201
|
Watanabe H, Nishino H, Nishikawa M, Mizunami M, Yokohari F. Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana. J Comp Neurol 2010; 518:3907-30. [PMID: 20737592 DOI: 10.1002/cne.22452] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glomeruli are structural and functional units in the primary olfactory center in vertebrates and insects. In the cockroach Periplaneta americana, axons of different types of sensory neurons housed in sensilla on antennae form dorsal and ventral antennal nerves and then project to a number of glomeruli. In this study, we identified all antennal lobe (AL) glomeruli based on detailed innervation patterns of sensory tracts in addition to the shape, size, and locations in the cockroach. The number of glomeruli is approximately 205, and no sex-specific difference is observed. Anterograde dye injections into the antennal nerves revealed that axons supplying the AL are divided into 10 sensory tracts (T1-T10). Each of T1-T3 innervates small, oval glomeruli in the anteroventral region of the AL, with sensory afferents invading each glomerulus from multiple directions, whereas each of T4-T10 innervates large glomeruli with various shapes in the posterodorsal region, with a bundle of sensory afferents invading each glomerulus from one direction. The topographic branching patterns of all these tracts are conserved among individuals. Sensory afferents in a sub-tract of T10 had axon terminals in the dorsal margin of the AL and the protocerebrum, where they form numerous small glomerular structures. Sensory nerve branching pattern should reflect developmental processes to determine spatial arrangement of glomeruli, and thus the complete map of glomeruli based on sensory nerve branching pattern should provide a basis for studying the functional significance of spatial arrangement of glomeruli and its developmental basis.
Collapse
|
202
|
Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat Neurosci 2010; 13:1404-12. [PMID: 20953197 DOI: 10.1038/nn.2673] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/24/2010] [Indexed: 02/08/2023]
Abstract
Sensory inputs frequently converge on the brain in a spatially organized manner, often with overlapping inputs to multiple target neurons. Whether the responses of target neurons with common inputs become decorrelated depends on the contribution of local circuit interactions. We addressed this issue in the olfactory system using newly generated transgenic mice that express channelrhodopsin-2 in all of the olfactory sensory neurons. By selectively stimulating individual glomeruli with light, we identified mitral/tufted cells that receive common input (sister cells). Sister cells had highly correlated responses to odors, as measured by average spike rates, but their spike timing in relation to respiration was differentially altered. In contrast, non-sister cells correlated poorly on both of these measures. We suggest that sister mitral/tufted cells carry two different channels of information: average activity representing shared glomerular input and phase-specific information that refines odor representations and is substantially independent for sister cells.
Collapse
|
203
|
Noack J, Richter K, Laube G, Haghgoo HA, Veh RW, Engelmann M. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory. Neurobiol Learn Mem 2010; 94:568-75. [PMID: 20888419 DOI: 10.1016/j.nlm.2010.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature.
Collapse
Affiliation(s)
- Julia Noack
- Zentrum für zelluläre Bildgebung und Innovative Krankheitsmodelle, Otto-von-Guericke-Universität, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
204
|
Migliore M, Hines ML, McTavish TS, Shepherd GM. Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb. Front Integr Neurosci 2010; 4:122. [PMID: 21258619 PMCID: PMC3024007 DOI: 10.3389/fnint.2010.00122] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/01/2010] [Indexed: 12/22/2022] Open
Abstract
Odors are encoded in spatio-temporal patterns within the olfactory bulb, but the mechanisms of odor recognition and discrimination are poorly understood. It is reasonable to postulate that the olfactory code is sculpted by lateral and feedforward inhibition mediated by granule cells onto the mitral cells. Recent viral tracing and physiological studies revealed patterns of distributed granule cell synaptic clusters that provided additional clues to the possible mechanisms at the network level. The emerging properties and functional roles of these patterns, however, are unknown. Here, using a realistic model of 5 mitral and 100 granule cells we show how their synaptic network can dynamically self-organize and interact through an activity-dependent dendrodendritic mechanism. The results suggest that the patterns of distributed mitral–granule cell connectivity may represent the most recent history of odor inputs, and may contribute to the basic processes underlying mixture perception and odor qualities. The model predicts how and why the dynamical interactions between the active mitral cells through the granule cell synaptic clusters can account for a variety of puzzling behavioral results on odor mixtures and on the emergence of synthetic or analytic perception.
Collapse
Affiliation(s)
- Michele Migliore
- Institute of Biophysics, National Research Council Palermo, Italy
| | | | | | | |
Collapse
|
205
|
Frank ME, Goyert HF, Hettinger TP. Time and intensity factors in identification of components of odor mixtures. Chem Senses 2010; 35:777-87. [PMID: 20720093 DOI: 10.1093/chemse/bjq078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Identification of odors of compounds introduced into changeable olfactory environments is the essence of olfactory coding, which focuses perception on the latest stimulus with the greatest salience. Effects of stimulus intensity and adapting time on mixture component identification after adapting with one component were each studied in 10 human subjects. Odors of 1 and 5 mM vanillin (vanilla) and phenethyl alcohol (rose) were identified, with adapting time varied by sniffing naturally once or twice, or sniffing 5 times, once every 2 s. Odors of water-adapted single compounds were identified nearly perfectly (94%), self-adapted to 51% but did not cross-adapt (94%), showing the 2 compounds had quickly adapting independent odors. Identifications of the vanilla and rose odors in water-adapted mixtures were reduced to 59% and 79%, respectively. Following single-component adaptation, the average 33% identification of odors of adapted (ambient) mixture components contrasted with the greater average 86% identification of new unadapted (extra) mixture components. Identifications were lower for 1 than 5 mM components when concentrations were not matched, and ambient component identifications were lower after 10-s adaptation than after 1 or 2 sniffs. Rapid selective adaptation and mixture component suppression manipulate effective intensity to promote emergence of characteristic odor qualities in dynamic natural settings.
