201
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
202
|
Ghosh A, Ranjan N, Jiang L, Ansari AH, Degyatoreva N, Ahluwalia S, Arya DP, Maiti S. Fine-tuning miR-21 expression and inhibition of EMT in breast cancer cells using aromatic-neomycin derivatives. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:685-698. [PMID: 35070496 PMCID: PMC8763640 DOI: 10.1016/j.omtn.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRs) are a class of endogenously expressed non-coding RNAs that negatively regulate gene expression within cells and participate in maintaining cellular homeostasis. By targeting 3' UTRs of target genes, individual miRs can control a wide array of gene expressions. Previous research has shed light upon the fact that aberrantly expressed miRs within cells can pertain to diseased conditions, such as cancer. Malignancies caused due to miRs are because of the high expression of onco-miRs or feeble expression of tumor-suppressing miRs. Studies have also shown miRs to engage in epithelial to mesenchymal transition (EMT), which allows cancer cells to become more invasive and metastasize. miR-21 is an onco-miR highly expressed in breast cancer cells and targets protein PTEN, which abrogates EMT. Therefore, we discuss an approach where in-house-developed peptidic amino sugar molecules have been used to target pre-miR-21 to inhibit miR-21 biogenesis, and hence antagonize its tumor-causing effect and inhibit EMT. Our study shows that small-molecule-based fine-tuning of miR expression can cause genotypic as well as phenotypic changes and also reinstates the potential and importance of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Arpita Ghosh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India.,Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | - Nihar Ranjan
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Liuwei Jiang
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India.,Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| | | | - Shivaksh Ahluwalia
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
| | - Dev P Arya
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA.,NUBAD LLC, Greenville, SC 29605, USA
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India.,Academy of Scientific & Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
203
|
Fanfone D, Wu Z, Mammi J, Berthenet K, Neves D, Weber K, Halaburkova A, Virard F, Bunel F, Jamard C, Hernandez-Vargas H, Tait SWG, Hennino A, Ichim G. Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness. eLife 2022; 11:e73150. [PMID: 35256052 PMCID: PMC8903834 DOI: 10.7554/elife.73150] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mechanical stress is known to fuel several hallmarks of cancer, ranging from genome instability to uncontrolled proliferation or invasion. Cancer cells are constantly challenged by mechanical stresses not only in the primary tumour but also during metastasis. However, this latter has seldom been studied with regards to mechanobiology, in particular resistance to anoikis, a cell death programme triggered by loss of cell adhesion. Here, we show in vitro that migrating breast cancer cells develop resistance to anoikis following their passage through microporous membranes mimicking confined migration (CM), a mechanical constriction that cancer cells encounter during metastasis. This CM-induced resistance was mediated by Inhibitory of Apoptosis Proteins, and sensitivity to anoikis could be restored after their inhibition using second mitochondria-derived activator of caspase (SMAC) mimetics. Anoikis-resistant mechanically stressed cancer cells displayed enhanced cell motility and evasion from natural killer cell-mediated immune surveillance, as well as a marked advantage to form lung metastatic lesions in mice. Our findings reveal that CM increases the metastatic potential of breast cancer cells.
Collapse
Affiliation(s)
- Deborah Fanfone
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Zhichong Wu
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Lyon 1, VilleurbanneVilleurbanneFrance
- Centre Léon BérardLyonFrance
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jade Mammi
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Kevin Berthenet
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
- Centre Léon BérardLyonFrance
| | | | - Kathrin Weber
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Andrea Halaburkova
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - François Virard
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Claude Bernard Lyon 1, Faculté d’Odontologie, Hospices Civils de LyonLyonFrance
| | - Félix Bunel
- ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de PhysiqueLyonFrance
| | - Catherine Jamard
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Centre Léon BérardLyonFrance
- Université Claude Bernard Lyon 1LyonFrance
| | - Stephen WG Tait
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Ana Hennino
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Lyon 1, VilleurbanneVilleurbanneFrance
- Centre Léon BérardLyonFrance
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| |
Collapse
|
204
|
Conod A, Silvano M, Ruiz i Altaba A. On the origin of metastases: Induction of pro-metastatic states after impending cell death via ER stress, reprogramming, and a cytokine storm. Cell Rep 2022; 38:110490. [PMID: 35263600 DOI: 10.1016/j.celrep.2022.110490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
How metastatic cells arise is unclear. Here, we search for the induction of recently characterized pro-metastatic states as a surrogate for the origin of metastasis. Since cell-death-inducing therapies can paradoxically promote metastasis, we ask if such treatments induce pro-metastatic states in human colon cancer cells. We find that post-near-death cells acquire pro-metastatic states (PAMEs) and form distant metastases in vivo. These PAME ("let's go" in Greek) cells exhibit a multifactorial cytokine storm as well as signs of enhanced endoplasmic reticulum (ER) stress and nuclear reprogramming, requiring CXCL8, INSL4, IL32, PERK-CHOP, and NANOG. PAMEs induce neighboring tumor cells to become PAME-induced migratory cells (PIMs): highly migratory cells that re-enact the storm and enhance PAME migration. Metastases are thus proposed to originate from the induction of pro-metastatic states through intrinsic and extrinsic cues in a pro-metastatic tumoral ecosystem, driven by an impending cell-death experience involving ER stress modulation, metastatic reprogramming, and paracrine recruitment via a cytokine storm.
Collapse
Affiliation(s)
- Arwen Conod
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
205
|
Yang K, Zhou Q, Qiao B, Shao B, Hu S, Wang G, Yuan W, Sun Z. Exosome-derived noncoding RNAs: Function, mechanism, and application in tumor angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:983-997. [PMID: 35317280 PMCID: PMC8905256 DOI: 10.1016/j.omtn.2022.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exosomes are extracellular vesicles released by various cell types that perform various biological functions, mainly mediating communication between different cells, especially those active in cancer. Noncoding RNAs (ncRNAs), of which there are many types, were recently identified as enriched and stable in the exocrine region and play various roles in the occurrence and progression of cancer. Abnormal angiogenesis has been confirmed to be related to human cancer. An increasing number of studies have shown that exosome-derived ncRNAs play an important role in tumor angiogenesis. In this review, we briefly outline the characteristics of exosomes, ncRNAs, and tumor angiogenesis. Then, the mechanism of the impact of exosome-derived ncRNAs on tumor angiogenesis is analyzed from various angles. In addition, we focus on the regulatory role of exosome-derived ncRNAs in angiogenesis in different types of cancer. Furthermore, we emphasize the potential role of exosome-derived ncRNAs as biomarkers in cancer diagnosis and prognosis and therapeutic targets in the treatment of tumors.
Collapse
Affiliation(s)
- Kangkang Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
206
|
Kahar P, Itomi A, Tsuboi H, Ishizaki M, Yasuda M, Kihira C, Otsuka H, Azmi NB, Matsumoto H, Ogino C, Kondo A. The flocculant Saccharomyces cerevisiae strain gains robustness via alteration of the cell wall hydrophobicity. Metab Eng 2022; 72:82-96. [DOI: 10.1016/j.ymben.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
207
|
Dong C, Huang Q, Cheng H, Zheng D, Hong S, Yan Y, Niu M, Xu J, Zhang X. Neisseria meningitidis Opca Protein/MnO 2 Hybrid Nanoparticles for Overcoming the Blood-Brain Barrier to Treat Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109213. [PMID: 34995395 DOI: 10.1002/adma.202109213] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Indexed: 02/05/2023]
Abstract
The major hurdle in glioblastoma therapy is the low efficacy of drugs crossing the blood-brain barrier (BBB). Neisseria meningitidis is known to specifically enrich in the central nervous system through the guidance of an outer membrane invasion protein named Opca. Here, by loading a chemotherapeutic drug methotrexate (MTX) in hollow manganese dioxide (MnO2 ) nanoparticles with surface modification of the Opca protein of Neisseria meningitidis, a bionic nanotherapeutic system (MTX@MnO2 -Opca) is demonstrated to effectively overcome the BBB. The presence of the Opca protein enables the drug to cross the BBB and penetrate into tumor tissues. After accumulating in glioblastoma, the nanotherapeutic system catalyzes the decomposition of excess H2 O2 in the tumor tissue and thereby generates O2 , which alleviates tumor hypoxia and enhances the effect of chemotherapy in the treatment of glioblastoma. This bionic nanotherapeutic system may exhibit great potential in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Cheng‐Yuan Dong
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qian‐Xiao Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Di‐Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Sheng Hong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Yu Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Mei‐Ting Niu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Jian‐Guo Xu
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
208
|
Habib EB, Mathavarajah S, Dellaire G. Tinker, Tailor, Tumour Suppressor: The Many Functions of PRP4K. Front Genet 2022; 13:839963. [PMID: 35281802 PMCID: PMC8912934 DOI: 10.3389/fgene.2022.839963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential kinase first identified in the fission yeast Schizosaccharomyces pombe that is evolutionarily conserved from amoebae to animals. During spliceosomal assembly, PRP4K interacts with and phosphorylates PRPF6 and PRPF31 to facilitate the formation of the spliceosome B complex. However, over the past decade additional evidence has emerged that PRP4K has many diverse cellular roles beyond splicing that contribute to tumour suppression and chemotherapeutic responses in mammals. For example, PRP4K appears to play roles in regulating transcription and the spindle assembly checkpoint (SAC), a key pathway in maintaining chromosomes stability and the response of cancer cells to taxane-based chemotherapy. In addition, PRP4K has been revealed to be a haploinsufficient tumour suppressor that promotes aggressive cancer phenotypes when partially depleted. PRP4K is regulated by both the HER2 and estrogen receptor, and its partial loss increases resistance to the taxanes in multiple malignancies including cervical, breast and ovarian cancer. Moreover, ovarian and triple negative breast cancer patients harboring tumours with low PRP4K expression exhibit worse overall survival. The depletion of PRP4K also enhances both Yap and epidermal growth factor receptor (EGFR) signaling, the latter promoting anoikis resistance in breast and ovarian cancer. Finally, PRP4K is negatively regulated during epithelial-to-mesenchymal transition (EMT), a process that promotes increased cell motility, drug resistance and cancer metastasis. Thus, as we discuss in this review, PRP4K likely plays evolutionarily conserved roles not only in splicing but in a number of cellular pathways that together contribute to tumour suppression.
