201
|
VGluT1+ neuronal glutamatergic signaling regulates postnatal developmental maturation of cortical protoplasmic astroglia. J Neurosci 2014; 34:10950-62. [PMID: 25122895 DOI: 10.1523/jneurosci.1167-14.2014] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional maturation of astroglia is characterized by the development of a unique, ramified morphology and the induction of important functional proteins, such as glutamate transporter GLT1. Although pathways regulating the early fate specification of astroglia have been characterized, mechanisms regulating postnatal maturation of astroglia remain essentially unknown. Here we used a new in vivo approach to illustrate and quantitatively analyze developmental arborization of astroglial processes. Our analysis found a particularly high increase in the number of VGluT1(+) neuronal glutamatergic synapses that are ensheathed by processes from individual developing astroglia from postnatal day (P) 14 to P26, when astroglia undergo dramatic postnatal maturation. Subsequent silencing of VGluT1(+) synaptic activity in VGluT1 KO mice significantly reduces astroglial domain growth and the induction of GLT1 in the cortex, but has no effect on astroglia in the hypothalamus, where non-VGluT1(+) synaptic signaling predominates. In particular, electron microscopy analysis showed that the loss of VGluT1(+) synaptic signaling significantly decreases perisynaptic enshealthing of astroglial processes on synapses. To further determine whether synaptically released glutamate mediates VGluT1(+) synaptic signaling, we pharmacologically inhibited and genetically ablated metabotropic glutamate receptors (mGluRs, especially mGluR5) in developing cortical astroglia and found that developmental arborization of astroglial processes and expression of functional proteins, such as GLT1, is significantly decreased. In summary, our genetic analysis provides new in vivo evidence that VGluT1(+) glutamatergic signaling, mediated by the astroglial mGluR5 receptor, regulates the functional maturation of cortical astroglia during development. These results elucidate a new mechanism for regulating the developmental formation of functional neuron-glia synaptic units.
Collapse
|
202
|
Valenza M, Marullo M, Di Paolo E, Cesana E, Zuccato C, Biella G, Cattaneo E. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease. Cell Death Differ 2014; 22:690-702. [PMID: 25301063 DOI: 10.1038/cdd.2014.162] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/13/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023] Open
Abstract
In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte-neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD.
Collapse
Affiliation(s)
- M Valenza
- Department of Biosciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy
| | - M Marullo
- Department of Biosciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy
| | - E Di Paolo
- Department of Biosciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy
| | - E Cesana
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - C Zuccato
- Department of Biosciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy
| | - G Biella
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - E Cattaneo
- Department of Biosciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
203
|
Li H, Chang Q. Regulation and function of stimulus-induced phosphorylation of MeCP2. FRONTIERS IN BIOLOGY 2014; 9:367-375. [PMID: 25568644 PMCID: PMC4283599 DOI: 10.1007/s11515-014-1330-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA methylation-dependent epigenetic regulation plays important roles in the development and function of the mammalian nervous system. MeCP2 is a key player in recognizing methylated DNA and interpreting the epigenetic information encoded in different DNA methylation patterns. Mutations in the MECP2 gene cause Rett syndrome, a devastating neurological disease that shares many features with autism. One interesting aspect of MeCP2 function is that it can be phosphorylated in response to diverse stimuli. Insights into the regulation and function of MeCP2 phosphorylation will help improve our understanding of how MeCP2 integrates environmental stimuli in neuronal nuclei to generate adaptive responses and may eventually lead to treatments for patients.
Collapse
Affiliation(s)
- Hongda Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI 53705,USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI 53705,USA
- Department of Neurology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
204
|
Xie T, Zhang J, Yuan X, Yang J, Ding W, Huang X, Wu Y. Is X-linked methyl-CpG binding protein 2 a new target for the treatment of Parkinson's disease. Neural Regen Res 2014; 8:1948-57. [PMID: 25206503 PMCID: PMC4145902 DOI: 10.3969/j.issn.1673-5374.2013.21.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/15/2013] [Indexed: 01/20/2023] Open
Abstract
X-linked methyl-CpG binding protein 2 mutations can induce symptoms similar to those of Parkinson's disease and dopamine metabolism disorders, but the specific role of X-linked methyl-CpG binding protein 2 in the pathogenesis of Parkinson's disease remains unknown. In the present study, we used 6-hydroxydopamine-induced human neuroblastoma cell (SH-SY5Y cells) injury as a cell model of Parkinson's disease. The 6-hydroxydopamine (50 μmol/L) treatment decreased protein levels for both X-linked methyl-CpG binding protein 2 and tyrosine hydroxylase in these cells, and led to cell death. However, overexpression of X-linked methyl-CpG binding protein 2 was able to ameliorate the effects of 6-hydroxydopamine, it reduced 6-hydroxydopamine-induced apoptosis, and increased the levels of tyrosine hydroxylase in SH-SY5Y cells. These findings suggesting that X-linked methyl-CpG binding protein 2 may be a potential therapeutic target for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Teng Xie
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jie Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xianhou Yuan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jing Yang
- Department of Pharmacology, Wuhan University School of Medicine, Wuhan 430071, Hubei Province, China
| | - Wei Ding
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xin Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yong Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
205
|
Chapleau CA, Lane J, Pozzo-Miller L, Percy AK. Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. ACTA ACUST UNITED AC 2014; 8:358-69. [PMID: 24050745 DOI: 10.2174/15748847113086660069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders are a large family of conditions of genetic or environmental origin that are characterized by deficiencies in cognitive and behavioral functions. The therapeutic management of individuals with these disorders is typically complex and is limited to the treatment of specific symptoms that characterize each disorder. The neurodevelopmental disorder Rett syndrome (RTT) is the leading cause of severe intellectual disability in females. Mutations in the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MECP2), located on the X chromosome, have been confirmed in more than 95% of individuals meeting diagnostic criteria for classical RTT. RTT is characterized by an uneventful early infancy followed by stagnation and regression of growth, motor, language, and social skills later in development. This review will discuss the genetics, pathology, and symptoms that distinguish RTT from other neurodevelopmental disorders associated with intellectual disability. Because great progress has been made in the basic and clinical science of RTT, the goal of this review is to provide a thorough assessment of current pharmacotherapeutic options to treat the symptoms associated with this disorder. Furthermore, we will highlight recent discoveries made with novel pharmacological interventions in experimental preclinical phases, and which have reversed pathological phenotypes in mouse and cell culture models of RTT and may result in clinical trials.