Collapse
Affiliation(s)
- Marion E Frank
- Department of Oral Health and Diagnostic Sciences, Division of Periodontology, Center for Chemosensory Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1715, USA.
| | | | | |
Collapse
|
206
|
Global features of neural activity in the olfactory system form a parallel code that predicts olfactory behavior and perception. J Neurosci 2010; 30:9017-26. [PMID: 20610736 DOI: 10.1523/jneurosci.0398-10.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Odor identity is coded in spatiotemporal patterns of neural activity in the olfactory bulb. Here we asked whether meaningful olfactory information could also be read from the global olfactory neural population response. We applied standard statistical methods of dimensionality-reduction to neural activity from 12 previously published studies using seven different species. Four studies reported olfactory receptor activity, seven reported glomerulus activity, and one reported the activity of projection-neurons. We found two linear axes of neural population activity that accounted for more than half of the variance in neural response across species. The first axis was correlated with the total sum of odor-induced neural activity, and reflected the behavior of approach or withdrawal in animals, and odorant pleasantness in humans. The second and orthogonal axis reflected odorant toxicity across species. We conclude that in parallel with spatiotemporal pattern coding, the olfactory system can use simple global computations to read vital olfactory information from the neural population response.
Collapse
|
207
|
Stokes CCA, Isaacson JS. From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 2010; 67:452-65. [PMID: 20696382 PMCID: PMC2922014 DOI: 10.1016/j.neuron.2010.06.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Diverse inhibitory pathways shape cortical information processing; however, the relevant interneurons recruited by sensory stimuli and how they impact principal cells are unclear. Here we show that two major interneuron circuits govern dynamic inhibition in space and time within the olfactory cortex. Dendritic-targeting layer 1 interneurons receive strong input from the olfactory bulb and govern early-onset feedforward inhibition. However, this circuit is only transiently engaged during bursts of olfactory bulb input. In contrast, somatic-targeting layer 3 interneurons, recruited exclusively by recurrent excitation from pyramidal cells, produce late-onset feedback inhibition. Our results reveal two complementary interneuron circuits enforcing widespread inhibition, which shifts from the apical dendrites to somata of pyramidal cells during bursts of sensory input.
Collapse
Affiliation(s)
- Caleb C A Stokes
- Center for Neural Circuits and Behavior, Department of Neuroscience, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
208
|
Abstract
The stimulus complexity of naturally occurring odours presents unique challenges for central nervous systems that are aiming to internalize the external olfactory landscape. One mechanism by which the brain encodes perceptual representations of behaviourally relevant smells is through the synthesis of different olfactory inputs into a unified perceptual experience--an odour object. Recent evidence indicates that the identification, categorization and discrimination of olfactory stimuli rely on the formation and modulation of odour objects in the piriform cortex. Convergent findings from human and rodent models suggest that distributed piriform ensemble patterns of olfactory qualities and categories are crucial for maintaining the perceptual constancy of ecologically inconstant stimuli.
Collapse
|
209
|
Evolving olfactory systems on the fly. Trends Genet 2010; 26:307-16. [PMID: 20537755 DOI: 10.1016/j.tig.2010.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/20/2022]
|
210
|
Mechanisms of pattern decorrelation by recurrent neuronal circuits. Nat Neurosci 2010; 13:1003-10. [PMID: 20581841 DOI: 10.1038/nn.2591] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/20/2010] [Indexed: 11/08/2022]
|
211
|
Affiliation(s)
- Barry W Ache
- Center for Smell and Taste, University of Florida, Gainesville, 32610, USA.
| |
Collapse
|
212
|
Isaacson JS. Odor representations in mammalian cortical circuits. Curr Opin Neurobiol 2010; 20:328-31. [PMID: 20207132 PMCID: PMC2896888 DOI: 10.1016/j.conb.2010.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
Abstract
Spatial and temporal activity patterns of olfactory bulb projection neurons underlie the initial representations of odors in the brain. However, olfactory perception ultimately requires the integration of olfactory bulb output in higher cortical brain regions. Recent studies reveal that odor representations are sparse and highly distributed in the rodent primary olfactory (piriform) cortex. Furthermore, odor-evoked inhibition is far more widespread and broadly tuned than excitation in piriform cortex pyramidal cells. Other recent studies highlight how olfactory sensory inputs are integrated within pyramidal cell dendrites and that feedback projections from piriform cortex to olfactory bulb interneurons are a source of synaptic plasticity.
Collapse
Affiliation(s)
- Jeffry S Isaacson
- Center for Neural Circuits and Behavior, Dept. of Neuroscience, University of California, San Diego, La Jolla, 92093, USA.
| |
Collapse
|
213
|
Meeks JP, Arnson HA, Holy TE. Representation and transformation of sensory information in the mouse accessory olfactory system. Nat Neurosci 2010; 13:723-30. [PMID: 20453853 PMCID: PMC2930753 DOI: 10.1038/nn.2546] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 04/08/2010] [Indexed: 11/20/2022]
Abstract
In mice, nonvolatile social cues are detected and analyzed by the accessory olfactory system (AOS). Here we provide a first view of information processing in the AOS with respect to individual chemical cues. 12 sulfated steroids, recently discovered mouse AOS ligands, caused widespread activity among vomeronasal sensory neurons (VSNs), yet VSN responses clustered into a small number of repeated functional patterns or processing streams. Downstream neurons in the accessory olfactory bulb (AOB) responded to these ligands with enhanced signal/noise compared to VSNs. Although the dendritic connectivity of AOB mitral cells suggests the capacity for broad integration, most sulfated steroid responses were well-modeled by linear excitatory drive from just one VSN processing stream. However, a substantial minority demonstrated multi-stream integration. Most VSN excitation patterns were also observed in the AOB, but excitation by estradiol sulfate processing streams was rare, suggesting AOB circuit organization is specific to the biological relevance of sensed cues.
