201
|
Tóth E, Czene BC, Kulcsár PI, Krausz SL, Tálas A, Nyeste A, Varga É, Huszár K, Weinhardt N, Ligeti Z, Borsy AÉ, Fodor E, Welker E. Mb- and FnCpf1 nucleases are active in mammalian cells: activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants. Nucleic Acids Res 2019; 46:10272-10285. [PMID: 30239882 PMCID: PMC6212782 DOI: 10.1093/nar/gky815] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/11/2018] [Indexed: 01/02/2023] Open
Abstract
Cpf1s, the RNA-guided nucleases of the class II clustered regularly interspaced short palindromic repeats system require a short motive called protospacer adjacent motif (PAM) to be present next to the targeted sequence for their activity. The TTTV PAM sequence of As- and LbCpf1 nucleases is relatively rare in the genome of higher eukaryotic organisms. Here, we show that two other Cpf1 nucleases, Fn- and MbCpf1, which have been reported to utilize a shorter, more frequently occurring PAM sequence (TTN) when tested in vitro, carry out efficient genome modification in mammalian cells. We found that all four Cpf1 nucleases showed similar activities and TTTV PAM preferences. Our approach also revealed that besides their activities their PAM preferences are also target dependent. To increase the number of the available targets for Fn- and MbCpf1 we generated their RVR and RR mutants with altered PAM specificity and compared them to the wild-type and analogous As- and LbCpf1 variants. The mutants gained new PAM specificities but retained their activity on targets with TTTV PAMs, redefining RR-Cpf1's PAM-specificities as TTYV/TCCV, respectively. These variants may become versatile substitutes for wild-type Cpf1s by providing an expanded range of targets for genome engineering applications.
Collapse
Affiliation(s)
- Eszter Tóth
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Bernadett C Czene
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.,Gene Design Kft., Szeged, H-6726, Hungary
| | - Péter I Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, H-6726, Hungary
| | - Sarah L Krausz
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, H-1085, Hungary
| | - András Tálas
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.,School of Ph.D. Studies, Semmelweis University, Budapest, H-1085, Hungary
| | - Antal Nyeste
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Éva Varga
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Krisztina Huszár
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Nóra Weinhardt
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary.,Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Zoltán Ligeti
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, H-6726, Hungary
| | - Adrienn É Borsy
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.,Biospirál-2006 Kft., Szeged, H-6726, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary.,Biospirál-2006 Kft., Szeged, H-6726, Hungary
| | - Ervin Welker
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.,Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| |
Collapse
|
202
|
Tang X, Ren Q, Yang L, Bao Y, Zhong Z, He Y, Liu S, Qi C, Liu B, Wang Y, Sretenovic S, Zhang Y, Zheng X, Zhang T, Qi Y, Zhang Y. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1431-1445. [PMID: 30582653 PMCID: PMC6576101 DOI: 10.1111/pbi.13068] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 05/03/2023]
Abstract
CRISPR-Cas9 and Cas12a are two powerful genome editing systems. Expression of CRISPR in plants is typically achieved with a mixed dual promoter system, in which Cas protein is expressed by a Pol II promoter and a guide RNA is expressed by a species-specific Pol III promoter such as U6 or U3. To achieve coordinated expression and compact vector packaging, it is desirable to express both CRISPR components under a single Pol II promoter. Previously, we demonstrated a first-generation single transcript unit (STU)-Cas9 system, STU-Cas9-RZ, which is based on hammerhead ribozyme for processing single guide RNAs (sgRNAs). In this study, we developed two new STU-Cas9 systems and one STU-Cas12a system for applications in plants, collectively called the STU CRISPR 2.0 systems. We demonstrated these systems for genome editing in rice with both transient expression and stable transgenesis. The two STU-Cas9 2.0 systems process the sgRNAs with Csy4 ribonuclease and endogenous tRNA processing system respectively. Both STU-Cas9-Csy4 and STU-Cas9-tRNA systems showed more robust genome editing efficiencies than our first-generation STU-Cas9-RZ system and the conventional mixed dual promoter system. We further applied the STU-Cas9-tRNA system to compare two C to T base editing systems based on rAPOBEC1 and PmCDA1 cytidine deaminases. The results suggest STU-based PmCDA1 base editor system is highly efficient in rice. The STU-Cas12a system, based on Cas12a' self-processing of a CRISPR RNA (crRNA) array, was also developed and demonstrated for expression of a single crRNA and four crRNAs. Altogether, our STU CRISPR 2.0 systems further expanded the CRISPR toolbox for plant genome editing and other applications.
Collapse
Affiliation(s)
- Xu Tang
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qiurong Ren
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Lijia Yang
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyJiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsJiangsu Key Laboratory of Crop Genomics and Molecular BreedingCollege of AgricultureYangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationJoint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Zhaohui Zhong
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yao He
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shishi Liu
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Caiyan Qi
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Binglin Liu
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yan Wang
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Simon Sretenovic
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Yingxiao Zhang
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Xuelian Zheng
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyJiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsJiangsu Key Laboratory of Crop Genomics and Molecular BreedingCollege of AgricultureYangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationJoint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMDUSA
| | - Yong Zhang
- Department of BiotechnologyCenter for Informational BiologySchool of Life Sciences and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationJoint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of EducationYangzhou UniversityYangzhouChina
| |
Collapse
|
203
|
Abstract
Abstract
The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotechnology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstration of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.
Collapse
|
204
|
Zhang H, Li Z, Daczkowski CM, Gabel C, Mesecar AD, Chang L. Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins. Cell Host Microbe 2019; 25:815-826.e4. [PMID: 31155345 DOI: 10.1016/j.chom.2019.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas12a (Cpf1), a type V CRISPR-associated nuclease, provides bacterial immunity against bacteriophages and plasmids but also serves as a tool for genome editing. Foreign nucleic acids are integrated into the CRISPR locus, prompting transcription of CRISPR RNAs (crRNAs) that guide Cas12a cleavage of foreign complementary DNA. However, mobile genetic elements counteract Cas12a with inhibitors, notably type V-A anti-CRISPRs (AcrVAs). We present cryoelectron microscopy structures of Cas12a-crRNA bound to AcrVA1 and AcrVA4 at 3.5 and 3.3 Å resolutions, respectively. AcrVA1 is sandwiched between the recognition (REC) and nuclease (NUC) lobes of Cas12a and inserts into the binding pocket for the protospacer-adjacent motif (PAM), a short DNA sequence guiding Cas12a targeting. AcrVA1 cleaves crRNA in a Cas12a-dependent manner, inactivating Cas12a-crRNA complexes. The AcrVA4 dimer is anchored around the crRNA pseudoknot of Cas12a-crRNA, preventing required conformational changes for crRNA-DNA heteroduplex formation. These results uncover molecular mechanisms for CRISPR-Cas12a inhibition, providing insights into bacteria-phage dynamics.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Clinton Gabel
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew D Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
205
|
Hussain B, Lucas SJ, Budak H. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Brief Funct Genomics 2019; 17:319-328. [PMID: 29912293 DOI: 10.1093/bfgp/ely016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system uses single-guide RNAs for genome editing, making it a simple, robust, powerful tool for targeted gene mutagenesis, knockout and knock-in/replacement, as well as transcriptional regulation. Here, we review the working principles, components and potential modifications of CRISPR/Cas9 for efficient single and multiplex gene editing in plants. We also describe recent work that has used CRISPR/Cas9 to improve economically important traits in crop plants. Although the apparent ease of CRISPR/Cas9-mediated editing may make it appear as though scientists are merely playing with plant genomes, the combined power of CRISPR/Cas9 has enabled vital research to be completed in the battle toward optimization and adaptation of crop species, permitting crucial advances to be achieved in crop improvement.
Collapse
Affiliation(s)
- Babar Hussain
- Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Stuart James Lucas
- SU Nanotechnology Research and Application Centre, Sabanci University, Istanbul, Turkey
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, MT, USA
| |
Collapse
|
206
|
Helm M, Qi M, Sarkar S, Yu H, Whitham SA, Innes RW. Engineering a Decoy Substrate in Soybean to Enable Recognition of the Soybean Mosaic Virus NIa Protease. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:760-769. [PMID: 30676230 DOI: 10.1094/mpmi-12-18-0324-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In Arabidopsis, recognition of the AvrPphB effector protease from Pseudomonas syringae is mediated by the disease resistance (R) protein RPS5, which is activated by AvrPphB-induced cleavage of the Arabidopsis protein kinase PBS1. The recognition specificity of RPS5 can be altered by substituting the AvrPphB cleavage site within PBS1 with cleavage sequences for other proteases, including proteases from viruses. AvrPphB also activates defense responses in soybean (Glycine max), suggesting that soybean may contain an R protein analogous to RPS5. It was unknown, however, whether this response is mediated by cleavage of a soybean PBS1-like protein. Here, we show that soybean contains three PBS1 orthologs and that their products are cleaved by AvrPphB. Further, transient expression of soybean PBS1 derivatives containing a five-alanine insertion at their AvrPphB cleavage sites activated cell death in soybean protoplasts, demonstrating that soybean likely contains an AvrPphB-specific resistance protein that is activated by a conformational change in soybean PBS1 proteins. Significantly, we show that a soybean PBS1 decoy protein modified to contain a cleavage site for the soybean mosaic virus (SMV) NIa protease triggers cell death in soybean protoplasts when cleaved by this protease, indicating that the PBS1 decoy approach will work in soybean, using endogenous PBS1 genes. Lastly, we show that activation of the AvrPphB-dependent cell death response effectively inhibits systemic spread of SMV in soybean. These data also indicate that decoy engineering may be feasible in other crop plant species that recognize AvrPphB protease activity.