Collapse
Affiliation(s)
- Elias B. Habib
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
| | | | - Graham Dellaire
- Dalhousie University, Department of Pathology, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- *Correspondence: Graham Dellaire,
| |
Collapse
|
209
|
Xue Y, Che J, Ji X, Li Y, Xie J, Chen X. Recent advances in biomaterial-boosted adoptive cell therapy. Chem Soc Rev 2022; 51:1766-1794. [PMID: 35170589 DOI: 10.1039/d1cs00786f] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adoptive immunotherapies based on the transfer of functional immune cells hold great promise in treating a wide range of malignant diseases, especially cancers, autoimmune diseases, and infectious diseases. However, manufacturing issues and biological barriers lead to the insufficient population of target-selective effector cells at diseased sites after adoptive transfer, hindering effective clinical translation. The convergence of immunology, cellular biology, and materials science lays a foundation for developing biomaterial-based engineering platforms to overcome these challenges. Biomaterials can be rationally designed to improve ex vivo immune cell expansion, expedite functional engineering, facilitate protective delivery of immune cells in situ, and navigate the infused cells in vivo. Herein, this review presents a comprehensive summary of the latest progress in biomaterial-based strategies to enhance the efficacy of adoptive cell therapy, focusing on function-specific biomaterial design, and also discusses the challenges and prospects of this field.
Collapse
Affiliation(s)
- Yonger Xue
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Junyi Che
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xuemei Ji
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yunuo Li
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan.,State Key Laboratory of Bioelectronics, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
210
|
Yang MH, Jung SH, Um JY, Kumar AP, Sethi G, Ahn KS. Daidzin targets epithelial-to-mesenchymal transition process by attenuating manganese superoxide dismutase expression and PI3K/Akt/mTOR activation in tumor cells. Life Sci 2022; 295:120395. [PMID: 35181309 DOI: 10.1016/j.lfs.2022.120395] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
AIMS Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose their polarity and gain invasive properties to transform into mesenchymal cells. A few recent studies have reported that manganese superoxide dismutase (MnSOD) can effectively modulate EMT phenotype by influencing cellular redox environment via altering the intracellular ratio between O2- and H2O2. Daidzin (DDZ), a naturally occurring isoflavone isolated from Pueraria lobate (Fabaceae), has numerous pharmacologic effects including anti-cholesterol, anti-angiocardiopathy, anti-cancer. However, the potential inhibitory impact of DDZ on cancer metastasis and specifically on the EMT process has not been evaluated. We aimed to evaluate the possible relationship between MnSOD and EMT as well as influence of DDZ on these two processes in colon and prostate carcinoma cells. MAIN METHODS Cell viability was measured by MTT and real time cell analysis (RTCA) assay. Protein expression level of EMT markers and Akt/mTOR/PI3K signaling pathway were evaluated by Western blot analysis. Expression of EMT markers in cells was observed by immunocytochemistry. Cell invasion and migrations were evaluated by wound healing assay and Boyden chamber assay. KEY FINDINGS DDZ can block EMT accompanied with down-regulation of MnSOD, fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, twist, and Snail, and up-regulation of occludin and E-cadherin in both unstimulated and TGFβ-induced cells. In addition, DDZ exposure also attenuated cell proliferation, invasion, and metastasis by reversing the EMT process in SNU-C2A, DU145, and PC-3 cells. DDZ treatment also modulated activation of PI3K/Akt/mTOR signaling cascades in DU145 cells. Moreover, an overexpression of MnSOD or silencing of MnSOD expression modulated EMT-related proteins, PI3K/Akt/mTOR activation and invasive activity. SIGNIFICANCE This is first finding on the DDZ in regulating MnSOD and EMT process by targeting PI3K/Akt/mTOR pathway in both colorectal and prostate cancer cell lines. Our data indicated that DDZ might act as a potent suppressor of EMT by affecting MnSOD expression in tumor cells.
Collapse
Affiliation(s)
- Min Hee Yang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
211
|
Wang T, He Z, Yuan CS, Deng ZW, Li F, Chen XG, Liu Y. MMP-responsive transformation nanomaterials with IAP antagonist to boost immune checkpoint therapy. J Control Release 2022; 343:765-776. [PMID: 35181414 DOI: 10.1016/j.jconrel.2022.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/23/2022] [Accepted: 02/13/2022] [Indexed: 12/24/2022]
Abstract
The clinical effect of immune checkpoint therapy is limited by the poor blocking efficiency of immune checkpoints and the insufficient infiltration of tumor-specific T cells. Here, we constructed enzyme-responsive PVA-peptide conjugates (PPCs) to achieve re-assembly with enhanced accumulation in the tumor region, enable enhanced PD-L1 occupancy and improve the blocking efficiency. The self-assembled PPC-1 nanoparticles can enter tumor environment, whereas the enzyme-cleavable peptide was digested under overgenerated matrix metalloproteinases (MMP). The accumulated PPC-1 simultaneously transformed into β-sheet fibrous structures around the solid tumor and remained stable for over 96 h, which led to efficiently interrupting the PD-1/PD-L1 interaction. Upon introduction of the IAP antagonists, the non-classical NF-κB pathway of dendritic cells was activated and increased the infiltration of T cells in tumors. With the synergistic contribution of IAP antagonists from the substantial increase in expression of chemokines (CCL5 and CXCL9) and adequate T-cell infiltration in tumor sites, PPC-1 improved the biodistribution and accumulation of PD-L1 antagonists in tumor regions ultimately realizing higher-performance (P < 0.01) tumor growth inhibition efficiency (~80%) than PPC-2 group (~58%) in B16F10 tumor-bearing mice. The growth of the second tumor at the distal end was obviously inhibited (P < 0.01) after the resection of the primary tumor. The combined efficacy was similar to that observed in a Pan02 pancreatic cancer tumor model. This strategy aims to offer novel perspective for the development of locational assembly platforms in vivo and the optimal design of immune checkpoint combination therapy.
Collapse
Affiliation(s)
- Ting Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Cong-Shan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zhen-Wei Deng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Fang Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
212
|
Maliszewski D, Drozdowska D. Recent Advances in the Biological Activity of s-Triazine Core Compounds. Pharmaceuticals (Basel) 2022; 15:221. [PMID: 35215333 PMCID: PMC8875733 DOI: 10.3390/ph15020221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
An effective strategy for successful chemotherapy relies on creating compounds with high selectivity against cancer cells compared to normal cells and relatively low cytotoxicity. One such approach is the discovery of critical points in cancer cells, i.e., where specific enzymes that are potential therapeutic targets are generated. Triazine is a six-membered heterocyclic ring compound with three nitrogen replacing carbon-hydrogen units in the benzene ring structure. The subject of this review is the symmetrical 1,3,5-triazine, known as s-triazine. 1,3,5-triazine is one of the oldest heterocyclic compounds available. Because of its low cost and high availability, it has attracted researcher attention for novel synthesis. s-Triazine has a weak base, it has much weaker resonance energy than benzene, therefore, nucleophilic substitution is preferred to electrophilic substitution. Heterocyclic bearing a symmetrical s-triazine core represents an interesting class of compounds possessing a wide spectrum of biological properties such as anti-cancer, antiviral, fungicidal, insecticidal, bactericidal, herbicidal and antimicrobial, antimalarial agents. They also have applications as dyes, lubricants, and analytical reagents. Hence, the group of 1,3,5-triazine derivatives has developed over the years. Triazine is not only the core amongst them, but is also a factor increasing the kinetic potential of the entire derivatives. Modifying the structure and introducing new substituents makes it possible to obtain compounds with broad inhibitory activity on processes such as proliferation. In some cases, s-triazine derivatives induce cell apoptosis. In this review we will present currently investigated 1,3,5-triazine derivatives with anti-cancer activities, with particular emphasis on their inhibition of enzymes involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, 15-222 Białystok, Poland
| |
Collapse
|
213
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
214
|
Guo Y, Lin Q, Zhao S, Li T, Cao Y, Man Z, Zeng X. Automated detection of lung cancer-caused metastasis by classifying scintigraphic images using convolutional neural network with residual connection and hybrid attention mechanism. Insights Imaging 2022; 13:24. [PMID: 35138479 PMCID: PMC8828823 DOI: 10.1186/s13244-022-01162-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Whole-body bone scan is the widely used tool for surveying bone metastases caused by various primary solid tumors including lung cancer. Scintigraphic images are characterized by low specificity, bringing a significant challenge to manual analysis of images by nuclear medicine physicians. Convolutional neural network can be used to develop automated classification of images by automatically extracting hierarchal features and classifying high-level features into classes. Results Using convolutional neural network, a multi-class classification model has been developed to detect skeletal metastasis caused by lung cancer using clinical whole-body scintigraphic images. The proposed method consisted of image aggregation, hierarchal feature extraction, and high-level feature classification. Experimental evaluations on a set of clinical scintigraphic images have shown that the proposed multi-class classification network is workable for automated detection of lung cancer-caused metastasis, with achieving average scores of 0.7782, 0.7799, 0.7823, 0.7764, and 0.8364 for accuracy, precision, recall, F-1 score, and AUC value, respectively. Conclusions The proposed multi-class classification model can not only predict whether an image contains lung cancer-caused metastasis, but also differentiate between subclasses of lung cancer (i.e., adenocarcinoma and non-adenocarcinoma). On the context of two-class (i.e., the metastatic and non-metastatic) classification, the proposed model obtained a higher score of 0.8310 for accuracy metric.
