular carcinoma or cholangiocarcinoma depending on the nature of the hepatocarcinogen and the species of animal. The recent development of mouse oval cell lines in our laboratory from aflatoxin B1-treated GSTA3-/- mice should provide a new venue for study of the properties and potential of putative mouse liver stem cells.
Collapse
Affiliation(s)
- Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tapan K Mondal
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ian Guest
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
246
|
Liu JT, Lamprecht MP, Duncan SA. Using Human Induced Pluripotent Stem Cell-derived Hepatocyte-like Cells for Drug Discovery. J Vis Exp 2018. [PMID: 29863663 DOI: 10.3791/57194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to differentiate human induced pluripotent stem cells (iPSCs) into hepatocyte-like cells (HLCs) provides new opportunities to study inborn errors in hepatic metabolism. However, to provide a platform that supports the identification of small molecules that can potentially be used to treat liver disease, the procedure requires a culture format that is compatible with screening thousands of compounds. Here, we describe a protocol using completely defined culture conditions, which allow the reproducible differentiation of human iPSCs to hepatocyte-like cells in 96-well tissue culture plates. We also provide an example of using the platform to screen compounds for their ability to lower Apolipoprotein B (APOB) produced from iPSC-derived hepatocytes generated from a familial hypercholesterolemia patient. The availability of a platform that is compatible with drug discovery should allow researchers to identify novel therapeutics for diseases that affect the liver.
Collapse
Affiliation(s)
- Jui-Tung Liu
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina
| | - Mary Paige Lamprecht
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina;
| |
Collapse
|
247
|
Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 2018; 557:322-328. [PMID: 29769669 DOI: 10.1038/s41586-018-0073-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
Abstract
Mammalian organs comprise an extraordinary diversity of cell and tissue types. Regenerative organs, such as the skin and gastrointestinal tract, use resident stem cells to maintain tissue function. Organs with a lower cellular turnover, such as the liver and lungs, mostly rely on proliferation of committed progenitor cells. In many organs, injury reveals the plasticity of both resident stem cells and differentiated cells. The ability of resident cells to maintain and repair organs diminishes with age, whereas, paradoxically, the risk of cancer increases. New therapeutic approaches aim to harness cell plasticity for tissue repair and regeneration while avoiding the risk of malignant transformation of cells.
Collapse
|
248
|
Aoyama N, Miyoshi H, Miyachi H, Sonoshita M, Okabe M, Taketo MM. Transgenic mice that accept Luciferase- or GFP-expressing syngeneic tumor cells at high efficiencies. Genes Cells 2018; 23:580-589. [PMID: 29749672 DOI: 10.1111/gtc.12592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/08/2018] [Indexed: 12/17/2022]
Abstract
Jellyfish green fluorescent protein (GFP) and firefly luciferase can serve as versatile tracking markers for identification and quantification of transplanted cancer cells in vivo. However, immune reactions against these markers can hamper the formation of syngraft tumors and metastasis that follows. Here, we report two transgenic (Tg) mouse lines that express nonfunctional mutant marker proteins, namely modified firefly luciferase (Luc2) or enhanced GFP (EGFP). These mice, named as Tg-mLuc2 and Tg-mEGFP, turned out to be immunologically tolerant to the respective tracking markers and thus efficiently accepted syngeneic cancer cells expressing the active forms of the markers. We then injected intrarectally the F1 hybrid Tg mice (BALB/c × C57BL/6J) with Colon-26 (C26) colon cancer cells that originated from a BALB/c mouse. Even when C26 cells expressed active Luc2 or EGFP, they formed primary tumors in the Tg mice with only 104 cells per mouse compared with more than 106 cells required in the nontransgenic BALB/c hosts. Furthermore, we detected metastatic foci of C26 cells in the liver and lungs of the Tg mice by tracking the specific reporter activities. These results show the usefulness of the Tg mouse lines as recipients for transplantation experiments with the non-self tracking marker-expressing cells.