Collapse
Affiliation(s)
- Julian P Meeks
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
214
|
Johnson BA, Ong J, Leon M. Glomerular activity patterns evoked by natural odor objects in the rat olfactory bulb are related to patterns evoked by major odorant components. J Comp Neurol 2010; 518:1542-55. [PMID: 20187145 DOI: 10.1002/cne.22289] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To determine how responses evoked by natural odorant mixtures compare to responses evoked by individual odorant chemicals, we mapped 2-deoxyglucose uptake during exposures to vapors arising from a variety of odor objects that may be important to rodents in the wild. We studied 21 distinct natural odor stimuli ranging from possible food sources such as fruits, vegetables, and meats to environmental odor objects such as grass, herbs, and tree leaves. The natural odor objects evoked robust and surprisingly focal patterns of 2-deoxyglucose uptake involving clusters of neighboring glomeruli, thereby resembling patterns evoked by pure chemicals. Overall, the patterns were significantly related to patterns evoked by monomolecular odorant components that had been studied previously. Object patterns also were significantly related to the molecular features present in the mixture components. Despite these overall relationships, there were individual examples of object patterns that were simpler than might have been predicted given the multiplicity of components present in the vapors. In these cases, the object patterns lacked certain responses evoked by their major odorant mixture components. These data suggest the possibility of mixture response interactions and provide a foundation for understanding the neural coding of natural odor stimuli.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697-4550, USA
| | | | | |
Collapse
|
215
|
Abstract
In many regions of the visual system, the activity of a neuron is normalized by the activity of other neurons in the same region. Here we show that a similar normalization occurs during olfactory processing in the Drosophila antennal lobe. We exploit the orderly anatomy of this circuit to independently manipulate feedforward and lateral input to second-order projection neurons (PNs). Lateral inhibition increases the level of feedforward input needed to drive PNs to saturation, and this normalization scales with the total activity of the olfactory receptor neuron (ORN) population. Increasing total ORN activity also makes PN responses more transient. Strikingly, a model with just two variables (feedforward and total ORN activity) accurately predicts PN odor responses. Finally, we show that discrimination by a linear decoder is facilitated by two complementary transformations: the saturating transformation intrinsic to each processing channel boosts weak signals, while normalization helps equalize responses to different stimuli.
Collapse
Affiliation(s)
- Shawn R Olsen
- Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA
| | | | | |
Collapse
|
216
|
Matsumoto H, Kobayakawa K, Kobayakawa R, Tashiro T, Mori K, Sakano H, Mori K. Spatial arrangement of glomerular molecular-feature clusters in the odorant-receptor class domains of the mouse olfactory bulb. J Neurophysiol 2010; 103:3490-500. [PMID: 20393058 DOI: 10.1152/jn.00035.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glomerular layer of the mammalian olfactory bulb (OB) forms odorant receptor (OR) maps. Each OR map is structurally and functionally compartmentalized into zones (dorsal and ventral) and domains (DI and DII in the dorsal zone). We previously reported that glomeruli with similar molecular receptive range properties formed molecular feature clusters at stereotypical positions in the rat OB. However, the spatial arrangement of the molecular feature clusters with regard to the OR zones and domains has not been systematically examined. In this study, we optically mapped the molecular feature clusters of glomeruli within the domain and zone framework of the OB using domain-visible class II GFP transgenic mice. In all mice examined, fatty acid-responsive cluster A was located in the lateral part of domain DI, whereas clusters B, C, and D were arranged in an anterior to posterior order within domain DII. We also found a new cluster of glomeruli that respond to fox odor trimethyl-thiazoline and its structural analogs (heterocyclic odorants that contain sulfur and nitrogen atoms within the ring). This cluster (named cluster J) was located posterior to cluster D within the DII domain. These results show that molecular feature clusters correspond to specific subsets of glomeruli in selective domains of the OR map, suggesting that the molecular feature clusters represent specific ORs that have similar molecular receptive range properties and functional roles.
Collapse
Affiliation(s)
- Hideyuki Matsumoto
- Department of Physiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
217
|
Hanganu-Opatz IL. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. ACTA ACUST UNITED AC 2010; 64:160-76. [PMID: 20381527 DOI: 10.1016/j.brainresrev.2010.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/22/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Sensory systems processing information from the environment rely on precisely formed and refined neuronal networks that build maps of sensory receptor epithelia at different subcortical and cortical levels. These sensory maps share similar principles of function and emerge according to developmental processes common in visual, somatosensory and auditory systems. Whereas molecular cues set the coarse organization of cortico-subcortical topography, its refinement is known to succeed under the influence of experience-dependent electrical activity during critical periods. However, coordinated patterns of activity synchronize the cortico-subcortical networks long before the meaningful impact of environmental inputs on sensory maps. Recent studies elucidated the cellular and network mechanisms underlying the generation of these early patterns of activity and highlighted their similarities across species. Moreover, the experience-independent activity appears to act as a functional template for the maturation of sensory networks and cortico-subcortical maps. A major goal for future research will be to analyze how this early activity interacts with the molecular cues and to determine whether it is permissive or rather supporting for the establishment of sensory topography.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Falkenried 94, Hamburg, Germany.