Collapse
Affiliation(s)
- Yanru Guo
- School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu, China.,Key Laboratory of Streaming Data Computing Technologies and Application, Northwest Minzu University, Lanzhou, Gansu, China
| | - Qiang Lin
- School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu, China. .,Key Laboratory of Streaming Data Computing Technologies and Application, Northwest Minzu University, Lanzhou, Gansu, China. .,Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, Gansu, China.
| | - Shaofang Zhao
- School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu, China.,Key Laboratory of Streaming Data Computing Technologies and Application, Northwest Minzu University, Lanzhou, Gansu, China
| | - Tongtong Li
- School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu, China.,Key Laboratory of Streaming Data Computing Technologies and Application, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yongchun Cao
- School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu, China.,Key Laboratory of Streaming Data Computing Technologies and Application, Northwest Minzu University, Lanzhou, Gansu, China.,Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zhengxing Man
- School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu, China.,Key Laboratory of Streaming Data Computing Technologies and Application, Northwest Minzu University, Lanzhou, Gansu, China.,Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xianwu Zeng
- Department of Nuclear Medicine, Gansu Provincial Tumor Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
215
|
Executioner caspases 3 and 7 are dispensable for intestinal epithelium turnover and homeostasis at steady state. Proc Natl Acad Sci U S A 2022; 119:2024508119. [PMID: 35105800 PMCID: PMC8832966 DOI: 10.1073/pnas.2024508119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 11/20/2022] Open
Abstract
Historically, programmed cell death by apoptosis is considered crucial for proper intestinal organogenesis and gut homeostasis. To challenge this concept, we generated caspase-3 and -7 double knockout mice specifically in intestinal epithelial cells (IECs). However, absence of apoptosis in IECs elicits neither morphological and inflammatory changes nor intestinal dysbiosis during gut homeostasis at steady state. This demonstrates the robustness of intestinal homeostasis at steady state for the absence of caspase-3/7 and shows that in contrast to caspase-8, which keeps necroptosis and associated inflammation in check, caspase-3/7–dependent apoptosis of IECs in homeostatic conditions is dispensable for normal intestinal development, immune cell composition, and microbiome control. Apoptosis is widely believed to be crucial for epithelial cell death and shedding in the intestine, thereby shaping the overall architecture of the gastrointestinal tract, but also regulating tolerance induction, pinpointing a role of apoptosis intestinal epithelial cell (IEC) turnover and maintenance of barrier function, and in maintaining immune homeostasis. To experimentally address this concept, we generated IEC-specific knockout mice that lack both executioner caspase-3 and caspase-7 (Casp3/7ΔIEC), which are the converging point of the extrinsic and intrinsic apoptotic pathway. Surprisingly, the overall architecture, cellular landscape, and proliferation rate remained unchanged in these mice. However, nonapoptotic cell extrusion was increased in Casp3/7ΔIEC mice, compensating apoptosis deficiency, maintaining the same physiological level of IEC shedding. Microbiome richness and composition stayed unaffected, bearing no sign of dysbiosis. Transcriptome and single-cell RNA sequencing analyses of IECs and immune cells revealed no differences in signaling pathways of differentiation and inflammation. These findings demonstrate that during homeostasis, apoptosis per se is dispensable for IEC turnover at the top of intestinal villi intestinal tissue dynamics, microbiome, and immune cell composition.
Collapse
|
216
|
Lu Y, Wu C, Yang Y, Chen X, Ge F, Wang J, Deng J. Inhibition of tumor recurrence and metastasis via a surgical tumor-derived personalized hydrogel vaccine. Biomater Sci 2022; 10:1352-1363. [PMID: 35112690 DOI: 10.1039/d1bm01596f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor recurrence and metastasis have become thorny problems in clinical tumor therapy. Vaccine-mediated antitumor immune response has emerged as a significant postoperative inhibition for tumor recurrence and metastasis. However, limited tumor antigens are not conducive to trigger complete antigen-specific T cell-mediated immune responses. Herein, the design of a hydrogel vaccine system containing a granulocyte-macrophage colony stimulating factor (GM-CSF), based on surgically removed tumor cell lysates, was reported. The hydrogel was formed by crosslinking tumor cell lysates and alginate at low temperatures. The GM-CSF was released from the hydrogel to recruit dendritic cells (DCs), which provided a completely personalized tumor antigen pool. They were combined to foster the production of powerful antigen-specific T cells. The personalized hydrogel was implanted at the surgical site and it stimulated the antitumor immune response for the inhibition of residual tumor cells. Delightfully, the personalized hydrogel inhibited the tumor recurrence and metastasis well in a post-surgical mice tumor model, in combination with a programmed death-ligand 1 antibody (αPD-L1). The results demonstrated that the development of a personalized hydrogel and a combination of αPD-L1 provided a new strategy to prevent tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Yi Lu
- Nanshan School, Guangzhou Medical University, Guangzhou, 510810, China
| | - Chenghu Wu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. .,Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory, (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Yanyan Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xiangzhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent System (IRIS) Swiss Federal Institute of Technology (ETH) Zurich, CLA H11.1, ETH-Zentrum, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Feihang Ge
- Hangzhou Chinese Academy of Sciences-Hangzhou Medical College Advanced Medical Technology Institute, Hangzhou 320000, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. .,Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory, (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. .,Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory, (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
217
|
Lu W, Qiu J, Xie X, Li K, Duan Y, Li M, Ma C, Cheng Z, Liu S. Recognizing Tumor Origin for Lymphoid Tumor of Unknown Primary via Total-Body PET/CT Scan—Case Report. Front Oncol 2022; 12:766490. [PMID: 35186725 PMCID: PMC8850463 DOI: 10.3389/fonc.2022.766490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Localizing the site of tumor origin for patients with lymphoid tumor is fairly difficult before the definitive detection of the primary tumor, which causes redundant imaging examinations and medical costs. To circumvent this obstacle, the emergence of the world’s first total-body positron emission tomography/computed tomography (PET/CT) provides a transformative platform for simultaneously static and dynamic human molecular imaging. Here, we reported a case of lymph node metastasis from an unknown primary tumor, and the primary tumor was detected with the aid of the total-body PET/CT scanner. This patient with right neck mass was subjected to static and dynamic PET scan, as the static PET imaging found irregular thickening of the upper rectal wall and the dynamic PET imaging recognized the associations between the lymph metastasis and the rectal tumor lesions. The diagnosis by the total-body PET/CT was confirmed by pathological examination.
Collapse
Affiliation(s)
- Weizhao Lu
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xue Xie
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Kun Li
- Department of PET-CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Yanhua Duan
- Department of PET-CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Min Li
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Ma
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhaoping Cheng
- Department of PET-CT, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
- *Correspondence: Zhaoping Cheng, ; Sijin Liu,
| | - Sijin Liu
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Environment Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhaoping Cheng, ; Sijin Liu,
| |
Collapse
|
218
|
Borriello L, Coste A, Traub B, Sharma VP, Karagiannis GS, Lin Y, Wang Y, Ye X, Duran CL, Chen X, Friedman M, Sosa MS, Sun D, Dalla E, Singh DK, Oktay MH, Aguirre-Ghiso JA, Condeelis JS, Entenberg D. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun 2022; 13:626. [PMID: 35110548 PMCID: PMC8811052 DOI: 10.1038/s41467-022-28076-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Brian Traub
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yu Lin
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Madeline Friedman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Sun
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Erica Dalla
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak K Singh
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Julio A Aguirre-Ghiso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
219
|
Marques-Magalhães Â, Cruz T, Costa ÂM, Estêvão D, Rios E, Canão PA, Velho S, Carneiro F, Oliveira MJ, Cardoso AP. Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers (Basel) 2022; 14:cancers14020359. [PMID: 35053521 PMCID: PMC8773780 DOI: 10.3390/cancers14020359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
More than a physical structure providing support to tissues, the extracellular matrix (ECM) is a complex and dynamic network of macromolecules that modulates the behavior of both cancer cells and associated stromal cells of the tumor microenvironment (TME). Over the last few years, several efforts have been made to develop new models that accurately mimic the interconnections within the TME and specifically the biomechanical and biomolecular complexity of the tumor ECM. Particularly in colorectal cancer, the ECM is highly remodeled and disorganized and constitutes a key component that affects cancer hallmarks, such as cell differentiation, proliferation, angiogenesis, invasion and metastasis. Therefore, several scaffolds produced from natural and/or synthetic polymers and ceramics have been used in 3D biomimetic strategies for colorectal cancer research. Nevertheless, decellularized ECM from colorectal tumors is a unique model that offers the maintenance of native ECM architecture and molecular composition. This review will focus on innovative and advanced 3D-based models of decellularized ECM as high-throughput strategies in colorectal cancer research that potentially fill some of the gaps between in vitro 2D and in vivo models. Our aim is to highlight the need for strategies that accurately mimic the TME for precision medicine and for studying the pathophysiology of the disease.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Tânia Cruz
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Ângela Margarida Costa
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Diogo Estêvão
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Rios
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Pedro Amoroso Canão
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Sérgia Velho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Fátima Carneiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- IPATIMUP-Institute of Pathology and Molecular Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Maria José Oliveira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Patrícia Cardoso
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (Â.M.-M.); (T.C.); (Â.M.C.); (D.E.); (E.R.); (S.V.); (F.C.); (M.J.O.)