Collapse
Affiliation(s)
- Matthew Helm
- 1 Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Mingsheng Qi
- 2 Department of Pant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Shayan Sarkar
- 2 Department of Pant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Haiyue Yu
- 2 Department of Pant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Steven A Whitham
- 2 Department of Pant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Roger W Innes
- 1 Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|
207
|
Koeppel I, Hertig C, Hoffie R, Kumlehn J. Cas Endonuclease Technology-A Quantum Leap in the Advancement of Barley and Wheat Genetic Engineering. Int J Mol Sci 2019; 20:ijms20112647. [PMID: 31146387 PMCID: PMC6600890 DOI: 10.3390/ijms20112647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Domestication and breeding have created productive crops that are adapted to the climatic conditions of their growing regions. Initially, this process solely relied on the frequent occurrence of spontaneous mutations and the recombination of resultant gene variants. Later, treatments with ionizing radiation or mutagenic chemicals facilitated dramatically increased mutation rates, which remarkably extended the genetic diversity of crop plants. However, a major drawback of conventionally induced mutagenesis is that genetic alterations occur simultaneously across the whole genome and at very high numbers per individual plant. By contrast, the newly emerging Cas endonuclease technology allows for the induction of mutations at user-defined positions in the plant genome. In fundamental and breeding-oriented research, this opens up unprecedented opportunities for the elucidation of gene functions and the targeted improvement of plant performance. This review covers historical aspects of the development of customizable endonucleases, information on the mechanisms of targeted genome modification, as well as hitherto reported applications of Cas endonuclease technology in barley and wheat that are the agronomically most important members of the temperate cereals. Finally, current trends in the further development of this technology and some ensuing future opportunities for research and biotechnological application are presented.
Collapse
Affiliation(s)
- Iris Koeppel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Christian Hertig
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Robert Hoffie
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| |
Collapse
|
208
|
Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 2019; 9:36. [PMID: 31086658 PMCID: PMC6507119 DOI: 10.1186/s13578-019-0298-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/20/2019] [Indexed: 12/19/2022] Open
Abstract
CRISPR and CRISPR-associated (Cas) protein, as components of microbial adaptive immune system, allows biologists to edit genomic DNA in a precise and specific way. CRISPR-Cas systems are classified into two main classes and six types. Cpf1 is a putative type V (class II) CRISPR effector, which can be programmed with a CRISPR RNA to bind and cleave complementary DNA targets. Cpf1 has recently emerged as an alternative for Cas9, due to its distinct features such as the ability to target T-rich motifs, no need for trans-activating crRNA, inducing a staggered double-strand break and potential for both RNA processing and DNA nuclease activity. In this review, we attempt to discuss the evolutionary origins, basic architectures, and molecular mechanisms of Cpf1 family proteins, as well as crRNA designing and delivery strategies. We will also describe the novel Cpf1 variants, which have broadened the versatility and feasibility of this system in genome editing, transcription regulation, epigenetic modulation, and base editing. Finally, we will be reviewing the recent studies on utilization of Cpf1as a molecular tool for genome editing.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Zare
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
209
|
Bisht DS, Bhatia V, Bhattacharya R. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing. Semin Cell Dev Biol 2019; 96:65-76. [PMID: 31039395 DOI: 10.1016/j.semcdb.2019.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022]
Abstract
The advantages of high input agriculture are fading away due to degenerating soil health and adverse effects of climate change. Safeguarding crop yields in the changing environment and dynamics of pest and pathogens, has posed new challenges to global agriculture. Thus, integration of new technologies in crop improvement has been imperative for achieving the breeding objectives in faster ways. Recently, enormous potential of genome editing through engineered nucleases has been demonstrated in plants. Continuous refinements of the genome editing tools have increased depth and breadth of their applications. So far, genome editing has been demonstrated in more than fifty plant species. These include model species like Arabidopsis, as well as important crops like rice, wheat, maize etc. Particularly, CRISPR/Cas9 based two component genome editing system has been facile with wider applicability. Potential of genome editing has unfurled enormous possibilities for engineering diverse agronomic traits including durable resistance against insect-pests and pathogens. Novel propositions of developing insect and pathogen resistant crops by genome editing include altering the effector-target interaction, knocking out of host-susceptibility genes, engineering synthetic immune receptor eliciting broad spectrum resistance, uncoupling of antagonistic action of defense hormones etc. Alternatively, modification of insect genomes has been used either to create gene drive or to counteract resistance to various insecticides. The distinct advantage of genome editing system is that it can knock out specific target region in the genome without leaving the unwanted vector backbone. In this article, we have reviewed the novel opportunities offered by the genome editing technologies for developing insect and pathogen resistant crop-types, their future prospects and anticipated challenges.
Collapse
Affiliation(s)
- Deepak Singh Bisht
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
| | - Varnika Bhatia
- Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India.
| |
Collapse
|
210
|
Li J, Luo J, Xu M, Li S, Zhang J, Li H, Yan L, Zhao Y, Xia L. Plant genome editing using xCas9 with expanded PAM compatibility. J Genet Genomics 2019; 46:277-280. [DOI: 10.1016/j.jgg.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/24/2022]
|
211
|
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:667-697. [PMID: 30835493 DOI: 10.1146/annurev-arplant-050718-100049] [Citation(s) in RCA: 694] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.
Collapse
Affiliation(s)
- Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
- University of Chinese Academy of Sciences, Beijing, China 100864
| |
Collapse
|
212
|
Pandey PK, Quilichini TD, Vaid N, Gao P, Xiang D, Datla R. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research. Semin Cell Dev Biol 2019; 96:107-114. [PMID: 31022459 DOI: 10.1016/j.semcdb.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
The ability to create desirable gene variants through targeted changes offers tremendous opportunities for the advancement of basic and applied plant research. Gene editing technologies have opened new avenues to perform such precise gene modifications in diverse biological systems. These technologies use sequence-specific nucleases, such as homing endonucleases, zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (CRISPR/Cas) complexes to enable targeted genetic manipulations. Among these, the CRISPR/Cas system has emerged as a broadly applicable and valued gene editing system for its ease of use and versatility. The adaptability of the CRISPR/Cas system has facilitated rapid and continuous innovative developments to the precision and applications of this technology, since its introduction less than a decade ago. Although developed in animal systems, the simple and elegant CRISPR/Cas gene editing technology has quickly been embraced by plant researchers. From early demonstration in model plants, the CRISPR/Cas system has been successfully adapted for various crop species and enabled targeting of agronomically important traits. Although the approach faces several efficiency and delivery related challenges, especially in recalcitrant crop species, continuous advances in the CRISPR/Cas system to address these limitations are being made. In this review, we discuss the CRISPR/Cas technology, its myriad applications and their prospects for crop improvement.
Collapse
Affiliation(s)
- Prashant K Pandey
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Neha Vaid
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark, Potsdam-Golm, Am Muhlenberg 1, 14476 Potsdam, Germany
| | - Peng Gao
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, S7N 5A8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| |
Collapse
|
213
|
Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung MH, Koo OJ, Viola R, Nagamangala Kanchiswamy C. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat Protoc 2019; 13:2844-2863. [PMID: 30390050 DOI: 10.1038/s41596-018-0067-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The CRISPR-Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR-Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR-Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of components. Our plasmid-mediated procedure and the direct delivery of CRISPR-Cas9 RNPs can both be utilized to modulate traits of interest with high accuracy and efficiency in apple and grapevine, and could be extended to other crop species. The complete protocol employing the direct delivery of CRISPR-Cas9 RNPs takes as little as 2-3 weeks, whereas the plasmid-mediated procedure takes >3 months to regenerate plants and study the mutations.
Collapse
Affiliation(s)
- Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chikako Nishitani
- Division of Fruit Breeding and Genetics, NARO Institute of Fruit Tree and Tea Science, Tsukuba, Ibaraki, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Masato Wada
- Division of Apple Research, NARO Institute of Fruit Tree and Tea Science, Morioka, Iwate, Japan
| | - Sadao Komori
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Mickael Malnoy
- Research and Innovation Centre, Genomics and Biology of Fruit Crop Department, Fondazione Edmund Mach (FEM), San Michele all'Adige, TN, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Genomics and Biology of Fruit Crop Department, Fondazione Edmund Mach (FEM), San Michele all'Adige, TN, Italy.,Research Centre for Viticulture and Enology, CREA, Conegliano, TV, Italy
| | | | | | - Ok-Jae Koo
- PLANTeDIT Pvt Ltd, Cork, Ireland.,ToolGen, Seoul, South Korea
| | | | - Chidananda Nagamangala Kanchiswamy
- Research and Innovation Centre, Genomics and Biology of Fruit Crop Department, Fondazione Edmund Mach (FEM), San Michele all'Adige, TN, Italy. .,PLANTeDIT Pvt Ltd, Cork, Ireland.
| |
Collapse
|
214
|
Naduthodi MIS, Mohanraju P, Südfeld C, D’Adamo S, Barbosa MJ, van der Oost J. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:66. [PMID: 30962821 PMCID: PMC6432748 DOI: 10.1186/s13068-019-1401-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/09/2019] [Indexed: 06/07/2023]
Abstract
BACKGROUND Microalgae are considered as a sustainable feedstock for the production of biofuels and other value-added compounds. In particular, Nannochloropsis spp. stand out from other microalgal species due to their capabilities to accumulate both triacylglycerol (TAG) and polyunsaturated fatty acids (PUFAs). However, the commercialization of microalgae-derived products is primarily hindered by the high production costs compared to less sustainable alternatives. Efficient genome editing techniques leading to effective metabolic engineering could result in strains with enhanced productivities of interesting metabolites and thereby reduce the production costs. Competent CRISPR-based genome editing techniques have been reported in several microalgal species, and only very recently in Nannochloropsis spp. (2017). All the reported CRISPR-Cas-based systems in Nannochloropsis spp. rely on plasmid-borne constitutive expression of Cas9 and a specific guide, combined with repair of double-stranded breaks (DSB) by non-homologous end joining (NHEJ) for the target gene knockout. RESULTS In this study, we report for the first time an alternative approach for CRISPR-Cas-mediated genome editing in Nannochloropsis sp.; the Cas ribonucleoproteins (RNP) and an editing template were directly delivered into microalgal cells via electroporation, making Cas expression dispensable and homology-directed repair (HDR) possible with high efficiency. Apart from widely used SpCas9, Cas12a variants from three different bacterium were used for this approach. We observed that FnCas12a from Francisella novicida generated HDR-based targeted mutants with highest efficiency (up to 93% mutants among transformants) while AsCas12a from Acidaminococcus sp. resulted in the lowest efficiency. We initially show that the native homologous recombination (HR) system in N. oceanica IMET1 is not efficient for easy isolation of targeted mutants by HR. Cas9/sgRNA RNP delivery greatly enhanced HR at the target site, generating around 70% of positive mutant lines. CONCLUSION We show that the delivery of Cas RNP by electroporation can be an alternative approach to the presently reported plasmid-based Cas9 method for generating mutants of N. oceanica. The co-delivery of Cas-RNPs along with a dsDNA repair template efficiently enhanced HR at the target site, resulting in a remarkable higher percentage of positive mutant lines. Therefore, this approach can be used for efficient generation of targeted mutants in Nannochloropsis sp. In addition, we here report the activity of several Cas12a homologs in N. oceanica IMET1, identifying FnCas12a as the best performer for high efficiency targeted genome editing.
