201
|
Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 2014; 71:196-207. [PMID: 24681256 PMCID: PMC4042208 DOI: 10.1016/j.freeradbiomed.2014.03.025] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Redox networks in the cell integrate signaling pathways that control metabolism, energetics, cell survival, and death. The physiological second messengers that modulate these pathways include nitric oxide, hydrogen peroxide, and electrophiles. Electrophiles are produced in the cell via both enzymatic and nonenzymatic lipid peroxidation and are also relatively abundant constituents of the diet. These compounds bind covalently to families of cysteine-containing, redox-sensing proteins that constitute the electrophile-responsive proteome, the subproteomes of which are found in localized intracellular domains. These include those proteins controlling responses to oxidative stress in the cytosol-notably the Keap1-Nrf2 pathway, the autophagy-lysosomal pathway, and proteins in other compartments including mitochondria and endoplasmic reticulum. The signaling pathways through which electrophiles function have unique characteristics that could be exploited for novel therapeutic interventions; however, development of such therapeutic strategies has been challenging due to a lack of basic understanding of the mechanisms controlling this form of redox signaling. In this review, we discuss current knowledge of the basic mechanisms of thiol-electrophile signaling and its potential impact on the translation of this important field of redox biology to the clinic. Emerging understanding of thiol-electrophile interactions and redox signaling suggests replacement of the oxidative stress hypothesis with a new redox biology paradigm, which provides an exciting and influential framework for guiding translational research.
Collapse
Affiliation(s)
- Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - Emilia Kansanen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veteran Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
202
|
Almontashiri NAM, Chen HH, Mailloux RJ, Tatsuta T, Teng ACT, Mahmoud AB, Ho T, Stewart NAS, Rippstein P, Harper ME, Roberts R, Willenborg C, Erdmann J, Pastore A, McBride HM, Langer T, Stewart AFR. SPG7 variant escapes phosphorylation-regulated processing by AFG3L2, elevates mitochondrial ROS, and is associated with multiple clinical phenotypes. Cell Rep 2014; 7:834-47. [PMID: 24767997 DOI: 10.1016/j.celrep.2014.03.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/06/2014] [Accepted: 03/20/2014] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial production of reactive oxygen species (ROS) affects many processes in health and disease. SPG7 assembles with AFG3L2 into the mAAA protease at the inner membrane of mitochondria, degrades damaged proteins, and regulates the synthesis of mitochondrial ribosomes. SPG7 is cleaved and activated by AFG3L2 upon assembly. A variant in SPG7 that replaces arginine 688 with glutamine (Q688) is associated with several phenotypes, including toxicity of chemotherapeutic agents, type 2 diabetes mellitus, and (as reported here) coronary artery disease. We demonstrate that SPG7 processing is regulated by tyrosine phosphorylation of AFG3L2. Carriers of Q688 bypass this regulation and constitutively process and activate SPG7 mAAA protease. Cells expressing Q688 produce higher ATP levels and ROS, promoting cell proliferation. Our results thus reveal an unexpected link between the phosphorylation-dependent regulation of the mitochondria mAAA protease affecting ROS production and several clinical phenotypes.
Collapse
Affiliation(s)
- Naif A M Almontashiri
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Center for Genetics and Inherited Diseases, Department of Applied Medical Sciences, Taibah University, Almedinah, P.O. Box 41477, Saudi Arabia
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Takashi Tatsuta
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Allen C T Teng
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ahmad B Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tiffany Ho
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | - Nicolas A S Stewart
- Center for Clinical Pharmacology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peter Rippstein
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | - Mary Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robert Roberts
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada
| | | | | | | | - Annalisa Pastore
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | - Thomas Langer
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Alexandre F R Stewart
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON K1Y, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
203
|
Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Fukai K, Iwai-Kanai E, Matoba S. Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circ Heart Fail 2014; 7:500-9. [PMID: 24740269 DOI: 10.1161/circheartfailure.113.001062] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mitochondrial compromise is a fundamental contributor to heart failure. Recent studies have revealed that several surveillance systems maintain mitochondrial integrity. The present study evaluated the role of mitochondrial AAA+ protease in a mouse model of pressure overload heart failure. METHODS AND RESULTS The fluorescein isothiocyanate casein assay and immunoblotting for endogenous mitochondrial proteins revealed a marked reduction in ATP-dependent proteolytic activity in failing heart mitochondria. The level of reduced cysteine was decreased, and tyrosine nitration and protein carbonylation were promoted in Lon protease homolog (LONP1), the most abundant mitochondrial AAA+ protease, in heart failure. Comprehensive analysis revealed that electron transport chain protein levels were increased even with a reduction in the expression of their corresponding mRNAs in heart failure, which indicated decreased protein turnover and resulted in the accumulation of oxidative damage in the electron transport chain. The induction of mitochondria-targeted human catalase ameliorated proteolytic activity and protein homeostasis in the electron transport chain, leading to improvements in mitochondrial energetics and cardiac contractility even during the late stage of pressure overload. Moreover, the infusion of mitoTEMPO, a mitochondria-targeted superoxide dismutase mimetic, recovered oxidative modifications of LONP1 and improved mitochondrial respiration capacity and cardiac function. The in vivo small interfering RNA repression of LONP1 partially canceled the protective effects of mitochondria-targeted human catalase induction and mitoTEMPO infusion. CONCLUSIONS Oxidative post-translational modifications attenuate mitochondrial AAA+ protease activity, which is involved in impaired electron transport chain protein homeostasis, mitochondrial respiration deficiency, and left ventricular contractile dysfunction. Oxidatively inactivated proteases may be an endogenous target for mitoTEMPO treatment in pressure overload heart failure.
Collapse
Affiliation(s)
- Atsushi Hoshino
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Yoshifumi Okawa
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Makoto Ariyoshi
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Satoshi Kaimoto
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Motoki Uchihashi
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Kuniyoshi Fukai
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Eri Iwai-Kanai
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Satoaki Matoba
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.).
| |
Collapse
|
204
|
Smakowska E, Czarna M, Janska H. Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins. Mitochondrion 2014; 19 Pt B:245-51. [PMID: 24662487 DOI: 10.1016/j.mito.2014.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
Carbonylation is an irreversible oxidative modification of proteins induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) or by-products of oxidative stress. Carbonylation leads to the loss of protein function and is used as a marker of oxidative stress. Recent data indicate that carbonylation is not only an unfavorable chance process but may also play a significant role in the control of diverse physiological processes. In plants, carbonylated proteins have been found in all cellular compartments; however, mitochondria, one of the major sources of reactive species, show the highest levels of oxidatively modified proteins under normal or stress conditions. Carbonylated proteins tend to misfold and have to be removed to prevent the formation of harmful insoluble aggregates. Mitochondria have developed several pathways that continuously monitor and remove oxidatively damaged polypeptides, and the mitochondrial protein quality control (mtPQC) system, comprising chaperones and ATP-dependent proteases, is the first line of defense. The Lon protease has been recognized as a key protease involved in the removal of oxidized proteins in yeast and mammalian mitochondria, but not in plants. Recently, it has been reported that the inner-membrane human i-AAA and m-AAA and Arabidopsis i-AAA proteases are crucial components of the defense against accumulation of carbonylated proteins, but the molecular basis of their action is not yet clear. Altogether, the mitochondrial AAA proteases secure the mitochondrial proteome against accumulation of carbonylated proteins.
