201
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
202
|
Ma Y, Ramoneda J, Johnson DR. Timing of antibiotic administration determines the spread of plasmid-encoded antibiotic resistance during microbial range expansion. Nat Commun 2023; 14:3530. [PMID: 37316482 DOI: 10.1038/s41467-023-39354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Plasmids are the main vector by which antibiotic resistance is transferred between bacterial cells within surface-associated communities. In this study, we ask whether there is an optimal time to administer antibiotics to minimize plasmid spread in new bacterial genotypes during community expansion across surfaces. We address this question using consortia of Pseudomonas stutzeri strains, where one is an antibiotic resistance-encoding plasmid donor and the other a potential recipient. We allowed the strains to co-expand across a surface and administered antibiotics at different times. We find that plasmid transfer and transconjugant proliferation have unimodal relationships with the timing of antibiotic administration, where they reach maxima at intermediate times. These unimodal relationships result from the interplay between the probabilities of plasmid transfer and loss. Our study provides mechanistic insights into the transfer and proliferation of antibiotic resistance-encoding plasmids within microbial communities and identifies the timing of antibiotic administration as an important determinant.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092, Zürich, Switzerland.
| | - Josep Ramoneda
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, 80309, USA
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
203
|
Shang K, Kim JH, Park JY, Choi YR, Kim SW, Cha SY, Jang HK, Wei B, Kang M. Comparative Studies of Antimicrobial Resistance in Escherichia coli, Salmonella, and Campylobacter Isolates from Broiler Chickens with and without Use of Enrofloxacin. Foods 2023; 12:foods12112239. [PMID: 37297483 DOI: 10.3390/foods12112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
This study investigated the effect of enrofloxacin (ENR) administration on the prevalence and antimicrobial resistance of E. coli, Salmonella, and Campylobacter isolated from broiler chickens under field conditions. The isolation rate of Salmonella was significantly lower (p < 0.05) on farms that administered ENR (6.4%) than on farms that did not (11.6%). The Campylobacter isolation rate was significantly higher (p < 0.05) in farms that administered ENR (6.7%) than in farms that did not (3.3%). The ratio of resistance to ENR was significantly higher (p < 0.05) in E. coli isolates from farms that used ENR (88.1%) than farms that did not (78.0%). The respective ratio of resistance to ampicillin (40.5% vs. 17.9%), chloramphenicol (38.0% vs. 12.5%), tetracycline (63.3% vs. 23.2%), and trimethoprim/sulfamethoxazole (48.1% vs. 28.6%) and the ratio of intermediate resistance to ENR (67.1% vs. 48.2%) were significantly higher (p < 0.05) in Salmonella isolates from the farms that used ENR than farms that did not. In conclusion, the use of ENR at broiler farms was an important factor in decreasing the prevalence of Salmonella but not Campylobacter and caused ENR resistance among E. coli and Salmonella but not Campylobacter. Exposure to ENR could have a co-selective effect on antimicrobial resistance in enteric bacteria in the field.
Collapse
Affiliation(s)
- Ke Shang
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471000, China
| | - Ji-Hyuk Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Yu-Ri Choi
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| |
Collapse
|
204
|
Green AG, Vargas R, Marin MG, Freschi L, Xie J, Farhat MR. Analysis of Genome-Wide Mutational Dependence in Naturally Evolving Mycobacterium tuberculosis Populations. Mol Biol Evol 2023; 40:msad131. [PMID: 37352142 PMCID: PMC10292908 DOI: 10.1093/molbev/msad131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogenic microorganisms are in a perpetual struggle for survival in changing host environments, where host pressures necessitate changes in pathogen virulence, antibiotic resistance, or transmissibility. The genetic basis of phenotypic adaptation by pathogens is difficult to study in vivo. In this work, we develop a phylogenetic method to detect genetic dependencies that promote pathogen adaptation using 31,428 in vivo sampled Mycobacterium tuberculosis genomes, a globally prevalent bacterial pathogen with increasing levels of antibiotic resistance. We find that dependencies between mutations are enriched in antigenic and antibiotic resistance functions and discover 23 mutations that potentiate the development of antibiotic resistance. Between 11% and 92% of resistant strains harbor a dependent mutation acquired after a resistance-conferring variant. We demonstrate the pervasiveness of genetic dependency in adaptation of naturally evolving populations and the utility of the proposed computational approach.
Collapse
Affiliation(s)
- Anna G Green
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Maximillian G Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jiaqi Xie
- Department of Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
205
|
Helekal D, Keeling M, Grad YH, Didelot X. Estimating the fitness cost and benefit of antimicrobial resistance from pathogen genomic data. J R Soc Interface 2023; 20:20230074. [PMID: 37312496 PMCID: PMC10265023 DOI: 10.1098/rsif.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Abstract
Increasing levels of antibiotic resistance in many bacterial pathogen populations are a major threat to public health. Resistance to an antibiotic provides a fitness benefit when the bacteria are exposed to this antibiotic, but resistance also often comes at a cost to the resistant pathogen relative to susceptible counterparts. We lack a good understanding of these benefits and costs of resistance for many bacterial pathogens and antibiotics, but estimating them could lead to better use of antibiotics in a way that reduces or prevents the spread of resistance. Here, we propose a new model for the joint epidemiology of susceptible and resistant variants, which includes explicit parameters for the cost and benefit of resistance. We show how Bayesian inference can be performed under this model using phylogenetic data from susceptible and resistant lineages and that by combining data from both we are able to disentangle and estimate the resistance cost and benefit parameters separately. We applied our inferential methodology to several simulated datasets to demonstrate good scalability and accuracy. We analysed a dataset of Neisseria gonorrhoeae genomes collected between 2000 and 2013 in the USA. We found that two unrelated lineages resistant to fluoroquinolones shared similar epidemic dynamics and resistance parameters. Fluoroquinolones were abandoned for the treatment of gonorrhoea due to increasing levels of resistance, but our results suggest that they could be used to treat a minority of around 10% of cases without causing resistance to grow again.
Collapse
Affiliation(s)
- David Helekal
- Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, Coventry, UK
| | - Matt Keeling
- Mathematics Institute and School of Life Sciences, University of Warwick, Coventry, UK
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| |
Collapse
|
206
|
Fang P, Elena AX, Kunath MA, Berendonk TU, Klümper U. Reduced selection for antibiotic resistance in community context is maintained despite pressure by additional antibiotics. ISME COMMUNICATIONS 2023; 3:52. [PMID: 37258727 PMCID: PMC10232432 DOI: 10.1038/s43705-023-00262-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Selection for antibiotic resistance at very low antibiotic concentrations has been demonstrated for individual antibiotics in single species experiments. Furthermore, selection in these focal strains is reduced when taking place in complex microbial community context. However, in the environment, bacteria are rarely exposed to single, but rather complex mixtures of selective agents. Here, we explored how the presence of a second selective agent affects selection dynamics between isogenic pairs of focal E. coli strains, differing exclusively in a single resistance determinant, in the absence and presence of a model wastewater community across a gradient of antibiotics. An additional antibiotic that exclusively affects the model wastewater community, but to which the focal strains are resistant to, was chosen as the second selective agent. This allowed exploring how inhibition alters the community's ability to reduce selection. In the presence of the community, the selection coefficient at specific antibiotic concentrations was consistently decreased compared to the absence of the community. While pressure through the second antibiotic significantly decreased the activity and diversity of the community, its ability to reduce selection was consistently maintained at levels comparable to those recorded in absence of the second antibiotic. This indicates that the observed effects of community context on selection dynamics are rather based on competitive or protective effects between the focal strains and a small proportion of bacteria within the community, than on general competition for nutrients. These findings have implications for our understanding of the evolution and selection for multi-drug resistant strains.