Collapse
Affiliation(s)
- Christopher A Chapleau
- Department of Pediatrics, CIRC-320, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0021, USA.
| | | | | | | |
Collapse
|
206
|
Microglia as a critical player in both developmental and late-life CNS pathologies. Acta Neuropathol 2014; 128:333-45. [PMID: 25056803 PMCID: PMC4131160 DOI: 10.1007/s00401-014-1321-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/17/2014] [Accepted: 07/01/2014] [Indexed: 02/04/2023]
Abstract
Microglia, the tissue-resident macrophages of the brain, are attracting increasing attention as key players in brain homeostasis from development through aging. Recent works have highlighted new and unexpected roles for these once-enigmatic cells in both healthy central nervous system function and in diverse pathologies long thought to be primarily the result of neuronal malfunction. In this review, we have chosen to focus on Rett syndrome, which features early neurodevelopmental pathology, and Alzheimer’s disease, a disorder associated predominantly with aging. Interestingly, receptor-mediated microglial phagocytosis has emerged as a key function in both developmental and late-life brain pathologies. In a mouse model of Rett syndrome, bone marrow transplant and CNS engraftment of microglia-like cells were associated with surprising improvements in pathology—these benefits were abrogated by block of phagocytic function. In Alzheimer’s disease, large-scale genome-wide association studies have been brought to bear as a method of identifying previously unknown susceptibility genes, which highlight microglial receptors as promising novel targets for therapeutic modulation. Multi-photon in vivo microscopy has provided a method of directly visualizing the effects of manipulation of these target genes. Here, we review the latest findings and concepts emerging from the rapidly growing body of literature exemplified for Rett syndrome and late-onset, sporadic Alzheimer’s disease.
Collapse
|
207
|
Cartier N, Lewis CA, Zhang R, Rossi FMV. The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 2014; 128:363-80. [PMID: 25107477 PMCID: PMC4131134 DOI: 10.1007/s00401-014-1330-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023]
Abstract
Microglia have long been the focus of much attention due to their strong proliferative response (microgliosis) to essentially any kind of damage to the CNS. More recently, we reached the realization that these cells play specific roles in determining progression and outcomes of essentially all CNS disease. Thus, microglia has ceased to be viewed as an accessory to underlying pathologies and has now taken center stage as a therapeutic target. Here, we review how our understanding of microglia's involvement in promoting or limiting the pathogenesis of diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, multiple sclerosis, X-linked adrenoleukodystrophy (X-ALD) and lysosomal storage diseases (LSD) has changed over time. While strategies to suppress the deleterious and promote the virtuous functions of microglia will undoubtedly be forthcoming, replacement of these cells has already proven its usefulness in a clinical setting. Over the past few years, we have reached the realization that microglia have a developmental origin that is distinct from that of bone marrow-derived myelomonocytic cells. Nevertheless, microglia can be replaced, in specific situations, by the progeny of hematopoietic stem cells (HSCs), pointing to a strategy to engineer the CNS environment through the transplantation of modified HSCs. Thus, microglia replacement has been successfully exploited to deliver therapeutics to the CNS in human diseases such as X-ALD and LSD. With this outlook in mind, we will discuss the evidence existing so far for microglial involvement in the pathogenesis and the therapy of specific CNS disease.
Collapse
Affiliation(s)
- Nathalie Cartier
- INSERM U986, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France
- MIRCen CEA Fontenay aux Roses, 92265 Fontenay-aux-Roses, France
- University Paris-Sud, 91400 Orsay, France
| | - Coral-Ann Lewis
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| | - Regan Zhang
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| | - Fabio M. V. Rossi
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| |
Collapse
|
208
|
Song C, Feodorova Y, Guy J, Peichl L, Jost KL, Kimura H, Cardoso MC, Bird A, Leonhardt H, Joffe B, Solovei I. DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics Chromatin 2014; 7:17. [PMID: 25170345 PMCID: PMC4148084 DOI: 10.1186/1756-8935-7-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
Abstract
Background Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues. Results Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain, cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient male (Mecp2-/y) mice show no apparent defects in the morphology and development of the retina. The nuclear architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major histone modifications do not differ between Mecp2-/y and Mecp2wt mice. Surprisingly, the absence of MECP2 is not compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in Mecp2-/y mice. Conclusions MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia. MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell differentiation and sets the basis for future investigations in this direction.
Collapse
Affiliation(s)
- Congdi Song
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Yana Feodorova
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Leo Peichl
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt am Main 60438, Germany
| | - Katharina Laurence Jost
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, 565-0871 Suita, Osaka, Japan
| | - Maria Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Boris Joffe
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
209
|
Cheng TL, Qiu Z. MeCP2: multifaceted roles in gene regulation and neural development. Neurosci Bull 2014; 30:601-9. [PMID: 25082535 DOI: 10.1007/s12264-014-1452-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/22/2014] [Indexed: 11/27/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a classic methylated-DNA-binding protein, dysfunctions of which lead to various neurodevelopmental disorders such as Rett syndrome and autism spectrum disorder. Initially recognized as a transcriptional repressor, MeCP2 has been studied extensively and its functions have been expanded dramatically in the past two decades. Recently, it was found to be involved in gene regulation at the post-transcriptional level. MeCP2 represses nuclear microRNA processing by interacting directly with the Drosha/DGCR8 complex. In addition to its multifaceted functions, MeCP2 is remarkably modulated by posttranslational modifications such as phosphorylation, SUMOylation, and acetylation, providing more regulatory dimensions to its functions. The role of MeCP2 in the central nervous system has been studied extensively, from neurons to glia. Future investigations combining molecular, cellular, and physiological methods are necessary for defining the roles of MeCP2 in the brain and developing efficient treatments for MeCP2-related brain disorders.
Collapse
Affiliation(s)
- Tian-Lin Cheng
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China,
| | | |
Collapse
|
210
|
Chen C, Jiang P, Xue H, Peterson SE, Tran HT, McCann AE, Parast MM, Li S, Pleasure DE, Laurent LC, Loring JF, Liu Y, Deng W. Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat Commun 2014; 5:4430. [PMID: 25034944 PMCID: PMC4109022 DOI: 10.1038/ncomms5430] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
Down's syndrome (DS), caused by trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons, and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug.
Collapse
Affiliation(s)
- Chen Chen
- 1] Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817, USA [3] Department of Neurology, Institute of Neurology, Tianjin General Hospital, Tianjin Medical University, Tianjin 300070, China [4]
| | - Peng Jiang
- 1] Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817, USA [3]
| | - Haipeng Xue
- 1] Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA [2] Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA [3] Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92037, USA [4] Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Suzanne E Peterson
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ha T Tran
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Anna E McCann
- 1] Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Present address: Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Mana M Parast
- Department of Pathology, University of California, San Diego, La Jolla, California 92093, USA
| | - Shenglan Li
- 1] Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA [2] Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - David E Pleasure
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817, USA
| | - Louise C Laurent
- 1] Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92037, USA [2] Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeanne F Loring
- 1] Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92037, USA [2] Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ying Liu
- 1] Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA [2] Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA [3] Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92037, USA [4] Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Wenbin Deng
- 1] Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95817, USA [2] Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California 95817, USA
| |
Collapse
|
211
|
Damen D, Heumann R. MeCP2 phosphorylation in the brain: from transcription to behavior. Biol Chem 2014; 394:1595-605. [PMID: 23912219 DOI: 10.1515/hsz-2013-0193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2), a nuclear protein highly expressed in neurons, was identified because of its ability to bind methylated DNA. In association with the transcriptional corepressor proteins Sin3a and histone deacetylases, it represses gene transcription. However, it has since become clear that MeCP2 is a multifunctional protein involved not only in transcriptional silencing but also in transcriptional activation, chromatin remodeling, and RNA splicing. Especially, its involvement in the X-linked neurologic disorder Rett syndrome emphasizes the importance of MeCP2 for normal development and maturation of the central nervous system. A number of animal models with complete or partial lack of MeCP2 functions have been generated to correlate the clinical phenotype of Rett syndrome, and studies involving different mutations of MeCP2 have shown similar effects. Animal model studies have further demonstrated that even the loss of a specific phosphorylation site of MeCP2 (S80, S421, and S424) disturbs normal maturation of the mammalian brain. This review covers recent findings regarding MeCP2 functions and its regulation by posttranslational modification, particularly MeCP2 phosphorylation and its effects on mammalian brain maturation, learning, and plasticity.