Collapse
Affiliation(s)
- Elwira Smakowska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Malgorzata Czarna
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Hanna Janska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| |
Collapse
|
205
|
Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014; 20:1501-23. [PMID: 24111926 PMCID: PMC3936510 DOI: 10.1089/ars.2013.5649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
Collapse
Affiliation(s)
- Min Li
- 1 Department of Radiology, Cancer Center, Rutgers University-New Jersey Medical School , Newark, New Jersey
| | | | | | | | | | | | | |
Collapse
|
206
|
Zhang B, Shen XL, Liang R, Li Y, Huang K, Zhao C, Luo Y, Xu W. Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells. J Proteomics 2014; 101:154-68. [PMID: 24565693 DOI: 10.1016/j.jprot.2014.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/29/2014] [Accepted: 02/15/2014] [Indexed: 11/26/2022]
Abstract
UNLABELLED Ochratoxin A (OTA) is a common kind of mycotoxin and food contaminant, which has various toxicological effects, especially nephrotoxicity. Our previous work about OTA-induced renal cytotoxicity indicated that mitochondrial Lon Protease 1 (Lonp1) might play a protective role. Lonp1 is a multifunctional ATP-dependent protease which mainly participates in mitochondrial proteolysis and protein quality control. The study aimed at probing how Lonp1 functioned in OTA-induced renal cytotoxicity. By means of RNA interference, we down-regulated the expression of Lonp1 in HEK293 cells. Cell viability results revealed that cells with Lonp1 deficiency were more vulnerable to OTA. Then we identified differentially expressed proteins between Lonp1 knock-down cells and scrambled control both in the absence and presence of OTA, using iTRAQ-based quantitative proteomics approach. Thirty-four proteins were differentially expressed as a result of Lonp1 deficiency, while forty-four proteins were differentially expressed in response to both Lonp1 deficiency and OTA treatment. By function summary and pathway analysis, we presumed that Lonp1 realized its protective function in the resistance to OTA-induced renal cytotoxicity via 4 processes: defensing against OTA-induced oxidative stress in the mitochondria; regulating protein synthesis, modification and repair; maintaining the balance of carbohydrate metabolism; and assisting in mtDNA maintenance. BIOLOGICAL SIGNIFICANCE OTA is a kind of mycotoxin that seriously threatens human health and has various toxicological effects. However, the mechanisms of its toxicity have not been exactly elucidated yet. The method of combination of RNAi and iTRAQ-based quantitative proteomics paves the way to gain a better understanding of the toxicity mechanisms of OTA. The present study, for the first time, verified the protective role of Lonp1 in OTA-induced renal cytotoxicity and clarified the defensive mechanism. Proteomic changes in Lonp1 deficient cells induced by OTA added new knowledge to OTA cytotoxicity.
Collapse
Affiliation(s)
- Boyang Zhang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiao Li Shen
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563003, PR China
| | - Rui Liang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuzhe Li
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Kunlun Huang
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Changhui Zhao
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Yunbo Luo
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentao Xu
- Laboratory of food safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
207
|
Acs Z, Bori Z, Takeda M, Osvath P, Berkes I, Taylor AW, Yang H, Radak Z. High altitude exposure alters gene expression levels of DNA repair enzymes, and modulates fatty acid metabolism by SIRT4 induction in human skeletal muscle. Respir Physiol Neurobiol 2014; 196:33-7. [PMID: 24561637 DOI: 10.1016/j.resp.2014.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 11/18/2022]
Abstract
We hypothesized that high altitude exposure and physical activity associated with the attack to Mt Everest could alter mRNA levels of DNA repair and metabolic enzymes and cause oxidative stress-related challenges in human skeletal muscle. Therefore, we have tested eight male mountaineers (25-40 years old) before and after five weeks of exposure to high altitude, which included attacks to peaks above 8000m. Data gained from biopsy samples from vastus lateralis revealed increased mRNA levels of both cytosolic and mitochondrial superoxide dismutase. On the other hand 8-oxoguanine DNA glycosylase (OGG1) mRNA levels tended to decrease while Ku70 mRNA levels and SIRT6 decreased with altitude exposure. The levels of SIRT1 and SIRT3 mRNA did not change significantly. However, SIRT4 mRNA level increased significantly, which could indicate decreases in fatty acid metabolism, since SIRT4 is one of the important regulators of this process. Within the limitations of this human study, data suggest that combined effects of high altitude exposure and physical activity climbing to Mt. Everest, could jeopardize the integrity of the particular chromosome.
Collapse
Affiliation(s)
- Zoltan Acs
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Zoltan Bori
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Masaki Takeda
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Peter Osvath
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Istvan Berkes
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Albert W Taylor
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Hu Yang
- Research Institute, Bejing Sport University, Beijing, China
| | - Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
208
|
Kim SJ, Cheresh P, Williams D, Cheng Y, Ridge K, Schumacker PT, Weitzman S, Bohr VA, Kamp DW. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem 2014; 289:6165-76. [PMID: 24429287 DOI: 10.1074/jbc.m113.515130] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5-25 μg/cm(2)) or H2O2 (100-250 μM)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317-323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1(-/-) mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.
Collapse
Affiliation(s)
- Seok-Jo Kim
- From the Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Bezawork-Geleta A, Saiyed T, Dougan DA, Truscott KN. Mitochondrial matrix proteostasis is linked to hereditary paraganglioma: LON-mediated turnover of the human flavinylation factor SDH5 is regulated by its interaction with SDHA. FASEB J 2014; 28:1794-804. [PMID: 24414418 DOI: 10.1096/fj.13-242420] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in succinate dehydrogenase (SDH) subunits and assembly factors cause a range of clinical conditions. One such condition, hereditary paraganglioma 2 (PGL2), is caused by a G78R mutation in the assembly factor SDH5. Although SDH5(G78R) is deficient in its ability to promote SDHA flavinylation, it has remained unclear whether impairment to its import, structure, or stability contributes to its loss of function. Using import-chase analysis in human mitochondria isolated from HeLa cells, we found that the import and maturation of human SDH5(G78R) was normal, while its stability was reduced significantly, with ~25% of the protein remaining after 180 min compared to ~85% for the wild-type protein. Notably, the metabolic stability of SDH5(G78R) was restored to wild-type levels by depleting mitochondrial LON (LONM). Degradation of SDH5(G78R) by LONM was confirmed in vitro; however, in contrast to the in organello analysis, wild-type SDH5 was also rapidly degraded by LONM. SDH5 instability was confirmed in SDHA-depleted mitochondria. Blue native PAGE showed that imported SDH5(G78R) formed a transient complex with SDHA; however, this complex was stabilized in LONM depleted mitochondria. These data demonstrate that SDH5 is protected from LONM-mediated degradation in mitochondria by its stable interaction with SDHA, a state that is dysregulated in PGL2.
Collapse
Affiliation(s)
- Ayenachew Bezawork-Geleta
- 2Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia. K.N.T.,
| | | | | | | |
Collapse
|
210
|
Bayot A, Gareil M, Chavatte L, Hamon MP, L'Hermitte-Stead C, Beaumatin F, Priault M, Rustin P, Lombès A, Friguet B, Bulteau AL. Effect of Lon protease knockdown on mitochondrial function in HeLa cells. Biochimie 2013; 100:38-47. [PMID: 24355201 DOI: 10.1016/j.biochi.2013.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
ATP-dependent proteases are currently emerging as key regulators of mitochondrial functions. Among these proteolytic systems, Lon protease is involved in the control of selective protein turnover in the mitochondrial matrix. In the absence of Lon, yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to loose integrity of mitochondrial genome and to be respiratory deficient. In order to address the role of Lon in mitochondrial functionality in human cells, we have set up a HeLa cell line stably transfected with a vector expressing a shRNA under the control of a promoter which is inducible with doxycycline. We have demonstrated that reduction of Lon protease results in a mild phenotype in this cell line in contrast with what have been observed in other cell types such as WI-38 fibroblasts. Nevertheless, deficiency in Lon protease led to an increase in ROS production and to an accumulation of carbonylated protein in the mitochondria. Our study suggests that Lon protease has a wide variety of targets and is likely to play different roles depending of the cell type.
Collapse
Affiliation(s)
- Aurélien Bayot
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France; Inserm, Hopital Robert Debré, 75019 Paris, France
| | - Monique Gareil
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Laurent Chavatte
- Centre de recherche de Gif-sur-Yvette, FRC 3115, Centre de Génétique Moléculaire, CNRS, UPR3404, 91198 Gif-sur-Yvette Cedex, France
| | - Marie-Paule Hamon
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | - Florian Beaumatin
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS, Université Bordeaux 2, France
| | - Muriel Priault
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS, Université Bordeaux 2, France
| | | | - Anne Lombès
- Inserm, Institut Cochin, 75014 Paris, France
| | - Bertrand Friguet
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France.
| | - Anne-Laure Bulteau
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
211
|
Ugarte N, Ladouce R, Radjei S, Gareil M, Friguet B, Petropoulos I. Proteome alteration in oxidative stress-sensitive methionine sulfoxide reductase-silenced HEK293 cells. Free Radic Biol Med 2013; 65:1023-1036. [PMID: 23988788 DOI: 10.1016/j.freeradbiomed.2013.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/18/2013] [Accepted: 08/08/2013] [Indexed: 12/29/2022]
Abstract
Methionine sulfoxide reductases (Msr's) are key enzymes proficient in catalyzing the reduction of oxidized methionines. This reductive trait is essential to maintaining cellular redox homeostasis from bacteria to mammals and is also regarded as a potential mechanism to regulate protein activities and signaling pathways, considering the inactivating effects that can be induced by methionine oxidation. In this study, we have generated stable human embryonic kidney HEK293 clones with an altered Msr system by silencing the expression of the main Msr elements-MsrA, MsrB1, or MsrB2. The isolated clones--the single mutants MsrA, MsrB1, and MsrB2 and double mutant MsrA/B1-show a reduced Msr activity and an exacerbated sensitivity toward oxidative stress. A two-dimensional difference in-gel electrophoresis analysis was performed on the Msr-silenced cells grown under basal conditions or submitted to oxidative stress. This proteomic analysis revealed that the disruption of the Msr system mainly affects proteins with redox, cytoskeletal or protein synthesis, and maintenance roles. Interestingly, most of the proteins found altered in the Msr mutants were also identified as potential Msr substrates and have been associated with redox or aging processes in previous studies. This study, through an extensive analysis of Msr-inhibited mutants, offers valuable input on the cellular network of a crucial maintenance system such as methionine sulfoxide reductases.