| |
Collapse
|
218
|
Tan J, Savigner A, Ma M, Luo M. Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron 2010; 65:912-26. [PMID: 20346765 PMCID: PMC2901914 DOI: 10.1016/j.neuron.2010.02.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
In mammals, olfactory sensory neurons (OSNs) expressing a specific odorant receptor (OR) gene project with precise stereotypy onto mitral/tufted (M/T) cells in the main olfactory bulb (MOB). It remains challenging to understand how incoming olfactory signals are transformed into outputs of M/T cells. By recording from OSNs expressing mouse I7 receptor and their postsynaptic neurons in the bulb, we found that I7 OSNs and their corresponding M/T cells exhibit similarly selective tuning profiles at low concentrations. Increasing the concentration significantly reduces response selectivity for both OSNs and M/T cells, although the tuning curve of M/T cells remains comparatively narrow. By contrast, interneurons in the MOB are broadly tuned, and blocking GABAergic neurotransmission reduces selectivity of M/T cells at high odorant concentrations. Our results indicate that olfactory information carried by an OR is channeled to its corresponding M/T cells and support the role of lateral inhibition via interneurons in sharpening the tuning of M/T cells.
Collapse
Affiliation(s)
- Jie Tan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Agnès Savigner
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
219
|
Bennett MK, Kulaga HM, Reed RR. Odor-evoked gene regulation and visualization in olfactory receptor neurons. Mol Cell Neurosci 2010; 43:353-62. [PMID: 20080187 DOI: 10.1016/j.mcn.2010.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 11/19/2022] Open
Abstract
Odorant-evoked activity contributes to olfactory epithelium organization and axon targeting. We examined the consequences on gene expression of a genetic disruption of the channel responsible for olfactory transduction. Genes encoding calcium-binding EF-hand motifs, were among the most highly regulated transcripts consistent with the central role of Ca(2+) influx in neuronal depolarization. Several genes encoding integral membrane proteins are also highly regulated. One gene, Lrrc3b, was regulated more than 10-fold by odorant activity. Changes in expression occur within thirty minutes and are maintained for several hours. In genetic disruptions of Lrrc3b, a Lrrc3b-promoter-driven reporter adopts the activity-regulated expression of the endogenous gene. Individual olfactory glomeruli have a wide spectrum of activity levels that can be modulated by altering odor exposure. The Lrrc3b reporter mouse permits direct assessment of activity in identified glomeruli. In stable odorant environments, activity-regulated proteins provide a characteristic signature that is correlated with the olfactory receptor they express.
Collapse
Affiliation(s)
- Mosi K Bennett
- Center for Sensory Biology, Johns Hopkins School of Medicine, 430 Rangos Building, 855 N Wolfe St, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
220
|
Cleland TA. Early transformations in odor representation. Trends Neurosci 2010; 33:130-9. [PMID: 20060600 DOI: 10.1016/j.tins.2009.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/28/2009] [Accepted: 12/18/2009] [Indexed: 01/18/2023]
Abstract
Sensory representations are repeatedly transformed by neural computations that determine which of their attributes can be effectively processed at each stage. Whereas some early computations are common across multiple sensory systems, they can utilize dissimilar underlying mechanisms depending on the properties of each modality. Recent work in the olfactory bulb has substantially clarified the neural algorithms underlying early odor processing. The high-dimensionality of odor space strictly limits the utility of topographical representations, forcing similarity-dependent computations such as decorrelation to employ unusual neural algorithms. The distinct architectures and properties of the two prominent computational layers in the olfactory bulb suggest that the bulb is directly comparable not only to the retina but also to primary visual cortex.
Collapse
Affiliation(s)
- Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
221
|
Migliore M, Hines ML, McTavish TS, Shepherd GM. Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb. Front Integr Neurosci 2010. [PMID: 21258619 DOI: 10.3389/fnint.2010.00005/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Odors are encoded in spatio-temporal patterns within the olfactory bulb, but the mechanisms of odor recognition and discrimination are poorly understood. It is reasonable to postulate that the olfactory code is sculpted by lateral and feedforward inhibition mediated by granule cells onto the mitral cells. Recent viral tracing and physiological studies revealed patterns of distributed granule cell synaptic clusters that provided additional clues to the possible mechanisms at the network level. The emerging properties and functional roles of these patterns, however, are unknown. Here, using a realistic model of 5 mitral and 100 granule cells we show how their synaptic network can dynamically self-organize and interact through an activity-dependent dendrodendritic mechanism. The results suggest that the patterns of distributed mitral-granule cell connectivity may represent the most recent history of odor inputs, and may contribute to the basic processes underlying mixture perception and odor qualities. The model predicts how and why the dynamical interactions between the active mitral cells through the granule cell synaptic clusters can account for a variety of puzzling behavioral results on odor mixtures and on the emergence of synthetic or analytic perception.
Collapse
Affiliation(s)
- Michele Migliore
- Institute of Biophysics, National Research Council Palermo, Italy
| | | | | | | |
Collapse
|
222
|
Adam Y, Mizrahi A. Circuit formation and maintenance--perspectives from the mammalian olfactory bulb. Curr Opin Neurobiol 2009; 20:134-40. [PMID: 20005696 DOI: 10.1016/j.conb.2009.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/01/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
Abstract
The rodent olfactory bulb (OB) is becoming a model system for studying how neuronal circuits develop and maintain. The OB has typical components of a sensory circuit such as ordered sensory inputs, diverse populations of interneurons, substantial neuromodulatory innervation, and projection neurons that transfer information to higher brain centers. Additionally, the OB is unique because its sensory afferents and a subset of its interneurons are continuously replaced throughout adulthood. Here, we review some recent findings on the development and maintenance of the mammalian OB circuitry. We review some of the known developmental strategies of the major OB components and discuss the ways in which the OB circuitry preserves stability in the face of ongoing changes.