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-22-607-4900
| |
Collapse
|
220
|
Jing Y, Zhang Y, Pan R, Ding K, Chen R, Meng Q. Effect of Inhalation Anesthetics on Tumor Metastasis. Technol Cancer Res Treat 2022; 21:15330338221121092. [PMID: 36131554 PMCID: PMC9502254 DOI: 10.1177/15330338221121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many factors affect the prognosis of patients undergoing tumor surgery, and anesthesia is one of the potential influencing factors. In general anesthesia, inhalation anesthesia is widely used in the clinic because of its strong curative effect and high controllability. However, the effect of inhalation anesthetics on the tumor is still controversial. More and more research has proved that inhalation anesthetics can intervene in local recurrence and distant metastasis of tumor by acting on tumor biological behavior, immune response, and gene regulation. In this paper, we reviewed the research progress of diverse inhalation anesthetics promoting or inhibiting cancer in the critical events of tumor recurrence and metastasis, and compared the effects of inhalation anesthetics on patients' prognosis in clinical studies, to provide theoretical reference for anesthesia management of patients undergoing tumor surgery.
Collapse
Affiliation(s)
- Yixin Jing
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiguo Zhang
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Pan
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, 117921Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
221
|
Baio R, Intilla O, Di Mauro U, Pane U, Molisso G, Sanseverino R. OUP accepted manuscript. J Surg Case Rep 2022; 2022:rjab614. [PMID: 35355579 PMCID: PMC8963163 DOI: 10.1093/jscr/rjab614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Near-infrared fluorescence imaging with indocyanine green has emerging applications in urologic surgery. This technology is strongly used in robotic surgery for several ablative and reconstructive procedures. On the contrary, it is not used at all in the urological laparoscopic surgery. To date, bilateral pelvic lymph node dissection represents the most accurate and reliable staging procedure for the detection of lymph node invasion in prostate cancer and bladder cancer. However, it is not devoid of complications. In this field, indocyanine green fluorescence-guided sentinel lymph node identification is an emerging technique, as accurate staging of urologic cancer could be enhanced by an intraoperative lymphatic mapping. Our goal was to show a high spatial resolution, real-time intraoperative imaging technique to recognize the main lymphatic drainage networks, avoiding at same time lymphatic vessel damage. Furthermore, the use of such an imaging system represents an absolute novelty in the field of urological laparoscopy.
Collapse
Affiliation(s)
- Raffaele Baio
- Correspondence address. Department of Medicine and Surgery “Scuola Medica Salernitana,” University of Salerno, Salvador Allende Street 43, 84081 Baronissi, Salerno, Italy. E-mail:
| | - Olivier Intilla
- Department of Urology, Umberto I Hospital, Nocera Inferiore, Salerno, Italy
| | - Umberto Di Mauro
- Department of Urology, Umberto I Hospital, Nocera Inferiore, Salerno, Italy
| | - Umberto Pane
- Department of Urology, Umberto I Hospital, Nocera Inferiore, Salerno, Italy
| | - Giovanni Molisso
- Department of Urology, Umberto I Hospital, Nocera Inferiore, Salerno, Italy
| | | |
Collapse
|
222
|
Zhang X, Zheng Q, Wang Z, Xu C, Han H, Li A, Ma G, Li J, Lu C, Chen H, Zhang Z. Qualitative and Quantitative Analysis of Tumor Cell Invasion Using Au Clusters. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:145. [PMID: 35010094 PMCID: PMC8746878 DOI: 10.3390/nano12010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022]
Abstract
Tumor invasion/metastasis is still the major cause of death in cancer patients. Membrane type-1 matrix metalloproteinase (MT1-MMP) is directly related to tumor invasion/metastasis. To accurately and quickly distinguish the risk of invasion/metastasis of primary tumor cells, it is urgent to develop a simple and precise quantitative method to distinguish the expression level of MT1-MMP. In this work, we have constructed red fluorescent Au clusters with peroxidase-like properties that could specifically bind to MT1-MMP on human cervical cancer cells. After MT1-MMP was labelled with Au clusters, we could visually see red fluorescence of MT1-MMP on cervical cancer cells via fluorescence microscopy and catalytic color imaging using an ordinary optical microscope. The constructed Au clusters contained 26 Au atoms; thus, the amount of MT1-MMP on cervical cancer cells could be accurately quantified using inductively coupled plasma mass spectrometry (ICP-MS). More importantly, the invasion/metastasis capabilities of the cervical cancer Siha, Caski and Hela cells with different MT1-MMP amounts could be accurately distinguished by fluorescence/catalysis qualitative imaging and ICP-MS quantitative analysis. This method of qualitative/quantitative analysis of tumor-associated proteins on cancer cells has great potential for accurately diagnosing aggressive tumor cells and assessment of their invasion/metastasis risk.
Collapse
Affiliation(s)
- Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China;
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Aiping Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Guicen Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Jiaojiao Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China;
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (X.Z.); (Q.Z.); (Z.W.); (H.H.); (A.L.); (G.M.); (C.L.)
| | - Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
223
|
Duan J, Bao C, Xie Y, Guo H, Liu Y, Li J, Liu R, Li P, Bai J, Yan Y, Mu L, Li X, Wang G, Lu W. Targeted core-shell nanoparticles for precise CTCF gene insert in treatment of metastatic breast cancer. Bioact Mater 2021; 11:1-14. [PMID: 34938908 DOI: 10.1016/j.bioactmat.2021.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology emerges a remarkable potential for cure of refractory cancer like metastatic breast cancer. However, how to efficiently deliver the CRISPR system with non-viral carrier remains a major issue to be solved. Here, we report a kind of targeted core-shell nanoparticles (NPs) carrying dual plasmids (pHR-pCas9) for precise CCCTC-binding factor (CTCF) gene insert to circumvent metastatic breast cancer. The targeted core-shell NPs carrying pHR-pCas9 can accomplish γGTP-mediated cellular uptake and endosomal escape, facilitate the precise insert and stable expression of CTCF gene, inhibit the migration, metastasis, and colonization of metastatic breast cancer cells. Besides, the finding further reveals that the inhibitory mechanism of metastasis could be associated with up-regulating CTCF protein, followed by down-regulating stomatin (STOM) protein. The study offers a universal nanostrategy enabling the robust non-viral delivery of gene-editing system for treatment of severe illness.
Collapse
Affiliation(s)
- Jialun Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chunjie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ying Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Haitao Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yixuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jianwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100875, China
| | - Rui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peishan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jing Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Limin Mu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xueqi Li
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wanliang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, And School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
224
|
Li T, Lin Q, Guo Y, Zhao S, Zeng X, Man Z, Cao Y, Hu Y. Automated detection of skeletal metastasis of lung cancer with bone scans using convolutional nuclear network. Phys Med Biol 2021; 67. [PMID: 34933282 DOI: 10.1088/1361-6560/ac4565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
Bone scan is widely used for surveying bone metastases caused by various solid tumors. Scintigraphic images are characterized by inferior spatial resolution, bringing a significant challenge to manual analysis of images by nuclear medicine physicians. We present in this work a new framework for automatically classifying scintigraphic images collected from patients clinically diagnosed with lung cancer. The framework consists of data preparation and image classification. In the data preparation stage, data augmentation is used to enlarge the dataset, followed by image fusion and thoracic region extraction. In the image classification stage, we use a self-defined convolutional neural network consisting of feature extraction, feature aggregation, and feature classification sub-networks. The developed multi-class classification network can not only predict whether a bone scan image contains bone metastasis but also tell which subcategory of lung cancer that a bone metastasis metastasized from is present in the image. Experimental evaluations on a set of clinical bone scan images have shown that the proposed multi-class classification network is workable for automated classification of metastatic images, with achieving average scores of 0.7392, 0.7592, 0.7242, and 0.7292 for accuracy, precision, recall, and F-1 score, respectively.