Collapse
|
212
|
Abstract
Rett syndrome (RTT) has experienced remarkable progress over the past three decades since emerging as a disorder of worldwide proportions, particularly with discovery of the linkage of RTT to MECP2 mutations. The advances in clinical research and the increasing pace of basic science investigations have accelerated the pattern of discovery and understanding. Clinical trials are ongoing and others are planned. A review of these events and the prospects for continued success are highlighted below. The girls and women encountered today with RTT are, overall, in better general, neurologic, and behavioral health than those encountered earlier. This represents important progress worldwide from the concerted efforts of a broadly based and diverse clinical and basic research consortium as well as the efforts of parents, family, and friends.
Collapse
|
213
|
Sloan SA, Barres BA. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 2014; 27:75-81. [PMID: 24694749 DOI: 10.1016/j.conb.2014.03.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
The development of functional neural circuits relies upon the coordination of various cell types. In particular, astrocytes play a crucial role in orchestrating neural development by powerfully coordinating synapse formation and function, neuronal survival, and axon guidance. While astrocytes help to shape neural circuits in the developing brain, the mechanisms underlying their own development may play an equally crucial role in nervous system function. The onset of astrogenesis is a temporally regulated phenomenon that relies upon exogenously secreted cues and intrinsic chromatin changes. Defects in the mechanisms underlying astrogenesis or in astrocyte function during early development may contribute to the progression of a variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, United States.
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, United States
| |
Collapse
|
214
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
215
|
Olson CO, Zachariah RM, Ezeonwuka CD, Liyanage VRB, Rastegar M. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS One 2014; 9:e90645. [PMID: 24594659 PMCID: PMC3940938 DOI: 10.1371/journal.pone.0090645] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023] Open
Abstract
MeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized. Previously, we showed the role of MeCP2E1 in neuronal maturation and reported MeCP2E1 as the major protein isoform in the adult mouse brain, embryonic neurons and astrocytes. Recently, we showed that DNA methylation at the regulatory elements (REs) within the Mecp2 promoter and intron 1 impact the expression of Mecp2 isoforms in differentiating neural stem cells. This current study is aimed for a comparative analysis of temporal, regional and cell type-specific expression of MeCP2 isoforms in the developing and adult mouse brain. MeCP2E2 displayed a later expression onset than MeCP2E1 during mouse brain development. In the adult female and male brain hippocampus, both MeCP2 isoforms were detected in neurons, astrocytes and oligodendrocytes. Furthermore, MeCP2E1 expression was relatively uniform in different brain regions (olfactory bulb, striatum, cortex, hippocampus, thalamus, brainstem and cerebellum), whereas MeCP2E2 showed differential enrichment in these brain regions. Both MeCP2 isoforms showed relatively similar distribution in these brain regions, except for cerebellum. Lastly, a preferential correlation was observed between DNA methylation at specific CpG dinucleotides within the REs and Mecp2 isoform-specific expression in these brain regions. Taken together, we show that MeCP2 isoforms display differential expression patterns during brain development and in adult mouse brain regions. DNA methylation patterns at the Mecp2 REs may impact this differential expression of Mecp2/MeCP2 isoforms in brain regions. Our results significantly contribute towards characterizing the expression profiles of Mecp2/MeCP2 isoforms and thereby provide insights on the potential role of MeCP2 isoforms in the developing and adult brain.
Collapse
Affiliation(s)
- Carl O. Olson
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robby M. Zachariah
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chinelo D. Ezeonwuka
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vichithra R. B. Liyanage
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
216
|
Bedogni F, Rossi RL, Galli F, Cobolli Gigli C, Gandaglia A, Kilstrup-Nielsen C, Landsberger N. Rett syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. Neurosci Biobehav Rev 2014; 46 Pt 2:187-201. [PMID: 24594195 DOI: 10.1016/j.neubiorev.2014.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/25/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Rett syndrome (RTT) is a devastating genetic disorder that worldwide represents the most common genetic cause of severe intellectual disability in females. Most cases are caused by mutations in the X-linked MECP2 gene. Several recent studies have demonstrated that RTT mimicking animal models do not develop an irreversible condition and phenotypic rescue is possible. However, no cure for RTT has been identified so far, and patients are only given symptomatic and supportive treatments. The development of clinical applications imposes a more comprehensive knowledge of MeCP2 functional role(s) and their relevance for RTT pathobiology. Herein, we thoroughly survey the knowledge about MeCP2 structure and functions, highlighting the necessity of identifying more functional domains and the value of molecular genetics. Given that, in our opinion, RTT ultimately is generated by perturbations in gene transcription and so far no genes/pathways have been consistently linked to a dysfunctional MeCP2, we have used higher-level bioinformatic analyses to identify commonly deregulated mechanisms in MeCP2-defective samples. In this review we present our results and discuss the possible value of the utilized approach.
Collapse
Affiliation(s)
- Francesco Bedogni
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Riccardo L Rossi
- Fondazione Istituto Nazionale Genetica Molecolare, Milan 20122, Italy
| | - Francesco Galli
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Clementina Cobolli Gigli
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Anna Gandaglia
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Charlotte Kilstrup-Nielsen
- Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy; Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio 21052, Italy.
| |
Collapse
|
217
|
Zhang W, Peterson M, Beyer B, Frankel WN, Zhang ZW. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J Neurosci 2014; 34:2754-63. [PMID: 24523563 PMCID: PMC3921436 DOI: 10.1523/jneurosci.4900-12.2014] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/11/2014] [Accepted: 01/15/2014] [Indexed: 11/21/2022] Open
Abstract
Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability.
Collapse
Affiliation(s)
- Wen Zhang
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | |
Collapse
|
218
|
Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci 2014; 33:18764-74. [PMID: 24285883 DOI: 10.1523/jneurosci.2657-13.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the methyl-CpG binding protein 2 gene, Mecp2, affect primarily the brain and lead to a wide range of neuropsychiatric disorders, most commonly Rett syndrome (RTT). Although the neuropathology of RTT is well understood, the cellular and molecular mechanism(s), which lead to the disease initiation and progression, has yet to be elucidated. RTT was initially attributed only to neuronal dysfunction, but our recent studies and those of others show that RTT is not exclusively neuronal but rather also involves interactions between neurons and glia. Importantly, studies have shown that MeCP2-restored astrocytes and microglia are able to attenuate the disease progression in otherwise MeCP2-null mice. Here we show that another type of glia, oligodendrocytes, and their progenitors are also involved in manifestation of specific RTT symptoms. Mice that lost MeCP2 specifically in the oligodendrocyte lineage cells, although overall normal, were more active and developed severe hindlimb clasping phenotypes. Inversely, restoration of MeCP2 in oligodendrocyte lineage cells, in otherwise MeCP2-null mice, although only mildly prolonging their lifespan, significantly improved the locomotor deficits and hindlimb clasping phenotype, both in male and female mice, and fully restored the body weight in male mice. Finally, we found that the level of some myelin-related proteins was impaired in the MeCP2-null mice. Expression of MeCP2 in oligodendrocytes of these mice only partially restored their expression, suggesting that there is a non-cell-autonomous effect by other cell types in the brains on the expression of myelin-related proteins in oligodendrocytes.