Collapse
Affiliation(s)
- Mihris Ibnu Saleem Naduthodi
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 PD Wageningen, The Netherlands
- Bioprocess Engineering Department, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Prarthana Mohanraju
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 PD Wageningen, The Netherlands
| | - Christian Südfeld
- Bioprocess Engineering Department, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sarah D’Adamo
- Bioprocess Engineering Department, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maria J. Barbosa
- Bioprocess Engineering Department, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 PD Wageningen, The Netherlands
| |
Collapse
|
215
|
Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol 2019; 37:445-450. [PMID: 30886437 DOI: 10.1038/s41587-019-0065-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/11/2019] [Indexed: 11/08/2022]
Abstract
One of the main obstacles to gene replacement in plants is efficient delivery of a donor repair template (DRT) into the nucleus for homology-directed DNA repair (HDR) of double-stranded DNA breaks. Production of RNA templates in vivo for transcript-templated HDR (TT-HDR) could overcome this problem, but primary transcripts are often processed and transported to the cytosol, rendering them unavailable for HDR. We show that coupling CRISPR-Cpf1 (CRISPR from Prevotella and Francisella 1) to a CRISPR RNA (crRNA) array flanked with ribozymes, along with a DRT flanked with either ribozymes or crRNA targets, produces primary transcripts that self-process to release the crRNAs and DRT inside the nucleus. We replaced the rice acetolactate synthase gene (ALS) with a mutated version using a DNA-free ribonucleoprotein complex that contains the recombinant Cpf1, crRNAs, and DRT transcripts. We also produced stable lines with two desired mutations in the ALS gene using TT-HDR.
Collapse
|
216
|
Eckerstorfer MF, Dolezel M, Heissenberger A, Miklau M, Reichenbecher W, Steinbrecher RA, Waßmann F. An EU Perspective on Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs). Front Bioeng Biotechnol 2019; 7:31. [PMID: 30891445 PMCID: PMC6413072 DOI: 10.3389/fbioe.2019.00031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
The question whether new genetic modification techniques (nGM) in plant development might result in non-negligible negative effects for the environment and/or health is significant for the discussion concerning their regulation. However, current knowledge to address this issue is limited for most nGMs, particularly for recently developed nGMs, like genome editing, and their newly emerging variations, e.g., base editing. This leads to uncertainties regarding the risk/safety-status of plants which are developed with a broad range of different nGMs, especially genome editing, and other nGMs such as cisgenesis, transgrafting, haploid induction or reverse breeding. A literature survey was conducted to identify plants developed by nGMs which are relevant for future agricultural use. Such nGM plants were analyzed for hazards associated either (i) with their developed traits and their use or (ii) with unintended changes resulting from the nGMs or other methods applied during breeding. Several traits are likely to become particularly relevant in the future for nGM plants, namely herbicide resistance (HR), resistance to different plant pathogens as well as modified composition, morphology, fitness (e.g., increased resistance to cold/frost, drought, or salinity) or modified reproductive characteristics. Some traits such as resistance to certain herbicides are already known from existing GM crops and their previous assessments identified issues of concern and/or risks, such as the development of herbicide resistant weeds. Other traits in nGM plants are novel; meaning they are not present in agricultural plants currently cultivated with a history of safe use, and their underlying physiological mechanisms are not yet sufficiently elucidated. Characteristics of some genome editing applications, e.g., the small extent of genomic sequence change and their higher targeting efficiency, i.e., precision, cannot be considered an indication of safety per se, especially in relation to novel traits created by such modifications. All nGMs considered here can result in unintended changes of different types and frequencies. However, the rapid development of nGM plants can compromise the detection and elimination of unintended effects. Thus, a case-specific premarket risk assessment should be conducted for nGM plants, including an appropriate molecular characterization to identify unintended changes and/or confirm the absence of unwanted transgenic sequences.
Collapse
Affiliation(s)
| | - Marion Dolezel
- Department Landuse & Biosafety, Environment Agency Austria, Vienna, Austria
| | | | - Marianne Miklau
- Department Landuse & Biosafety, Environment Agency Austria, Vienna, Austria
| | - Wolfram Reichenbecher
- Department GMO Regulation, Biosafety, Federal Agency for Nature Conservation, Bonn, Germany
| | | | - Friedrich Waßmann
- Department GMO Regulation, Biosafety, Federal Agency for Nature Conservation, Bonn, Germany
| |
Collapse
|
217
|
Korotkova AM, Gerasimova SV, Khlestkina EK. Current achievements in modifying crop genes using CRISPR/Cas system. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.458] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
With the advent of the new genome editing tool of target-specifically customizable endonucleases, a huge variety of novel opportunities have become feasible. The crop improvement is one of the main applications of genome editing in plant science and plant biotechnology. The amount of publications referring to genome editing and CRISPR/Cas system based molecular tools application in crops is permanently growing. The aim of this study is the systematization and cataloging of these data. Earlier we published the first catalog of targeted crop genome modifications as of February 10, 2017. The current review is an update of the catalog; it covers research papers on crop genome modifications from February 10, 2017 to August 17, 2018, found by searching 47 crop names in the Scopus database. Over one year and a half, 377 articles mentioning CRISPR/Cas and crop names have been published, of which 131 articles describe an experimental application of this tool for editing 193 genes in 19 crops, including rice with the largest number of genes modified (109 genes). Editing 50 of 193 genes was aimed at crop improvement. The catalog presented here includes these 50 genes, specifying the cultivars, each gene and gene product function, modification type and delivery method used. The current full list of genes modified with CRISPR/Cas with the aim of crop improvement is 81 in 16 crops (for 5 years from August 2013 to August 2018). In this paper, we also summarize data on different modifications types in different crops and provide a brief review of some novel methods and approaches that have appeared in crop genome editing research over the reviewed period. Taken together, these data provide a clear view on current progress in crop genome modifications and traits improvement using CRISPR/Cas based genome editing technology.
Collapse
Affiliation(s)
| | - S. V. Gerasimova
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - E. K. Khlestkina
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University; N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR)
| |
Collapse
|
218
|
Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, Lee DJ, Woo DC, Kim YH, Nam SY, Lee SW, Sung YH, Baek IJ. Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Sci Rep 2019; 9:2628. [PMID: 30796231 PMCID: PMC6385241 DOI: 10.1038/s41598-019-38732-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
The rat is a time-honored traditional experimental model animal, but its use is limited due to the difficulty of genetic modification. Although engineered endonucleases enable us to manipulate the rat genome, it is not known whether the newly identified endonuclease Cpf1 system is applicable to rats. Here we report the first application of CRISPR-Cpf1 in rats and investigate whether Apoe knockout rat can be used as an atherosclerosis model. We generated Apoe- and/or Ldlr-deficient rats via CRISPR-Cpf1 system, characterized by high efficiency, successful germline transmission, multiple gene targeting capacity, and minimal off-target effect. The resulting Apoe knockout rats displayed hyperlipidemia and aortic lesions. In partially ligated carotid arteries of rats and mice fed with high-fat diet, in contrast to Apoe knockout mice showing atherosclerotic lesions, Apoe knockout rats showed only adventitial immune infiltrates comprising T lymphocytes and mainly macrophages with no plaque. In addition, adventitial macrophage progenitor cells (AMPCs) were more abundant in Apoe knockout rats than in mice. Our data suggest that the Cpf1 system can target single or multiple genes efficiently and specifically in rats with genetic heritability and that Apoe knockout rats may help understand initial-stage atherosclerosis.
Collapse
Affiliation(s)
- Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Chang Hoon Ha
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Bohyun Yoon
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-A Cheong
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Doo Jae Lee
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Hak Kim
- Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Wook Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
219
|
Sedeek KEM, Mahas A, Mahfouz M. Plant Genome Engineering for Targeted Improvement of Crop Traits. FRONTIERS IN PLANT SCIENCE 2019; 10:114. [PMID: 30809237 PMCID: PMC6379297 DOI: 10.3389/fpls.2019.00114] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/23/2019] [Indexed: 05/18/2023]
Abstract
To improve food security, plant biology research aims to improve crop yield and tolerance to biotic and abiotic stress, as well as increasing the nutrient contents of food. Conventional breeding systems have allowed breeders to produce improved varieties of many crops; for example, hybrid grain crops show dramatic improvements in yield. However, many challenges remain and emerging technologies have the potential to address many of these challenges. For example, site-specific nucleases such as TALENs and CRISPR/Cas systems, which enable high-efficiency genome engineering across eukaryotic species, have revolutionized biological research and its applications in crop plants. These nucleases have been used in diverse plant species to generate a wide variety of site-specific genome modifications through strategies that include targeted mutagenesis and editing for various agricultural biotechnology applications. Moreover, CRISPR/Cas genome-wide screens make it possible to discover novel traits, expand the range of traits, and accelerate trait development in target crops that are key for food security. Here, we discuss the development and use of various site-specific nuclease systems for different plant genome-engineering applications. We highlight the existing opportunities to harness these technologies for targeted improvement of traits to enhance crop productivity and resilience to climate change. These cutting-edge genome-editing technologies are thus poised to reshape the future of agriculture and food security.