Collapse
Affiliation(s)
- Tongtong Li
- Northwest Minzu University, No. 1, Xibei Xincun Rd., Lanzhou, Gansu, 730030, CHINA
| | - Qiang Lin
- School of Mathematics and Computer Science, Northwest Minzu University, No. 1, Xibei Xincun Rd., Lanzhou, 730030, CHINA
| | - Yanru Guo
- Northwest Minzu University, No. 1, Xibei Xincun Rd., Lanzhou, Gansu, 730030, CHINA
| | - Shaofang Zhao
- Northwest Minzu University, No. 1, Xibei Xincun Rd., Lanzhou, Gansu, 730030, CHINA
| | - Xianwu Zeng
- Gansu Provincial Cancer Hospital, No. 2, Dongjie Rd., Lanzhou, Gansu, 730050, CHINA
| | - Zhengxing Man
- Northwest Minzu University, No. 1, Xibei Xincun Rd., Lanzhou, Gansu, 730030, CHINA
| | - Yongchun Cao
- Northwest Minzu University, No. 1, Xibei Xincun Rd., Lanzhou, Gansu, 730030, CHINA
| | - Yonghua Hu
- Gansu University of Chinese Medicine, No. 35, Dingxi Donglu Rd., Lanzhou, 730000, CHINA
| |
Collapse
|
225
|
Fiandaca G, Bernardi S, Scianna M, Delitala ME. A phenotype-structured model to reproduce the avascular growth of a tumor and its interaction with the surrounding environment. J Theor Biol 2021; 535:110980. [PMID: 34915043 DOI: 10.1016/j.jtbi.2021.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
We here propose a one-dimensional spatially explicit phenotype-structured model to analyze selected aspects of avascular tumor progression. In particular, our approach distinguishes viable and necrotic cell fractions. The metabolically active part of the disease is, in turn, differentiated according to a continuous trait, that identifies cell variants with different degrees of motility and proliferation potential. A parabolic partial differential equation (PDE) then governs the spatio-temporal evolution of the phenotypic distribution of active cells within the host tissue. In this respect, active tumor agents are allowed to duplicate, move upon haptotactic and pressure stimuli, and eventually undergo necrosis. The mutual influence between the emerging malignancy and its environment (in terms of molecular landscape) is implemented by coupling the evolution law of the viable tumor mass with a parabolic PDE for oxygen kinetics and a differential equation that accounts for local consumption of extracellular matrix (ECM) elements. The resulting numerical realizations reproduce tumor growth and invasion in a number scenarios that differ for cell properties (i.e., individual migratory behavior, duplication and mutation potential) and environmental conditions (i.e., level of tissue oxygenation and homogeneity in the initial matrix profile). In particular, our simulations show that, in all cases, more mobile cell variants occupy the front edge of the tumor, whereas more proliferative clones are selected at the more internal regions. A necrotic core constantly occupies the bulk of the mass due to nutrient deprivation. This work may eventually suggest some biomedical strategies to partially reduce tumor aggressiveness, i.e., to enhance necrosis of malignant tissue and to promote the presence of more proliferative cell phenotypes over more invasive ones.
Collapse
Affiliation(s)
- Giada Fiandaca
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Sara Bernardi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marco Scianna
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marcello Edoardo Delitala
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
226
|
Zhu X, Li L, Tang J, Yang C, Yu H, Liu K, Zheng Z, Gu X, Yu Q, Xu FJ, Gan Z. Cascade-responsive nano-assembly for efficient photothermal-chemo synergistic inhibition of tumor metastasis by targeting cancer stem cells. Biomaterials 2021; 280:121305. [PMID: 34890970 DOI: 10.1016/j.biomaterials.2021.121305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Metastasis has been widely recognized as the most lethal threats for cancer patients. Due to their special genetic and environmental context, cancer stem cells (CSCs) which are resistant to most cytotoxic drugs and radiation, are considered as the dominant culprit for metastasis. Thus, the efficient targeting and thorough elimination of CSCs are significantly urgent for the enhancement of therapeutic efficacy. Herein, we developed a facile and smart photothermal-chemo therapeutic nano-assembly system, of which the surface was modified by a sheddable PEG shell and acid-activatable pro-penetration peptide, to surmount the physiological barriers in targeting CSCs. A highly-efficient diradical-featured croconium-based photothermal agent and a natural cytotoxic heat shock protein (HSP) inhibitor were co-loaded in redox-sensitive chitosan matrices to realize the synergistic photothermal-chemo therapy. Within solid tumors, the PEG shell that prevents the nano-assembly from mononuclear phagocytic clearance could rapidly leave to expose the positively charged chitosan, and the detached iRGD could further actuate the tumor penetration of chitosan nanoparticles, and allow the CSCs targeting by selective recognition of CD44 protein. Owing to the HSP inhibition and chemo-sensitization, both the CSCs and non-CSCs could be thoroughly eliminated by the designed nano-assembly, largely inhibiting the tumor growth and metastasis. This work provides a potential strategy for CSCs-targeting drug delivery to solve the CSCs-related metastasis.
Collapse
Affiliation(s)
- Xianqi Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyu Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kunpeng Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ziyan Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qingsong Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Fu-Jian Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
227
|
Saha M, Deshpande N, Dubey A, Pal D, Atreya HS, Rangarajan A. Sustained AMPK Activation and Proline Metabolism Play Critical Roles in the Survival of Matrix-Deprived Transformed Cells. Front Cell Dev Biol 2021; 9:771366. [PMID: 34869367 PMCID: PMC8634847 DOI: 10.3389/fcell.2021.771366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Attachment to the matrix is critical for the survival of adherent cells, whereas detachment triggers death by apoptosis. Therefore, solid tumors must acquire the ability to survive the stress of matrix-detachment to transit through circulation and seed metastases. Although a central role for energy metabolism in cancer progression is well established, what distinguishes its role in the cellular state of the matrix-deprived form compared to the matrix-attached form is not fully understood yet. Using an in vitro transformation model dependent on simian virus 40 (SV40) small t (ST) antigen for cellular survival and proliferation in matrix-deprived conditions, we demonstrate that 5′-adenosine monophosphate-activated protein kinase (AMPK) activity is elevated and sustained under matrix-deprived conditions in ST-expressing fibroblasts. Additionally, these cells display elevated energy (ATP) levels under matrix-deprived conditions in contrast to cells lacking ST expression. The elevated ATP levels are coupled to increased levels of proline in ST-expressing cells, as revealed by metabolomics studies. The AMPK-dependent upregulation of proline oxidase, an enzyme of proline degradation, is a key link for elevated ATP levels. This functional link is further established by proline supplementation concomitant with AMPK activation in matrix-deprived cells lacking ST antigen, yielding ATP and enhancing survival. Thus, our data establishes a key role for AMPK-dependent regulation of proline metabolism in mediating energy homeostasis and promoting survival of matrix-deprived cells. These findings identify key markers that distinguish the metabolic states of matrix-detached and matrix-attached transformed cells and have implications in developing novel therapeutic strategies for specifically targeting matrix-detached metastasizing cancer cells.
Collapse
Affiliation(s)
- Manipa Saha
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Neha Deshpande
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Abhinav Dubey
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, India.,NMR Research Centre, Indian Institute of Science, Bangalore, India
| | - Debnath Pal
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, India.,Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, India.,Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Annapoorni Rangarajan
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
228
|
Junctional Adhesion Molecule-C expression specifies a CD138low/neg multiple myeloma cell population in mice and humans. Blood Adv 2021; 6:2195-2206. [PMID: 34861679 PMCID: PMC9006287 DOI: 10.1182/bloodadvances.2021004354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
JAM-C identifies a distinct MM cell population in bone marrow of patients and mice. Targeting JAM-C ameliorates MM progression and offers potential therapeutic options that might complement standard treatment regimens.
Deregulation such as overexpression of adhesion molecules influences cancer progression and survival. Metastasis of malignant cells from their primary tumor site to distant organs is the most common reason for cancer-related deaths. Junctional adhesion molecule-C (JAM-C), a member of the immunoglobulin-like JAM family, can homodimerize and aid cancer cell migration and metastasis. Here we show that this molecule is dynamically expressed on multiple myeloma (MM) cells in the bone marrow and co-localizes with blood vessels within the bone marrow of patients and mice. In addition, upregulation of JAM-C inversely correlates with the downregulation of the canonical plasma cell marker CD138 (syndecan-1), whose surface expression has recently been found to dynamically regulate a switch between MM growth in situ and MM dissemination. Moreover, targeting JAM-C in a syngeneic in vivo MM model ameliorates MM progression and improves outcome. Overall, our data demonstrate that JAM-C might serve not only as an additional novel diagnostic biomarker but also as a therapeutic target in MM disease.
Collapse
|
229
|
Ren BX, Li Y, Li HM, Lu T, Wu ZQ, Fu R. The Antibiotic Drug Trimethoprim Suppresses Tumor Growth and Metastasis via Targeting Snail. Br J Pharmacol 2021; 179:2659-2677. [PMID: 34855201 DOI: 10.1111/bph.15763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The zinc finger transcription factor Snail is aberrantly activated in many human cancers and strongly associated with poor prognosis. As a transcription factor, Snail has been traditionally considered an "undruggable" target. Here, we identified a potent small molecule inhibitor of Snail, namely trimethoprim, and investigated its potential antitumor effects and the underlying mechanisms. EXPERIMENTAL APPROACH The inhibitory action of trimethoprim on Snail protein and the related molecular mechanisms were revealed by molecular docking, biolayer interferometry, immunoblotting, immunoprecipitation, qRT-PCR, pull-down, and cycloheximide pulse-chase assays. The anti-proliferative and anti-metastatic effects of trimethoprim via targeting Snail were tested in multiple cell-based assays and animal models. KEY RESULTS This study identified trimethoprim, an antimicrobial drug, as a potent anti-tumor agent via targeting Snail. Molecular modeling analysis predicted that trimethoprim directly binds to the arginine-174 pocket of Snail protein. We further discovered that trimethoprim strongly interrupts the interaction of Snail with CREB-binding protein (CBP)/p300, which consequently suppresses Snail acetylation and promotes Snail degradation through ubiquitin-proteasome pathway. Furthermore, trimethoprim sufficiently inhibited the proliferation, epithelial-mesenchymal transition (EMT), and migration of cancer cells in vitro via specifically targeting Snail. More importantly, trimethoprim effectively reduced Snail-driven tumor growth and metastasis to vital organs such as lung, bone, and liver. CONCLUSIONS AND IMPLICATIONS These findings indicate, for the first time, that trimethoprim suppresses tumor growth and metastasis via targeting Snail. This study provides insights for a better understanding of the anticancer effects of trimethoprim and offers a potential anti-cancer therapeutic agent for clinical treatment.