Collapse
Affiliation(s)
- Peiju Fang
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany
| | - Alan Xavier Elena
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany
| | - Maxi Antonia Kunath
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany
| | - Thomas U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, Dresden, Germany.
| |
Collapse
|
207
|
Ashy RA, Jalal RS, Sonbol HS, Alqahtani MD, Sefrji FO, Alshareef SA, Alshehrei FM, Abuauf HW, Baz L, Tashkandi MA, Hakeem IJ, Refai MY, Abulfaraj AA. Functional annotation of rhizospheric phageome of the wild plant species Moringa oleifera. Front Microbiol 2023; 14:1166148. [PMID: 37260683 PMCID: PMC10227523 DOI: 10.3389/fmicb.2023.1166148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction The study aims to describe phageome of soil rhizosphere of M.oleifera in terms of the genes encoding CAZymes and other KEGG enzymes. Methods Genes of the rhizospheric virome of the wild plant species Moringa oleifera were investigated for their ability to encode useful CAZymes and other KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes and to resist antibiotic resistance genes (ARGs) in the soil. Results Abundance of these genes was higher in the rhizospheric microbiome than in the bulk soil. Detected viral families include the plant viral family Potyviridae as well as the tailed bacteriophages of class Caudoviricetes that are mainly associated with bacterial genera Pseudomonas, Streptomyces and Mycobacterium. Viral CAZymes in this soil mainly belong to glycoside hydrolase (GH) families GH43 and GH23. Some of these CAZymes participate in a KEGG pathway with actions included debranching and degradation of hemicellulose. Other actions include biosynthesizing biopolymer of the bacterial cell wall and the layered cell wall structure of peptidoglycan. Other CAZymes promote plant physiological activities such as cell-cell recognition, embryogenesis and programmed cell death (PCD). Enzymes of other pathways help reduce the level of soil H2O2 and participate in the biosynthesis of glycine, malate, isoprenoids, as well as isoprene that protects plant from heat stress. Other enzymes act in promoting both the permeability of bacterial peroxisome membrane and carbon fixation in plants. Some enzymes participate in a balanced supply of dNTPs, successful DNA replication and mismatch repair during bacterial cell division. They also catalyze the release of signal peptides from bacterial membrane prolipoproteins. Phages with the most highly abundant antibiotic resistance genes (ARGs) transduce species of bacterial genera Pseudomonas, Streptomyces, and Mycobacterium. Abundant mechanisms of antibiotic resistance in the rhizosphere include "antibiotic efflux pump" for ARGs soxR, OleC, and MuxB, "antibiotic target alteration" for parY mutant, and "antibiotic inactivation" for arr-1. Discussion These ARGs can act synergistically to inhibit several antibiotics including tetracycline, penam, cephalosporin, rifamycins, aminocoumarin, and oleandomycin. The study highlighted the issue of horizontal transfer of ARGs to clinical isolates and human gut microbiome.
Collapse
Affiliation(s)
- Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hana S. Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mashael D. Alqahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatmah O. Sefrji
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah M. Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King AbdulAziz University, Rabigh, Saudi Arabia
| |
Collapse
|
208
|
Trampari E, Prischi F, Vargiu AV, Abi-Assaf J, Bavro VN, Webber MA. Functionally distinct mutations within AcrB underpin antibiotic resistance in different lifestyles. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:2. [PMID: 38686215 PMCID: PMC11057200 DOI: 10.1038/s44259-023-00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2024]
Abstract
Antibiotic resistance is a pressing healthcare challenge and is mediated by various mechanisms, including the active export of drugs via multidrug efflux systems, which prevent drug accumulation within the cell. Here, we studied how Salmonella evolved resistance to two key antibiotics, cefotaxime and azithromycin, when grown planktonically or as a biofilm. Resistance to both drugs emerged in both conditions and was associated with different substitutions within the efflux-associated transporter, AcrB. Azithromycin exposure selected for an R717L substitution, while cefotaxime for Q176K. Additional mutations in ramR or envZ accumulated concurrently with the R717L or Q176K substitutions respectively, resulting in clinical resistance to the selective antibiotics and cross-resistance to other drugs. Structural, genetic, and phenotypic analysis showed the two AcrB substitutions confer their benefits in profoundly different ways. R717L reduces steric barriers associated with transit through the substrate channel 2 of AcrB. Q176K increases binding energy for cefotaxime, improving recognition in the distal binding pocket, resulting in increased efflux efficiency. Finally, we show the R717 substitution is present in isolates recovered around the world.
Collapse
Affiliation(s)
- Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, S. P. 8, km. 0.700, 09042 Monserrato, Italy
| | - Justin Abi-Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ UK
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7UA UK
| |
Collapse
|
209
|
Hajfathalian M, de Vries CR, Hsu JC, Amirshaghaghi A, Dong YC, Ren Z, Liu Y, Huang Y, Li Y, Knight S, Jonnalagadda P, Zlitni A, Grice E, Bollyky PL, Koo H, Cormode DP. Theranostic gold in a gold cage nanoparticle for photothermal ablation and photoacoustic imaging of skin and oral infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539604. [PMID: 37214850 PMCID: PMC10197567 DOI: 10.1101/2023.05.05.539604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biofilms are structured communities of microbial cells embedded in a self-produced matrix of extracellular polymeric substances. Biofilms are associated with many health issues in humans, including chronic wound infections and tooth decay. Current antimicrobials are often incapable of disrupting the polymeric biofilm matrix and reaching the bacteria within. Alternative approaches are needed. Here, we describe a unique structure of dextran coated gold in a gold cage nanoparticle that enables photoacoustic and photothermal properties for biofilm detection and treatment. Activation of these nanoparticles with a near infrared laser can selectively detect and kill biofilm bacteria with precise spatial control and in a short timeframe. We observe a strong biocidal effect against both Streptococcus mutans and Staphylococcus aureus biofilms in mouse models of oral plaque and wound infections respectively. These effects were over 100 times greater than that seen with chlorhexidine, a conventional antimicrobial agent. Moreover, this approach did not adversely affect surrounding tissues. We conclude that photothermal ablation using theranostic nanoparticles is a rapid, precise, and non-toxic method to detect and treat biofilm-associated infections.
Collapse
|
210
|
Ren S, Xu F, Wang H, Zhang Z. Colloidal antibiotic mimics: selective capture and killing of microorganisms by shape-anisotropic colloids. SOFT MATTER 2023; 19:3253-3256. [PMID: 37128986 DOI: 10.1039/d3sm00336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of targeted and efficient antimicrobials for the selective killing of pathogenic bacteria is of great importance, yet remains challenging. Here, we propose a targeted approach to selectively capture and kill microorganisms with colloidal antibiotic mimics that are readily prepared by common chemical syntheses. The mimics are shape-anisotropic colloids, which can selectively capture shape-matching microorganisms due to lock-key depletion attractions. Furthermore, after being modified with gold nanoparticles (AuNPs) and irradiated with near-infrared light, the colloidal mimics can kill the selectively captured microorganisms due to the localized photothermal effect of the AuNPs. The work demonstrates the important ability of anisotropic colloids to selectively capture and precisely kill microorganisms, which holds considerable promise for safe and adaptive antibacterial therapies without the risk of antibiotic resistance.