Collapse
Affiliation(s)
- Naoki Aoyama
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Miyoshi
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Office of Society-Academia Collaboration for Innovation, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masahiro Sonoshita
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Okabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Office of Society-Academia Collaboration for Innovation, Kyoto University, Kyoto, Japan
| |
Collapse
|
249
|
Khambu B, Huda N, Chen X, Antoine DJ, Li Y, Dai G, Köhler UA, Zong WX, Waguri S, Werner S, Oury TD, Dong Z, Yin XM. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest 2018; 128:2419-2435. [PMID: 29558368 DOI: 10.1172/jci91814] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is important for liver homeostasis, and the deficiency leads to injury, inflammation, ductular reaction (DR), fibrosis, and tumorigenesis. It is not clear how these events are mechanistically linked to autophagy deficiency. Here, we reveal the role of high-mobility group box 1 (HMGB1) in two of these processes. First, HMGB1 was required for DR, which represents the expansion of hepatic progenitor cells (HPCs) implicated in liver repair and regeneration. DR caused by hepatotoxic diets (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] or choline-deficient, ethionine-supplemented [CDE]) also depended on HMGB1, indicating that HMGB1 may be generally required for DR in various injury scenarios. Second, HMGB1 promoted tumor progression in autophagy-deficient livers. Receptor for advanced glycation end product (RAGE), a receptor for HMGB1, was required in the same two processes and could mediate the proliferative effects of HMBG1 in isolated HPCs. HMGB1 was released from autophagy-deficient hepatocytes independently of cellular injury but depended on NRF2 and the inflammasome, which was activated by NRF2. Pharmacological or genetic activation of NRF2 alone, without disabling autophagy or causing injury, was sufficient to cause inflammasome-dependent HMGB1 release. In conclusion, HMGB1 release is a critical mechanism in hepatic pathogenesis under autophagy-deficient conditions and leads to HPC expansion as well as tumor progression.
Collapse
Affiliation(s)
- Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoyun Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Antoine
- MRC Center for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Yong Li
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guoli Dai
- Department of Biology, Purdue University School of Science, Indianapolis, Indiana, USA
| | - Ulrike A Köhler
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey, USA
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
250
|
Hernandez C, Huebener P, Pradere JP, Antoine DJ, Friedman RA, Schwabe RF. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 2018; 128:2436-2451. [PMID: 29558367 DOI: 10.1172/jci91786] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cell death is a key driver of disease progression and carcinogenesis in chronic liver disease (CLD), highlighted by the well-established clinical correlation between hepatocellular death and risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Moreover, hepatocellular death is sufficient to trigger fibrosis and HCC in mice. However, the pathways through which cell death drives CLD progression remain elusive. Here, we tested the hypothesis that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) with key roles in acute liver injury, may link cell death to injury responses and hepatocarcinogenesis in CLD. While liver-specific HMGB1 deficiency did not significantly affect chronic injury responses such as fibrosis, regeneration, and inflammation, it inhibited ductular/progenitor cell expansion and hepatocyte metaplasia. HMGB1 promoted ductular expansion independently of active secretion in a nonautonomous fashion, consistent with its role as a DAMP. Liver-specific HMGB1 deficiency reduced HCC development in 3 mouse models of chronic injury but not in a model lacking chronic liver injury. As with CLD, HMGB1 ablation reduced the expression of progenitor and oncofetal markers, a key determinant of HCC aggressiveness, in tumors. In summary, HMGB1 links hepatocyte death to ductular reaction, progenitor signature, and hepatocarcinogenesis in CLD.
Collapse
Affiliation(s)
- Celine Hernandez
- Department of Medicine, Columbia University, New York, New York, USA
| | - Peter Huebener
- Department of Medicine, Columbia University, New York, New York, USA.,Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Philippe Pradere
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France
| | - Daniel J Antoine
- MRC Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|