Collapse
Affiliation(s)
| | | | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
220
|
Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ, Joung JK. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 2019; 37:276-282. [PMID: 30742127 PMCID: PMC6401248 DOI: 10.1038/s41587-018-0011-0] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Broad use of CRISPR-Cas12a (formerly Cpf1) nucleases1 has been hindered by the requirement for
an extended TTTV protospacer adjacent motif (PAM)2. To address this limitation, we
engineered an enhanced Acidaminococcus sp. Cas12a variant
(enAsCas12a) that has a substantially expanded targeting range, enabling
targeting of many previously inaccessible PAMs. On average, enAsCas12a exhibits
two-fold higher genome editing activity on sites with canonical TTTV PAMs
compared to wild-type AsCas12a, and we successfully grafted a subset of
mutations from enAsCas12a onto other previously described AsCas12a
variants3 to enhance
their activities. enAsCas12a improves the efficiency of multiplex gene editing,
endogenous gene activation, and C-to-T base editing, and we engineered a
high-fidelity version of enAsCas12a (enAsCas12a-HF1) to reduce off-target
effects. Both enAsCas12a and enAsCas12a-HF1 function in HEK293T and primary
human T cells when delivered as ribonucleoprotein (RNP) complexes. Collectively,
enAsCas12a provides an optimized version of Cas12a that should enable wider
application of Cas12a enzymes for gene and epigenetic editing. [AU: Revised
abstract OK?]
Collapse
Affiliation(s)
- Benjamin P Kleinstiver
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA. .,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA. .,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA. .,Department of Pathology, Harvard Medical School, Boston, MA, USA. .,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Alexander A Sousa
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Russell T Walton
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Y Esther Tak
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jonathan Y Hsu
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kendell Clement
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moira M Welch
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joy E Horng
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jose Malagon-Lopez
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Advance Artificial Intelligence Research Laboratory, WuXi NextCODE, Cambridge, MA, USA
| | - Irene Scarfò
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin J Aryee
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Cell Circuits and Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA. .,Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA. .,Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA. .,Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
221
|
Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS. Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts. FRONTIERS IN PLANT SCIENCE 2019; 10:110. [PMID: 30800139 PMCID: PMC6376315 DOI: 10.3389/fpls.2019.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/23/2019] [Indexed: 06/01/2023]
Abstract
Genome-editing is being implemented in increasing number of plant species using engineered sequence specific nucleases (SSNs) such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9), Transcription activator like effector nucleases (TALENs), and more recently CRISPR/Cas12a. As the tissue culture and regeneration procedures to generate gene-edited events are time consuming, large-scale screening methodologies that rapidly facilitate validation of genome-editing reagents are critical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents represents an efficient and cost-effective method to screen for in vivo activity of genome-editing constructs and resulting targeted mutagenesis. In this study, we compared three existing methods for detection of editing activity, the T7 endonuclease I assay (T7EI), PCR/restriction enzyme (PCR/RE) digestion, and amplicon-sequencing, with an alternative method which involves tagging a double-stranded oligodeoxynucleotide (dsODN) into the SSN-induced double stranded break and detection of on-target activity of gene-editing reagents by PCR and agarose gel electrophoresis. To validate these methods, multiple reagents including TALENs, CRISPR/Cas9 and Cas9 variants, eCas9(1.1) (enhanced specificity) and Cas9-HF1 (high-fidelity1) were engineered for targeted mutagenesis of Acetolactate synthase1 (ALS1), 5-Enolpyruvylshikimate- 3-phosphate synthase1 (EPSPS1) and their paralogs in potato. While all methods detected editing activity, the PCR detection of dsODN integration provided the most straightforward and easiest method to assess on-target activity of the SSN as well as a method for initial qualitative evaluation of the functionality of genome-editing constructs. Quantitative data on mutagenesis frequencies obtained by amplicon-sequencing of ALS1 revealed that the mutagenesis frequency of CRISPR/Cas9 reagents is better than TALENs. Context-based choice of method for evaluation of gene-editing reagents in protoplast systems, along with advantages and limitations associated with each method, are discussed.
Collapse
Affiliation(s)
- Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Colby G. Starker
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - Dae Kwan Ko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Thilani B. Jayakody
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
222
|
Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence‐Dill CJ, Joung JK, Qi Y, Wang K. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:362-372. [PMID: 29972722 PMCID: PMC6320322 DOI: 10.1111/pbi.12982] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 05/11/2023]
Abstract
CRISPR/Cas9 and Cas12a (Cpf1) nucleases are two of the most powerful genome editing tools in plants. In this work, we compared their activities by targeting maize glossy2 gene coding region that has overlapping sequences recognized by both nucleases. We introduced constructs carrying SpCas9-guide RNA (gRNA) and LbCas12a-CRISPR RNA (crRNA) into maize inbred B104 embryos using Agrobacterium-mediated transformation. On-target mutation analysis showed that 90%-100% of the Cas9-edited T0 plants carried indel mutations and 63%-77% of them were homozygous or biallelic mutants. In contrast, 0%-60% of Cas12a-edited T0 plants had on-target mutations. We then conducted CIRCLE-seq analysis to identify genome-wide potential off-target sites for Cas9. A total of 18 and 67 potential off-targets were identified for the two gRNAs, respectively, with an average of five mismatches compared to the target sites. Sequencing analysis of a selected subset of the off-target sites revealed no detectable level of mutations in the T1 plants, which constitutively express Cas9 nuclease and gRNAs. In conclusion, our results suggest that the CRISPR/Cas9 system used in this study is highly efficient and specific for genome editing in maize, while CRISPR/Cas12a needs further optimization for improved editing efficiency.
Collapse
Affiliation(s)
- Keunsub Lee
- Crop Bioengineering CenterIowa State UniversityAmesIAUSA
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Yingxiao Zhang
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Benjamin P. Kleinstiver
- Molecular Pathology UnitCenter for Cancer Research, and Center for Computational and Integrative BiologyMassachusetts General HospitalCharlestownMAUSA
- Department of PathologyHarvard Medical SchoolBostonMAUSA
| | - Jimmy A. Guo
- Molecular Pathology UnitCenter for Cancer Research, and Center for Computational and Integrative BiologyMassachusetts General HospitalCharlestownMAUSA
| | - Martin J. Aryee
- Department of PathologyHarvard Medical SchoolBostonMAUSA
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Jonah Miller
- Crop Bioengineering CenterIowa State UniversityAmesIAUSA
| | - Aimee Malzahn
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Scott Zarecor
- Crop Bioengineering CenterIowa State UniversityAmesIAUSA
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Carolyn J. Lawrence‐Dill
- Crop Bioengineering CenterIowa State UniversityAmesIAUSA
- Department of AgronomyIowa State UniversityAmesIAUSA
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Bioinformatics and Computational Biology ProgramIowa State UniversityAmesIAUSA
| | - J. Keith Joung
- Molecular Pathology UnitCenter for Cancer Research, and Center for Computational and Integrative BiologyMassachusetts General HospitalCharlestownMAUSA
- Department of PathologyHarvard Medical SchoolBostonMAUSA
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMDUSA
| | - Kan Wang
- Crop Bioengineering CenterIowa State UniversityAmesIAUSA
- Department of AgronomyIowa State UniversityAmesIAUSA
| |
Collapse
|
223
|
Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, Zhang Y, Chen H, Kang M, Bao Y, Zheng X, Deng K, Zhang T, Salcedo V, Wang K, Zhang Y, Qi Y. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol 2019; 17:9. [PMID: 30704461 PMCID: PMC6357469 DOI: 10.1186/s12915-019-0629-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND CRISPR-Cas12a (formerly Cpf1) is an RNA-guided endonuclease with distinct features that have expanded genome editing capabilities. Cas12a-mediated genome editing is temperature sensitive in plants, but a lack of a comprehensive understanding on Cas12a temperature sensitivity in plant cells has hampered effective application of Cas12a nucleases in plant genome editing. RESULTS We compared AsCas12a, FnCas12a, and LbCas12a for their editing efficiencies and non-homologous end joining (NHEJ) repair profiles at four different temperatures in rice. We found that AsCas12a is more sensitive to temperature and that it requires a temperature of over 28 °C for high activity. Each Cas12a nuclease exhibited distinct indel mutation profiles which were not affected by temperatures. For the first time, we successfully applied AsCas12a for generating rice mutants with high frequencies up to 93% among T0 lines. We next pursued editing in the dicot model plant Arabidopsis, for which Cas12a-based genome editing has not been previously demonstrated. While LbCas12a barely showed any editing activity at 22 °C, its editing activity was rescued by growing the transgenic plants at 29 °C. With an early high-temperature treatment regime, we successfully achieved germline editing at the two target genes, GL2 and TT4, in Arabidopsis transgenic lines. We then used high-temperature treatment to improve Cas12a-mediated genome editing in maize. By growing LbCas12a T0 maize lines at 28 °C, we obtained Cas12a-edited mutants at frequencies up to 100% in the T1 generation. Finally, we demonstrated DNA binding of Cas12a was not abolished at lower temperatures by using a dCas12a-SRDX-based transcriptional repression system in Arabidopsis. CONCLUSION Our study demonstrates the use of high-temperature regimes to achieve high editing efficiencies with Cas12a systems in rice, Arabidopsis, and maize and sheds light on the mechanism of temperature sensitivity for Cas12a in plants.