Collapse
|
219
|
Abstract
The role of epigenetics in human disease has become an area of increased research interest. Collaborative efforts from scientists and clinicians have led to a better understanding of the molecular mechanisms by which epigenetic regulation is involved in the pathogenesis of many human diseases. Several neurological and non-neurological disorders are associated with mutations in genes that encode for epigenetic factors. One of the most studied proteins that impacts human disease and is associated with deregulation of epigenetic processes is Methyl CpG binding protein 2 (MeCP2). MeCP2 is an epigenetic regulator that modulates gene expression by translating epigenetic DNA methylation marks into appropriate cellular responses. In order to highlight the importance of epigenetics to development and disease, we will discuss how MeCP2 emerges as a key epigenetic player in human neurodevelopmental, neurological, and non-neurological disorders. We will review our current knowledge on MeCP2-related diseases, including Rett Syndrome, Angelman Syndrome, Fetal Alcohol Spectrum Disorder, Hirschsprung disease, and Cancer. Additionally, we will briefly discuss about the existing MeCP2 animal models that have been generated for a better understanding of how MeCP2 impacts certain human diseases.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Author to whom correspondence should be addressed; ; Tel.: +204-272-3108; Fax: +204-789-3900
| |
Collapse
|
220
|
MeCP2 is required for activity-dependent refinement of olfactory circuits. Mol Cell Neurosci 2014; 59:63-75. [PMID: 24472844 DOI: 10.1016/j.mcn.2014.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 01/06/2023] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a structural chromosomal protein involved in the regulation of gene expression. Alterations in the levels of MeCP2 have been related to neurodevelopmental disorders. Studies in mouse models of MeCP2 deficiency have demonstrated that this protein is important for neuronal maturation, neurite complexity, synaptogenesis, and synaptic plasticity. However, the mechanisms by which MeCP2 dysfunction leads to neurodevelopmental defects, and the role of activity, remain unclear, as most studies examine the adult nervous system, which may obfuscate the primary consequences of MeCP2 mutation. We hypothesize that MeCP2 plays a role during the formation and activity-driven maturation of neural circuits at early postnatal stages. To test this hypothesis, we use the olfactory system as a neurodevelopmental model. This system undergoes postnatal neurogenesis; axons from olfactory neurons form highly stereotyped projections to higher-order neurons, facilitating the detection of possible defects in the establishment of connectivity. In vivo olfactory stimulation paradigms were used to produce physiological synaptic activity in gene-targeted mice in which specific olfactory circuits are visualized. Our results reveal defective postnatal refinement of olfactory circuits in Mecp2 knock out (KO) mice after sensory (odorant) stimulation. This failure in refinement was associated with deficits in the normal responses to odorants, including brain-derived neurotrophic factor (BDNF) production, as well as changes in adhesion molecules known to regulate axonal convergence. The defective refinement observed in Mecp2 KO mice was prevented by daily treatment with ampakine beginning after the first postnatal week. These observations indicate that increasing synaptic activity at early postnatal stage might circumvent the detrimental effect of MeCP2 deficiency on circuitry maturation. The present results provide in vivo evidence in real time for the role of MeCP2 in activity-dependent maturation of olfactory circuitry, with implications for understanding the mechanism of MeCP2 mutations in the development of neural connectivity.
Collapse
|
221
|
Abstract
Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | |
Collapse
|
222
|
Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q, Ananiev GE, Mok JCC, Lin BR, Lu J, Chiao C, Cherney R, Li H, Zhang SC, Chang Q. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet 2014; 23:2968-80. [PMID: 24419315 DOI: 10.1093/hmg/ddu008] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The disease mechanism of Rett syndrome (RTT) is not well understood. Studies in RTT mouse models have suggested a non-cell-autonomous role for astrocytes in RTT pathogenesis. However, it is not clear whether this is also true for human RTT astrocytes. To establish an in vitro human RTT model, we previously generated isogenic induced pluripotent stem cell (iPSC) lines from several RTT patients carrying different disease-causing mutations. Here, we show that these RTT iPSC lines can be efficiently differentiated into astroglial progenitors and glial fibrillary acidic protein-expressing (GFAP(+)) astrocytes that maintain isogenic status, that mutant RTT astrocytes carrying three different RTT mutations and their conditioned media have adverse effects on the morphology and function of wild-type neurons and that the glial effect on neuronal morphology is independent of the intrinsic neuronal deficit in mutant neurons. Moreover, we show that both insulin-like growth factor 1 (IGF-1) and GPE (a peptide containing the first 3 amino acids of IGF-1) are able to partially rescue the neuronal deficits caused by mutant RTT astrocytes. Our findings confirm the critical glial contribution to RTT pathology, reveal potential cellular targets of IGF-1 therapy and further validate patient-specific iPSCs and their derivatives as valuable tools to study RTT disease mechanism.
Collapse
|
223
|
Guizzetti M, Zhang X, Goeke C, Gavin DP. Glia and neurodevelopment: focus on fetal alcohol spectrum disorders. Front Pediatr 2014; 2:123. [PMID: 25426477 PMCID: PMC4227495 DOI: 10.3389/fped.2014.00123] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/24/2014] [Indexed: 12/03/2022] Open
Abstract
During the last 20 years, new and exciting roles for glial cells in brain development have been described. Moreover, several recent studies implicated glial cells in the pathogenesis of neurodevelopmental disorders including Down syndrome, Fragile X syndrome, Rett Syndrome, Autism Spectrum Disorders, and Fetal Alcohol Spectrum Disorders (FASD). Abnormalities in glial cell development and proliferation and increased glial cell apoptosis contribute to the adverse effects of ethanol on the developing brain and it is becoming apparent that the effects of fetal alcohol are due, at least in part, to effects on glial cells affecting their ability to modulate neuronal development and function. The three major classes of glial cells, astrocytes, oligodendrocytes, and microglia as well as their precursors are affected by ethanol during brain development. Alterations in glial cell functions by ethanol dramatically affect neuronal development, survival, and function and ultimately impair the development of the proper brain architecture and connectivity. For instance, ethanol inhibits astrocyte-mediated neuritogenesis and oligodendrocyte development, survival and myelination; furthermore, ethanol induces microglia activation and oxidative stress leading to the exacerbation of ethanol-induced neuronal cell death. This review article describes the most significant recent findings pertaining the effects of ethanol on glial cells and their significance in the pathophysiology of FASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA ; Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, WA , USA
| | - Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - Calla Goeke
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - David P Gavin
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| |
Collapse
|
224
|
Zeidán-Chuliá F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JCF. The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 2014; 38:160-72. [DOI: 10.1016/j.neubiorev.2013.11.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/03/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023]
|
225
|
Davila D, Thibault K, Fiacco TA, Agulhon C. Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 2013; 7:272. [PMID: 24399932 PMCID: PMC3871966 DOI: 10.3389/fncel.2013.00272] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.