Collapse
Affiliation(s)
- Sihua Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Fei Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, and Institute for Advanced Study, Soochow University, Suzhou 215123, China
| |
Collapse
|
211
|
Tabashsum Z, Scriba A, Biswas D. Alternative approaches to therapeutics and subtherapeutics for sustainable poultry production. Poult Sci 2023; 102:102750. [PMID: 37207572 DOI: 10.1016/j.psj.2023.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
The world population is growing rapidly and thus its demand for food is growing as well. To meet the demand of the ever-increasing number of consumers, the poultry industry and both of its main sectors-conventional and organic/cage-free farming-are expanding in parallel. Due to increasing demand of poultry products and higher mortality rate of chicks (an average 0.3% increase of mortality over last 5 yr), both conventional and organic poultry farming systems struggle with various issues; animal welfare, environmental sustainability, and antibiotic resistance of the prevailing zoonotic/enteric pathogens are common issues for conventional farming whereas slow growth rate, higher costs, inefficient land use, different diseases of the chicken, and cross-contamination with bacterial pathogens into the final products are the major issues for organic poultry farming. On top of these issues, the use of subtherapeutic antibiotics was recently banned in conventional farming systems and by definition the organic farming system cannot use the antibiotics/synthetic chemicals even for therapeutic use. In conventional farming system, use of therapeutic antibiotics may result in residuals antibiotics in the final products. As a result, sustainable alternatives are in demand to mitigate the prevailing issues for both conventional and organic farming. Potential alternatives may include bacteriophages, vaccination, probiotics, plant-derived prebiotics, and synbiotics. These alternatives have beneficial attributes and shortcomings of their use in both conventional and organic poultry production system. In this review, we'll discuss the scope of these potential alternatives as therapeutics and subtherapeutics in sustainable poultry production and ways to improve their efficacy.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Aaron Scriba
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland, College Park, MD 20742, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
212
|
Subirats J, Sharpe H, Santoro D, Topp E. Modeling Antibiotic Concentrations in the Vicinity of Antibiotic-Producing Bacteria at the Micron Scale. Appl Environ Microbiol 2023; 89:e0026123. [PMID: 36975795 PMCID: PMC10132100 DOI: 10.1128/aem.00261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
It is generally thought that antibiotics confer upon the producing bacteria the ability to inhibit or kill neighboring microorganisms, thereby providing the producer with a significant competitive advantage. Were this to be the case, the concentrations of emitted antibiotics in the vicinity of producing bacteria might be expected to fall within the ranges of MICs that are documented for a number of bacteria. Furthermore, antibiotic concentrations that bacteria are punctually or chronically exposed to in environments harboring antibiotic-producing bacteria might fall within the range of minimum selective concentrations (MSCs) that confer a fitness advantage to bacteria carrying acquired antibiotic resistance genes. There are, to our knowledge, no available in situ measured antibiotic concentrations in the biofilm environments that bacteria typically live in. The objective of the present study was to use a modeling approach to estimate the antibiotic concentrations that might accumulate in the vicinity of bacteria that are producing an antibiotic. Fick's law was used to model antibiotic diffusion using a series of key assumptions. The concentrations of antibiotics within a few microns of single producing cells could not reach MSC (8 to 16 μg/L) or MIC (500 μg/L) values, whereas the concentrations around aggregates of a thousand cells could reach these concentrations. The model outputs suggest that single cells could not produce an antibiotic at a rate sufficient to achieve a bioactive concentration in the vicinity, whereas a group of cells, each producing the antibiotic, could do so. IMPORTANCE It is generally assumed that a natural function of antibiotics is to provide their producers with a competitive advantage. If this were the case, sensitive organisms in proximity to producers would be exposed to inhibitory concentrations. The widespread detection of antibiotic resistance genes in pristine environments suggests that bacteria are indeed exposed to inhibitory antibiotic concentrations in the natural world. Here, a model using Fick's law was used to estimate potential antibiotic concentrations in the space surrounding producing cells at the micron scale. Key assumptions were that per-cell production rates drawn from the pharmaceutical manufacturing industry are applicable in situ, that production rates were constant, and that produced antibiotics are stable. The model outputs indicate that antibiotic concentrations in proximity to aggregates of a thousand cells can indeed be in the minimum inhibitory or minimum selective concentration range.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Hannah Sharpe
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Domenico Santoro
- USP Technologies, London, Ontario, Canada
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
213
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
214
|
di Toma A, Brunetti G, Chiriacò MS, Ferrara F, Ciminelli C. A Novel Hybrid Platform for Live/Dead Bacteria Accurate Sorting by On-Chip DEP Device. Int J Mol Sci 2023; 24:ijms24087077. [PMID: 37108235 PMCID: PMC10139405 DOI: 10.3390/ijms24087077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
According to the World Health Organization (WHO) forecasts, Antimicrobial Resistance (AMR) will be the leading cause of death worldwide in the next decades. To prevent this phenomenon, rapid Antimicrobial Susceptibility Testing (AST) techniques are required to drive the selection of the most suitable antibiotic and its dosage. In this context, we propose an on-chip platform, based on a micromixer and a microfluidic channel, combined with a pattern of engineered electrodes to exploit the di-electrophoresis (DEP) effect. The role of the micromixer is to ensure the proper interaction of the antibiotic with the bacteria over a long time (≈1 h), and the DEP-based microfluidic channel enables the efficient sorting of live from dead bacteria. A sorting efficiency of more than 98%, with low power consumption (Vpp = 1 V) and time response of 5 s, within a chip footprint of ≈86 mm2, has been calculated, which makes the proposed system very attractive and innovative for efficient and rapid monitoring of the antimicrobial susceptibility at the single-bacterium level in next-generation medicine.
Collapse
Affiliation(s)
- Annarita di Toma
- Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy
| | - Giuseppe Brunetti
- Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy
| | | | - Francesco Ferrara
- CNR NANOTEC-Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Caterina Ciminelli
- Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy
| |
Collapse
|
215
|
Loiseau C, Windels EM, Gygli SM, Jugheli L, Maghradze N, Brites D, Ross A, Goig G, Reinhard M, Borrell S, Trauner A, Dötsch A, Aspindzelashvili R, Denes R, Reither K, Beisel C, Tukvadze N, Avaliani Z, Stadler T, Gagneux S. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat Commun 2023; 14:1988. [PMID: 37031225 PMCID: PMC10082831 DOI: 10.1038/s41467-023-37719-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is among the most frequent causes of death due to antimicrobial resistance. Although only 3% of global TB cases are MDR, geographical hotspots with up to 40% of MDR-TB have been observed in countries of the former Soviet Union. While the quality of TB control and patient-related factors are known contributors to such hotspots, the role of the pathogen remains unclear. Here we show that in the country of Georgia, a known hotspot of MDR-TB, MDR Mycobacterium tuberculosis strains of lineage 4 (L4) transmit less than their drug-susceptible counterparts, whereas most MDR strains of L2 suffer no such defect. Our findings further indicate that the high transmission fitness of these L2 strains results from epistatic interactions between the rifampicin resistance-conferring mutation RpoB S450L, compensatory mutations in the RNA polymerase, and other pre-existing genetic features of L2/Beijing clones that circulate in Georgia. We conclude that the transmission fitness of MDR M. tuberculosis strains is heterogeneous, but can be as high as drug-susceptible forms, and that such highly drug-resistant and transmissible strains contribute to the emergence and maintenance of hotspots of MDR-TB. As these strains successfully overcome the metabolic burden of drug resistance, and given the ongoing rollout of new treatment regimens against MDR-TB, proper surveillance should be implemented to prevent these strains from acquiring resistance to the additional drugs.