Collapse
Affiliation(s)
- Aimee A Malzahn
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Xu Tang
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Keunsub Lee
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, 50011, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Qiurong Ren
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Hongqiao Chen
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Minjeong Kang
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, 50011, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
- Interdepartmental Plant Biology Major, Iowa State University, Ames, Iowa, 50011, USA
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kejun Deng
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Valeria Salcedo
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Kan Wang
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, 50011, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Yong Zhang
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
| |
Collapse
|
224
|
Cho EY, Ryu JY, Lee HAR, Hong SH, Park HS, Hong KS, Park SG, Kim HP, Yoon TJ. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J Nanobiotechnology 2019; 17:19. [PMID: 30696428 PMCID: PMC6350399 DOI: 10.1186/s12951-019-0452-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Protein-based Cas9 in vivo gene editing therapeutics have practical limitations owing to their instability and low efficacy. To overcome these obstacles and improve stability, we designed a nanocarrier primarily consisting of lecithin that can efficiently target liver disease and encapsulate complexes of Cas9 with a single-stranded guide RNA (sgRNA) ribonucleoprotein (Cas9-RNP) through polymer fusion self-assembly. RESULTS In this study, we optimized an sgRNA sequence specifically for dipeptidyl peptidase-4 gene (DPP-4) to modulate the function of glucagon-like peptide 1. We then injected our nanocarrier Cas9-RNP complexes directly into type 2 diabetes mellitus (T2DM) db/db mice, which disrupted the expression of DPP-4 gene in T2DM mice with remarkable efficacy. The decline in DPP-4 enzyme activity was also accompanied by normalized blood glucose levels, insulin response, and reduced liver and kidney damage. These outcomes were found to be similar to those of sitagliptin, the current chemical DPP-4 inhibition therapy drug which requires recurrent doses. CONCLUSIONS Our results demonstrate that a nano-liposomal carrier system with therapeutic Cas9-RNP has great potential as a platform to improve genomic editing therapies for human liver diseases.
Collapse
Affiliation(s)
- Eun Yi Cho
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 South Korea
- Moogene Medi Co. Ltd., Korea Bio Park, Daewangpangyo-ro 700, Seongnam, 13488 South Korea
| | - Jee-Yeon Ryu
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 South Korea
| | - Han A. Reum Lee
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 South Korea
| | - Shin Hee Hong
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 South Korea
| | - Hye Sun Park
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119 South Korea
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, 28119 South Korea
| | - Sang-Gyu Park
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 South Korea
| | - Hong Pyo Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 South Korea
| | - Tae-Jong Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499 South Korea
- Moogene Medi Co. Ltd., Korea Bio Park, Daewangpangyo-ro 700, Seongnam, 13488 South Korea
| |
Collapse
|
225
|
Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Nogué F, Mazier M. Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor. Int J Mol Sci 2019. [PMID: 30669298 DOI: 10.2290/ijms20020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Genome editing tools have rapidly been adopted by plant scientists for gene function discovery and crop improvement. The current technical challenge is to efficiently induce precise and predictable targeted point mutations valuable for crop breeding purposes. Cytidine base editors (CBEs) are CRISPR/Cas9 derived tools recently developed to direct a C-to-T base conversion. Stable genomic integration of CRISPR/Cas9 components through Agrobacterium-mediated transformation is the most widely used approach in dicotyledonous plants. However, elimination of foreign DNA may be difficult to achieve, especially in vegetatively propagated plants. In this study, we targeted the acetolactate synthase (ALS) gene in tomato and potato by a CBE using Agrobacterium-mediated transformation. We successfully and efficiently edited the targeted cytidine bases, leading to chlorsulfuron-resistant plants with precise base edition efficiency up to 71% in tomato. More importantly, we produced 12.9% and 10% edited but transgene-free plants in the first generation in tomato and potato, respectively. Such an approach is expected to decrease deleterious effects due to the random integration of transgene(s) into the host genome. Our successful approach opens up new perspectives for genome engineering by the co-edition of the ALS with other gene(s), leading to transgene-free plants harboring new traits of interest.
Collapse
Affiliation(s)
- Florian Veillet
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Laura Perrot
- INRA PACA, UR 1052, GAFL unit (Génétique et Amélioration des Fruits et Légumes), 84143 Montfavet, France.
| | - Laura Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Marie-Paule Kermarrec
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Jean-Eric Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Marianne Mazier
- INRA PACA, UR 1052, GAFL unit (Génétique et Amélioration des Fruits et Légumes), 84143 Montfavet, France.
| |
Collapse
|
226
|
Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Nogué F, Mazier M. Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor. Int J Mol Sci 2019; 20:E402. [PMID: 30669298 PMCID: PMC6358797 DOI: 10.3390/ijms20020402] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/13/2023] Open
Abstract
Genome editing tools have rapidly been adopted by plant scientists for gene function discovery and crop improvement. The current technical challenge is to efficiently induce precise and predictable targeted point mutations valuable for crop breeding purposes. Cytidine base editors (CBEs) are CRISPR/Cas9 derived tools recently developed to direct a C-to-T base conversion. Stable genomic integration of CRISPR/Cas9 components through Agrobacterium-mediated transformation is the most widely used approach in dicotyledonous plants. However, elimination of foreign DNA may be difficult to achieve, especially in vegetatively propagated plants. In this study, we targeted the acetolactate synthase (ALS) gene in tomato and potato by a CBE using Agrobacterium-mediated transformation. We successfully and efficiently edited the targeted cytidine bases, leading to chlorsulfuron-resistant plants with precise base edition efficiency up to 71% in tomato. More importantly, we produced 12.9% and 10% edited but transgene-free plants in the first generation in tomato and potato, respectively. Such an approach is expected to decrease deleterious effects due to the random integration of transgene(s) into the host genome. Our successful approach opens up new perspectives for genome engineering by the co-edition of the ALS with other gene(s), leading to transgene-free plants harboring new traits of interest.
Collapse
Affiliation(s)
- Florian Veillet
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Laura Perrot
- INRA PACA, UR 1052, GAFL unit (Génétique et Amélioration des Fruits et Légumes), 84143 Montfavet, France.
| | - Laura Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Marie-Paule Kermarrec
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Jean-Eric Chauvin
- INRA, Agrocampus Ouest, Université Rennes 1, UMR 1349 IGEPP, Domaine de Kéraïber, 29260 Ploudaniel, France.
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Marianne Mazier
- INRA PACA, UR 1052, GAFL unit (Génétique et Amélioration des Fruits et Légumes), 84143 Montfavet, France.
| |
Collapse
|
227
|
Clifton‐Brown J, Harfouche A, Casler MD, Dylan Jones H, Macalpine WJ, Murphy‐Bokern D, Smart LB, Adler A, Ashman C, Awty‐Carroll D, Bastien C, Bopper S, Botnari V, Brancourt‐Hulmel M, Chen Z, Clark LV, Cosentino S, Dalton S, Davey C, Dolstra O, Donnison I, Flavell R, Greef J, Hanley S, Hastings A, Hertzberg M, Hsu T, Huang LS, Iurato A, Jensen E, Jin X, Jørgensen U, Kiesel A, Kim D, Liu J, McCalmont JP, McMahon BG, Mos M, Robson P, Sacks EJ, Sandu A, Scalici G, Schwarz K, Scordia D, Shafiei R, Shield I, Slavov G, Stanton BJ, Swaminathan K, Taylor G, Torres AF, Trindade LM, Tschaplinski T, Tuskan GA, Yamada T, Yeon Yu C, Zalesny RS, Zong J, Lewandowski I. Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:118-151. [PMID: 30854028 PMCID: PMC6392185 DOI: 10.1111/gcbb.12566] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 05/07/2023]
Abstract
Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass-scale deployment of PBCs.