Collapse
Affiliation(s)
- Nicolas Ugarte
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| | - Romain Ladouce
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Sabrina Radjei
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Monique Gareil
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| |
Collapse
|
212
|
Abstract
SIGNIFICANCE The mitochondrial genetic system is responsible for the production of a few core-subunits of the respiratory chain and ATP synthase, the membrane protein complexes driving oxidative phosphorylation (OXPHOS). Efficiency and accuracy of mitochondrial protein synthesis determines how efficiently new OXPHOS complexes can be made. RECENT ADVANCES The system responsible for expression of the mitochondrial-encoded subunits developed from that of the bacterial ancestor of mitochondria. Importantly, many aspects of genome organization, transcription, and translation have diverged during evolution. Recent research has provided new insights into the architecture, regulation, and organelle-specific features of mitochondrial translation. Mitochondrial ribosomes contain a number of proteins absent from prokaryotic ribosomes, implying that in mitochondria, ribosomes were tailored to fit the requirements of the organelle. In addition, mitochondrial gene expression is regulated post-transcriptionally by a number of mRNA-specific translational activators. At least in yeast, these factors can regulate translation in respect to OXPHOS complex assembly to adjust the level of newly synthesized proteins to amounts that can be successfully assembled into respiratory chain complexes. CRITICAL ISSUES Mitochondrial gene expression is determining aging in eukaryotes, and a number of recent reports indicate that efficiency of translation directly influences this process. FUTURE DIRECTIONS Here we will summarize recent advances in our understanding of mitochondrial protein synthesis by comparing the knowledge acquired in the systems most commonly used to study mitochondrial biogenesis. However, many steps have not been understood mechanistically. Innovative biochemical and genetic approaches have to be elaborated to shed light on these important processes.
Collapse
Affiliation(s)
- Kirsten Kehrein
- 1 Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | | | | |
Collapse
|
213
|
Hauser DN, Dukes AA, Mortimer AD, Hastings TG. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med 2013; 65:419-427. [PMID: 23816523 PMCID: PMC4043454 DOI: 10.1016/j.freeradbiomed.2013.06.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are known to contribute to the pathogenesis of Parkinson's disease. Dopaminergic neurons may be more sensitive to these stressors because they contain dopamine (DA), a molecule that oxidizes to the electrophilic dopamine quinone (DAQ) which can covalently bind nucleophilic amino acid residues such as cysteine. The identification of proteins that are sensitive to covalent modification and functional alteration by DAQ is of great interest. We have hypothesized that selenoproteins, which contain a highly nucleophilic selenocysteine residue and often play vital roles in the maintenance of neuronal viability, are likely targets for the DAQ. Here we report the findings of our studies on the effect of DA oxidation and DAQ on the mitochondrial antioxidant selenoprotein glutathione peroxidase 4 (GPx4). Purified GPx4 could be covalently modified by DAQ, and the addition of DAQ to rat testes lysate resulted in dose-dependent decreases in GPx4 activity and monomeric protein levels. Exposing intact rat brain mitochondria to DAQ resulted in similar decreases in GPx4 activity and monomeric protein levels as well as detection of multiple forms of DA-conjugated GPx4 protein. Evidence of both GPx4 degradation and polymerization was observed following DAQ exposure. Finally, we observed a dose-dependent loss of mitochondrial GPx4 in differentiated PC12 cells treated with dopamine. Our findings suggest that a decrease in mitochondrial GPx4 monomer and a functional loss of activity may be a contributing factor to the vulnerability of dopaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- David N Hauser
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | - April A Dukes
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | - Amanda D Mortimer
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | - Teresa G Hastings
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260.
| |
Collapse
|
214
|
Campello S, Strappazzon F, Cecconi F. Mitochondrial dismissal in mammals, from protein degradation to mitophagy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:451-60. [PMID: 24275087 DOI: 10.1016/j.bbabio.2013.11.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 11/17/2022]
Abstract
Mitochondria are double-membraned highly dynamic organelles; the shape, location and function of which are determined by a constant balance between opposing fusion and fission events. A fine modulation of mitochondrial structure is crucial for their correct functionality and for many physiological cell processes, the status of these organelles, being thus a key aspect in a cell's fate. Indeed, the homeostasis of mitochondria needs to be highly regulated for the above mentioned reasons, and since a) they are the major source of energy; b) they participate in various signaling pathways; albeit at the same time c) they are also the major source of reactive oxygen species (ROS, the main damaging detrimental players for all cell components). Elaborate mechanisms of mitochondrial quality control have evolved for maintaining a functional mitochondrial network and avoiding cell damage. The first mechanism is the removal of damaged mitochondrial proteins within the organelle via chaperones and protease; the second is the cytosolic ubiquitin-proteasome system (UPS), able to eliminate proteins embedded in the outer mitochondrial membrane; the third is the removal of the entire mitochondria through mitophagy, in the case of extensive organelle damage and dysfunction. In this review, we provide an overview of these mitochondria stability and quality control mechanisms, highlighting mitophagy, and emphasizing the central role of mitochondrial dynamics in this context. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
| | - Flavie Strappazzon
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Cecconi
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
215
|
Lushchak OV, Piroddi M, Galli F, Lushchak VI. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep 2013; 19:8-15. [PMID: 24266943 DOI: 10.1179/1351000213y.0000000073] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Aconitase, an enzyme possessing an iron-sulfur cluster that is sensitive to oxidation, is involved in the regulation of cellular metabolism. There are two isoenzymes of aconitase (Aco)--mitochondrial (mAco) and cytosolic (cAco) ones. The primary role of mAdco is believed to be to control cellular ATP production via regulation of intermediate flux in the Krebs cycle. The cytosolic Aco in its reduced form operates as an enzyme, whereas in the oxidized form it is involved in the control of iron homeostasis as iron regulatory protein 1 (IRP1). Reactive oxygen species (ROS) play a central role in regulation of Aco functions. Catalytic Aco activity is regulated by reversible oxidation of [4Fe-4S]²⁺ cluster and cysteine residues, so redox-dependent posttranslational modifications (PTMs) have gained increasing consideration as regards possible regulatory effects. These include modifications of cysteine residues by oxidation, nitrosylation and thiolation, as well as Tyr nitration and oxidation of Lys residues to carbonyls. Redox-independent PTMs such as phosphorylation and transamination also have been described. In the presence of a sustained ROS flux, redox-dependent PTMs may lead to enzyme damage and cell stress by impaired energy and iron metabolism. Aconitase has been identified as a protein that undergoes oxidative modification and inactivation in aging and certain oxidative stress-related disorders. Here we describe possible mechanisms of involvement of the two aconitase isoforms, cAco and mAco, in the control of cell metabolism and iron homeostasis, balancing the regulatory, and damaging effects of ROS.