Collapse
Affiliation(s)
- Yoav Adam
- Department of Neurobiology, Inst. for Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | |
Collapse
|
223
|
de Castro F. Wiring Olfaction: The Cellular and Molecular Mechanisms that Guide the Development of Synaptic Connections from the Nose to the Cortex. Front Neurosci 2009; 3:52. [PMID: 20582279 PMCID: PMC2858608 DOI: 10.3389/neuro.22.004.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022] Open
Abstract
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.
Collapse
Affiliation(s)
- Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
224
|
Yamagata N, Schmuker M, Szyszka P, Mizunami M, Menzel R. Differential odor processing in two olfactory pathways in the honeybee. Front Syst Neurosci 2009; 3:16. [PMID: 20198105 PMCID: PMC2802323 DOI: 10.3389/neuro.06.016.2009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/17/2009] [Indexed: 11/13/2022] Open
Abstract
An important component in understanding central olfactory processing and coding in the insect brain relates to the characterization of the functional divisions between morphologically distinct types of projection neurons (PN). Using calcium imaging, we investigated how the identity, concentration and mixtures of odors are represented in axon terminals (boutons) of two types of PNs – lPN and mPN. In lPN boutons we found less concentration dependence, narrow tuning profiles at a high concentration, which may be optimized for fine, concentration-invariant odor discrimination. In mPN boutons, however, we found clear rising concentration dependence, broader tuning profiles at a high concentration, which may be optimized for concentration coding. In addition, we found more mixture suppression in lPNs than in mPNs, indicating lPNs better adaptation for synthetic mixture processing. These results suggest a functional division of odor processing in both PN types.
Collapse
Affiliation(s)
- Nobuhiro Yamagata
- Institut für Neurobiologie, Freie Universität Berlin Berlin, Germany
| | | | | | | | | |
Collapse
|
225
|
Control of on/off glomerular signaling by a local GABAergic microcircuit in the olfactory bulb. J Neurosci 2009; 29:13454-64. [PMID: 19864558 DOI: 10.1523/jneurosci.2368-09.2009] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Odors are coded at the input level of the olfactory bulb by a spatial map of activated glomeruli, reflecting different odorant receptors (ORs) stimulated in the nose. Here we examined the function of local synaptic processing within glomeruli in transforming these input patterns into an output for the bulb, using patch-clamp recordings and calcium imaging in rat bulb slices. Two types of transformations were observed at glomeruli, the first of which produced a bimodal, "on/off" glomerular signal that varied probabilistically depending on olfactory receptor neuron (ORN) input levels. The bimodal response behavior was seen in glomerular synaptic responses, as well as in action potential ("spike") firing, wherein all mitral cells affiliated with a glomerulus either engaged in prolonged spike bursts or did not spike at all. In addition, evidence was obtained that GABAergic periglomerular (PG) cells that surround a glomerulus can prevent activation of a glomerulus through inhibitory inputs targeted onto excitatory external tufted cells. The path of PG cell activation appeared to be confined to one glomerulus, such that ORNs at one glomerulus initiated inhibition of the same glomerulus. The observed glomerular "self-inhibition" provides a mechanism of filtering odor signals that would be an alternative to commonly proposed mechanisms of lateral inhibition between OR-specific glomeruli. In this case, selective suppression of weak odor signals could be achieved based on the difference in the input resistance of PG cells versus excitatory neurons at a glomerulus.
Collapse
|
226
|
Salazar I, Quinteiro PS. The risk of extrapolation in neuroanatomy: the case of the Mammalian vomeronasal system. Front Neuroanat 2009; 3:22. [PMID: 19949452 PMCID: PMC2782799 DOI: 10.3389/neuro.05.022.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/05/2009] [Indexed: 12/13/2022] Open
Abstract
The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS), and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.
Collapse
Affiliation(s)
- Ignacio Salazar
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| | - Pablo Sánchez Quinteiro
- Unit of Anatomy and Embryology, Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de CompostelaLugo, Spain
| |
Collapse
|
227
|
Abstract
Postdevelopmental neurogenesis occurs in the olfactory bulb (OB), to which new interneurons are continuously recruited. However, only a subset of the adult-generated interneurons survives, as many undergo programmed cell death. As part of homeostatic processes, the removal of new neurons is required alongside the addition of new ones, to ensure a stable neuron number. In addition to a critical role in tissue maintenance, it is still unclear whether this neuronal elimination affects the functioning of adult circuits. Using focal drug delivery restricted to the OB, we investigated the significance of programmed cell death in the adult OB circuits. Cell death was effectively blocked by the broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD). The zVAD effect differed with newborn interneuron location, either in the superficial (periglomerular cells) or in the deep (granule cells) OB layers. Furthermore, whereas sensory experience potentiated the effect of zVAD on the survival of new granule cells, it had no additional effect on the survival of new periglomerular cells. Thus, distinct mechanisms control the survival/elimination decision of newborn interneuron subtypes. However, zVAD had no effect on the olfactory sensory neurons projecting to the bulb. Remarkably, psychophysical analyzes revealed that a normal rate of new neuron elimination was essential for optimal odorant exploration and discrimination. This study highlights the importance of cell elimination for adjusting olfactory performance. We conclude that adult-generated OB interneurons are continually turned over, rather than simply added, and the precise balance between new and mature interneurons, set through active selection/elimination processes, is essential for optimizing olfaction.