Collapse
Affiliation(s)
- John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systemsUniversity of TusciaViterboItaly
| | | | - Huw Dylan Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | | | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityGenevaNew York
| | - Anneli Adler
- SweTree Technologies ABUmeåSweden
- Institute of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Chris Ashman
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Danny Awty‐Carroll
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Sebastian Bopper
- Department of Seed Science and Technology, Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Vasile Botnari
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | | | - Zhiyong Chen
- Insitute of MiscanthusHunan Agricultural UniversityHunan ChangshaChina
| | - Lindsay V. Clark
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Salvatore Cosentino
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Sue Dalton
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Chris Davey
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Oene Dolstra
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Joerg Greef
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | | | - Astley Hastings
- Institute of Biological and Environmental ScienceUniversity of AberdeenAberdeenUK
| | | | - Tsai‐Wen Hsu
- Taiwan Endemic Species Research Institute (TESRI)Nantou CountyTaiwan
| | - Lin S. Huang
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Antonella Iurato
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Xiaoli Jin
- Department of Agronomy & The Key Laboratory of Crop Germplasm Resource of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Uffe Jørgensen
- Department of AgroecologyAarhus University Centre for Circular BioeconomyTjeleDenmark
| | - Andreas Kiesel
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Do‐Soon Kim
- Department of Plant Sciences, Research Institute of Agriculture & Life Sciences, CALSSeoul National UniversitySeoulKorea
| | - Jianxiu Liu
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Jon P. McCalmont
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Bernard G. McMahon
- Natural Resources Research InstituteUniversity of Minnesota – DuluthDuluthMinnesota
| | | | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Erik J. Sacks
- Department of Crop Sciences & Center for Advanced Bioenergy and Bioproducts Innovation, 279 Edward R Madigan LaboratoryUniversity of IllinoisUrbanaIllinois
| | - Anatolii Sandu
- Institute of Genetics, Physiology and Plant Protection (IGFPP) of Academy of Sciences of MoldovaChisinauMoldova
| | - Giovanni Scalici
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Kai Schwarz
- Julius Kuhn‐Institut (JKI)Bundesforschungsinstitut fur KulturpflanzenBraunschweigGermany
| | - Danilo Scordia
- Dipartimento di Agricoltura Alimentazione e AmbienteUniversità degli Studi di CataniaCataniaItaly
| | - Reza Shafiei
- James Hutton InstituteUniversity of DundeeDundeeUK
| | | | | | | | | | - Gail Taylor
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Andres F. Torres
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Luisa M. Trindade
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Timothy Tschaplinski
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Gerald A. Tuskan
- The Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTennessee
| | - Toshihiko Yamada
- Field Science Centre for the Northern BiosphereHokkaido UniversitySapporoJapan
| | - Chang Yeon Yu
- College of Agriculture and Life Sciences 2Kangwon National UniversityChuncheonSouth Korea
| | | | - Junqin Zong
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Iris Lewandowski
- Department of Biobased Products and Energy Crops, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| |
Collapse
|
228
|
Kim H, Lim J. Leaf-induced callus formation in two cultivars: hot pepper 'CM334' and bell pepper 'Dempsey'. PLANT SIGNALING & BEHAVIOR 2019; 14:1604016. [PMID: 30983498 PMCID: PMC6619979 DOI: 10.1080/15592324.2019.1604016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pepper (Capsicum annuum), one of the most economically important vegetables of the Solanaceae family, is cultivated worldwide. To apply versatile genome-editing tools to a pepper genome for precise molecular breeding, an in vitro regeneration protocol is indispensable and callus formation is an essential step in the regeneration of pepper. Here, we show that calli were successfully induced from young leaves (3-4 cm) of pepper plants, the hot pepper C. annum 'CM334' ('CM334') and bell pepper C. annum 'Dempsey' ('Dempsey'), grown on soil for less than 7 weeks. The excised leaf segments of 'CM334' produced white calli in B5 medium containing 3% sucrose (3S), 2 mg/L 6-benzylaminopurine (2BAP), and 1 mg/L α-naphthalene acetic acid (1NAA). The calli were able to proliferate in B5 3S 2BAP medium supplemented with 2-morpholinoethanesulphonic acid (MES) and 1.5 mg/L NAA (1.5NAA). The excised leaf segments of 'Dempsey' produced light-yellow and friable calli in MS medium supplemented with B5 vitamins (MSB5), 3S and 1 mg/L 2,4-dichlorophenoxyacetic acid (1 2,4D), and the calli were also maintained in the same medium. Our findings establish the conditions for leaf-derived callus formation, which is the basis for regeneration of whole plants for two different pepper cultivars, for obtaining stable protoplasts, and eventually for applying genome-editing tools to improve the quality of peppers.
Collapse
Affiliation(s)
- Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
- CONTACT Hyeran Kim Department of Biological Sciences, Kangwon National University, Kangwondaehak-gil 1, Chuncheon 24341, South Korea
| | - Jongseok Lim
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
229
|
Liang Y, Eudes A, Yogiswara S, Jing B, Benites VT, Yamanaka R, Cheng-Yue C, Baidoo EE, Mortimer JC, Scheller HV, Loqué D. A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:130. [PMID: 31143243 PMCID: PMC6532251 DOI: 10.1186/s13068-019-1467-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Single guide RNA (sgRNA) selection is important for the efficiency of CRISPR/Cas9-mediated genome editing. However, in plants, the rules governing selection are not well established. RESULTS We developed a facile transient assay to screen sgRNA efficiency. We then used it to test top-performing bioinformatically predicted sgRNAs for two different Arabidopsis genes. In our assay, these sgRNAs had vastly different editing efficiencies, and these efficiencies were replicated in stably transformed Arabidopsis lines. One of the genes, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT), is an essential gene, required for lignin biosynthesis. Previously, HCT function has been studied using gene silencing. Here, to avoid the negative growth effects that are due to the loss of HCT activity in xylem vessels, we used a fiber-specific promoter to drive CAS9 expression. Two independent transgenic lines showed the expected lignin decrease. Successful editing was confirmed via the observation of mutations at the HCT target loci, as well as an approximately 90% decrease in HCT activity. Histochemical analysis and a normal growth phenotype support the fiber-specific knockout of HCT. For the targeting of the second gene, Golgi-localized nucleotide sugar transporter2 (GONST2), a highly efficient sgRNA drastically increased the rate of germline editing in T1 generation. CONCLUSIONS This screening method is widely applicable, and the selection and use of efficient sgRNAs will accelerate the process of expanding germplasm for both molecular breeding and research. In addition, this, to the best of our knowledge, is the first application of constrained genome editing to obtain chimeric plants of essential genes, thereby providing a dominant method to avoid lethal growth phenotypes.
Collapse
Affiliation(s)
- Yan Liang
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Sasha Yogiswara
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Beibei Jing
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Veronica T. Benites
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Reo Yamanaka
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- School of Public Health, University of California, Berkeley, CA 94720 USA
| | - Clarabelle Cheng-Yue
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Edward E. Baidoo
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Biological Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Jenny C. Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Emeryville, CA 94608 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
230
|
Wang T, Zhang H, Zhu H. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. HORTICULTURE RESEARCH 2019; 6:77. [PMID: 31240102 PMCID: PMC6570646 DOI: 10.1038/s41438-019-0159-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 04/26/2019] [Indexed: 05/06/2023]
Abstract
Fruits are major sources of essential nutrients and serve as staple foods in some areas of the world. The increasing human population and changes in climate experienced worldwide make it urgent to the production of fruit crops with high yield and enhanced adaptation to the environment, for which conventional breeding is unlikely to meet the demand. Fortunately, clustered regularly interspaced short palindromic repeat (CRISPR) technology paves the way toward a new horizon for fruit crop improvement and consequently revolutionizes plant breeding. In this review, the mechanism and optimization of the CRISPR system and its application to fruit crops, including resistance to biotic and abiotic stresses, fruit quality improvement, and domestication are highlighted. Controversies and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Tian Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Hongyan Zhang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, 250014 Jinan, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
231
|
Park J, Choi S, Park S, Yoon J, Park AY, Choe S. DNA-Free Genome Editing via Ribonucleoprotein (RNP) Delivery of CRISPR/Cas in Lettuce. Methods Mol Biol 2019; 1917:337-354. [PMID: 30610648 DOI: 10.1007/978-1-4939-8991-1_25] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CRISPR/Cas9 nuclease system is getting popular in precise genome editing of both eukaryotic and prokaryotic systems due to its accuracy, programmability, and relative ease of use. CRISPR/Cas systems can be delivered into live cells via plasmid DNA, RNA, and ribonucleoprotein (RNP). Of these, the RNP method is of special interest due to enzymatic action in shorter time and controllability over their activity. In addition, because RNP does not involve DNA, none of unwanted DNA footprints are left in the host genome. Previously, we demonstrated that plant protoplasts can be transfected with functional RNPs and the whole plants can be regenerated from an engineered protoplast. Relative to the published methods, the revised protocols described here should help increase the success rate of whole plant regeneration by reducing damages to the naked protoplast cells.
Collapse
Affiliation(s)
| | | | - Slki Park
- G+FLAS Life Sciences, Seoul, South Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | | | - Aiden Y Park
- G+FLAS Life Sciences, Seoul, South Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Sunghwa Choe
- Naturegenic Inc., West Lafayette, IN, USA.
- G+FLAS Life Sciences, Seoul, South Korea.
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
232
|
Kawall K. New Possibilities on the Horizon: Genome Editing Makes the Whole Genome Accessible for Changes. FRONTIERS IN PLANT SCIENCE 2019; 10:525. [PMID: 31068963 PMCID: PMC6491833 DOI: 10.3389/fpls.2019.00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/04/2019] [Indexed: 05/04/2023]
Abstract
The emergence of new genome editing techniques, such as the site-directed nucleases, clustered regulatory interspaced short palindromic repeats (CRISPRs)/Cas9, transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs), has greatly increased the feasibility of introducing any desired changes into the genome of a target organism. The ability to target a Cas nuclease to DNA sequences with a single-guide RNA (sgRNA) has provided a dynamic tool for genome editing and is naturally derived from an adaptive immune system in bacteria and archaea. CRISPR/Cas systems are being rapidly improved and refined, thereby opening up even more possibilities. Classical plant breeding is based on genetic variations that occur naturally and is used to select plants with improved traits. Induced mutagenesis is used to enhance mutational frequency and accelerate this process. Plants have evolved cellular processes, including certain repair mechanisms that ensure DNA integrity and the maintenance of distinct DNA loci. The focus of this review is on the characterization of new potentials in plant breeding through the use of CRISPR/Cas systems that eliminate natural limitations in order to induce thus far unachievable genomic changes.
Collapse
|
233
|
Zhang Y, Zhang Y, Qi Y. Plant Gene Knockout and Knockdown by CRISPR-Cpf1 (Cas12a) Systems. Methods Mol Biol 2019; 1917:245-256. [PMID: 30610641 DOI: 10.1007/978-1-4939-8991-1_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
CRISPR-Cpf1 (Cas12a) is a class II type V endonuclease, which has been used as a genome editing tool in different biological systems. Here we describe a fast, efficient, and user-friendly system for CRISPR-Cpf1 expression vector assembly. In this system, the Pol II promoter is used to drive the expression of both Cpf1 and its crRNA, with the crRNA flanked by hammerhead (HH) and hepatitis delta virus (HDV) ribozyme RNAs for precise crRNA processing. All the components of this system can be modified depending on plant species and experimental goals. Using this system, nearly 100% editing efficiency and 90% gene expression decrease were achieved in rice and Arabidopsis, respectively.
Collapse
Affiliation(s)
- Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yong Zhang
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA. .,Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
234
|
Liang Z, Chen K, Gao C. Biolistic Delivery of CRISPR/Cas9 with Ribonucleoprotein Complex in Wheat. Methods Mol Biol 2019; 1917:327-335. [PMID: 30610647 DOI: 10.1007/978-1-4939-8991-1_24] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The great advances in exploiting the CRISPR/Cas9 system are paving the way for targeted genome engineering in plants. Genome editing by direct delivery of CRISPR/Cas9 ribonucleoprotein complexes (RNPs) into plant cells reduces off-target mutations and avoids the integration of foreign DNA fragments, thus providing an efficient and accurate method for precision crop breeding. Here we describe an RNP-based genome editing protocol for wheat. The protocol covers the in vitro transcription of sgRNA, purification of Cas9 protein, biolistic delivery of CRISPR/Cas9 RNPs, and tissue culture procedures for regenerating testable seedlings.