Collapse
|
216
|
Nie X, Li M, Lu B, Zhang Y, Lan L, Chen L, Lu J. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLoS One 2013; 8:e81084. [PMID: 24260536 PMCID: PMC3834287 DOI: 10.1371/journal.pone.0081084] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/08/2013] [Indexed: 01/14/2023] Open
Abstract
The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA). However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China ; Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | | | | | | | | | | | | |
Collapse
|
217
|
Kotiadis VN, Duchen MR, Osellame LD. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta Gen Subj 2013; 1840:1254-65. [PMID: 24211250 PMCID: PMC3970188 DOI: 10.1016/j.bbagen.2013.10.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/14/2013] [Accepted: 10/29/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial 'fitness' requires quality control mechanisms which involve close communication with the nucleus. SCOPE OF REVIEW This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. MAJOR CONCLUSIONS The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. GENERAL SIGNIFICANCE Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Vassilios N Kotiadis
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK
| | - Laura D Osellame
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, UK; UCL Consortium for Mitochondrial Research, University College London, WC1E 6BT, UK.
| |
Collapse
|
218
|
Konopka AR, Sreekumaran Nair K. Mitochondrial and skeletal muscle health with advancing age. Mol Cell Endocrinol 2013; 379:19-29. [PMID: 23684888 PMCID: PMC3788080 DOI: 10.1016/j.mce.2013.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/22/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Abstract
With increasing age there is a temporal relationship between the decline of mitochondrial and skeletal muscle volume, quality and function (i.e., health). Reduced mitochondrial mRNA expression, protein abundance, and protein synthesis rates appear to promote the decline of mitochondrial protein quality and function. Decreased mitochondrial function is suspected to impede energy demanding processes such as skeletal muscle protein turnover, which is critical for maintaining protein quality and thus skeletal muscle health with advancing age. The focus of this review was to discuss promising human physiological systems underpinning the decline of mitochondrial and skeletal muscle health with advancing age while highlighting therapeutic strategies such as aerobic exercise and caloric restriction for combating age-related functional impairments.
Collapse
Affiliation(s)
- Adam R Konopka
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | | |
Collapse
|
219
|
Jin SM, Youle RJ. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 2013; 9:1750-7. [PMID: 24149988 DOI: 10.4161/auto.26122] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Defective mitochondria exert deleterious effects on host cells. To manage this risk, mitochondria display several lines of quality control mechanisms: mitochondria-specific chaperones and proteases protect against misfolded proteins at the molecular level, and fission/fusion and mitophagy segregate and eliminate damage at the organelle level. An increase in unfolded proteins in mitochondria activates a mitochondrial unfolded protein response (UPR(mt)) to increase chaperone production, while the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin, whose mutations cause familial Parkinson disease, remove depolarized mitochondria through mitophagy. It is unclear, however, if there is a connection between those different levels of quality control (QC). Here, we show that the expression of unfolded proteins in the matrix causes the accumulation of PINK1 on energetically healthy mitochondria, resulting in mitochondrial translocation of PARK2, mitophagy and subsequent reduction of unfolded protein load. Also, PINK1 accumulation is greatly enhanced by the knockdown of the LONP1 protease. We suggest that the accumulation of unfolded proteins in mitochondria is a physiological trigger of mitophagy.
Collapse
Affiliation(s)
- Seok Min Jin
- Biochemistry Section; Surgical Neurology Branch; National Institute of Neurological Disorders and Stroke; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
220
|
Dasuri K, Zhang L, Keller JN. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 2013; 62:170-185. [PMID: 23000246 DOI: 10.1016/j.freeradbiomed.2012.09.016] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Oxidative stress occurs in a variety of disease settings and is strongly linked to the development of neuron death and neuronal dysfunction. Cells are equipped with numerous pathways to prevent the genesis, as well as the consequences, of oxidative stress in the brain. In this review we discuss the various forms and sources of oxidative stress in the brain and briefly discuss some of the complexities in detecting the presence of oxidative stress. We then focus the review on the interplay between the diverse cellular proteolytic pathways and their roles in regulating oxidative stress in the brain. Additionally, we discuss the involvement of protein synthesis in regulating the downstream effects of oxidative stress. Together, these components of the review demonstrate that the removal of damaged proteins by effective proteolysis and the synthesis of new and protective proteins are vital in the preservation of brain homeostasis during periods of increased levels of reactive oxygen species. Last, studies from our laboratory and others have demonstrated that protein synthesis is intricately linked to the rates of protein degradation, with impairment of protein degradation sufficient to decrease the rates of protein synthesis, which has important implications for successfully responding to periods of oxidative stress. Specific neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and stroke, are discussed in this context. Taken together, these findings add to our understanding of how oxidative stress is effectively managed in the healthy brain and help elucidate how impairments in proteolysis and/or protein synthesis contribute to the development of neurodegeneration and neuronal dysfunction in a variety of clinical settings.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Le Zhang
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jeffrey N Keller
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
221
|
Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev 2013; 26:149-65. [PMID: 23930668 DOI: 10.1017/s0954422413000115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Periods of immobilisation are often associated with pathologies and/or ageing. These periods of muscle disuse induce muscle atrophy which could worsen the pathology or elderly frailty. If muscle mass loss has positive effects in the short term, a sustained/uncontrolled muscle mass loss is deleterious for health. Muscle mass recovery following immobilisation-induced atrophy could be critical, particularly when it is uncompleted as observed during ageing. Exercise, the best way to recover muscle mass, is not always applicable. So, other approaches such as nutritional strategies are needed to limit muscle wasting and to improve muscle mass recovery in such situations. The present review discusses mechanisms involved in muscle atrophy following disuse and during recovery and emphasises the effect of age in these mechanisms. In addition, the efficiency of nutritional strategies proposed to limit muscle mass loss during disuse and to improve protein gain during recovery (leucine supplementation, whey proteins, antioxidants and anti-inflammatory compounds, energy intake) is also discussed.
Collapse
|
222
|
Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci U S A 2013; 110:12679-84. [PMID: 23858469 PMCID: PMC3732959 DOI: 10.1073/pnas.1308487110] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen-sensitive accumulation and degradation, two opposite but intrinsically linked events, of heme proteins in mitochondria affect mitochondrial functions, including bioenergetics and oxygen-sensing processes. Cystathionine β-synthase (CBS) contains a prosthetic heme group and catalyzes the production of hydrogen sulfide in mammalian cells. Here we show that CBS proteins were present in liver mitochondria at a low level under normoxia conditions. Ischemia/hypoxia increased the accumulation of CBS proteins in mitochondria. The normalization of oxygen partial pressure accelerated the degradation of CBS proteins. Lon protease, a major degradation enzyme in mitochondrial matrix, recognized and degraded mitochondrial CBS by specifically targeting at the oxygenated heme group of CBS proteins. The accumulation of CBS in mitochondria increased hydrogen sulfide production, which prevented Ca(2+)-mediated cytochrome c release from mitochondria and decreased reactive oxygen species generation. Mitochondrial accumulation of heme oxygenase-1, another heme protein, was also regulated by oxygen level and Lon protease in the same mechanism as for CBS. Our findings provide a fundamental and general mechanism for oxygen-sensitive regulation of mitochondrial functions by linking oxygenation level to the accumulation/degradation of mitochondrial heme proteins.
Collapse
Affiliation(s)
- Huajian Teng
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Bo Wu
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Kexin Zhao
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Guangdong Yang
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Lingyun Wu
- Department of Health Sciences, Lakehead University, Thunder Bay, ON, Canada P7B 5E1; and
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada P7A 7T1
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| |
Collapse
|
223
|
Impact of Solar Radiation on Gene Expression in Bacteria. Proteomes 2013; 1:70-86. [PMID: 28250399 PMCID: PMC5302746 DOI: 10.3390/proteomes1020070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/21/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022] Open
Abstract
Microorganisms often regulate their gene expression at the level of transcription and/or translation in response to solar radiation. In this review, we present the use of both transcriptomics and proteomics to advance knowledge in the field of bacterial response to damaging radiation. Those studies pertain to diverse application areas such as fundamental microbiology, water treatment, microbial ecology and astrobiology. Even though it has been demonstrated that mRNA abundance is not always consistent with the protein regulation, we present here an exhaustive review on how bacteria regulate their gene expression at both transcription and translation levels to enable biomarkers identification and comparison of gene regulation from one bacterial species to another.