Collapse
Affiliation(s)
- Bo-Xue Ren
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Li
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Mei Li
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
230
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
231
|
Zehra S, Cirilli I, Silvestri S, Gómez-Ruiz S, Tabassum S, Arjmand F. Structure elucidation, in vitro binding studies and ROS-dependent anti-cancer activity of Cu(II) and Zn(II) phthaloylglycinate(phen) complexes against MDA-MB-231 cells. Metallomics 2021; 13:mfab064. [PMID: 34724067 DOI: 10.1093/mtomcs/mfab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
New mononuclear Cu(II) and Zn(II)-based complexes 1 [Cu(L)2(diimine)HOCH3] and 2 [Zn(L)2(diimine)] have been synthesized as anti-cancer chemotherapeutics targeted to tRNA. The structure elucidation of complexes 1 and 2 was carried out by spectroscopic and single X-ray diffraction studies. In vitro interaction studies of complexes 1 and 2 with ct-DNA/tRNA were performed by employing various biophysical techniques to evaluate and predict their interaction behavior and preferential selectivity at biomolecular therapeutic targets. The corroborative results of the interaction studies demonstrated that complexes 1 and 2 exhibited avid binding propensity via intercalative mode of binding toward ct-DNA/tRNA. Electrophoretic assay revealed that the complexes 1 and 2 were able to promote single- and double-strand cleavage of the plasmid DNA at low micromolar concentrations under physiological conditions in the absence of an additional oxidizing or reducing agent. RNA hydrolysis studies revealed that the complexes 1 and 2 could promote tRNA cleavage in a concentration and time-dependent manner. The cytotoxic potential of complexes 1 and 2 was evaluated against the MDA-MB-231 cell line, which showed that the complexes were able to inhibit the cell growth in a dose-dependent manner. The intracellular ROS production and mitochondrial superoxide anion assay revealed that the complexes 1 and 2 induce a dose-dependent activity, suggesting the involvement of ROS-mediated mitochondrial apoptotic pathway leading to cell death.
Collapse
Affiliation(s)
- Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- School of Pharmacy, University of Camerino, Camerino (MC) 62032, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica,, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| |
Collapse
|
232
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
233
|
Anderson EM, Thomassian S, Gong J, Hendifar A, Osipov A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers (Basel) 2021; 13:5510. [PMID: 34771675 PMCID: PMC8583016 DOI: 10.3390/cancers13215510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest malignancies among all cancers. Despite curative intent, surgery and the use of standard cytotoxic chemotherapy and radiation therapy, PDAC remains treatment-resistant. In recent years, more contemporary treatment modalities such as immunotherapy via checkpoint inhibition have shown some promise in many other malignancies, yet PDAC still eludes an effective curative treatment. In investigating these phenomena, research has suggested that the significant desmoplastic and adaptive tumor microenvironment (TME) of PDAC promote the proliferation of immunosuppressive cells and act as major obstacles to treatment efficacy. In this review, we explore challenges associated with the treatment of PDAC, including its unique immunosuppressive TME. This review examines the role of surgery in PDAC, recent advances in surgical approaches and surgical optimization. We further focus on advances in immunotherapeutic approaches, including checkpoint inhibition, CD40 agonists, and discuss promising immune-based future strategies, such as therapeutic neoantigen cancer vaccines as means of overcoming the resistance mechanisms which underly the dense stroma and immune milieu of PDAC. We also explore unique signaling, TME and stromal targeting via novel small molecule inhibitors, which target KRAS, FAK, CCR2/CCR5, CXCR4, PARP and cancer-associated fibroblasts. This review also explores the most promising strategy for advancement in treatment of pancreatic cancer by reviewing contemporary combinatorial approaches in efforts to overcome the treatment refractory nature of PDAC.
Collapse
Affiliation(s)
- Eric M. Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Shant Thomassian
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Jun Gong
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Andrew Hendifar
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Arsen Osipov
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| |
Collapse
|
234
|
Godet I, Mamo M, Thurnheer A, Rosen DM, Gilkes DM. Post-Hypoxic Cells Promote Metastatic Recurrence after Chemotherapy Treatment in TNBC. Cancers (Basel) 2021; 13:cancers13215509. [PMID: 34771673 PMCID: PMC8583122 DOI: 10.3390/cancers13215509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Intratumoral hypoxia is a negative prognostic factor in breast cancer progression and recurrence. By implementing a hypoxia fate-mapping system, we followed cells that experience intratumoral hypoxia in vivo and determined that these cells have an increased ability to metastasize compared to cells that were never exposed to hypoxia. In this work, we investigate whether cells that experienced intratumoral hypoxia are also resistant to chemotherapy. By utilizing both in vivo and ex vivo models, we conclude that metastatic cells found in the lung and liver, that were exposed to hypoxia in the primary tumor, are less sensitive to doxorubicin and paclitaxel and drive recurrence after treatment. Our studies also suggest that chemoresistance is associated with a cancer stem cell-like phenotype that is maintained in post-hypoxic cells. Abstract Hypoxia occurs in 90% of solid tumors and is associated with treatment failure, relapse, and mortality. HIF-1α signaling promotes resistance to chemotherapy in cancer cell lines and murine models via multiple mechanisms including the enrichment of breast cancer stem cells (BCSCs). In this work, we utilize a hypoxia fate-mapping system to determine whether triple-negative breast cancer (TNBC) cells that experience hypoxia in the primary tumor are resistant to chemotherapy at sites of metastasis. Using two orthotopic mouse models of TNBC, we demonstrate that cells that experience intratumoral hypoxia and metastasize to the lung and liver have decreased sensitivity to doxorubicin and paclitaxel but not cisplatin or 5-FU. Resistance to therapy leads to metastatic recurrence caused by post-hypoxic cells. We further determined that the post-hypoxic cells that metastasize are enriched in pathways related to cancer stem cell gene expression. Overall, our results show that even when hypoxic cancer cells are reoxygenated in the bloodstream they retain a hypoxia-induced cancer stem cell-like phenotype that persists and promotes resistance and eventually recurrence.
Collapse
Affiliation(s)
- Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (I.G.); (M.M.); (D.M.R.)
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA;
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mahelet Mamo
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (I.G.); (M.M.); (D.M.R.)
| | - Andrea Thurnheer
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA;
| | - D. Marc Rosen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (I.G.); (M.M.); (D.M.R.)
| | - Daniele M. Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (I.G.); (M.M.); (D.M.R.)
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA;
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Correspondence:
| |
Collapse
|
235
|
Jung YY, Baek SH, Narula AS, Namjoshi OA, Blough BE, Ahn KS. Potential function of oxymatrine as a novel suppressor of epithelial-to-mesenchymal transition in lung tumor cells. Life Sci 2021; 284:119893. [PMID: 34454947 DOI: 10.1016/j.lfs.2021.119893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023]
Abstract
AIMS Tumor cells metastasis as well as proliferation are important factors that can substantially determines the prognosis of cancer. In particular, epithelial-mesenchymal transition (EMT) is key phenomena which can cause tumor cell transition into other organs by promoting the disruption of the cell-cell junctions. Because oxymatrine (OMT) have been reported to attenuate the tumor growth, we investigated whether OMT can down-regulate EMT process in tumor cells. We also focused on transforming growth factor-β (TGF-β)-induced EMT process because EMT process can be significantly induced by this growth factor. MAIN METHODS The cell viability was measured by MTT and real time cell analysis (RTCA) assay. The expression levels of various proteins involved in the regulation of EMT and Akt/mTOR/PI3K signaling pathway were evaluated by Western blot analysis. mRNA levels of several important EMT markers were analyzed by reverse transcription polymerase chain reaction (RT-PCR). The effects of OMT on the cellular invasion and migration were evaluated by RTCA, wound healing assay, and boyden chamber assays. KEY FINDINGS OMT suppressed the expression of both constitutive and TGF-β-induced mesenchymal markers, such as fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail, but induced the levels of epithelial markers. Moreover, OMT down-regulated oncogenic PI3K/Akt/mTOR pathways which lead to a significant attenuation of invasive and migratory potential of lung cancer cells. SIGNIFICANCE Overall, our study established a novel anti-metastatic role of OMT against human lung cancer cells.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | | | - Ojas A Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27616, USA
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
236
|
Xu T, Yu S, Sun Y, Wu S, Gao D, Wang M, Wang Z, Tian Y, Min Q, Zhu JJ. DNA Origami Frameworks Enabled Self-Protective siRNA Delivery for Dual Enhancement of Chemo-Photothermal Combination Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101780. [PMID: 34611987 DOI: 10.1002/smll.202101780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Although chemotherapy and photothermal therapy are widely used to combat cancer, their efficacy is often limited by multidrug resistance. Small interfering RNAs (siRNAs) have ability to suppress the expression of target genes, which has been extensively employed for combating the multidrug resistance to chemodrugs and hyperthermia in cancer therapy. However, efficient delivery of siRNAs along with chemo-photothermal agents in vivo is still an enormous challenge. Herein, octahedral DNA origami frameworks (OctDOFs) are constructed as a nanovehicle for precise organization and orchestrated delivery of siRNAs, chemodrugs (doxorubicin, Dox), and photothermal agents (gold nanorods, AuNRs) in combinatorial treatment of cancer. The inner cavity of the rigid OctDOFs structure is able to shield the encapsulated siRNAs during transportation by sterically hindering RNase degradation and protein binding, thus achieving effective downregulation of connective tissue growth factor (CTGF) and heat shock protein 72 (HSP72) for dual sensitization of cancer cells to chemodrugs and hyperthermia. By amplifying chemo-photothermal therapeutic potency with siRNAs, the proposed OctDOFs exhibited superior cytotoxicity and tumor inhibition efficacy in vitro and in vivo. This nanovehicle creates a promising siRNA delivery platform for precise medication and combination therapy.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Sha Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, P. R. China
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Yao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Di Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Mingyang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenzhen Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
237
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
238
|
Patel DA, Blay J. Seeding metastases: The role and clinical utility of circulating tumour cells. Tumour Biol 2021; 43:285-306. [PMID: 34690152 DOI: 10.3233/tub-210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peripheral human blood is a readily-accessible source of patient material in which circulating tumour cells (CTCs) can be found. Their isolation and characterization holds the potential to provide prognostic value for various solid cancers. Enumeration of CTCs from blood is becoming a common practice in informing prognosis and may guide therapy decisions. It is further recognized that enumeration alone does not capture perspective on the heterogeneity of tumours and varying functional abilities of the CTCs to interact with the secondary microenvironment. Characterizing the isolated CTCs further, in particular assessing their functional abilities, can track molecular changes in the disease progress. As a step towards identifying a suite of functional features of CTCs that could aid in clinical decisions, developing a CTC isolation technique based on extracellular matrix (ECM) interactions may provide a more solid foundation for isolating the cells of interest. Techniques based on size, charge, density, and single biomarkers are not sufficient as they underutilize other characteristics of cancer cells. The ability of cancer cells to interact with ECM proteins presents an opportunity to utilize their full character in capturing, and also allows assessment of the features that reveal how cells might behave at secondary sites during metastasis. This article will review some common techniques and recent advances in CTC capture technologies. It will further explore the heterogeneity of the CTC population, challenges they experience in their metastatic journey, and the advantages of utilizing an ECM-based platform for CTC capture. Lastly, we will discuss how tailored ECM approaches may present an optimal platform to capture an influential heterogeneous population of CTCs.