Collapse
Affiliation(s)
- Chloé Loiseau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sebastian M Gygli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Levan Jugheli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Nino Maghradze
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Galo Goig
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Anna Dötsch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Rebecca Denes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Nestani Tukvadze
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
216
|
Guo Y, Qiu T, Gao M, Ru S, Gao H, Wang X. Does increasing the organic fertilizer application rate always boost the antibiotic resistance level in agricultural soils? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121251. [PMID: 36764373 DOI: 10.1016/j.envpol.2023.121251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The amendment of organic fertilizer derived from livestock manure or biosolids is a significant driver of increasing antibiotic resistance in agricultural soils; however, it remains unclear whether increasing organic fertilizer application rates consistently enhances soil antibiotic resistance levels. Herein, we collected soils with long-term amendment with three types of organic fertilizers at four application rates (15, 30, 45, and 60 t/ha/y) and found that the higher the fertilization rate, the higher the antibiotic resistance gene (ARG) abundance. However, when the fertilization rate exceeded 45 t/ha/y, the ARG abundance ceased to significantly increase. Moreover, the soil ARG abundance was positively correlated with total nitrogen (TN) content and bacterial abundance, especially Firmicutes, and negatively affected by pH and bacterial diversity. Soil TN/bacterial abundance and pH/bacterial diversity reached maximum and minimum values at the 45 t/ha/y fertilization rate, respectively. Meanwhile, at this fertilization rate, Firmicutes enrichment peaked. Therefore, an organic fertilization rate of 45 t/ha/y appeared to represent the threshold for soil antibiotic resistance in this study. The underlying mechanism for this threshold was closely related to soil TN, pH, bacterial abundance, and diversity. Taken together, the findings of this study advance the current understanding regarding the soil resistome under different fertilization rates, while also providing novel insights into organic fertilizer management in agricultural practices.
Collapse
Affiliation(s)
- Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuhua Ru
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Science, Hebei Fertilizer Technology Innovation Center, Shijiazhuang, 050051, China
| | - Haoze Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
217
|
Sharma MK, Parashar S, Sharma D, Jakhar K, Lal K, Pandya NU, Om H. Synthesis, characterization, docking and antimicrobial studies of binol based amide linked symmetrical bistriazoles. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
218
|
Hilal MG, Han B, Yu Q, Feng T, Su W, Li X, Li H. Insight into the dynamics of drinking water resistome in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121185. [PMID: 36736566 DOI: 10.1016/j.envpol.2023.121185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance (AR) is a serious environmental hazard of the current age. Antibiotic resistance genes (ARGs) are the fundamental entities that spread AR in the environment. ARGs are likely to be transferred from the non-pathogenic to pathogenic microbes that might ultimately be responsible for the AR in humans and other organisms. Drinking water (DW) is the primary interaction route between ARGs and humans. Being the highest producer and consumer of antibiotics China poses a potential threat to developing superbugs and ARGs dissemination. Herein, we comprehensively seek to review the ARGs from dominant DW sources in China. Furthermore, the origin and influencing factors of the ARGs to the DW in China have been evaluated. Commonly used methods, both classical and modern, are being compiled. In addition, the risk posed and mitigation strategies of DW ARGs in China have been outlined. Overall, we believe this review would contribute to the assessment of ARGs in DW of China and their dissemination to humans and other animals and ultimately help the policymakers and scientists in the field to counteract this problem on an emergency basis.
Collapse
Affiliation(s)
- Mian Gul Hilal
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
219
|
Haas W, Singh N, Lainhart W, Mingle L, Nazarian E, Mitchell K, Nattanmai G, Kohlerschmidt D, Dickinson MC, Kacica M, Dumas N, Musser KA. Genomic Analysis of Vancomycin-Resistant Staphylococcus aureus Isolates from the 3rd Case Identified in the United States Reveals Chromosomal Integration of the vanA Locus. Microbiol Spectr 2023; 11:e0431722. [PMID: 36975781 PMCID: PMC10100801 DOI: 10.1128/spectrum.04317-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Vancomycin-resistant Staphylococcus aureus (VRSA) is a human pathogen of significant public health concern. Although the genome sequences of individual VRSA isolates have been published over the years, very little is known about the genetic changes of VRSA within a patient over time. A total of 11 VRSA, 3 vancomycin-resistant enterococci (VRE), and 4 methicillin-resistant S. aureus (MRSA) isolates, collected over a period of 4.5 months in 2004 from a patient in a long-term-care facility in New York State, were sequenced. A combination of long- and short-read sequencing technologies was used to obtain closed assemblies for chromosomes and plasmids. Our results indicate that a VRSA isolate emerged as the result of the transfer of a multidrug resistance plasmid from a coinfecting VRE to an MRSA isolate. The plasmid then integrated into the chromosome via homologous recombination mediated between two regions derived from remnants of transposon Tn5405. Once integrated, the plasmid underwent further reorganization in one isolate, while two others lost the staphylococcal cassette chromosome mec element (SCCmec) determinant that confers methicillin-resistance. The results presented here explain how a few recombination events can lead to multiple pulsed-field gel electrophoresis (PFGE) patterns that could be mistaken for vastly different strains. A vanA gene cluster that is located on a multidrug resistance plasmid that is integrated into the chromosome could result in the continuous propagation of resistance, even in the absence of selective pressure from antibiotics. The genome comparison presented here sheds light on the emergence and evolution of VRSA within a single patient that will enhance our understanding VRSA genetics. IMPORTANCE High-level vancomycin-resistant Staphylococcus aureus (VRSA) began to emerge in the United States in 2002 and has since then been reported worldwide. Our study reports the closed genome sequences of multiple VRSA isolates obtained in 2004 from a single patient in New York State. Our results show that the vanA resistance locus is located on a mosaic plasmid that confers resistance to multiple antibiotics. In some isolates, this plasmid integrated into the chromosome via homologous recombination between two ant(6)-sat4-aph(3') antibiotic resistance loci. This is, to our knowledge, the first report of a chromosomal vanA locus in VRSA; the effect of this integration event on MIC values and plasmid stability in the absence of antibiotic selection remains poorly understood. These findings highlight the need for a better understanding of the genetics of the vanA locus and plasmid maintenance in S. aureus to address the increase of vancomycin resistance in the health care setting.
Collapse
Affiliation(s)
- Wolfgang Haas
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Navjot Singh
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - William Lainhart
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Lisa Mingle
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Elizabeth Nazarian
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kara Mitchell
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Geetha Nattanmai
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Donna Kohlerschmidt
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | | | - Marilyn Kacica
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nellie Dumas
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kimberlee A. Musser
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
220
|
Liang H, Zhang J, Hu J, Li X, Li B. Fluoroquinolone Residues in the Environment Rapidly Induce Heritable Fluoroquinolone Resistance in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4784-4795. [PMID: 36917150 DOI: 10.1021/acs.est.2c04999] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extensive antibiotic use increases the environmental presence of their residues and may accelerate the development of antibiotic resistance, although this remains poorly understood at environmentally relevant concentrations. Herein, susceptible Escherichia coli K12 was continuously exposed to five antibiotics at such concentrations for 100 days. The de novo-evolved mutants rapidly obtained fluoroquinolone resistance within 10 days, as indicated by the 4- and 16-fold augmentation of minimum inhibitory concentrations against enrofloxacin and ciprofloxacin, respectively. Moreover, the mutants maintained heritable fluoroquinolone resistance after the withdrawal of antibiotics for 30 days. Genomic analysis identified Asp87Gly or Ser83Leu substitutions in the gyrA gene in the mutants. Transcriptomics data showed that the transcriptional response of the mutants to fluoroquinolones was primarily involved in biofilm formation, cellular motility, porin, oxidative stress defense, and energy metabolism. Homologous recombination and molecular docking revealed that mutations of gyrA primarily mainly conferred fluoroquinolone resistance, while mutations at different positions of gyrA likely endowed different fluoroquinolone resistance levels. Collectively, this study revealed that environmentally relevant concentrations of antibiotics could rapidly induce heritable antibiotic resistance; therefore, the discharge of antibiotics into the environment should be rigorously controlled to prevent the development of antibiotic resistance.