Collapse
|
224
|
Liao JH, Ihara K, Kuo CI, Huang KF, Wakatsuki S, Wu SH, Chang CI. Structures of an ATP-independent Lon-like protease and its complexes with covalent inhibitors. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1395-402. [PMID: 23897463 DOI: 10.1107/s0907444913008214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/25/2013] [Indexed: 11/10/2022]
Abstract
The Lon proteases are a unique family of chambered proteases with a built-in AAA+ (ATPases associated with diverse cellular activities) module. Here, crystal structures of a unique member of the Lon family with no intrinsic ATPase activity in the proteolytically active form are reported both alone and in complexes with three covalent inhibitors: two peptidomimetics and one derived from a natural product. This work reveals the unique architectural features of an ATP-independent Lon that selectively degrades unfolded protein substrates. Importantly, these results provide mechanistic insights into the recognition of inhibitors and polypeptide substrates within the conserved proteolytic chamber, which may aid the development of specific Lon-protease inhibitors.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
225
|
Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis 2013; 4:e681. [PMID: 23788038 PMCID: PMC3702277 DOI: 10.1038/cddis.2013.204] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Lon protease is a multifunction protein and operates in protein quality control and stress response pathways in mitochondria. Human Lon is upregulated under oxidative and hypoxic stresses that represent the stress phenotypes of cancer. However, little literature undertakes comprehensive and detailed investigations on the tumorigenic role of Lon. Overexpression of Lon promotes cell proliferation, apoptotic resistance to stresses, and transformation. Furthermore, Lon overexpression induces the production of mitochondrial reactive oxygen species (ROS) that result from Lon-mediated upregulation of NDUFS8, a mitochondrial Fe-S protein in complex I of electron transport chain. Increased level of mitochondrial ROS promotes cell proliferation, cell survival, cell migration, and epithelial–mesenchymal transition through mitogen-activated protein kinase (MAPK) and Ras-ERK activation. Overall, the present report for the first time demonstrates the role of Lon overexpression in tumorigenesis. Lon overexpression gives an apoptotic resistance to stresses and induces mitochondrial ROS production through Complex I as signaling molecules to activate Ras and MAPK signaling, giving the survival advantages and adaptation to cancer cells. Finally, in silico and immunohistochemistry analysis showed that Lon is overexpressed specifically in various types of cancer tissue including oral cancer.
Collapse
|
226
|
Goard CA, Schimmer AD. Mitochondrial matrix proteases as novel therapeutic targets in malignancy. Oncogene 2013; 33:2690-9. [PMID: 23770858 DOI: 10.1038/onc.2013.228] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
Although mitochondrial function is often altered in cancer, it remains essential for tumor viability. Tight control of protein homeostasis is required for the maintenance of mitochondrial function, and the mitochondrial matrix houses several coordinated protein quality control systems. These include three evolutionarily conserved proteases of the AAA+ superfamily-the Lon, ClpXP and m-AAA proteases. In humans, these proteases are proposed to degrade, process and chaperone the assembly of mitochondrial proteins in the matrix and inner membrane involved in oxidative phosphorylation, mitochondrial protein synthesis, mitochondrial network dynamics and nucleoid function. In addition, these proteases are upregulated by a variety of mitochondrial stressors, including oxidative stress, unfolded protein stress and imbalances in respiratory complex assembly. Given that tumor cells must survive and proliferate under dynamic cellular stress conditions, dysregulation of mitochondrial protein quality control systems may provide a selective advantage. The association of mitochondrial matrix AAA+ proteases with cancer and their potential for therapeutic modulation therefore warrant further consideration. Although our current knowledge of the endogenous human substrates of these proteases is limited, we highlight functional insights gained from cultured human cells, protease-deficient mouse models and other eukaryotic model organisms. We also review the consequences of disrupting mitochondrial matrix AAA+ proteases through genetic and pharmacological approaches, along with implications of these studies on the potential of these proteases as anticancer therapeutic targets.
Collapse
Affiliation(s)
- C A Goard
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - A D Schimmer
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
227
|
Hart N, Sarga L, Csende Z, Koch LG, Britton SL, Davies KJA, Radak Z. Resveratrol attenuates exercise-induced adaptive responses in rats selectively bred for low running performance. Dose Response 2013; 12:57-71. [PMID: 24659933 DOI: 10.2203/dose-response.13-010.radak] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low capacity runner (LCR) rats have been developed by divergent artificial selection for treadmill endurance capacity to explore an aerobic biology-disease connection. The beneficial effects of resveratrol supplementation have been demonstrated in endurance running. In this study it was examined whether 12 weeks of treadmill exercise training and/or resveratrol can retrieve the low running performance of the LCR and impact mitochondrial biogenesis and quality control. Resveratrol regressed running performance in trained LCR (p<0.05). Surprisingly, exercise and resveratrol treatments significantly decreased pAMPK/AMPK, SIRT1, SIRT4, forkhead transcription factor 1 (FOXO1) and mitochondrial transcription factor A (TFAM) levels in these animals (p<0.05). Mitochondrial fusion protein, HSP78 and polynucleotide phosphorylase were significantly induced in LCR-trained, LCR-resveratrol treated, LCR-trained and resveratol treated groups compared to LCR-controls. The data indicate that the AMPK-SIRT1-NAMPT-FOXO1 axis could be important to the limited aerobic endurance capacity of low running capacity rats. Resveratrol supplementation was not beneficial in terms of aerobic endurance performance, mitochondrial biogenesis, or quality control.
Collapse
Affiliation(s)
- Nikolett Hart
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Linda Sarga
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Zsolt Csende
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology; and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences: the University of Southern California, Los Angeles, USA
| | - Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| |
Collapse
|
228
|
Lee YH, Goh WWB, Ng CK, Raida M, Wong L, Lin Q, Boelsterli UA, Chung MCM. Integrative toxicoproteomics implicates impaired mitochondrial glutathione import as an off-target effect of troglitazone. J Proteome Res 2013; 12:2933-45. [PMID: 23659346 PMCID: PMC3805328 DOI: 10.1021/pr400219s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Troglitazone,
a first-generation thiazolidinedione of antihyperglycaemic
properties, was withdrawn from the market due to unacceptable idiosyncratic
hepatotoxicity. Despite intensive research, the underlying mechanism
of troglitazone-induced liver toxicity remains unknown. Here we report
the use of the Sod2+/– mouse model of silent mitochondrial oxidative-stress-based
and quantitative mass spectrometry-based proteomics to track the mitochondrial
proteome changes induced by physiologically relevant troglitazone
doses. By quantitative untargeted proteomics, we first globally profiled
the Sod2+/– hepatic
mitochondria proteome and found perturbations including GSH metabolism
that enhanced the toxicity of the normally nontoxic troglitazone.
Short- and long-term troglitazone administration in Sod2+/– mouse led to a mitochondrial
proteome shift from an early compensatory response to an eventual
phase of intolerable oxidative stress, due to decreased mitochondrial
glutathione (mGSH) import protein, decreased dicarboxylate ion carrier
(DIC), and the specific activation of ASK1-JNK and FOXO3a with prolonged
troglitazone exposure. Furthermore, mapping of the detected proteins
onto mouse specific protein-centered networks revealed lipid-associated
proteins as contributors to overt mitochondrial and liver injury when
under prolonged exposure to the lipid-normalizing troglitazone. By
integrative toxicoproteomics, we demonstrated a powerful systems approach
in identifying the collapse of specific fragile nodes and activation
of crucial proteome reconfiguration regulators when targeted by an
exogenous toxicant.
Collapse
Affiliation(s)
- Yie Hou Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Cunniff B, Benson K, Stumpff J, Newick K, Held P, Taatjes D, Joseph J, Kalyanaraman B, Heintz NH. Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells. J Cell Physiol 2013; 228:835-45. [PMID: 23018647 DOI: 10.1002/jcp.24232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 01/06/2023]
Abstract
Malignant mesothelioma (MM) is an intractable tumor of the peritoneal and pleural cavities primarily linked to exposure to asbestos. Recently, we described an interplay between mitochondrial-derived oxidants and expression of FOXM1, a redox-responsive transcription factor that has emerged as a promising therapeutic target in solid malignancies. Here we have investigated the effects of nitroxides targeted to mitochondria via triphenylphosphonium (TPP) moieties on mitochondrial oxidant production, expression of FOXM1 and peroxiredoxin 3 (PRX3), and cell viability in MM cells in culture. Both Mito-carboxy-proxyl (MCP) and Mito-TEMPOL (MT) caused dose-dependent increases in mitochondrial oxidant production that was accompanied by inhibition of expression of FOXM1 and PRX3 and loss of cell viability. At equivalent concentrations TPP, CP, and TEMPOL had no effect on these endpoints. Live cell ratiometric imaging with a redox-responsive green fluorescent protein targeted to mitochondria (mito-roGFP) showed that MCP and MT, but not CP, TEMPOL, or TPP, rapidly induced mitochondrial fragmentation and swelling, morphological transitions that were associated with diminished ATP levels and increased production of mitochondrial oxidants. Mdivi-1, an inhibitor of mitochondrial fission, did not rescue mitochondria from fragmentation by MCP. Immunofluorescence microscopy experiments indicate a fraction of FOXM1 coexists in the cytoplasm with mitochondrial PRX3. Our results indicate that MCP and MT inhibit FOXM1 expression and MM tumor cell viability via perturbations in redox homeostasis caused by marked disruption of mitochondrial architecture, and suggest that both compounds, either alone or in combination with thiostrepton or other agents, may provide credible therapeutic options for the management of MM.