Collapse
Affiliation(s)
- David Davila
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Karine Thibault
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Todd A Fiacco
- Department of Cell Biology and Neuroscience, and Center for Glial-Neuronal Interactions and Program in Cellular, Molecular and Developmental Biology, University of California at Riverside Riverside, CA, USA
| | - Cendra Agulhon
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| |
Collapse
|
226
|
Abstract
The central nervous system is comprised of numerous cell types that work in concert to facilitate proper function and homeostasis. Disruption of these carefully orchestrated networks results in neuronal dysfunction, manifesting itself in a variety of neurologic disorders. Although neuronal dysregulation is causative of symptoms that manifest in the clinic, the etiology of these disorders is often more complex than simply a loss of neurons or intrinsic dysregulation of their function. In the adult brain, astrocytes comprise the most abundant cell type and play key roles in central nervous system physiology; therefore, it stands to reason that dysregulation of normal astrocyte function contributes to the etiology and progression of varied neurologic disorders. We review here some neurologic disorders associated with an astrocyte factor and discuss how the related astrocyte dysfunction contributes to the etiology or progression of these disorders or both.
Collapse
|
227
|
Deng H, Zheng W, Song Z. Genetics, Molecular Biology, and Phenotypes of X-Linked Epilepsy. Mol Neurobiol 2013; 49:1166-80. [PMID: 24258407 DOI: 10.1007/s12035-013-8589-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022]
|
228
|
Voineagu I, Eapen V. Converging Pathways in Autism Spectrum Disorders: Interplay between Synaptic Dysfunction and Immune Responses. Front Hum Neurosci 2013; 7:738. [PMID: 24223544 PMCID: PMC3819618 DOI: 10.3389/fnhum.2013.00738] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, yet genetically heterogeneous neurodevelopmental conditions. Recent genome-wide association and gene expression studies have provided evidence supporting the notion that the large number of genetic variants associated with ASD converge toward a core set of dysregulated biological processes. Here we review recent data demonstrating the involvement of synaptic dysfunction and abnormal immune responses in ASD, and discuss the functional interplay between the two phenomena.
Collapse
Affiliation(s)
- Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW , Australia
| | | |
Collapse
|
229
|
Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci 2013; 33:13612-20. [PMID: 23966684 DOI: 10.1523/jneurosci.1854-13.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
De novo mutations in the X-linked gene encoding the transcription factor methyl-CpG binding protein 2 (MECP2) are the most frequent cause of the neurological disorder Rett syndrome (RTT). Hemizygous males usually die of neonatal encephalopathy. Heterozygous females survive into adulthood but exhibit severe symptoms including microcephaly, loss of purposeful hand motions and speech, and motor abnormalities, which appear after a period of apparently normal development. Most studies have focused on male mouse models because of the shorter latency to and severity in symptoms, yet how well these mice mimic the disease in affected females is not clear. Very few therapeutic treatments have been proposed for females, the more gender-appropriate model. Here, we show that self-complementary AAV9, bearing MeCP2 cDNA under control of a fragment of its own promoter (scAAV9/MeCP2), is capable of significantly stabilizing or reversing symptoms when administered systemically into female RTT mice. To our knowledge, this is the first potential gene therapy for females afflicted with RTT.
Collapse
|
230
|
Della Sala G, Pizzorusso T. Synaptic plasticity and signaling in Rett syndrome. Dev Neurobiol 2013; 74:178-96. [PMID: 23908158 DOI: 10.1002/dneu.22114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 06/28/2013] [Accepted: 07/22/2013] [Indexed: 12/11/2022]
Abstract
Rett syndrome (RTT) is a disorder that is caused in the majority of cases by mutations in the gene methyl-CpG-binding protein-2 (MeCP2). Children with RTT are generally characterized by normal development up to the first year and a half of age, after which they undergo a rapid regression marked by a deceleration of head growth, the onset of stereotyped hand movements, irregular breathing, and seizures. Animal models of RTT with good construct and face validity are available. Their analysis showed that homeostatic regulation of MeCP2 gene is necessary for normal CNS functioning and that multiple complex pathways involving different neuronal and glial cell types are disrupted in RTT models. However, it is increasingly clear that RTT pathogenetic mechanisms converge at synaptic level impairing synaptic transmission and plasticity. We review novel findings showing how specific synaptic mechanisms and related signaling pathways are affected in RTT models.
Collapse
Affiliation(s)
- Grazia Della Sala
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | | |
Collapse
|
231
|
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disease caused by MECP2 mutations. The MeCP2 protein was originally thought to function as a transcription repressor by binding to methylated CpG dinucleotides, but is now also thought to be a transcription activator. Recent studies suggest that MeCP2 is not only being expressed in neurons, but also in glial cells, which suggests a new paradigm for understanding the pathogenesis of RTT. It has also been demonstrated that reintroduction of MeCP2 into behaviorally affected Mecp2-null mice after birth rescues neurological symptoms, which indicates that epigenetic failures in RTT are reversible. Therefore, RTT may well be seen as a model disease that can be potentially treated by taking advantage of the reversibility of epigenetic phenomena in various congenital neurodevelopmental diseases that were previously thought to be untreatable.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takae Hirasawa
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
232
|
Yang Y, Higashimori H, Morel L. Developmental maturation of astrocytes and pathogenesis of neurodevelopmental disorders. J Neurodev Disord 2013; 5:22. [PMID: 23988237 PMCID: PMC3765765 DOI: 10.1186/1866-1955-5-22] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/20/2013] [Indexed: 11/10/2022] Open
Abstract
Recent studies have implicated potentially significant roles for astrocytes in the pathogenesis of neurodevelopmental disorders. Astrocytes undergo a dramatic maturation process following early differentiation from which typical morphology and important functions are acquired. Despite significant progress in understanding their early differentiation, very little is known about how astrocytes become functionally mature. In addition, whether functional maturation of astrocytes is disrupted in neurodevelopmental disorders and the consequences of this disruption remains essentially unknown. In this review, we discuss our perspectives about how astrocyte developmental maturation is regulated, and how disruption of the astrocyte functional maturation process, especially alterations in their ability to regulate glutamate homeostasis, may alter synaptic physiology and contribute to the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | | | | |
Collapse
|
233
|
Mechanisms and therapeutic challenges in autism spectrum disorders: insights from Rett syndrome. Curr Opin Neurol 2013; 26:154-9. [PMID: 23449173 DOI: 10.1097/wco.0b013e32835f19a7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW A major challenge for understanding neurodevelopmental disorders, including autism spectrum disorders (ASDs), is to advance the findings from gene discovery to an exposition of neurobiological mechanisms that underlie these disorders and subsequently translate this knowledge into mechanism-based therapeutics. A promising way to proceed is revealed by the recent studies of rare subsets of ASDs. In this review, we summarize the latest advances in the mechanisms and emerging therapeutics for a rare single-gene ASD, Rett syndrome. RECENT FINDINGS Rett syndrome is caused by mutations in the gene coding for methyl CpG-binding protein 2 (MeCP2). Although MeCP2 has diverse functions, examination of MeCP2 mutant mice suggests the hypothesis that MeCP2 deficiency leads to aberrant maturation and maintenance of synapses and circuits in multiple brain systems. Some of the deficits arise from alterations in specific intracellular pathways such as the PI3K/Akt signaling pathway. These abnormalities can be at least partially rescued in MeCP2 mutant mice by treatment with therapeutic agents. SUMMARY Mechanism-based therapeutics are emerging for single-gene neurodevelopmental disorders such as Rett syndrome. Given the complexity of MeCP2 function, future directions include combination therapeutics that target multiple molecules and pathways. Such approaches will likely be applicable to other ASDs as well.