Collapse
Affiliation(s)
- Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiahui Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
221
|
Tan Y, Cao X, Chen S, Ao X, Li J, Hu K, Liu S, Penttinen P, Yang Y, Yu X, Liu A, Liu C, Zhao K, Zou L. Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161386. [PMID: 36608829 DOI: 10.1016/j.scitotenv.2023.161386] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Municipal sewage sludge has been generated in increasing amounts with the acceleration of urbanization and economic development. The nutrient rich sewage sludge can be recycled by composting that has a great potential to produce stabilized organic fertilizer and substrate for plant cultivation. However, little is known about the metals, pathogens and antibiotic resistance transfer risks involved in applying the composted sludge in agriculture. We studied changes in and relationships between heavy metal contents, microbial communities, and antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs) and mobile genetic elements (MGEs) in aerobic composting of sewage sludge. The contents of most of the analyzed heavy metals were not lower after composting. The bacterial α-diversity was lower, and the community composition was different after composting. Firmicutes were enriched, and Proteobacteria and potential pathogens in the genera Arcobacter and Acinetobacter were depleted in the composted sludge. The differences in bacteria were possibly due to the high temperature phase during the composting which was likely to affect temperature-sensitive bacteria. The number of detected ARGs, HMRGs and MGEs was lower, and the relative abundances of several resistance genes were lower after composting. However, the abundance of seven ARGs and six HMRGs remained on the same level after composting. Co-occurrence analysis of bacterial taxa and the genes suggested that the ARGs may spread via horizontal gene transfer during composting. In summary, even though aerobic composting is effective for managing sewage sludge and to decrease the relative abundance of potential pathogens, ARGs and HMRGs, it might include a potential risk for the dissemination of ARGs in the environment.
Collapse
Affiliation(s)
- Yulan Tan
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuedi Cao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Petri Penttinen
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xiumei Yu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Chengxi Liu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
222
|
Bogri A, Otani S, Aarestrup FM, Brinch C. Interplay between strain fitness and transmission frequency determines prevalence of antimicrobial resistance. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.981377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
The steep rise of infections caused by bacteria that are resistant to antimicrobial agents threatens global health. However, the association between antimicrobial use and the prevalence of resistance is not straightforward. Therefore, it is necessary to quantify the importance of additional factors that affect this relationship. We theoretically explore how the prevalence of resistance is affected by the combination of three factors: antimicrobial use, bacterial transmission, and fitness cost of resistance. We present a model that combines within-host, between-hosts and between-populations dynamics, built upon the competitive Lotka-Volterra equations. We developed the model in a manner that allows future experimental validation of the findings with single isolates in the laboratory. Each host may carry two strains (susceptible and resistant) that represent the host’s commensal microbiome and are not the target of the antimicrobial treatment. The model simulates a population of hosts who are treated periodically with antibiotics and transmit bacteria to each other. We show that bacterial transmission results in strain co-existence. Transmission disseminates resistant bacteria in the population, increasing the levels of resistance. Counterintuitively, when the cost of resistance is low, high transmission frequencies reduce resistance prevalence. Transmission between host populations leads to more similar resistance levels, increasing the susceptibility of the population with higher antimicrobial use. Overall, our results indicate that the interplay between bacterial transmission and strain fitness affects the prevalence of resistance in a non-linear way. We then place our results within the context of ecological theory, particularly on temporal niche partitioning and metapopulation rescue, and we formulate testable experimental predictions for future research.
Collapse
|
223
|
Zhang H, Gao J, Zhao M, Wang Z, Li D, Wu Z, Zhang Y, Liu Y. The spread of different resistance genes fractions in nitrification system under chronic exposure to varying alkyl chain length benzalkyl dimethylammonium compounds. BIORESOURCE TECHNOLOGY 2023; 371:128588. [PMID: 36623575 DOI: 10.1016/j.biortech.2023.128588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Benzalkyl dimethylammonium compounds (BACs) are generally applied as surfactants and disinfectants. In this study, the nitrification systems were exposed to different alkyl chain lengths (C12-C16) and different levels of BACs (0-5 mg/L), respectively, totally 120 days and to explore the chronic effect of BACs on resistance genes (RGs). RGs were classified into four fractions based on activated sludge properties. Ammonia oxidation performance were not significantly affected by BACs, whereas BACs increased the absolute abundance of most intracellular RGs in sludge (si-RGs). Under the exposure of BACs, extracellular RGs in water (we-RGs) showed a decrease trend and si-RGs tended to be converted to we-RGs. Tightly bound-Tyrosine side chain was significantly correlated with most we-RGs, and we-intI1 might contribute to the propagation of RGs. Therefore, the risk of transmission of different fractions of RGs in the nitrification system under the stress of BACs should be taken seriously.
Collapse
Affiliation(s)
- Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
224
|
Jiang L, Zhu H, Wei J, Jiang L, Li Y, Li R, Wang Z, Wang M. Enterobacteriaceae genome-wide analysis reveals roles for P1-like phage-plasmids in transmission of mcr-1, tetX4 and other antibiotic resistance genes. Genomics 2023; 115:110572. [PMID: 36746220 DOI: 10.1016/j.ygeno.2023.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/23/2022] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
P1 -like phage-plasmids (PPs) are important gene vehicles in isolated pathogens. In this study, we conducted genome-wide and cross-species analysis of antimicrobial resistance genes (ARGs) from 35 ARG-positive P1-like PPs. LS-BSR analysis reveal that P1-like PPs had in common 7 highly variable regions and carried 48 different ARG subtypes. The most prevalent gene groups were the colistin resistance gene mcr-1 and a class 1 integron. Analysis of the flanking sequences of mcr-1 indicated an "IS30-mcr-1-ORF-IS30" as the core cluster. In particular, we found an mcr-1- and blaCTX-M-55-coharboring large fusion P1-like PP. Also, tet(X4) was detected and flanking sequences indicated tet(X4)-bearing cluster can formed a larger size fusion plasmid mediated a wider spread via IS26 hotspots. Overall, this study demonstrated that P1-like PPs can not only mobilize a large number of ARGs in variable regions but also form larger hybrid P1-like PPs that would increase their ability to spread antimicrobial resistance.
Collapse
Affiliation(s)
- Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Heng Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Yan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China; International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China.