Collapse
Affiliation(s)
- Brian Cunniff
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Johnson ML, Robinson MM, Nair KS. Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab 2013; 24:247-56. [PMID: 23375520 PMCID: PMC3641176 DOI: 10.1016/j.tem.2012.12.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 01/06/2023]
Abstract
Decline in human muscle mass and strength (sarcopenia) is a hallmark of the aging process. A growing body of research in the areas of bioenergetics and protein turnover has placed the mitochondria at the center of this process. It is now clear that, unless an active lifestyle is rigorously followed, skeletal muscle mitochondrial decline occurs as humans age. Increasing research on mitochondrial biology has elucidated the regulatory pathways involved in mitochondrial biogenesis, many of which are potential therapeutic targets, and highlight the beneficial effects of vigorous physical activity on skeletal muscle health for an aging population.
Collapse
Affiliation(s)
- Matthew L Johnson
- Mayo Clinic, Division of Endocrinology, 200 First Street SW, Joseph 5-194, Rochester, MN 55905, USA
| | | | | |
Collapse
|
231
|
Liu G, Cheresh P, Kamp DW. Molecular basis of asbestos-induced lung disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 8:161-87. [PMID: 23347351 DOI: 10.1146/annurev-pathol-020712-163942] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asbestos causes asbestosis and malignancies by molecular mechanisms that are not fully understood. The modes of action underlying asbestosis, lung cancer, and mesothelioma appear to differ depending on the fiber type, lung clearance, and genetics. After reviewing the key pathologic changes following asbestos exposure, we examine recently identified pathogenic pathways, with a focus on oxidative stress. Alveolar epithelial cell apoptosis, which is an important early event in asbestosis, is mediated by mitochondria- and p53-regulated death pathways and may be modulated by the endoplasmic reticulum. We review mitochondrial DNA (mtDNA)-damage and -repair mechanisms, focusing on 8-oxoguanine DNA glycosylase, as well as cross talk between reactive oxygen species production, mtDNA damage, p53, OGG1, and mitochondrial aconitase. These new insights into the molecular basis of asbestos-induced lung diseases may foster the development of novel therapeutic targets for managing degenerative diseases (e.g., asbestosis and idiopathic pulmonary fibrosis), tumors, and aging, for which effective management is lacking.
Collapse
Affiliation(s)
- Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical College, Zhangjiang, China.
| | | | | |
Collapse
|
232
|
Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. J Proteomics 2013; 92:181-94. [PMID: 23563202 DOI: 10.1016/j.jprot.2013.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/22/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein quality control incorporates an elaborate network of chaperones and proteases that survey the organelle for misfolded or unfolded proteins and toxic aggregates. Repair of misfolded or aggregated protein and proteolytic removal of irreversibly damaged proteins are carried out by the mitochondrial protein quality control system. Initial maturation and folding of the nuclear or mitochondrial-encoded mitochondrial proteins are mediated by processing peptidases and chaperones that interact with the protein translocation machinery. Mitochondrial proteins are subjected to cumulative oxidative damage. Thus, impairment of quality control processes may cause mitochondrial dysfunction. Aging has been associated with a marked decline in the effectiveness of mitochondrial protein quality control. Here, we present an overview of the chaperones and proteases involved in the initial folding and maturation of new, incoming precursor molecules, and the subsequent repair and removal of oxidized aggregated proteins. In addition, we highlight the link between mitochondrial protein quality control mechanisms and the aging process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
233
|
Wang P, Mai C, Wei YL, Zhao JJ, Hu YM, Zeng ZL, Yang J, Lu WH, Xu RH, Huang P. Decreased expression of the mitochondrial metabolic enzyme aconitase (ACO2) is associated with poor prognosis in gastric cancer. Med Oncol 2013; 30:552. [PMID: 23550275 DOI: 10.1007/s12032-013-0552-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in energy metabolism play a major role in cancer development. Aconitase (ACO2) is an essential enzyme located in the mitochondria and catalyzes the interconversion of citrate and isocitrate in the tricarboxylic acid cycle. Recent studies suggest that the expression of ACO2 may be altered in certain types of cancer. The purpose of this study was to examine ACO2 expression in clinical tumor specimens from patients with gastric cancer and to evaluate the clinical relevance of ACO2 expression in gastric cancer. A total of 456 paraffin-embedded gastric cancer tissues and 30 pairs of freshly frozen tissues were used in this study. Real-time quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemical staining were performed to measure ACO2 expression in tumor tissues and matched adjacent non-tumorous tissues. The results showed that the expression of ACO2 was significantly down-regulated in gastric cancer tissues compared with matched adjacent nontumorous tissues and was associated with clinical stage (p = 0.001), T classification (p = 0.027), N classification (p = 0.012), M classification (p = 0.002), and pathological differentiation states (p = 0.036). Patients with lower ACO2 expression had a shorter survival time than those with higher ACO2 expression. Univariate and multivariate analyses indicated that ACO2 expression functions as an independent prognostic factor (p < 0.001). Our data suggested that ACO2 could play an important role in gastric cancer and may potentially serve as a prognostic biomarker.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
235
|
Grubbs JK, Fritchen AN, Huff-Lonergan E, Gabler NK, Lonergan SM. Selection for residual feed intake alters the mitochondria protein profile in pigs. J Proteomics 2013; 80:334-45. [DOI: 10.1016/j.jprot.2013.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 11/26/2022]
|
236
|
Erjavec N, Bayot A, Gareil M, Camougrand N, Nystrom T, Friguet B, Bulteau AL. Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. Free Radic Biol Med 2013; 56:9-16. [PMID: 23220263 DOI: 10.1016/j.freeradbiomed.2012.11.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 01/20/2023]
Abstract
The Saccharomyces cerevisiae homolog of the ATP-dependent Lon protease, Pim1p, is essential for mitochondrial protein quality control, DNA maintenance, and respiration. Here, we demonstrate that Pim1p activity declines in aging cells and that Pim1p deficiency shortens the replicative life span of yeast mother cells. This accelerated aging of pim1Δ cells is accompanied by elevated cytosolic levels of oxidized and aggregated proteins, as well as reduced proteasome activity. Overproduction of Hsp104p greatly diminishes aggregation of oxidized cytosolic proteins, rescues proteasome activity, and restores life span of pim1Δ cells to near wild-type levels. Our results show that defects in mitochondrial protein quality control have global intracellular effects leading to the increased generation of misfolded proteins and cytosolic protein aggregates, which are linked to a decline in replicative potential.
Collapse
Affiliation(s)
- Nika Erjavec
- Department of Cell and Molecular Biology, Gothenburg University, Göteborg 41390, Sweden
| | | | | | | | | | | | | |
Collapse
|
237
|
Hart N, Sarga L, Csende Z, Koltai E, Koch LG, Britton SL, Davies KJA, Kouretas D, Wessner B, Radak Z. Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food Chem Toxicol 2013; 61:53-9. [PMID: 23422033 DOI: 10.1016/j.fct.2013.01.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 12/30/2022]
Abstract
High Capacity Runner (HCR) rats have been developed by divergent artificial selection for treadmill endurance running capacity to explore an aerobic biology-disease connection. The beneficial effects of resveratrol supplementation have been demonstrated in endurance running and the antioxidant capacity of resveratrol is also demonstrated. In this study we examine whether 12 weeks of treadmill exercise training and/or resveratrol can enhance performance in HCR. Indeed, resveratrol increased aerobic performance and strength of upper limbs of these rats. Moreover, we have found that resveratrol activated the AMP-activated protein kinase, SIRT1, and mitochondrial transcription factor A (p<0.05). The changes in mitochondrial fission/fusion and Lon protease/HSP78 levels suggest that exercise training does not significantly induce damage of proteins. Moreover, neither exercise training nor resveratrol supplementation altered the content of protein carbonyls. Changes in the levels of forkhead transcription factor 1 and SIRT4 could suggest increased fat utilization and improved insulin sensitivity. These data indicate, that resveratrol supplementation enhances aerobic performance due to the activation of the AMPK-SIRT1-PGC-1α pathway.