Collapse
|
234
|
Caravagna C, Soliz J, Seaborn T. Brain-derived neurotrophic factor interacts with astrocytes and neurons to control respiration. Eur J Neurosci 2013; 38:3261-9. [PMID: 23930598 DOI: 10.1111/ejn.12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
Abstract
Respiratory rhythm is generated and modulated in the brainstem. Neuronal involvement in respiratory control and rhythmogenesis is now clearly established. However, glial cells have also been shown to modulate the activity of brainstem respiratory groups. Although the potential involvement of other glial cell type(s) cannot be excluded, astrocytes are clearly involved in this modulation. In parallel, brain-derived neurotrophic factor (BDNF) also modulates respiratory rhythm. The currently available data on the respective roles of astrocytes and BDNF in respiratory control and rhythmogenesis lead us to hypothesize that there is BDNF-mediated control of the communication between neurons and astrocytes in the maintenance of a proper neuronal network capable of generating a stable respiratory rhythm. According to this hypothesis, progression of Rett syndrome, an autism spectrum disease with disordered breathing, can be stabilized in mouse models by re-expressing the normal gene pattern in astrocytes or microglia, as well as by stimulating the BDNF signaling pathway. These results illustrate how the signaling mechanisms by which glia exerts its effects in brainstem respiratory groups is of great interest for pathologies associated with neurological respiratory disorders.
Collapse
Affiliation(s)
- Céline Caravagna
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Room D0-742, Québec, QC, Canada
| | | | | |
Collapse
|
235
|
Permanent and plastic epigenesis in neuroendocrine systems. Front Neuroendocrinol 2013; 34:190-7. [PMID: 23707698 DOI: 10.1016/j.yfrne.2013.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/26/2013] [Accepted: 05/14/2013] [Indexed: 12/23/2022]
Abstract
The emerging area of neuroepigenetics has been linked to numerous mental health illnesses. Importantly, a large portion of what we know about early gene×environment interactions comes from examining epigenetic modifications of neuroendocrine systems. This review will highlight how neuroepigenetic mechanisms during brain development program lasting differences in neuroendocrine systems and how other neuroepigenetic processes remain plastic, even within the adult brain. As epigenetic mechanisms can either be stable or plastic, elucidating the mechanisms involved in reversing these processes could aid in understanding how to reverse pathological epigenetic programming.
Collapse
|
236
|
Allen NJ. Role of glia in developmental synapse formation. Curr Opin Neurobiol 2013; 23:1027-33. [PMID: 23871217 DOI: 10.1016/j.conb.2013.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/11/2013] [Indexed: 01/20/2023]
Abstract
Neuronal synapse formation and maturation in the developing brain is a complex multi-step process, and it is now clear that glial cells, in particular astrocytes, are key regulators of neuronal synaptogenesis. This article reviews the progress made in the past few years in identifying molecular mechanisms that glial cells use to regulate neuronal synaptogenesis. The focus is on novel glial molecules that induce synapse formation, inhibit synapse formation, or control synaptic levels of glutamate receptors. A role for glial cells in the pathology of neurodevelopmental disorders is discussed.
Collapse
Affiliation(s)
- Nicola J Allen
- Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
237
|
Pietri T, Roman AC, Guyon N, Romano SA, Washbourne P, Moens CB, de Polavieja GG, Sumbre G. The first mecp2-null zebrafish model shows altered motor behaviors. Front Neural Circuits 2013; 7:118. [PMID: 23874272 PMCID: PMC3712905 DOI: 10.3389/fncir.2013.00118] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/21/2013] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder and one of the most common causes of mental retardation in affected girls. Other symptoms include a rapid regression of motor and cognitive skills after an apparently early normal development. Sporadic mutations in the transcription factor MECP2 has been shown to be present in more than 90% of the patients and several models of MeCP2-deficient mice have been created to understand the role of this gene. These models have pointed toward alterations in the maintenance of the central nervous system rather than its development, in line with the late onset of the disease in humans. However, the exact functions of MeCP2 remain difficult to delineate and the animal models have yielded contradictory results. Here, we present the first mecp2-null allele mutation zebrafish model. Surprisingly and in contrast to MeCP2-null mouse models, mecp2-null zebrafish are viable and fertile. They present nonetheless clear behavioral alterations during their early development, including spontaneous and sensory-evoked motor anomalies, as well as defective thigmotaxis.
Collapse
Affiliation(s)
- Thomas Pietri
- Ecole Normale Supérieure, Institut de Biologie de l'ENS Paris, France ; Inserm, U1024 Paris, France ; CNRS, UMR 8197 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Molofsky AV, Glasgow SM, Chaboub LS, Tsai HH, Murnen AT, Kelley KW, Fancy SPJ, Yuen TJ, Madireddy L, Baranzini S, Deneen B, Rowitch DH, Oldham MC. Expression profiling of Aldh1l1-precursors in the developing spinal cord reveals glial lineage-specific genes and direct Sox9-Nfe2l1 interactions. Glia 2013; 61:1518-32. [PMID: 23840004 DOI: 10.1002/glia.22538] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 01/26/2023]
Abstract
Developmental regulation of gliogenesis in the mammalian CNS is incompletely understood, in part due to a limited repertoire of lineage-specific genes. We used Aldh1l1-GFP as a marker for gliogenic radial glia and later-stage precursors of developing astrocytes and performed gene expression profiling of these cells. We then used this dataset to identify candidate transcription factors that may serve as glial markers or regulators of glial fate. Our analysis generated a database of developmental stage-related markers of Aldh1l1+ cells between murine embryonic day 13.5-18.5. Using these data we identify the bZIP transcription factor Nfe2l1 and demonstrate that it promotes glial fate under direct Sox9 regulatory control. Thus, this dataset represents a resource for identifying novel regulators of glial development.
Collapse
Affiliation(s)
- Anna V Molofsky
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Kasprzyk L, Defossez PA, Miotto B. [Epigenetic regulation in neuronal differentiation and brain function]. Biol Aujourdhui 2013; 207:1-17. [PMID: 23694721 DOI: 10.1051/jbio/2013001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Indexed: 11/15/2022]
Abstract
DNA methylation compacts chromatin structure and represses gene transcription. It is important for numerous cellular processes, including embryonic development, X-chromosome inactivation, suppression of transposable elements, and cellular differentiation. In addition, environmental cues, including drugs, pollutants, trauma or early-life social environment, alter DNA methylation patterns in different organs. For instance, studies have unravelled a complex and dynamic interplay between environment, DNA methylation and neuron function during development and in the adult. This crosstalk is hypothesized as an essential molecular event underlying the effects of long-term memory, drug addiction, and several psychotic and behavioural disorders. In this review, we give a summary of this exciting field of research and highlight the molecular functions of DNA methylation and of proteins interacting with methylated DNA.