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China.
| |
Collapse
|
225
|
Mohammadizadeh ZN, Ahadifar M, Mobinikhaledi M, Ahadi N. The green synthesis of environmentally friendly magnetic silver complex stabilized on MnCoFe 2O 4@sodium alginate nanoparticles (MCF@S-ALG/Ag) and evaluation of their antibacterial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37185-37196. [PMID: 36571692 DOI: 10.1007/s11356-022-24914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Magnetic nanoparticles with green cover sodium alginate and Ag, MnCoFe2O4@Sodium alginate/Ag (MCF@S-ALG/Ag) MNPs were prepared by a simple and clean method from Sargassum Vulgare brown algae. The structure of these nanoparticles was characterized by the Fourier transform infrared (FT-IR), X-ray powder diffraction (XRD), field emission-scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Furthermore, the antibacterial activity of MCF@S-ALG/Ag MNPs was tested for two bacteria of gram-negative (Escherichia coli (E. coli)) bacteria and gram-positive (Staphylococcus aureus (S. aureus)) bacteria. The MCF@S-ALG/Ag MNPs showed the inhibition zone 16.32 mm for S. aureus and 12.84 mm for E. coli bacteria. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of MCF@S-ALG/Ag MNPs for both bacteria were found 20 µg/mL and 40 µg/mL, respectively.
Collapse
Affiliation(s)
| | - Mitra Ahadifar
- Department of Seafood Processing, Faculty of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahta Mobinikhaledi
- Faculty of Pharmacy, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Najmieh Ahadi
- Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88138, Iran.
| |
Collapse
|
226
|
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030487. [PMID: 36978354 PMCID: PMC10044628 DOI: 10.3390/antibiotics12030487] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
As warned by Sir Alexander Fleming in his Nobel Prize address: “the use of antimicrobials can, and will, lead to resistance”. Antimicrobial resistance (AMR) has recently increased due to the overuse and misuse of antibiotics, and their use in animals (food-producing and companion) has also resulted in the selection and transmission of resistant bacteria. The epidemiology of resistance is complex, and factors other than the overall quantity of antibiotics consumed may influence it. Nowadays, AMR has a serious impact on society, both economically and in terms of healthcare. This narrative review aimed to provide a scenario of the state of the AMR phenomenon in veterinary medicine related to the use of antibiotics in different animal species; the impact that it can have on animals, as well as humans and the environment, was considered. Providing some particular instances, the authors tried to explain the vastness of the phenomenon of AMR in veterinary medicine due to many and diverse aspects that cannot always be controlled. The veterinarian is the main reference point here and has a high responsibility towards the human–animal–environment triad. Sharing such a burden with human medicine and cooperating together for the same purpose (fighting and containing AMR) represents an effective example of the application of the One Health approach.
Collapse
Affiliation(s)
| | - Anisa Bardhi
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | - Andrea Barbarossa
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | | |
Collapse
|
227
|
Wang S, Hao J, Yang J, Zhang Q, Li A. The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture. J Microbiol Biotechnol 2023; 33:167-179. [PMID: 36734130 PMCID: PMC9998210 DOI: 10.4014/jmb.2210.10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.
Collapse
Affiliation(s)
- Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jicheng Yang
- Dalian Ocean University, Dalian 116023, P.R. China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
228
|
Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, Immanuel SRC, Brooks AN, Shepherd TR, Baliga NS. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in Escherichia coli. mSystems 2023; 8:e0090422. [PMID: 36537814 PMCID: PMC9948699 DOI: 10.1128/msystems.00904-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 02/24/2023] Open
Abstract
There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (TetR) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of TetR E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of TetR E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized TetR E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA, demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the TetR strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (TetR) Escherichia coli, we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of TetR E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics.
Collapse
Affiliation(s)
| | - Min Pan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Amardeep Kaur
- Institute for Systems Biology, Seattle, Washington, USA
| | - Evan Pepper-Tunick
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
| | | | - Ananya Dash
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
- Department of Microbiology, University of Washington, Seattle Washington, USA
| |
Collapse
|
229
|
Ba X, Matuszewska M, Kalmar L, Fan J, Zou G, Corander D, Raisen CL, Li S, Li L, Weinert LA, Tucker AW, Grant AJ, Zhou R, Holmes MA. High-Throughput Mutagenesis Reveals a Role for Antimicrobial Resistance- and Virulence-Associated Mobile Genetic Elements in Staphylococcus aureus Host Adaptation. Microbiol Spectr 2023; 11:e0421322. [PMID: 36815781 PMCID: PMC10101091 DOI: 10.1128/spectrum.04213-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.
Collapse
Affiliation(s)
- Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Desirée Corander
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Claire L. Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
- Cooperative Innovation Centre of Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
- Cooperative Innovation Centre of Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
230
|
Zhou DH, Zhang QG. Fast drug rotation reduces bacterial resistance evolution in a microcosm experiment. J Evol Biol 2023; 36:641-649. [PMID: 36808770 DOI: 10.1111/jeb.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2023]
Abstract
Drug rotation (cycling), in which multiple drugs are administrated alternatively, has the potential for limiting resistance evolution in pathogens. The frequency of drug alternation could be a major factor to determine the effectiveness of drug rotation. Drug rotation practices often have low frequency of drug alternation, with an expectation of resistance reversion. Here we, based on evolutionary rescue and compensatory evolution theories, suggest that fast drug rotation can limit resistance evolution in the first place. This is because fast drug rotation would give little time for the evolutionarily rescued populations to recover in population size and genetic diversity, and thus decrease the chance of future evolutionary rescue under alternate environmental stresses. We experimentally tested this hypothesis using the bacterium Pseudomonas fluorescens and two antibiotics (chloramphenicol and rifampin). Increasing drug rotation frequency reduced the chance of evolutionary rescue, and most of the finally surviving bacterial populations were resistant to both drugs. Drug resistance incurred significant fitness costs, which did not differ among the drug treatment histories. A link between population sizes during the early stages of drug treatment and the end-point fates of populations (extinction vs survival) suggested that population size recovery and compensatory evolution before drug shift increase the chance of population survival. Our results therefore advocate fast drug rotation as a promising approach to reduce bacterial resistance evolution, which in particular could be a substitute for drug combination when the latter has safety risks.
Collapse
Affiliation(s)
- Dong-Hao Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
231
|
Henriot CP, Celle H, Klaba V, Biguenet A, Miège C, Daval A, Amiotte-Suchet P, Beugnot JC, Karbowiak T, Bertrand X. Effect of a karst system (France) on extended spectrum beta-lactamase (ESBL)-producing Escherichia coli. WATER RESEARCH 2023; 230:119582. [PMID: 36642030 DOI: 10.1016/j.watres.2023.119582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Karst aquifers are an important water resource worldwide particularly exposed to anthropogenic pollution, including antibiotic-resistance. The release of antibiotic-resistant bacterial pathogens in the environment is a major public health challenge worldwide. In this One Health study, we aimed to determine the effect of karst on antibiotic-resistant bacteria. For this purpose, we determined the concentrations of extended-spectrum β-lactamases-producing Escherichia coli (ESBL-Ec) for 92 weeks in a rural karst hydrosystem providing drinking water. ESBL-Ec isolates (n = 130) were sequenced by whole genome sequencing. We analysed the isolates at different levels of granularity, i.e., phylogroup, sequence type, presence of antibiotic-resistance genes, mutations conferring antibiotic-resistance, and virulence genes. The ESBL-Ec concentrations were spatially and temporally heterogeneous in the studied karst hydrosystem. ESBL-Ec isolates survived in the karst and their concentrations were mostly explained by the hydrodynamic of the hydrosystem. We demonstrate that the studied karst has no filtration effect on ESBL-Ec, either quantitatively (i.e., in the ESBL-Ec concentrations) or qualitatively (i.e., in the genetic characteristics of ESBL-Ec isolates).