Collapse
Affiliation(s)
- Deep A Patel
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
239
|
TRPC1 promotes the genesis and progression of colorectal cancer via activating CaM-mediated PI3K/AKT signaling axis. Oncogenesis 2021; 10:67. [PMID: 34642309 PMCID: PMC8511127 DOI: 10.1038/s41389-021-00356-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
Transient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.
Collapse
|
240
|
Li K, Wu R, Zhou M, Tong H, Luo KQ. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. SCIENCE ADVANCES 2021; 7:eabg7265. [PMID: 34586853 PMCID: PMC8480931 DOI: 10.1126/sciadv.abg7265] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
To study how cancer cells can withstand fluid shear stress (SS), we isolated SS-resistant breast and lung cancer cells using a microfluidic circulatory system. These SS-resistant cells showed higher abilities to form clusters, survive in circulation, and metastasize in mice. These SS-resistant cells expressed 4.2- to 5.3-fold more desmocollin-2 (DSC2) and plakophilin-1 (PKP1) proteins. The high expression of DSC2 and PKP1 facilitated cancer cells to form clusters in circulation, and also activated PI3K/AKT/Bcl-2–mediated pathway to increase cell survival. The high levels of DSC2 and PKP1 are also important for maintaining high expression of vimentin, which stimulates fibronectin/integrin β1/FAK/Src/MEK/ERK/ZEB1–mediated metastasis. Moreover, higher levels of DSC2 and PKP1 were detected in tumor samples from patients with breast and lung cancer, and their high expression was correlated with lower overall survival and worse disease progression. DSC2 and PKP1 may serve as new biomarkers for detecting and targeting metastatic circulating tumor cells.
Collapse
Affiliation(s)
- Koukou Li
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Renfei Wu
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Muya Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Haibo Tong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Kathy Q. Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
241
|
Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021; 13:4754. [PMID: 34638240 PMCID: PMC8507527 DOI: 10.3390/cancers13194754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In cancer, two unique and seemingly contradictory behaviors are evident: on the one hand, tumors are typically stiffer than the tissues in which they grow, and this high stiffness promotes their malignant progression; on the other hand, cancer cells are anchorage-independent-namely, they can survive and grow in soft environments that do not support cell attachment. How can these two features be consolidated? Recent findings on the mechanisms by which cells test the mechanical properties of their environment provide insight into the role of aberrant mechanosensing in cancer progression. In this review article, we focus on the role of high stiffness on cancer progression, with particular emphasis on tumor growth; we discuss the mechanisms of mechanosensing and mechanotransduction, and their dysregulation in cancerous cells; and we propose that a 'yin and yang' type phenomenon exists in the mechanobiology of cancer, whereby a switch in the type of interaction with the extracellular matrix dictates the outcome of the cancer cells.
Collapse
Affiliation(s)
- Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
242
|
The Underappreciated Role of Epithelial Mesenchymal Transition in Chronic Obstructive Pulmonary Disease and Its Strong Link to Lung Cancer. Biomolecules 2021; 11:biom11091394. [PMID: 34572606 PMCID: PMC8472619 DOI: 10.3390/biom11091394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
The World Health Organisation reported COPD to be the third leading cause of death globally in 2019, and in 2020, the most common cause of cancer death was lung cancer; when these linked conditions are added together they come near the top of the leading causes of mortality. The cell-biological program termed epithelial-to-mesenchymal transition (EMT) plays an important role in organ development, fibrosis and cancer progression. Over the past decade there has emerged a substantial literature that also links EMT specifically to the pathophysiology of chronic obstructive pulmonary disease (COPD) as primarily an airway fibrosis disease; COPD is a recognised strong independent risk factor for the development of lung cancer, over and above the risks associated with smoking. In this review, our primary focus is to highlight these linkages and alert both the COPD and lung cancer fields to these complex interactions. We emphasise the need for inter-disciplinary attention and research focused on the likely crucial roles of EMT (and potential for its inhibition) with recognition of its strategic place mechanistically in both COPD and lung cancer. As part of this we discuss the future potential directions for novel therapeutic opportunities, including evidence-based strategic repurposing of currently used familiar/approved medications.
Collapse
|
243
|
Wang K, Zhong H, Li N, Yu N, Wang Y, Chen L, Sun J. Discovery of Novel Anti-Breast-Cancer Inhibitors by Synergistically Antagonizing Microtubule Polymerization and Aryl Hydrocarbon Receptor Expression. J Med Chem 2021; 64:12964-12977. [PMID: 34428056 DOI: 10.1021/acs.jmedchem.1c01099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A series of unreported dual-receptor inhibitors targeting both the tubulin colchicine site and AhR were designed and synthesized, and their anti-breast-cancer activities were evaluated. Compound 12 showed the strongest activity with an IC50 of 0.9 nM in MCF-7 cell lines. Besides, 12 could significantly inhibit cancer growth in MCF-7 xenograft tumor models with no obvious toxic effects and was more effective than the positive control (combretastatin A-4). With the in-depth study, it was found that 12 could induce apoptosis in breast cancer cells by making arrest in G2/M phase, depolarizing mitochondria and inducing intracellular reactive oxygen generation. This evident anticancer effect and the ability to inhibit cell migration were attributed to the synergistic antagonism of 12 on tubulin and AhR. In general, 12 was worthy of further research as an effective and safe anti-breast-cancer drug.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Hui Zhong
- Department of Pharmacology of Traditional Chinese Medicine, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 210009, China
| | - Na Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Nairong Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yujin Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|
244
|
Δ40p53 isoform up-regulates netrin-1/UNC5B expression and potentiates netrin-1 pro-oncogenic activity. Proc Natl Acad Sci U S A 2021; 118:2103319118. [PMID: 34470826 DOI: 10.1073/pnas.2103319118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Netrin-1, a secreted protein recently characterized as a relevant cancer therapeutic target, is the antiapoptotic ligand of the dependence receptors deleted in colorectal carcinoma and members of the UNC5H family. Netrin-1 is overexpressed in several aggressive cancers where it promotes cancer progression by inhibiting cell death induced by its receptors. Interference of its binding to its receptors has been shown, through the development of a monoclonal neutralizing antinetrin-1 antibody (currently in phase II of clinical trial), to actively induce apoptosis and tumor growth inhibition. The transcription factor p53 was shown to positively regulate netrin-1 gene expression. We show here that netrin-1 could be a target gene of the N-terminal p53 isoform Δ40p53, independent of full-length p53 activity. Using stable cell lines, harboring wild-type or null-p53, in which Δ40p53 expression could be finely tuned, we prove that Δ40p53 binds to and activates the netrin-1 promoter. In addition, we show that forcing immortalized human skeletal myoblasts to produce the Δ40p53 isoform, instead of full-length p53, leads to the up-regulation of netrin-1 and its receptor UNC5B and promotes cell survival. Indeed, we demonstrate that netrin-1 interference, in the presence of Δ40p53, triggers apoptosis in cancer and primary cells, leading to tumor growth inhibition in preclinical in vivo models. Finally, we show a positive correlation between netrin-1 and Δ40p53 gene expression in human melanoma and colorectal cancer biopsies. Hence, we propose that inhibition of netrin-1 binding to its receptors should be a promising therapeutic strategy in human tumors expressing high levels of Δ40p53.