Collapse
Affiliation(s)
- Laetitia Kasprzyk
- Unité d'Épigénétique et Destin Cellulaire, CNRS UMR7216, Université Paris Diderot 35, rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
240
|
Tang X, Zhou L, Wagner AM, Marchetto MCN, Muotri AR, Gage FH, Chen G. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Res 2013; 11:743-57. [PMID: 23759711 DOI: 10.1016/j.scr.2013.05.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/28/2013] [Accepted: 05/07/2013] [Indexed: 02/03/2023] Open
Abstract
Neurons derived from human induced-pluripotent stem cells (hiPSCs) have been used to model a variety of neurological disorders. Different protocols have been used to differentiate hiPSCs into neurons, but their functional maturation process has varied greatly among different studies. Here, we demonstrate that laminin, a commonly used substrate for iPSC cultures, was inefficient to promote fully functional maturation of hiPSC-derived neurons. In contrast, astroglial substrate greatly accelerated neurodevelopmental processes of hiPSC-derived neurons. We have monitored the neural differentiation and maturation process for up to two months after plating hiPSC-derived neuroprogenitor cells (hNPCs) on laminin or astrocytes. We found that one week after plating hNPCs, there were 21-fold more newly differentiated neurons on astrocytes than on laminin. Two weeks after plating hNPCs, there were 12-fold more dendritic branches in neurons cultured on astrocytes than on laminin. Six weeks after plating hNPCs, the Na(+) and K(+) currents, as well as glutamate and GABA receptor currents, were 3-fold larger in neurons cultured on astrocytes than on laminin. And two months after plating hNPCs, the spontaneous synaptic events were 8-fold more in neurons cultured on astrocytes than on laminin. These results highlight a critical role of astrocytes in promoting neural differentiation and functional maturation of human neurons derived from hiPSCs. Moreover, our data presents a thorough developmental timeline of hiPSC-derived neurons in culture, providing important benchmarks for future studies on disease modeling and drug screening.
Collapse
Affiliation(s)
- Xin Tang
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, Wood WH, Lehrmann E, Camandola S, Becker KG, Gorospe M, Mattson MP. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 2013; 61:1018-28. [PMID: 23650073 DOI: 10.1002/glia.22483] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/23/2013] [Indexed: 12/12/2022]
Abstract
Inflammation is a common component of acute injuries of the central nervous system (CNS) such as ischemia, and degenerative disorders such as Alzheimer's disease. Glial cells play important roles in local CNS inflammation, and an understanding of the roles for microRNAs in glial reactivity in injury and disease settings may therefore lead to the development of novel therapeutic interventions. Here, we show that the miR-181 family is developmentally regulated and present in high amounts in astrocytes compared to neurons. Overexpression of miR-181c in cultured astrocytes results in increased cell death when exposed to lipopolysaccharide (LPS). We show that miR-181 expression is altered by exposure to LPS, a model of inflammation, in both wild-type and transgenic mice lacking both receptors for the inflammatory cytokine TNF-α. Knockdown of miR-181 enhanced LPS-induced production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-8) and HMGB1, while overexpression of miR-181 resulted in a significant increase in the expression of the anti-inflammatory cytokine IL-10. To assess the effects of miR-181 on the astrocyte transcriptome, we performed gene array and pathway analysis on astrocytes with reduced levels of miR-181b/c. To examine the pool of potential miR-181 targets, we employed a biotin pull-down of miR-181c and gene array analysis. We validated the mRNAs encoding MeCP2 and X-linked inhibitor of apoptosis as targets of miR-181. These findings suggest that miR-181 plays important roles in the molecular responses of astrocytes in inflammatory settings. Further understanding of the role of miR-181 in inflammatory events and CNS injury could lead to novel approaches for the treatment of CNS disorders with an inflammatory component.
Collapse
Affiliation(s)
- Emmette R Hutchison
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, Maryland, 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 2013; 14:311-21. [PMID: 23595014 DOI: 10.1038/nrn3484] [Citation(s) in RCA: 708] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Astrocytes are now emerging as key participants in many aspects of brain development, function and disease. In particular, new evidence shows that astrocytes powerfully control the formation, maturation, function and elimination of synapses through various secreted and contact-mediated signals. Astrocytes are also increasingly being implicated in the pathophysiology of many psychiatric and neurological disorders that result from synaptic defects. A better understanding of how astrocytes regulate neural circuit development and function in the healthy and diseased brain might lead to the development of therapeutic agents to treat these diseases.
Collapse
Affiliation(s)
- Laura E Clarke
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
243
|
Karpova NN. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology 2013; 76 Pt C:709-18. [PMID: 23587647 DOI: 10.1016/j.neuropharm.2013.04.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 01/11/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a key mediator of the activity-dependent processes in the brain that have a major impact on neuronal development and plasticity. Impaired control of neuronal activity-induced BDNF expression mediates the pathogenesis of various neurological and psychiatric disorders. Different environmental stimuli, such as the use of pharmacological compounds, physical and learning exercises or stress exposure, lead to activation of specific neuronal networks. These processes entail tight temporal and spatial transcriptional control of numerous BDNF splice variants through epigenetic mechanisms. The present review highlights recent findings on the dynamic and long-term epigenetic programming of BDNF gene expression by the DNA methylation, histone-modifying and microRNA machineries. The review also summarizes the current knowledge on the activity-dependent BDNF mRNA trafficking critical for rapid local regulation of BDNF levels and synaptic plasticity. Current data open novel directions for discovery of new promising therapeutic targets for treatment of neuropsychiatric disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Nina N Karpova
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland.
| |
Collapse
|
244
|
Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 2013; 36:209-17. [DOI: 10.1016/j.tins.2012.11.007] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 11/17/2022]
|
245
|
Durand S, Patrizi A, Quast KB, Hachigian L, Pavlyuk R, Saxena A, Carninci P, Hensch TK, Fagiolini M. NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron 2013; 76:1078-90. [PMID: 23259945 DOI: 10.1016/j.neuron.2012.12.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Brain function is shaped by postnatal experience and vulnerable to disruption of Methyl-CpG-binding protein, Mecp2, in multiple neurodevelopmental disorders. How Mecp2 contributes to the experience-dependent refinement of specific cortical circuits and their impairment remains unknown. We analyzed vision in gene-targeted mice and observed an initial normal development in the absence of Mecp2. Visual acuity then rapidly regressed after postnatal day P35-40 and cortical circuits largely fell silent by P55-60. Enhanced inhibitory gating and an excess of parvalbumin-positive, perisomatic input preceded the loss of vision. Both cortical function and inhibitory hyperconnectivity were strikingly rescued independent of Mecp2 by early sensory deprivation or genetic deletion of the excitatory NMDA receptor subunit, NR2A. Thus, vision is a sensitive biomarker of progressive cortical dysfunction and may guide novel, circuit-based therapies for Mecp2 deficiency.