Collapse
Affiliation(s)
- Charles P Henriot
- Chrono-Environnement UMR 6249, CNRS, Université de Franche-Comté, Besançon 25000, France.
| | - Hélène Celle
- Chrono-Environnement UMR 6249, CNRS, Université de Franche-Comté, Besançon 25000, France
| | - Victor Klaba
- Chrono-Environnement UMR 6249, CNRS, Université de Franche-Comté, Besançon 25000, France
| | - Adrien Biguenet
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, 3 Boulevard Fleming, Besançon 25030, France
| | - Cécile Miège
- INRAE, RiverLy, 5 rue de la Doua, CS20244, Villeurbanne 69625, France
| | - Amandine Daval
- INRAE, RiverLy, 5 rue de la Doua, CS20244, Villeurbanne 69625, France
| | - Philippe Amiotte-Suchet
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, Dijon 21000, France
| | - Jean-Charles Beugnot
- UMR CNRS 6174 FEMTO-ST, Université de Bourgogne Franche-Comté, 15B Avenue des Montboucons, Besançon 25030, France
| | - Thomas Karbowiak
- Institut Agro Dijon, University Bourgogne Franche-Comté, UMR PAM 02 102, 1 Esplanade Erasme, Dijon 21000, France
| | - Xavier Bertrand
- Chrono-Environnement UMR 6249, CNRS, Université de Franche-Comté, Besançon 25000, France; Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, 3 Boulevard Fleming, Besançon 25030, France
| |
Collapse
|
232
|
Pulami D, Kämpfer P, Glaeser SP. High diversity of the emerging pathogen Acinetobacter baumannii and other Acinetobacter spp. in raw manure, biogas plants digestates, and rural and urban wastewater treatment plants with system specific antimicrobial resistance profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160182. [PMID: 36395844 DOI: 10.1016/j.scitotenv.2022.160182] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii causing immense treatment problems in hospitals. There is still a knowledge gap on the abundance and stability of acquired resistances and the diversity of resistant Acinetobacter in the environment. The aim of the study was to investigate the diversity and antimicrobial resistances of Acinetobacter spp. released from livestock and human wastewater into the environment. Raw and digested manure of small scale on farm biogas plants as well as untreated and treated wastewater and sewage sludge of rural and urban wastewater treatment plants (WWTPs) were studied comparatively. A total of 132 Acinetobacter isolates were phylogenetically identified (16S rRNA gene and rpoB sequence analyses) and 14 different phylotypes were detected. Fiftytwo isolates represented A. baumannii which were cultured from raw and digested manure of different biogas plants, and most stages of the rural WWTP (no hospital wastewater receiving) and the two studied urban WWTPs receiving veterinarian and human hospital wastewater. Multi-locus sequence typing (Pasteur_MLST) identified 23 novel and 12 known STs of A. baumannii. Most novel STs (18/23) were cultured from livestock samples and the rural WWTP. A. baumannii isolates from livestock and the rural WWTP were susceptible to carbapenems, colistin, ciprofloxacin, ceftazidime, and piperacillin. In contrast, A. baumannii isolates from the two urban WWTPs showed clinical linkage with respect to MLST and were multi-drug resistant (MDR). The presence of viable A. baumannii in digested manure and sewage sludge confirmed the survival of the strict aerobic bacteria during anoxic conditions. The study indicated the spread of diverse Acinetobacter from anthropogenic sources into the environment with a strong linkage of clinial associated MDR A. baumannii strains to the inflow of hospital wastewater to WWTPs. A more frequent detection of Acinetobacter in sewage sludge than effluent waters indicated that particle-attachment of Acinetobacter must be considered by the risk assessment of these bacteria.
Collapse
Affiliation(s)
- Dipen Pulami
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Peter Kämpfer
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Stefanie P Glaeser
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
233
|
Wu RA, Feng J, Yue M, Liu D, Ding T. Overuse of food-grade disinfectants threatens a global spread of antimicrobial-resistant bacteria. Crit Rev Food Sci Nutr 2023; 64:6870-6879. [PMID: 36756870 DOI: 10.1080/10408398.2023.2176814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Food-grade disinfectants are extensively used for microbial decontamination of food processing equipment. In recent years, food-grade disinfectants have been increasingly used. However, the overuse of disinfectants causes another major issue, which is the emergence and spread of antimicrobial-resistant bacteria on a global scale. As the ongoing pandemic takes global attention, bacterial infections with antibiotic resistance are another ongoing pandemic that often goes unnoticed and will be the next real threat to humankind. Here, the effects of food-grade disinfectant overuse on the global emergence and spread of antimicrobial-resistant bacteria were reviewed. It was found that longtime exposure to the most common food-grade disinfectants promoted resistance to clinically important antibiotics in pathogenic bacteria, namely cross-resistance. Currently, the use of disinfectants is largely unregulated. The mechanisms of cross-resistance are regulated by intrinsic molecular mechanisms including efflux pumps, DNA repair system, modification of the molecular target, and metabolic adaptation. Cross-resistance can also be acquired by mobile genetic elements. Long-term exposure to disinfectants has an impact on the dissemination of antimicrobial resistance in soil, plants, animals, water, and human gut environments.
Collapse
Affiliation(s)
- Ricardo A Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
234
|
Mokni-Tlili S, Hechmi S, Ouzari HI, Mechergui N, Ghorbel M, Jedidi N, Hassen A, Hamdi H. Co-occurrence of antibiotic and metal resistance in long-term sewage sludge-amended soils: influence of application rates and pedo-climatic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26596-26612. [PMID: 36369449 PMCID: PMC9652132 DOI: 10.1007/s11356-022-23802-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Sarra Hechmi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, LR03ES03, Tunis, Tunisia
| | - Najet Mechergui
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Manel Ghorbel
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Naceur Jedidi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Abdennaceur Hassen
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Helmi Hamdi
- Food and Water Security Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
235
|
Ammar YA, Micky JA, Aboul-Magd DS, Abd El-Hafez SMA, Hessein SA, Ali AM, Ragab A. Development and radiosterilization of new hydrazono-quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study. Chem Biol Drug Des 2023; 101:245-270. [PMID: 36305722 DOI: 10.1111/cbdd.14154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 01/14/2023]
Abstract
This study aimed to synthesize new potent quinoline derivatives based on hydrazone moieties and evaluate their antimicrobial activity. The newly synthesized hydrazono-quinoline derivatives 2, 5a, 9, and 10b showed the highest antimicrobial activity with MIC values ≤1.0 μg/ml against bacteria and ≤8.0 μg/ml against the fungi. Further, these derivatives exhibited bactericidal and fungicidal effects with MBC/MIC and MFC/MIC ratio ≤4. Surprisingly, the most active compounds displayed good inhibition to biofilm formation with MBEC values ranging between (40.0 ± 10.0 - 230.0 ± 31.0) and (67.0 ± 24.0 - 347.0 ± 15.0) μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The hemolytic assays confirmed that the hydrazono-quinoline derivatives are non-toxic with low % lysis values ranging from 4.62% to 14.4% at a 1.0 mg/ml concentration. Besides, compound 5a exhibited the lowest hemolytic activity value of ~4.62%. Furthermore, the study suggests that the hydrazono-quinoline analogs exert their antibacterial activity as dual inhibitors for DNA gyrase and DNA topoisomerase IV enzymes with IC50 values ranging between (4.56 ± 0.3 - 21.67 ± 0.45) and (6.77 ± 0.4 - 20.41 ± 0.32) μM, respectively. Additionally, the recent work advocated that compound 5a showed the reference SAL at the ɣ-radiation dose of 10.0 kGy in the sterilization process without affecting its chemical structure. Finally, the in silico drug-likeness, toxicity properties, and molecular docking simulation were performed. Besides, the result exhibited good oral-bioavailability, lower toxicity prediction, and lower binding energy with good binding mode rather than the positive control.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Jehan A Micky
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Sondos M A Abd El-Hafez
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sadia A Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abeer M Ali
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
236
|
Yi Z, Xu X, Meng X, Liu C, Zhou Q, Gong D, Zha Z. Emerging markers for antimicrobial resistance monitoring. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
237
|
Xie G, Wang X, Mo M, Zhang L, Zhu J. Photothermal Hydrogels for Promoting Infected Wound Healing. Macromol Biosci 2023; 23:e2200378. [PMID: 36337010 DOI: 10.1002/mabi.202200378] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Photothermal therapies (PTT), with spatiotemporally controllable antibacterial capabilities without inducing resistance, have shown encouraging prospects in the field of infected wound treatments. As an important platform for PTT, photothermal hydrogels exhibit attractive advantages in the field of infected wound treatment due to their excellent biochemical properties and have been intensively explored in recent years. This review summarizes the progress of the photothermal hydrogels for promoting infected wound healing. Three major elements of photothermal hydrogels, i.e., photothermal materials, hydrogel matrix, and construction methods, are introduced. Furthermore, different strategies of photothermal hydrogels in the treatment of infected wounds are summarized. Finally, the challenges and prospects in the clinical treatment of photothermal hydrogels are discussed.