Collapse
Affiliation(s)
- Nikolett Hart
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Ngo JK, Pomatto LCD, Davies KJA. Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol 2013; 1:258-64. [PMID: 24024159 PMCID: PMC3757690 DOI: 10.1016/j.redox.2013.01.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
The elimination of oxidatively modified proteins is a crucial process in maintaining cellular homeostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species, generated by 'electron leakage' from the respiratory chain. The level of oxidative stress to mitochondrial proteins is not constant, but instead varies greatly with numerous metabolic and environmental factors. Oxidized mitochondrial proteins must be removed rapidly (by proteolytic degradation) or they will aggregate, cross-link, and cause toxicity. The Lon Protease is a key enzyme in the degradation of oxidized proteins within the mitochondrial matrix. Under conditions of acute stress Lon is highly inducible, possibly with the oxidant acting as the signal inducer, thereby providing increased protection. It seems that under chronic stress conditions, however, Lon levels actually decline. Lon levels also decline with age and with senescence, and senescent cells even lose the ability to induce Lon during acute stress. We propose that the regulation of Lon is biphasic, in that it is up-regulated during transient stress and down-regulated during chronic stress and aging, and we suggest that the loss of Lon responsiveness may be a significant factor in aging, and in age-related diseases.
Collapse
Key Words
- 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis
- AAA, ATPases associated with diverse cellular activities
- Aco1, Aconitase 1
- Adaptation
- CDDO, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid
- CDDO-Me, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate
- COX, cytochrome c oxidase
- COX4-1, cytochrome c oxidase subunit IV isoform 1
- COX4-2, cytochrome c oxidase subunit IV isoform 2
- Ccp1, mitochondrial cytochrome-c peroxidase
- Clp, caseinolytic protease
- ClpP, core catalytic protease unit
- ERAD, endoplasmic reticulum-associated degradation
- FRDA, Friedreich's ataxia
- Fe/S, iron/SULFUR
- HAART, highly active antiretroviral therapy
- HIF-1, hypoxia inducible factor-1
- HSP104, heat shock protein 104
- HSP60, heat shock protein 60
- Hormesis
- HsIVU, bacterial ATP-dependent protease
- Lon Protease
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MPPβ, mitochondrial processing peptidase beta subunit
- Mitochondria
- NRF-2, nuclear factor (erythroid-derived 2)-like 2
- Nfκb, nuclear factor kappa-light-chain-enhancer of activated B csells
- Oxidative stress
- PRSS15, LON gene
- Pim1, ATP-dependent Lon protease from yeast
- Protease La, ATP-dependent protease
- Protein degradation and oxidation
- Prx1, mitochondrial peroxiredoxin 1
- SLLVY-AMC, N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- SOD, cytosolic superoxide dismutase
- SOD2, mitochondrial superoxide dismutase 2
- SPG13, hereditary spastic paraplegia
- WI-38, human lung fibroblast
- Yjl200c, mitochondrial aconitase isozyme
Collapse
Affiliation(s)
- Jenny K Ngo
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
239
|
Pickering AM, Vojtovich L, Tower J, Davies KJA. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic Biol Med 2013; 55:109-18. [PMID: 23142766 PMCID: PMC3687790 DOI: 10.1016/j.freeradbiomed.2012.11.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/07/2012] [Accepted: 11/02/2012] [Indexed: 12/15/2022]
Abstract
Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life.
Collapse
Affiliation(s)
- Andrew M. Pickering
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, The University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences; The University of Southern California, Los Angeles, CA 90089, USA
| | - Lesya Vojtovich
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, The University of Southern California, Los Angeles, CA 90089, USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences; The University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J. A. Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, The University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts & Sciences; The University of Southern California, Los Angeles, CA 90089, USA
- Senior author to whom correspondence should be addressed as follows: Prof. Kelvin J. A. Davies, Ethel Percy Andrus Gerontology Center, the University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, U.S.A., Telephone: (213)740-8959, Fax number: (213)740-6462,
| |
Collapse
|
240
|
Voos W, Ward LA, Truscott KN. The role of AAA+ proteases in mitochondrial protein biogenesis, homeostasis and activity control. Subcell Biochem 2013; 66:223-263. [PMID: 23479443 DOI: 10.1007/978-94-007-5940-4_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mitochondria are specialised organelles that are structurally and functionally integrated into cells in the vast majority of eukaryotes. They are the site of numerous enzymatic reactions, some of which are essential for life. The double lipid membrane of the mitochondrion, that spatially defines the organelle and is necessary for some functions, also creates a physical but semi-permeable barrier to the rest of the cell. Thus to ensure the biogenesis, regulation and maintenance of a functional population of proteins, an autonomous protein handling network within mitochondria is required. This includes resident mitochondrial protein translocation machinery, processing peptidases, molecular chaperones and proteases. This review highlights the contribution of proteases of the AAA+ superfamily to protein quality and activity control within the mitochondrion. Here they are responsible for the degradation of unfolded, unassembled and oxidatively damaged proteins as well as the activity control of some enzymes. Since most knowledge about these proteases has been gained from studies in the eukaryotic microorganism Saccharomyces cerevisiae, much of the discussion here centres on their role in this organism. However, reference is made to mitochondrial AAA+ proteases in other organisms, particularly in cases where they play a unique role such as the mitochondrial unfolded protein response. As these proteases influence mitochondrial function in both health and disease in humans, an understanding of their regulation and diverse activities is necessary.
Collapse
Affiliation(s)
- Wolfgang Voos
- Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, 53115, Bonn, Germany,
| | | | | |
Collapse
|
241
|
An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK 293 cells. J Proteomics 2013; 78:398-415. [DOI: 10.1016/j.jprot.2012.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/28/2012] [Accepted: 10/11/2012] [Indexed: 01/05/2023]
|
242
|
Soubannier V, Rippstein P, Kaufman BA, Shoubridge EA, McBride HM. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One 2012; 7:e52830. [PMID: 23300790 PMCID: PMC3530470 DOI: 10.1371/journal.pone.0052830] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022] Open
Abstract
The mechanisms that ensure the removal of damaged mitochondrial proteins and lipids are critical for the health of the cell, and errors in these pathways are implicated in numerous degenerative diseases. We recently uncovered a new pathway for the selective removal of proteins mediated by mitochondrial derived vesicular carriers (MDVs) that transit to the lysosome. However, it was not determined whether these vesicles were selectively enriched for oxidized, or damaged proteins, and the extent to which the complexes of the electron transport chain and the mtDNA-containing nucloids may have been incorporated. In this study, we have developed a cell-free mitochondrial budding reaction in vitro in order to better dissect the pathway. Our data confirm that MDVs are stimulated upon various forms of mitochondrial stress, and the vesicles incorporated quantitative amounts of cargo, whose identity depended upon the nature of the stress. Under the conditions examined, MDVs did not incorporate complexes I and V, nor were any nucleoids present, demonstrating the specificity of cargo incorporation. Stress-induced MDVs are selectively enriched for oxidized proteins, suggesting that conformational changes induced by oxidation may initiate their incorporation into the vesicles. Ultrastructural analyses of MDVs isolated on sucrose flotation gradients revealed the formation of both single and double membranes vesicles of unique densities and uniform diameter. This work provides a framework for a reductionist approach towards a detailed examination of the mechanisms of MDV formation and cargo incorporation, and supports the emerging concept that MDVs are critical contributors to mitochondrial quality control.