Collapse
|
228
|
Abstract
Olfactory perception is initiated by the recognition of odorants by a large repertoire of receptors in the sensory epithelium. A dispersed pattern of neural activity in the nose is converted into a segregated map in the olfactory bulb. How is this representation transformed at the next processing center for olfactory information, the piriform cortex? Optical imaging of odorant responses in the cortex reveals that the piriform discards spatial segregation as well as chemotopy and returns to a highly distributed organization in which different odorants activate unique but dispersed ensembles of cortical neurons. Neurons in piriform cortex, responsive to a given odorant, are not only distributed without apparent spatial preference but exhibit discontinuous receptive fields. This representation suggests organizational principles that differ from those in neocortical sensory areas where cells responsive to similar stimulus features are clustered and response properties vary smoothly across the cortex.
Collapse
Affiliation(s)
- Dan D Stettler
- Department of Neuroscience and Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
229
|
Abstract
Remarkable advances in our understanding of olfactory perception have been made in recent years, including the discovery of new mechanisms of olfactory signaling and new principles of olfactory processing. Here, we discuss the insight that has been gained into the receptors, cells, and circuits that underlie the sense of smell.
Collapse
Affiliation(s)
| | | | - John R. Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven 06520, USA
| |
Collapse
|
230
|
Linster C, Cleland TA. Glomerular microcircuits in the olfactory bulb. Neural Netw 2009; 22:1169-73. [PMID: 19646847 PMCID: PMC2771633 DOI: 10.1016/j.neunet.2009.07.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/18/2009] [Accepted: 07/14/2009] [Indexed: 11/16/2022]
Abstract
Microcircuits in the olfactory bulb have long received particular attention from both experimentalists and theoreticians, due in part to an abundance of dendrodendritic interactions and other specialized modifications to the canonical cortical circuit architecture. Recent experimental and theoretical results have elucidated the mechanisms and function of these circuits and their presumed contributions to olfactory stimulus processing and odor perception. We here review the architecture and functionality of a prominent olfactory bulb microcircuit: the glomerular network.
Collapse
Affiliation(s)
- Christiane Linster
- Computational Physiology Laboratory, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
231
|
Restrepo D, Doucette W, Whitesell JD, McTavish TS, Salcedo E. From the top down: flexible reading of a fragmented odor map. Trends Neurosci 2009; 32:525-31. [PMID: 19758713 DOI: 10.1016/j.tins.2009.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 11/29/2022]
Abstract
Animals that depend on smell for communication and survival extract multiple pieces of information from a single complex odor. Mice can collect information on sex, genotype, health and dietary status from urine scent marks, a stimulus made up of hundreds of molecules. This ability is all the more remarkable considering that natural odors are encountered against varying olfactory backgrounds; the olfactory system must therefore provide some mechanism for extracting the most relevant information. Here we discuss recent data indicating that the readout of olfactory input by mitral cells in the olfactory bulb can be modified by behavioral context. We speculate that the olfactory cortex plays a key role in tuning the readout of olfactory information from the olfactory bulb.
Collapse
Affiliation(s)
- Diego Restrepo
- Department of Cell and Developmental Biology and Neuroscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
232
|
Pattern orthogonalization via channel decorrelation by adaptive networks. J Comput Neurosci 2009; 28:29-45. [PMID: 19714457 DOI: 10.1007/s10827-009-0183-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/28/2009] [Accepted: 08/11/2009] [Indexed: 01/20/2023]
Abstract
The early processing of sensory information by neuronal circuits often includes a reshaping of activity patterns that may facilitate further processing in the brain. For instance, in the olfactory system the activity patterns that related odors evoke at the input of the olfactory bulb can be highly similar. Nevertheless, the corresponding activity patterns of the mitral cells, which represent the output of the olfactory bulb, can differ significantly from each other due to strong inhibition by granule cells and peri-glomerular cells. Motivated by these results we study simple adaptive inhibitory networks that aim to separate or even orthogonalize activity patterns representing similar stimuli. Since the animal experiences the different stimuli at different times it is difficult for the network to learn the connectivity based on their similarity; biologically it is more plausible that learning is driven by simultaneous correlations between the input channels. We investigate the connection between pattern orthogonalization and channel decorrelation and demonstrate that networks can achieve effective pattern orthogonalization through channel decorrelation if they simultaneously equalize their output levels. In feedforward networks biophysically plausible learning mechanisms fail, however, for even moderately similar input patterns. Recurrent networks do not have that limitation; they can orthogonalize the representations of highly similar input patterns. Even when they are optimized for linear neuronal dynamics they perform very well when the dynamics are nonlinear. These results provide insights into fundamental features of simplified inhibitory networks that may be relevant for pattern orthogonalization by neuronal circuits in general.
Collapse
|
233
|
Egger V, Stroh O. Calcium buffering in rodent olfactory bulb granule cells and mitral cells. J Physiol 2009; 587:4467-79. [PMID: 19635818 DOI: 10.1113/jphysiol.2009.174540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the mammalian olfactory bulb, axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between mitral cells (MCs) via reciprocal dendrodendritic synapses. Calcium signals in the GC dendrites and reciprocal spines appear to decay unusually slowly, hence GC calcium handling might contribute to the known asynchronous release at this synapse. By recording fluorescence transients of different Ca(2+)-sensitive dyes at variable concentrations evoked by backpropagating action potentials (APs) and saturating AP trains we extrapolated Ca(2+) dynamics to conditions of zero added buffer for juvenile rat GC apical dendrites and spines and MC lateral dendrites. Resting [Ca(2+)] was at approximately 50 nM in both GC dendrites and spines. The average endogenous GC buffer capacities (kappa(E)) were within a range of 80-90 in the dendrites and 110-140 in the spines. The extrusion rate (gamma) was estimated as 570 s(-1) for dendrites and 870 s(-1) for spines and the decay time constant as approximately 200 ms for both. Single-current-evoked APs resulted in a [Ca(2+)] elevation of approximately 250 nM. Calcium handling in juvenile and adult mouse GCs appeared mostly similar. In MC lateral dendrites, we found AP-mediated [Ca(2+)] elevations of approximately 130 nM with a similar decay to that in GC dendrites, while kappa(E) and gamma were roughly 4-fold higher. In conclusion, the slow GC Ca(2+) dynamics are due mostly to sluggish Ca(2+) extrusion. Under physiological conditions this slow removal may well contribute to delayed release and also feed into other Ca(2+)-dependent mechanisms that foster asynchronous output from the reciprocal spine.