Collapse
Affiliation(s)
- Zhen Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
235
|
Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1127-1153. [PMID: 30387552 DOI: 10.1111/jipb.12734] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/30/2018] [Indexed: 05/18/2023]
Abstract
Since the discovery that nucleases of the bacterial CRISPR (clustered regularly interspaced palindromic repeat)-associated (Cas) system can be used as easily programmable tools for genome engineering, their application massively transformed different areas of plant biology. In this review, we assess the current state of their use for crop breeding to incorporate attractive new agronomical traits into specific cultivars of various crop plants. This can be achieved by the use of Cas9/12 nucleases for double-strand break induction, resulting in mutations by non-homologous recombination. Strategies for performing such experiments - from the design of guide RNA to the use of different transformation technologies - are evaluated. Furthermore, we sum up recent developments regarding the use of nuclease-deficient Cas9/12 proteins, as DNA-binding moieties for targeting different kinds of enzyme activities to specific sites within the genome. Progress in base deamination, transcriptional induction and transcriptional repression, as well as in imaging in plants, is also discussed. As different Cas9/12 enzymes are at hand, the simultaneous application of various enzyme activities, to multiple genomic sites, is now in reach to redirect plant metabolism in a multifunctional manner and pave the way for a new level of plant synthetic biology.
Collapse
Affiliation(s)
- Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland OT Gatersleben, Germany
| | - Janine Pietralla
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Goetz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland OT Gatersleben, Germany
| | - Michael Pacher
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
236
|
Abstract
Genome-editing tools provide advanced biotechnological techniques that enable the precise and efficient targeted modification of an organism's genome. Genome-editing systems have been utilized in a wide variety of plant species to characterize gene functions and improve agricultural traits. We describe the current applications of genome editing in plants, focusing on its potential for crop improvement in terms of adaptation, resilience, and end-use. In addition, we review novel breakthroughs that are extending the potential of genome-edited crops and the possibilities of their commercialization. Future prospects for integrating this revolutionary technology with conventional and new-age crop breeding strategies are also discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Karen Massel
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Ian D Godwin
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Caixia Gao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
237
|
Zhang Y, Massel K, Godwin ID, Gao C. Applications and potential of genome editing in crop improvement. Genome Biol 2018. [PMID: 30501614 DOI: 10.1186/s13059-018-1586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Genome-editing tools provide advanced biotechnological techniques that enable the precise and efficient targeted modification of an organism's genome. Genome-editing systems have been utilized in a wide variety of plant species to characterize gene functions and improve agricultural traits. We describe the current applications of genome editing in plants, focusing on its potential for crop improvement in terms of adaptation, resilience, and end-use. In addition, we review novel breakthroughs that are extending the potential of genome-edited crops and the possibilities of their commercialization. Future prospects for integrating this revolutionary technology with conventional and new-age crop breeding strategies are also discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Karen Massel
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Ian D Godwin
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, QLD, 4072, Australia
| | - Caixia Gao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
238
|
Zhu Y, Huang Z. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Natl Sci Rev 2018; 6:438-451. [PMID: 34691893 PMCID: PMC8291651 DOI: 10.1093/nsr/nwy150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and accompanying CRISPR-associated (Cas) proteins provide RNA-guided adaptive immunity for prokaryotes to defend themselves against viruses. The CRISPR-Cas systems have attracted much attention in recent years for their power in aiding the development of genome editing tools. Based on the composition of the CRISPR RNA-effector complex, the CRISPR-Cas systems can be divided into two classes and six types. In this review, we summarize recent advances in the structural biology of the CRISPR-Cas-mediated genome editing tools, which helps us to understand the mechanism of how the guide RNAs assemble with diverse Cas proteins to cleave target nucleic acids.
Collapse
Affiliation(s)
- Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
239
|
Tang Y, Fu Y. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell Biosci 2018; 8:59. [PMID: 30459943 PMCID: PMC6233275 DOI: 10.1186/s13578-018-0255-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
Artificial nuclease-dependent DNA cleavage systems (zinc-finger nuclease, ZFN; transcription activator like effectors, TALENs) and exogenous nucleic acid defense systems (CRISPR/Cas) have been used in the new era for genome modification. The most widely used toolbox for genome editing, modulation and detection contains Types II, V and VI of CRISPR/Cas Class 2 systems, categorized and characterized by Cas9, Cas12a and Cas13 respectively. In this review, we (1) elaborate on the definition, classification, structures of CRISPR/Cas Class 2 systems; (2) advance our understanding of new molecular mechanisms and recent progress in their applications, especially beyond genome-editing applications; (3) provide the insights on the specificity, efficiency and versatility of each tool; (4) elaborate the enhancement on specificity and efficiency of the CRISPR/Cas toolbox. The expanding and concerted usage of the CRISPR/Cas tools is making them more powerful in genome editing and other biotechnology applications.
Collapse
Affiliation(s)
- Yuyi Tang
- MicroAnaly (Shanghai) Gene Technologies Co., Ltd, Shanghai, China
| | - Yan Fu
- MicroAnaly (Shanghai) Gene Technologies Co., Ltd, Shanghai, China
- Anhui MicroAnaly Gene Technologies Co., Ltd, Chaohu, Anhui China
- National Gene Research Center, Chaohu, Anhui China
| |
Collapse
|
240
|
Zhou M, Hu Z, Qiu L, Zhou T, Feng M, Hu Q, Zeng B, Li Z, Sun Q, Wu Y, Liu X, Wu L, Liang D. Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Hum Gene Ther 2018; 29:1252-1263. [PMID: 29598153 DOI: 10.1089/hum.2017.255] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a kind of neuromuscular disease characterized by progressive motor neuron loss in the spinal cord. It is caused by mutations in the survival motor neuron 1 (SMN1) gene. SMN1 has a paralogous gene, survival motor neuron 2 (SMN2), in humans that is present in almost all SMA patients. The generation and genetic correction of SMA patient-specific induced pluripotent stem cells (iPSCs) is a viable, autologous therapeutic strategy for the disease. Here, c-Myc-free and non-integrating iPSCs were generated from the urine cells of an SMA patient using an episomal iPSC reprogramming vector, and a unique crRNA was designed that does not have similar sequences (≤3 mismatches) anywhere in the human reference genome. In situ gene conversion of the SMN2 gene to an SMN1-like gene in SMA-iPSCs was achieved using CRISPR/Cpf1 and single-stranded oligodeoxynucleotide with a high efficiency of 4/36. Seamlessly gene-converted iPSC lines contained no exogenous sequences and retained a normal karyotype. Significantly, the SMN expression and gems localization were rescued in the gene-converted iPSCs and their derived motor neurons. This is the first report of an efficient gene conversion mediated by Cpf1 homology-directed repair in human cells and may provide a universal gene therapeutic approach for most SMA patients.
Collapse
Affiliation(s)
- Miaojin Zhou
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Zhiqing Hu
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Liyan Qiu
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Tao Zhou
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Mai Feng
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Qian Hu
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Baitao Zeng
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Zhuo Li
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Qianru Sun
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Yong Wu
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Xionghao Liu
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| | - Lingqian Wu
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
- 2 Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Desheng Liang
- 1 Center for Medical Genetics, School of Life Sciences, Central South University , Hunan, China
| |
Collapse
|
241
|
Fernandez JP, Vejnar CE, Giraldez AJ, Rouet R, Moreno-Mateos MA. Optimized CRISPR-Cpf1 system for genome editing in zebrafish. Methods 2018; 150:11-18. [PMID: 29964176 PMCID: PMC7098853 DOI: 10.1016/j.ymeth.2018.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022] Open
Abstract
The impact of the CRISPR-Cas biotechnological systems has recently broadened the genome editing toolbox available to different model organisms further with the addition of new efficient RNA-guided endonucleases. We have recently optimized CRISPR-Cpf1 (renamed Cas12a) system in zebrafish. We showed that (i) in the absence of Cpf1 protein, crRNAs are unstable and degraded in vivo, and CRISPR-Cpf1 RNP complexes efficiently mutagenize the zebrafish genome; and (ii) temperature modulates Cpf1 activity especially affecting AsCpf1, which experiences a reduced performance below 37 °C. Here, we describe a step-by-step protocol on how to easily design and generate crRNAs in vitro, purify recombinant Cpf1 proteins, and assemble ribonucleoprotein complexes to carry out efficient mutagenesis in zebrafish in a constitutive and temperature-controlled manner. Finally, we explain how to induce Cpf1-mediated homology-directed repair using single-stranded DNA oligonucleotides. In summary, this protocol includes the steps to efficiently modify the zebrafish genome and other ectothermic organisms using the CRISPR-Cpf1 system.