Collapse
Affiliation(s)
- Severine Durand
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet 2013; 132:359-83. [PMID: 23370504 DOI: 10.1007/s00439-013-1271-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein-Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders.
Collapse
Affiliation(s)
- María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908 L'Hospitalet de LLobregat, Barcelona, Catalonia, Spain
| | | |
Collapse
|
247
|
Yazdani M, Deogracias R, Guy J, Poot RA, Bird A, Barde YA. Disease modeling using embryonic stem cells: MeCP2 regulates nuclear size and RNA synthesis in neurons. Stem Cells 2013; 30:2128-39. [PMID: 22865604 DOI: 10.1002/stem.1180] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mutations in the gene encoding the methyl-CpG-binding protein MECP2 are the major cause of Rett syndrome, an autism spectrum disorder mainly affecting young females. MeCP2 is an abundant chromatin-associated protein, but how and when its absence begins to alter brain function is still far from clear. Using a stem cell-based system allowing the synchronous differentiation of neuronal progenitors, we found that in the absence of MeCP2, the size of neuronal nuclei fails to increase at normal rates during differentiation. This is accompanied by a marked decrease in the rate of ribonucleotide incorporation, indicating an early role of MeCP2 in regulating total gene transcription, not restricted to selected mRNAs. We also found that the levels of brain-derived neurotrophic factor (BDNF) were decreased in mutant neurons, while those of the presynaptic protein synaptophysin increased at similar rates in wild-type and mutant neurons. By contrast, nuclear size, transcription rates, and BDNF levels remained unchanged in astrocytes lacking MeCP2. Re-expressing MeCP2 in mutant neurons rescued the nuclear size phenotype as well as BDNF levels. These results reveal a new role of MeCP2 in regulating overall RNA synthesis in neurons during the course of their maturation, in line with recent findings indicating a reduced nucleolar size in neurons of the developing brain of mice lacking Mecp2.
Collapse
|
248
|
Yasui DH, Xu H, Dunaway KW, Lasalle JM, Jin LW, Maezawa I. MeCP2 modulates gene expression pathways in astrocytes. Mol Autism 2013; 4:3. [PMID: 23351786 PMCID: PMC3561260 DOI: 10.1186/2040-2392-4-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/10/2013] [Indexed: 12/04/2022] Open
Abstract
Background Mutations in MECP2 encoding methyl-CpG-binding protein 2 (MeCP2) cause the X-linked neurodevelopmental disorder Rett syndrome. Rett syndrome patients exhibit neurological symptoms that include irregular breathing, impaired mobility, stereotypic hand movements, and loss of speech. MeCP2 protein epigenetically modulates gene expression through genome-wide binding to methylated CpG dinucleotides. While neurons have the highest level of MeCP2 expression, astrocytes and other cell types also express detectable levels of MeCP2. Recent studies suggest that astrocytes likely control the progression of Rett syndrome. Thus, the object of these studies was to identify gene targets that are affected by loss of MeCP2 binding in astrocytes. Methods To identify gene targets of MeCP2 in astrocytes, combined approaches of expression microarray and chromatin immunoprecipitation of MeCP2 followed by sequencing (ChIP-seq) were compared between wild-type and MeCP2-deficient astrocytes. MeCP2 gene targets were compared with genes in the top 10% of MeCP2 binding levels in gene windows either within 2 kb upstream of the transcription start site, or the ‘gene body’ that extended from transcription start to end site, or 2 kb downstream of the transcription end site. Results A total of 118 gene transcripts surpassed the highly significant threshold (P < 0.005, fold change > 1.2) in expression microarray analysis from triplicate cultures. The top 10% of genes with the highest levels of MeCP2 binding were identified in two independent ChIP-seq experiments. Together this integrated, genome-wide screen for MeCP2 target genes provided an overlapping list of 19 high-confidence MeCP2-responsive gene transcripts in astrocytes. Validation of candidate target gene transcripts by RT-PCR revealed that expression of Apoc2, Cdon, Csrp and Nrep were consistently responsive to MeCP2 deficiency in astrocytes. Conclusions The first MeCP2 ChIP-seq and gene expression microarray analysis in astrocytes reveals a set of potential MeCP2 target genes that may contribute to normal astrocyte signaling, cell division and neuronal support functions, the loss of which may contribute to the Rett syndrome phenotype.
Collapse
Affiliation(s)
- Dag H Yasui
- Department of Medical Microbiology and Immunology, UC Davis Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| | | | | | | | | | | |
Collapse
|
249
|
Lilja T, Wallenborg K, Björkman K, Albåge M, Eriksson M, Lagercrantz H, Rohdin M, Hermanson O. Novel alterations in the epigenetic signature of MeCP2-targeted promoters in lymphocytes of Rett syndrome patients. Epigenetics 2013; 8:246-51. [PMID: 23348913 PMCID: PMC3669117 DOI: 10.4161/epi.23752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder with neurological symptoms, such as motor disorders and mental retardation. In most cases, RTT is caused by mutations in the DNA binding protein MeCP2. In mice, MeCP2 gene deletion has been reported to result in genome-wide increased histone acetylation. Transcriptional regulation of neurotrophic factor BDNF and transcription factor DLX5, essential for proper neurogenesis, is further altered in MeCP2-deleted animals. We therefore investigated the chromatin environment of MeCP2 target genes BDNF and DLX5 in lymphocytes from RTT patients and human controls, and analyzed the density of histones H3, H2B and H1, as well as the levels of methylation and acetylation on selected lysines of histone H3. Notably, we found a general increase in the density of histone H3 in RTT patients’ lymphocytes compared with controls, and decreased levels of trimethylation of lysine 4 on histone H3 (H3K4me3), a modification associated with transcriptional activation. The levels of acetylation of lysine 9 (H3K9ac) and 27 (H3K27ac) did not show any statistically significant changes when normalized to the decreased histone H3 levels; nevertheless, an average decrease in acetylation was noted. Our results reveal an unexpected alteration of the chromatin state of established MeCP2 target genes in lymphocytes of human subjects with RTT.
Collapse
Affiliation(s)
- Tobias Lilja
- Linnaeus Center in Developmental Biology for Regenerative Medicine (DBRM), Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Schildge S, Bohrer C, Beck K, Schachtrup C. Isolation and culture of mouse cortical astrocytes. J Vis Exp 2013:50079. [PMID: 23380713 DOI: 10.3791/50079] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Astrocytes are an abundant cell type in the mammalian brain, yet much remains to be learned about their molecular and functional characteristics. In vitro astrocyte cell culture systems can be used to study the biological functions of these glial cells in detail. This video protocol shows how to obtain pure astrocytes by isolation and culture of mixed cortical cells of mouse pups. The method is based on the absence of viable neurons and the separation of astrocytes, oligodendrocytes and microglia, the three main glial cell populations of the central nervous system, in culture. Representative images during the first days of culture demonstrate the presence of a mixed cell population and indicate the timepoint, when astrocytes become confluent and should be separated from microglia and oligodendrocytes. Moreover, we demonstrate purity and astrocytic morphology of cultured astrocytes using immunocytochemical stainings for well established and newly described astrocyte markers. This culture system can be easily used to obtain pure mouse astrocytes and astrocyte-conditioned medium for studying various aspects of astrocyte biology.
Collapse
|