Collapse
Affiliation(s)
- Veronica Egger
- Institut für Physiologie der Ludwig-Maximilians-Universität, 80336 München, Germany.
| | | |
Collapse
|
234
|
Abstract
Lateral inhibition between near-neighbor neurons has long been thought to be important for narrowing the receptive fields of neurons in many sensory systems. A new study by Poo and Isaacson in this issue of Neuron examining olfactory processing finds that "global" inhibition within the primary olfactory cortex might accomplish a similar end.
Collapse
Affiliation(s)
- N E Schoppa
- Department of Physiology and Biophysics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
235
|
Zou DJ, Chesler A, Firestein S. How the olfactory bulb got its glomeruli: a just so story? Nat Rev Neurosci 2009; 10:611-8. [PMID: 19584894 DOI: 10.1038/nrn2666] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The nearly 2,000 glomeruli that cover the surface of the olfactory bulb are so distinctive that they were noted specifically in the earliest of Cajal's catalogues. They have variously been considered a functional unit, an organizational unit and a crucial component of the olfactory coding circuit. Despite their central position in olfactory processing, the development of the glomeruli has only recently begun to be investigated with new and powerful genetic tools. Some unexpected findings have been made that may lead to a new understanding of the processes involved in wiring sensory regions of the brain. It may no longer be sufficient to simply invoke genes, spikes and their interplay in the construction of brain circuits. The story of 'how the olfactory bulb got its glomeruli' may be more complex, and more revealing, than has been supposed.
Collapse
Affiliation(s)
- Dong-Jing Zou
- Department of Biological Sciences, Columbia University, 923 Fairchild Center M.C. 2438 New York, NY 10027, USA
| | | | | |
Collapse
|
236
|
Howard JD, Plailly J, Grueschow M, Haynes JD, Gottfried JA. Odor quality coding and categorization in human posterior piriform cortex. Nat Neurosci 2009; 12:932-8. [PMID: 19483688 PMCID: PMC2834563 DOI: 10.1038/nn.2324] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/27/2009] [Indexed: 11/09/2022]
Abstract
Efficient recognition of odorous objects universally shapes animal behavior and is crucial for survival. To distinguish kin from nonkin, mate from nonmate and food from nonfood, organisms must be able to create meaningful perceptual representations of odor qualities and categories. It is currently unknown where and in what form the brain encodes information about odor quality. By combining functional magnetic resonance imaging (fMRI) with multivariate (pattern-based) techniques, we found that spatially distributed ensemble activity in human posterior piriform cortex (PPC) coincides with perceptual ratings of odor quality, such that odorants with more (or less) similar fMRI patterns were perceived as more (or less) alike. We did not observe these effects in anterior piriform cortex, amygdala or orbitofrontal cortex, indicating that ensemble coding of odor categorical perception is regionally specific for PPC. These findings substantiate theoretical models emphasizing the importance of distributed piriform templates for the perceptual reconstruction of odor object quality.
Collapse
Affiliation(s)
- James D Howard
- Cognitive Neurology & Alzheimer's Disease Center, Chicago, Illinois 60611, USA
| | - Jane Plailly
- Laboratoire de Neurosciences et Systèmes Sensoriels, Université Claude-Bernard Lyon, 69366 Lyon, France
| | - Marcus Grueschow
- Bernstein Center for Computational Neuroscience, Charité – Universitätsmedizin, 10115 Berlin, Germany
| | - John-Dylan Haynes
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Bernstein Center for Computational Neuroscience, Charité – Universitätsmedizin, 10115 Berlin, Germany
| | - Jay A Gottfried
- Cognitive Neurology & Alzheimer's Disease Center, Chicago, Illinois 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Psychology, Northwestern University Weinberg College of Arts and Sciences, Evanston, Illinois 60208, USA
| |
Collapse
|
237
|
Poo C, Isaacson JS. Odor representations in olfactory cortex: "sparse" coding, global inhibition, and oscillations. Neuron 2009; 62:850-61. [PMID: 19555653 PMCID: PMC2702531 DOI: 10.1016/j.neuron.2009.05.022] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/04/2009] [Accepted: 05/13/2009] [Indexed: 11/27/2022]
Abstract
The properties of cortical circuits underlying central representations of sensory stimuli are poorly understood. Here we use in vivo cell-attached and whole-cell voltage-clamp recordings to reveal how excitatory and inhibitory synaptic input govern odor representations in rat primary olfactory (piriform) cortex. We show that odors evoke spiking activity that is sparse across the cortical population. We find that unbalanced synaptic excitation and inhibition underlie sparse activity: inhibition is widespread and broadly tuned, while excitation is less common and odor-specific. "Global" inhibition can be explained by local interneurons that receive ubiquitous and nonselective odor-evoked excitation. In the temporal domain, while respiration imposes a slow rhythm to olfactory cortical responses, odors evoke fast (15-30 Hz) oscillations in synaptic activity. Oscillatory excitation precedes inhibition, generating brief time windows for precise and temporally sparse spike output. Together, our results reveal that global inhibition and oscillations are major synaptic mechanisms shaping odor representations in olfactory cortex.