Collapse
Affiliation(s)
- Vincent Soubannier
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Peter Rippstein
- Lipoproteins and Atherosclerosis Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Brett A. Kaufman
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric A. Shoubridge
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
243
|
Cheresh P, Kim SJ, Tulasiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1028-40. [PMID: 23219955 DOI: 10.1016/j.bbadis.2012.11.021] [Citation(s) in RCA: 361] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Paul Cheresh
- Department of Medicine, Northwestern University Feinberg School of Medicine and Jesse Brown VA Medical Center, USA
| | | | | | | |
Collapse
|
244
|
Hill BG, Benavides GA, Lancaster JR, Ballinger S, Dell’Italia L, Zhang J, Darley-Usmar VM. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 2012; 393:1485-1512. [PMID: 23092819 PMCID: PMC3594552 DOI: 10.1515/hsz-2012-0198] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/22/2012] [Indexed: 02/06/2023]
Abstract
Bioenergetic dysfunction is emerging as a cornerstone for establishing a framework for understanding the pathophysiology of cardiovascular disease, diabetes,cancer and neurodegeneration. Recent advances in cellular bioenergetics have shown that many cells maintain a substantial bioenergetic reserve capacity, which is a prospective index of ‘ healthy ’ mitochondrial populations.The bioenergetics of the cell are likely regulated by energy requirements and substrate availability. Additionally,the overall quality of the mitochondrial population and the relative abundance of mitochondria in cells and tissues also impinge on overall bioenergetic capacity and resistance to stress. Because mitochondria are susceptible to damage mediated by reactive oxygen/nitrogen and lipid species, maintaining a ‘ healthy ’ population of mitochondria through quality control mechanisms appears to be essential for cell survival under conditions of pathological stress. Accumulating evidence suggest that mitophagy is particularly important for preventing amplification of initial oxidative insults, which otherwise would further impair the respiratory chain or promote mutations in mitochondrial DNA (mtDNA). The processes underlying the regulation of mitophagy depend on several factors, including the integrity of mtDNA, electron transport chain activity, and the interaction and regulation of the autophagic machinery. The integration and interpretation of cellular bioenergetics in the context of mitochondrial quality control and genetics is the theme of this review.
Collapse
Affiliation(s)
- Bradford G. Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY
- Departments of Biochemistry and Molecular Biology and Physiology and Biophysics, University of Louisville, Louisville, KY
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jack R. Lancaster
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lou Dell’Italia
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
245
|
Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S, Bogenhagen DF, Temiakov D, Suzuki CK. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 2012. [PMID: 23201127 DOI: 10.1016/j.molcel.2012.10.023] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human mitochondrial transcription factor A (TFAM) is a high-mobility group (HMG) protein at the nexus of mitochondrial DNA (mtDNA) replication, transcription, and inheritance. Little is known about the mechanisms underlying its posttranslational regulation. Here, we demonstrate that TFAM is phosphorylated within its HMG box 1 (HMG1) by cAMP-dependent protein kinase in mitochondria. HMG1 phosphorylation impairs the ability of TFAM to bind DNA and to activate transcription. We show that only DNA-free TFAM is degraded by the Lon protease, which is inhibited by the anticancer drug bortezomib. In cells with normal mtDNA levels, HMG1-phosphorylated TFAM is degraded by Lon. However, in cells with severe mtDNA deficits, nonphosphorylated TFAM is also degraded, as it is DNA free. Depleting Lon in these cells increases levels of TFAM and upregulates mtDNA content, albeit transiently. Phosphorylation and proteolysis thus provide mechanisms for rapid fine-tuning of TFAM function and abundance in mitochondria, which are crucial for maintaining and expressing mtDNA.
Collapse
Affiliation(s)
- Bin Lu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Solheim C, Li L, Hatzopoulos P, Millar AH. Loss of Lon1 in Arabidopsis changes the mitochondrial proteome leading to altered metabolite profiles and growth retardation without an accumulation of oxidative damage. PLANT PHYSIOLOGY 2012; 160:1187-203. [PMID: 22968828 PMCID: PMC3490588 DOI: 10.1104/pp.112.203711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/07/2012] [Indexed: 05/20/2023]
Abstract
Lon1 is an ATP-dependent protease and chaperone located in the mitochondrial matrix in plants. Knockout in Arabidopsis (Arabidopsis thaliana) leads to a significant growth rate deficit in both roots and shoots and lowered activity of specific mitochondrial enzymes associated with respiratory metabolism. Analysis of the mitochondrial proteomes of two lon1 mutant alleles (lon1-1 and lon1-2) with different severities of phenotypes shows a common accumulation of several stress marker chaperones and lowered abundance of Complexes I, IV, and V of OXPHOS. Certain enzymes of the tricarboxylic acid (TCA) cycle are modified or accumulated, and TCA cycle bypasses were repressed rather than induced. While whole tissue respiratory rates were unaltered in roots and shoots, TCA cycle intermediate organic acids were depleted in leaf extracts in the day in lon1-1 and in both lon mutants at night. No significant evidence of broad steady-state oxidative damage to isolated mitochondrial samples could be found, but peptides from several specific proteins were more oxidized and selected functions were more debilitated in lon1-1. Collectively, the evidence suggests that loss of Lon1 significantly modifies respiratory function and plant performance by small but broad alterations in the mitochondrial proteome gained by subtly changing steady-state protein assembly, stability, and damage of a range of components that debilitate an anaplerotic role for mitochondria in cellular carbon metabolism.
Collapse
|
247
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
248
|
Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism. Neurobiol Dis 2012; 51:35-42. [PMID: 23064436 DOI: 10.1016/j.nbd.2012.10.011] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
The pathogenic mechanisms that underlie Parkinson's disease remain unknown. Here, we review evidence from both sporadic and genetic forms of Parkinson's disease that implicate both mitochondria and oxidative stress as central players in disease pathogenesis. A systemic deficiency in complex I of the mitochondrial electron transport chain is evident in many patients with the disease. Oxidative stress caused by reactive metabolites of dopamine and alterations in the levels of iron and glutathione in the substantia nigra accompany this mitochondrial dysfunction. Recent evidence from studies on the genetic forms of parkinsonism with particular stress on DJ-1, parkin, and PINK-1 also suggest the involvement of mitochondria and oxidative stress.
Collapse
Affiliation(s)
- David N Hauser
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
249
|
Srinivasan S, Avadhani NG. Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med 2012; 53:1252-63. [PMID: 22841758 PMCID: PMC3436951 DOI: 10.1016/j.freeradbiomed.2012.07.021] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/14/2012] [Accepted: 07/17/2012] [Indexed: 12/22/2022]
Abstract
Cytochrome c oxidase (CcO) is the terminal oxidase of the mitochondrial electron transport chain. This bigenomic enzyme in mammals contains 13 subunits of which the 3 catalytic subunits are encoded by the mitochondrial genes. The remaining 10 subunits with suspected roles in the regulation, and/or assembly, are coded by the nuclear genome. The enzyme contains two heme groups (heme a and a3) and two Cu(2+) centers (Cu(2+) A and Cu(2+) B) as catalytic centers and handles more than 90% of molecular O(2) respired by the mammalian cells and tissues. CcO is a highly regulated enzyme which is believed to be the pacesetter for mitochondrial oxidative metabolism and ATP synthesis. The structure and function of the enzyme are affected in a wide variety of diseases including cancer, neurodegenerative diseases, myocardial ischemia/reperfusion, bone and skeletal diseases, and diabetes. Despite handling a high O(2) load the role of CcO in the production of reactive oxygen species still remains a subject of debate. However, a volume of evidence suggests that CcO dysfunction is invariably associated with increased mitochondrial reactive oxygen species production and cellular toxicity. In this paper we review the literature on mechanisms of multimodal regulation of CcO activity by a wide spectrum of physiological and pathological factors. We also review an array of literature on the direct or indirect roles of CcO in reactive oxygen species production.
Collapse
Affiliation(s)
- Satish Srinivasan
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Narayan G. Avadhani
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| |
Collapse
|
250
|
Kang S, Louboutin JP, Datta P, Landel CP, Martinez D, Zervos AS, Strayer DS, Fernandes-Alnemri T, Alnemri ES. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging. Cell Death Differ 2012; 20:259-69. [PMID: 22976834 DOI: 10.1038/cdd.2012.117] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
mnd2 mice die prematurely as a result of neurodegeneration 30-40 days after birth due to loss of the enzymatic activity of the mitochondrial quality control protease HtrA2/Omi. Here, we show that transgenic expression of human HtrA2/Omi in the central nervous system of mnd2 mice rescues them from neurodegeneration and prevents their premature death. Interestingly, adult transgenic mnd2 mice develop accelerated aging phenotypes, such as premature weight loss, hair loss, reduced fertility, curvature of the spine, heart enlargement, increased autophagy, and death by 12-17 months of age. These mice also have elevated levels of clonally expanded mitochondrial DNA (mtDNA) deletions in their tissues. Our results provide direct genetic evidence linking mitochondrial protein quality control to mtDNA deletions and aging in mammals.
Collapse
Affiliation(s)
- S Kang
- Department of Biochemistry and Molecular Biology, The Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|