Collapse
|
245
|
Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int J Mol Sci 2021; 22:9587. [PMID: 34502495 PMCID: PMC8431109 DOI: 10.3390/ijms22179587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
With the advancement of nanotechnology, the nano-bio-interaction field has emerged. It is essential to enhance our understanding of nano-bio-interaction in different aspects to design nanomedicines and improve their efficacy for therapeutic and diagnostic applications. Many researchers have extensively studied the toxicological responses of cancer cells to nano-bio-interaction, while their mechanobiological responses have been less investigated. The mechanobiological properties of cells such as elasticity and adhesion play vital roles in cellular functions and cancer progression. Many studies have noticed the impacts of cellular uptake on the structural organization of cells and, in return, the mechanobiology of human cells. Mechanobiological changes induced by the interactions of nanomaterials and cells could alter cellular functions and influence cancer progression. Hence, in addition to biological responses, the possible mechanobiological responses of treated cells should be monitored as a standard methodology to evaluate the efficiency of nanomedicines. Studying the cancer-nano-interaction in the context of cell mechanics takes our knowledge one step closer to designing safe and intelligent nanomedicines. In this review, we briefly discuss how the characteristic properties of nanoparticles influence cellular uptake. Then, we provide insight into the mechanobiological responses that may occur during the nano-bio-interactions, and finally, the important measurement techniques for the mechanobiological characterizations of cells are summarized and compared. Understanding the unknown mechanobiological responses to nano-bio-interaction will help with developing the application of nanoparticles to modulate cell mechanics for controlling cancer progression.
Collapse
Affiliation(s)
| | - Muthukumaran Packirisamy
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Centre, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada;
| |
Collapse
|
246
|
Li R, Gong Z, Liu Y, Zhao X, Guo S. Detection of circulating tumor cells and single cell extraction technology: principle, effect and application prospect. NANO FUTURES 2021; 5:032002. [DOI: 10.1088/2399-1984/ac1325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
247
|
Monticolo F, Chiusano ML. Computational Approaches for Cancer-Fighting: From Gene Expression to Functional Foods. Cancers (Basel) 2021; 13:4207. [PMID: 34439361 PMCID: PMC8393935 DOI: 10.3390/cancers13164207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
It is today widely accepted that a healthy diet is very useful to prevent the risk for cancer or its deleterious effects. Nutrigenomics studies are therefore taking place with the aim to test the effects of nutrients at molecular level and contribute to the search for anti-cancer treatments. These efforts are expanding the precious source of information necessary for the selection of natural compounds useful for the design of novel drugs or functional foods. Here we present a computational study to select new candidate compounds that could play a role in cancer prevention and care. Starting from a dataset of genes that are co-expressed in programmed cell death experiments, we investigated on nutrigenomics treatments inducing apoptosis, and searched for compounds that determine the same expression pattern. Subsequently, we selected cancer types where the genes showed an opposite expression pattern and we confirmed that the apoptotic/nutrigenomics expression trend had a significant positive survival in cancer-affected patients. Furthermore, we considered the functional interactors of the genes as defined by public protein-protein interaction data, and inferred on their involvement in cancers and/or in programmed cell death. We identified 7 genes and, from available nutrigenomics experiments, 6 compounds effective on their expression. These 6 compounds were exploited to identify, by ligand-based virtual screening, additional molecules with similar structure. We checked for ADME criteria and selected 23 natural compounds representing suitable candidates for further testing their efficacy in apoptosis induction. Due to their presence in natural resources, novel drugs and/or the design of functional foods are conceivable from the presented results.
Collapse
Affiliation(s)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy;
| |
Collapse
|
248
|
Wall TP, Buggy DJ. Perioperative Intravenous Lidocaine and Metastatic Cancer Recurrence - A Narrative Review. Front Oncol 2021; 11:688896. [PMID: 34408981 PMCID: PMC8365881 DOI: 10.3389/fonc.2021.688896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major global health problem and the second leading cause of death worldwide. When detected early, surgery provides a potentially curative intervention for many solid organ tumours. Unfortunately, cancer frequently recurs postoperatively. Evidence from laboratory and retrospective clinical studies suggests that the choice of anaesthetic and analgesic agents used perioperatively may influence the activity of residual cancer cells and thus affect subsequent recurrence risk. The amide local anaesthetic lidocaine has a well-established role in perioperative therapeutics, whether used systemically as an analgesic agent or in the provision of regional anaesthesia. Under laboratory conditions, lidocaine has been shown to inhibit cancer cell behaviour and exerts beneficial effects on components of the inflammatory and immune responses which are known to affect cancer biology. These findings raise the possibility that lidocaine administered perioperatively as a safe and inexpensive intravenous infusion may provide significant benefits in terms of long term cancer outcomes. However, despite the volume of promising laboratory data, robust prospective clinical evidence supporting beneficial anti-cancer effects of perioperative lidocaine treatment is lacking, although trials are planned to address this. This review provides a state of the art summary of the current knowledge base and recent advances regarding perioperative lidocaine therapy, its biological effects and influence on postoperative cancer outcomes.
Collapse
Affiliation(s)
- Thomas P Wall
- Department of Anaesthesiology, Mater Misericordiae University Hospital, School of Medicine, University College Dublin, Dublin, Ireland.,EU COST Action 15204, Euro-Periscope, Brussels, Belgium
| | - Donal J Buggy
- Department of Anaesthesiology, Mater Misericordiae University Hospital, School of Medicine, University College Dublin, Dublin, Ireland.,EU COST Action 15204, Euro-Periscope, Brussels, Belgium.,Outcomes Research, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
249
|
Zeng X, Chen B, Song Y, Lin X, Zhou SF, Zhan G. Fabrication of Versatile Hollow Metal-Organic Framework Nanoplatforms for Folate-Targeted and Combined Cancer Imaging and Therapy. ACS APPLIED BIO MATERIALS 2021; 4:6417-6429. [PMID: 35006919 DOI: 10.1021/acsabm.1c00603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal-organic frameworks (MOFs) have received extensive attention in the field of biomedicine, particularly serving as multifunctional theranostic nanoplatforms by integrating chemodrugs, imaging agents, and targeting agents. Herein, we report a facile strategy for the fabrication of a hollow and monodisperse MOF (denoted hMIL-88B(Fe)@ZIF-8) consisting of ZIF-8 nanoparticles loaded on the external shell of hollow MIL-88B(Fe). In particular, the hybrid hollow MOF was constructed by partially etching spindlelike MIL-88B(Fe) nanoparticles with 2-methylimidazole in the presence of zinc ions. The obtained hMIL-88B(Fe)@ZIF-8 was then used as a drug/cargo delivery vehicle for loading doxorubicin (DOX), manganese oxide (MnOx) nanoparticles, and folic acid (FA), forming a multifunctional nanoplatform (denoted hM@ZMDF). Importantly, the resulting hM@ZMDF exhibited a specific targeting property for the FA receptor-overexpressed cancer cells (MCF-7 and HepG-2 cells) and then it unloaded DOX and Fe3+ in the tumor microenvironment. Consequently, DOX played dual roles as a chemotherapeutic drug and a fluorescent imaging agent. Also, the released Fe3+ could mediate the Fenton reaction and intracellularly generate toxic hydroxyl radicals in the presence of high glutathione in cancer cells. In addition, MnOx nanoparticles could participate in magnetic resonance imaging. Therefore, the versatile hM@ZMDF nanoplatforms have great potential for smart cancer therapy.
Collapse
Affiliation(s)
- Xiaoli Zeng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Bin Chen
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Yibo Song
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Xiaofeng Lin
- Juwenlee (Fujian) Cosmetics Co., Ltd., 21 Longxiang Road, Taiwanese Investment Area, Zhangzhou, Fujian 363107, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
250
|
Chou SE, Lee KL, Wei PK, Cheng JY. Screening anti-metastasis drugs by cell adhesion-induced color change in a biochip. LAB ON A CHIP 2021; 21:2955-2970. [PMID: 34132296 DOI: 10.1039/d1lc00039j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metastasis is a frequent complication of cancer and accounts for more than 60% of patients' mortality. Despite technological advancements, treatment options are still limited. Ion channels participate in the regulation of cell adhesion, whilst the regulation of cell adhesion further controls metastasis formation. However, to develop a new ion channel inhibitor targeting metastasis takes tremendous effort and resources; therefore, drug repurposing is an emerging strategy in oncology. In previous studies, we have developed a metal-based nanoslit surface plasmon resonance (SPR) platform to examine the influence of drugs on the cell adhesion process. In this work, we developed a scanner-based cell adhesion kinetic examination (CAKE) system that is capable of monitoring the cell adhesion process by measuring color changes of SPR biosensors. The system's performance was demonstrated by screening the anti-metastasis ability of compounds from a commercial ion-channel inhibitor library. Out of the 274 compounds from the inhibitor library, zinc pyrithione (ZPT) and terfenadine were demonstrated to influence CL1-5 cell adhesion. The cell responses to the two compounds were then compared with those by traditional cell adhesion assays where similar behavior was observed. Further investigation of the two compounds using wound healing and transwell assays was performed and inhibitions of both cell migration and invasion by the two compounds were also observed. The results indicate that ZPT and terfenadine are potential candidates for anti-metastasis drugs. Our work has demonstrated the label-free drug screening ability of our CAKE system for finding potential drugs for cancer treatment.
Collapse
Affiliation(s)
- Shih-En Chou
- Research Center for Applied Sciences, Academia Sinica Taiwan, Taipei, 11529, Taiwan.
| | - Kuang-Li Lee
- Research Center for Applied Sciences, Academia Sinica Taiwan, Taipei, 11529, Taiwan.
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica Taiwan, Taipei, 11529, Taiwan. and Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica Taiwan, Taipei, 11529, Taiwan. and Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan and Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan and College of Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| |
Collapse
|