Collapse
Affiliation(s)
- Cindy Poo
- Department of Neuroscience, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
238
|
Kopel H, Meshulam M, Mizrahi A. Three-dimensional distribution patterns of newborn neurons in the adult olfactory bulb. J Neurosci Methods 2009; 182:189-94. [PMID: 19524609 DOI: 10.1016/j.jneumeth.2009.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 11/24/2022]
Abstract
We present a new method to study the three-dimensional (3D) spatial distribution patterns of newborn neurons in the mouse olfactory bulb (OB). Newborn neurons were transduced, in vivo, using lentiviruses to express green fluorescent protein (GFP). Two-photon (2P) microscopy was used to image thick OB slices (approximately 250 microm) at single cell resolution. Image-stacks were captured semi-automatically, and concatenated offline, to create larger image-stacks containing the positional information of all the labeled neurons. Serial reconstruction of the large image-stacks resulted in a three-dimensional virtual model, containing the exact position of all the labeled newborn neurons within large volumes of the OB. The feasibility of this method was demonstrated by analyzing the cell distributions of thousands of GFP labeled newborn neurons. This analysis identified 3D clusters in which the newborn cells' density is significantly higher than the mean density. We show that our method reveals information that is overlooked when sampling only a small fraction of the tissue in 2D. This method may serve as a valuable tool, not only for analyzing newborn neurons in the OB, but also for other neuronal types as well as for other brain regions.
Collapse
Affiliation(s)
- Hagit Kopel
- Department of Neurobiology, Inst. for Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | |
Collapse
|
239
|
Reisert J, Restrepo D. Molecular tuning of odorant receptors and its implication for odor signal processing. Chem Senses 2009; 34:535-45. [PMID: 19525317 DOI: 10.1093/chemse/bjp028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of the odorant receptor (OR) family by Buck and Axel in 1991 provided a quantum jump in our understanding of olfactory function. However, the study of the responsiveness of ORs to odor ligands was challenging due to the difficulties in deorphanizing the receptors. In this manuscript, we review recent findings of OR responsiveness that have come about through improved OR deorphanization methods, site-directed mutagenesis, structural modeling studies, and studies of OR responses in situ in olfactory sensory neurons. Although there has been a major leap in our understanding of receptor-ligand interactions and how these contribute to the input to the olfactory system, an improvement of our understanding of receptor structure and dynamics and interactions with intracellular and extracellular proteins is necessary.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
240
|
Fletcher ML, Masurkar AV, Xing J, Imamura F, Xiong W, Nagayama S, Mutoh H, Greer CA, Knöpfel T, Chen WR. Optical imaging of postsynaptic odor representation in the glomerular layer of the mouse olfactory bulb. J Neurophysiol 2009; 102:817-30. [PMID: 19474178 DOI: 10.1152/jn.00020.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olfactory glomeruli are the loci where the first odor-representation map emerges. The glomerular layer comprises exquisite local synaptic circuits for the processing of olfactory coding patterns immediately after their emergence. To understand how an odor map is transferred from afferent terminals to postsynaptic dendrites, it is essential to directly monitor the odor-evoked glomerular postsynaptic activity patterns. Here we report the use of a transgenic mouse expressing a Ca(2+)-sensitive green fluorescence protein (GCaMP2) under a Kv3.1 potassium-channel promoter. Immunostaining revealed that GCaMP2 was specifically expressed in mitral and tufted cells and a subpopulation of juxtaglomerular cells but not in olfactory nerve terminals. Both in vitro and in vivo imaging combined with glutamate receptor pharmacology confirmed that odor maps reported by GCaMP2 were of a postsynaptic origin. These mice thus provided an unprecedented opportunity to analyze the spatial activity pattern reflecting purely postsynaptic olfactory codes. The odor-evoked GCaMP2 signal had both focal and diffuse spatial components. The focalized hot spots corresponded to individually activated glomeruli. In GCaMP2-reported postsynaptic odor maps, different odorants activated distinct but overlapping sets of glomeruli. Increasing odor concentration increased both individual glomerular response amplitude and the total number of activated glomeruli. Furthermore, the GCaMP2 response displayed a fast time course that enabled us to analyze the temporal dynamics of odor maps over consecutive sniff cycles. In summary, with cell-specific targeting of a genetically encoded Ca(2+) indicator, we have successfully isolated and characterized an intermediate level of odor representation between olfactory nerve input and principal mitral/tufted cell output.
Collapse
Affiliation(s)
- Max L Fletcher
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Petzold GC, Hagiwara A, Murthy VN. Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat Neurosci 2009; 12:784-91. [PMID: 19430472 DOI: 10.1038/nn.2335] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/02/2009] [Indexed: 11/09/2022]
Abstract
Centrifugal serotonergic fibers innervate the olfactory bulb, but the importance of these projections for olfactory processing is unclear. We examined serotonergic modulation of sensory input to olfactory glomeruli using mice that express synaptopHluorin in olfactory receptor neurons (ORN). Odor-evoked synaptic input to glomeruli was attenuated by increased serotonin signaling through serotonin 2C (5-HT2C) receptors and amplified by decreased serotonergic activity. Intravital multiphoton calcium imaging revealed that 5-HT2C receptor activation amplified odor-evoked activity in a subset of juxtaglomerular cells and attenuated glutamate release from ORN terminals via GABA(B) receptors. Endogenous serotonin released by electrical stimulation of the dorsal raphe nucleus attenuated odor-evoked responses without detectable bias in glomerular position or odor identity. Weaker glomerular responses, however, were less sensitive to raphe stimulation than strong responses. Our data indicate that the serotonergic system regulates odor inputs in the olfactory bulb and suggest that behavioral states may alter odor processing at the earliest stages.
Collapse
Affiliation(s)
- Gabor C Petzold
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
242
|
|