Collapse
Affiliation(s)
- Juan P Fernandez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
242
|
Wang D, Ma D, Han J, Kong L, Li LY, Xi Z. CRISPR RNA Array-Guided Multisite Cleavage for Gene Disruption by Cas9 and Cpf1. Chembiochem 2018; 19:2195-2205. [PMID: 30088313 DOI: 10.1002/cbic.201800241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/07/2018] [Indexed: 12/19/2022]
Abstract
To achieve multisite-targeting-based DNA cleavage simultaneously, we designed two kinds of CRISPR RNA arrays by fusing four single guide RNAs (sgRNAs for Cas9 or crRNAs for Cpf1) with uncleavable RNA linkers (CRISPRay). The CRISPRay could operate on four adjacent target sites to cleave target DNA in a collaborative manner. Two CRISPR RNA arrays demonstrated robust inactivation of the firefly luciferase gene in living cells. In vitro DNA cleavage and DNA sequencing also verified that sgRNA arrays directed SpCas9 nuclease to cut target DNA at four cleavage sites simultaneously whereas crRNA-array-guided FnCpf1 nuclease showed target-activated, nonspecific DNase activity on both target DNA and nontarget DNA at random sites. Through optimization of the ratio of nuclease and CRIPSR RNAs, CRISPRay should further enhance gene interference in cells. This work presents a simple approach through which to improve multisite-directed gene disruption by fusing four guide RNAs (sgRNAs or crRNAs) into a CRISPR RNA string.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Dejun Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Jingxin Han
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Linghao Kong
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Zhen Xi
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| |
Collapse
|
243
|
Yamamoto T, Kashojiya S, Kamimura S, Kameyama T, Ariizumi T, Ezura H, Miura K. Application and development of genome editing technologies to the Solanaceae plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:37-46. [PMID: 29523384 DOI: 10.1016/j.plaphy.2018.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 05/22/2023]
Abstract
Genome editing technology using artificial nucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regulatory interspaced short palindromic repeats (CRISPR)-Cas9, can mutagenize the target sites of genes of interest. This technology has been successfully applied in several crops, including the Solanaceae plants, such as tomato, potato, tobacco, and petunia. Among the three nucleases, CRISPR-Cas9 is the best for breeding, crop improvement, and the functional analysis of genes of interest, because of its simplicity and high efficiency. Although the technology is useful for reverse genetics, its use in plants is limited due to a lack of regeneration protocols and sequence information. In this review, the present status of genome editing technology in Solanaceae plants is described, and techniques that may improve genome editing technologies are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Yamamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Sachiko Kashojiya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Saori Kamimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takato Kameyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| |
Collapse
|
244
|
Wu H, Liu Q, Shi H, Xie J, Zhang Q, Ouyang Z, Li N, Yang Y, Liu Z, Zhao Y, Lai C, Ruan D, Peng J, Ge W, Chen F, Fan N, Jin Q, Liang Y, Lan T, Yang X, Wang X, Lei Z, Doevendans PA, Sluijter JPG, Wang K, Li X, Lai L. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci 2018; 75:3593-3607. [PMID: 29637228 PMCID: PMC11105780 DOI: 10.1007/s00018-018-2810-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022]
Abstract
CRISPR/Cpf1 features a number of properties that are distinct from CRISPR/Cas9 and provides an excellent alternative to Cas9 for genome editing. To date, genome engineering by CRISPR/Cpf1 has been reported only in human cells and mouse embryos of mammalian systems and its efficiency is ultimately lower than that of Cas9 proteins from Streptococcus pyogenes. The application of CRISPR/Cpf1 for targeted mutagenesis in other animal models has not been successfully verified. In this study, we designed and optimized a guide RNA (gRNA) transcription system by inserting a transfer RNA precursor (pre-tRNA) sequence downstream of the gRNA for Cpf1, protecting gRNA from immediate digestion by 3'-to-5' exonucleases. Using this new gRNAtRNA system, genome editing, including indels, large fragment deletion and precise point mutation, was induced in mammalian systems, showing significantly higher efficiency than the original Cpf1-gRNA system. With this system, gene-modified rabbits and pigs were generated by embryo injection or somatic cell nuclear transfer (SCNT) with an efficiency comparable to that of the Cas9 gRNA system. These results demonstrated that this refined gRNAtRNA system can boost the targeting capability of CRISPR/Cpf1 toolkits.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Animals, Newborn
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Cas Systems/genetics
- Cells, Cultured
- Cloning, Molecular/methods
- Cloning, Organism/methods
- Embryo, Mammalian
- Endonucleases/genetics
- Endonucleases/metabolism
- Female
- Fetus
- Gene Editing/methods
- Genome/genetics
- HEK293 Cells
- HeLa Cells
- Humans
- Male
- Mammals/embryology
- Mammals/genetics
- Mutagenesis
- Nuclear Transfer Techniques
- Pregnancy
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Transfer/genetics
- Rabbits
- Swine
- Swine, Miniature
Collapse
Affiliation(s)
- Han Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qishuai Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hui Shi
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jingke Xie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nan Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yi Yang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chengdan Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Degong Ruan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiangyun Peng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Weikai Ge
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fangbing Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nana Fan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qin Jin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ting Lan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoyu Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhiyong Lei
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Netherlands Heart Institute, 3584CX, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Netherlands Heart Institute, 3584CX, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
- Netherlands Heart Institute, 3584CX, Utrecht, The Netherlands
| | - Kepin Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Xiaoping Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
245
|
Li S, Li J, Zhang J, Du W, Fu J, Sutar S, Zhao Y, Xia L. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4715-4721. [PMID: 29955893 PMCID: PMC6137971 DOI: 10.1093/jxb/ery245] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 05/17/2023]
Abstract
The recently developed CRISPR (clustered regularly interspaced short palindromic repeats)/Cpf1 system expands the range of genome editing and is emerging as an alternative powerful tool for both plant functional genomics and crop improvement. Cpf1-CRISPR RNA (crRNA) produces double strand DNA breaks (DSBs) with long 5'-protruding ends, which may facilitate the pairing and insertion of repair templates through homology-directed repair (HDR) for targeted gene replacement and introduction of the desired DNA elements at specific gene loci for crop improvement. However, the potential mechanism underlying HDR of DSBs generated by Cpf1-crRNA remains to be investigated, and the inherent low efficiency of HDR and poor availability of exogenous donor DNA as repair templates strongly impede the use of HDR for precise genome editing in crop plants. Here, we provide evidence of synthesis-dependent repair of Cpf1-induced DSBs, which enables us precisely to replace the wild-type ALS gene with the intended mutant version that carries two discrete point mutations conferring herbicide resistance to rice plants. Our observation that the donor repair template (DRT) with only the left homologous arm is sufficient for precise targeted allele replacement offers a better understanding of the mechanism underlying HDR in plants, and greatly simplifies the design of DRTs for precision genome editing in crop improvement.
Collapse
Affiliation(s)
- Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jiahui Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wenming Du
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jindong Fu
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Suhas Sutar
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Correspondence: or
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Correspondence: or
| |
Collapse
|
246
|
Langner T, Kamoun S, Belhaj K. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:479-512. [PMID: 29975607 DOI: 10.1146/annurev-phyto-080417-050158] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome editing by sequence-specific nucleases (SSNs) has revolutionized biology by enabling targeted modifications of genomes. Although routine plant genome editing emerged only a few years ago, we are already witnessing the first applications to improve disease resistance. In particular, CRISPR-Cas9 has democratized the use of genome editing in plants thanks to the ease and robustness of this method. Here, we review the recent developments in plant genome editing and its application to enhancing disease resistance against plant pathogens. In the future, bioedited disease resistant crops will become a standard tool in plant breeding.
Collapse
Affiliation(s)
- Thorsten Langner
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
247
|
Soyars CL, Peterson BA, Burr CA, Nimchuk ZL. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes. PLANT & CELL PHYSIOLOGY 2018; 59:1608-1620. [PMID: 29912402 DOI: 10.1093/pcp/pcy079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/11/2018] [Indexed: 05/22/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system is a genome editing technology transforming the field of plant biology by virtue of the system's efficiency and specificity. The system has quickly evolved for many diverse applications including multiplex gene mutation, gene replacement and transcriptional control. As CRISPR/Cas9 is increasingly applied to plants, it is becoming clear that each component of the system can be modified to improve editing results. This review aims to highlight common considerations and options when conducting CRISPR/Cas9 experiments.
Collapse
Affiliation(s)
- Cara L Soyars
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC, USA
| | - Brenda A Peterson
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC, USA
| | - Christian A Burr
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC, USA
| | - Zachary L Nimchuk
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC, USA
| |
Collapse
|
248
|
Pouvreau B, Vanhercke T, Singh S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:3-12. [PMID: 29907306 DOI: 10.1016/j.plantsci.2018.03.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 05/21/2023]
Abstract
Genetic improvement of crops started since the dawn of agriculture and has continuously evolved in parallel with emerging technological innovations. The use of genome engineering in crop improvement has already revolutionised modern agriculture in less than thirty years. Plant metabolic engineering is still at a development stage and faces several challenges, in particular with the time necessary to develop plant based solutions to bio-industrial demands. However the recent success of several metabolic engineering approaches applied to major crops are encouraging and the emerging field of plant synthetic biology offers new opportunities. Some pioneering studies have demonstrated that synthetic genetic circuits or orthogonal metabolic pathways can be introduced into plants to achieve a desired function. The combination of metabolic engineering and synthetic biology is expected to significantly accelerate crop improvement. A defining aspect of both fields is the design/build/test/learn cycle, or the use of iterative rounds of testing modifications to refine hypotheses and develop best solutions. Several technological and technical improvements are now available to make a better use of each design, build, test, and learn components of the cycle. All these advances should facilitate the rapid development of a wide variety of bio-products for a world in need of sustainable solutions.
Collapse
Affiliation(s)
- Benjamin Pouvreau
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia.
| | - Thomas Vanhercke
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Surinder Singh
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
249
|
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges. 3 Biotech 2018; 8:336. [PMID: 30073121 PMCID: PMC6056351 DOI: 10.1007/s13205-018-1355-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of cis/trans elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
Collapse
Affiliation(s)
- Supriya B. Aglawe
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Kalyani M. Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Satendra K. Mangrauthia
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - M. Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|
250
|
Aglawe SB, Barbadikar KM, Mangrauthia SK, Madhav MS. New breeding technique "genome editing" for crop improvement: applications, potentials and challenges. 3 Biotech 2018. [PMID: 30073121 DOI: 10.1007/s13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of cis/trans elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
Collapse
Affiliation(s)
- Supriya B Aglawe
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Kalyani M Barbadikar
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - Satendra K Mangrauthia
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| | - M Sheshu Madhav
- Biotechnology Section, ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, 500030 India
| |
Collapse
|