Collapse
Affiliation(s)
- Ge Xie
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiao Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Min Mo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
238
|
Phage Therapy as an Alternative Treatment Modality for Resistant Staphylococcus aureus Infections. Antibiotics (Basel) 2023; 12:antibiotics12020286. [PMID: 36830196 PMCID: PMC9952150 DOI: 10.3390/antibiotics12020286] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The production and use of antibiotics increased significantly after the Second World War due to their effectiveness against bacterial infections. However, bacterial resistance also emerged and has now become an important global issue. Those most in need are typically high-risk and include individuals who experience burns and other wounds, as well as those with pulmonary infections caused by antibiotic-resistant bacteria, such as Pseudomonas aeruginosa, Acinetobacter sp, and Staphylococci. With investment to develop new antibiotics waning, finding and developing alternative therapeutic strategies to tackle this issue is imperative. One option remerging in popularity is bacteriophage (phage) therapy. This review focuses on Staphylococcus aureus and how it has developed resistance to antibiotics. It also discusses the potential of phage therapy in this setting and its appropriateness in high-risk people, such as those with cystic fibrosis, where it typically forms a biofilm.
Collapse
|
239
|
Tian S, Sun X, Xiao H, Zhou Y, Huang X, An XL, Liu C, Su JQ. Evaluation of rice straw and its transformation products on norfloxacin degradation and antibiotic resistome attenuation during soil incorporation. CHEMOSPHERE 2023; 313:137451. [PMID: 36464023 DOI: 10.1016/j.chemosphere.2022.137451] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Straw incorporation into reclaimed soils has been demonstrated to increase soil nutrients and has the potential to efficiently increase crop production. However, which incorporation mode is more helpful in the control of antibiotic resistance genes (ARGs) remains unknown. In this study, we systematically compared the occurrence of antibiotic resistome in norfloxacin contaminated soils amended with rice straw (RS) and the transformation products, biochar (RSB) and ash (RSA). RS significantly promoted the degradation of norfloxacin (0.0648 d-1, 3 times faster than control), whereas RSB had little effect and RSA hindered the degradation. Based on metagenomic analysis, RS and RSB significantly reduced the ARGs relative abundance (0.1421 and 0.1991 compared to 0.2540 in control) at the end of soil incubation. Adonis test indicated that all of amendment treatments significantly affect the microbial communities in soils, whereas only RS and RSB significantly affect the variation of antibiotic resistome. Procrustes analysis confirmed the association of microbial communities and ARGs. Network analysis further revealed that the reduction in Actinobacteria was the main reason for the general decrease of ARGs relative abundance during soil incorporation, whereas Proteobacteria and Bacteroidetes were responsible for temporary promotion of ARGs in RS and RSB at the early stage. Finally, scientifically setting up the usage of rice straw and optimizing the preparation process of biochar are suggested for the synchronous control of the risk of antibiotics and ARGs during soil incorporation.
Collapse
Affiliation(s)
- Shaohua Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Xuecong Sun
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Hai Xiao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Yanyan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Xu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China.
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Chaoxiang Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, PR China.
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
240
|
Grézal G, Spohn R, Méhi O, Dunai A, Lázár V, Bálint B, Nagy I, Pál C, Papp B. Plasticity and Stereotypic Rewiring of the Transcriptome Upon Bacterial Evolution of Antibiotic Resistance. Mol Biol Evol 2023; 40:7013728. [PMID: 36718533 PMCID: PMC9927579 DOI: 10.1093/molbev/msad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.
Collapse
Affiliation(s)
- Gábor Grézal
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Translational Microbiology Research Lab, Szeged, Hungary
| | - Anett Dunai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,SeqOmics Biotechnology Ltd., Mórahalom, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd., Mórahalom, Hungary,Sequencing Platform, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,National Laboratory of Biotechnology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | | |
Collapse
|
241
|
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew Chem Int Ed Engl 2023; 62:e202217345. [PMID: 36718001 DOI: 10.1002/anie.202217345] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
Collapse
Affiliation(s)
- Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yun
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, 22100, Lund, Sweden
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.,Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Omid Akhavan
- Condensed Matter National Laboratory, P.O. Box 1956838861, Tehran, Iran
| | - Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials, Institute of Chemistry of New Materials of NAS of Belarus, 36 F. Skaryna Str., 220084, Minsk, Belarus
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
242
|
Rohrbacher C, Zscherp R, Weck SC, Klahn P, Ducho C. Synthesis of an Antimicrobial Enterobactin-Muraymycin Conjugate for Improved Activity Against Gram-Negative Bacteria. Chemistry 2023; 29:e202202408. [PMID: 36222466 PMCID: PMC10107792 DOI: 10.1002/chem.202202408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL , to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-of-concept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens.
Collapse
Affiliation(s)
- Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Stefanie C Weck
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.,Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96, Göteborg, Sweden
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
243
|
Brinck JE, Lassen SB, Forouzandeh A, Pan T, Wang YZ, Monteiro A, Blavi L, Solà-Oriol D, Stein HH, Su JQ, Brandt KK. Impacts of dietary copper on the swine gut microbiome and antibiotic resistome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159609. [PMID: 36273560 DOI: 10.1016/j.scitotenv.2022.159609] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Restrictions on antibiotic growth promoters have prompted livestock producers to use alternative growth promoters, and dietary copper (Cu) supplementation is currently being widely used in pig production. However, elevated doses of dietary Cu constitute a risk for co-selection of antibiotic resistance and the risk may depend on the type of Cu-based feed additives being used. We here report the first controlled experiment investigating the impact of two contrasting Cu-based feed additives on the overall swine gut microbiome and antibiotic resistome. DNA was extracted from fecal samples (n = 96) collected at four time points during 116 days from 120 pigs allotted to three dietary treatments: control, divalent copper sulfate (CuSO4; 250 μg Cu g-1 feed), and monovalent copper oxide (Cu2O; 250 μg Cu g-1 feed). Bacterial community composition, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) were assessed, and bioavailable Cu ([Cu]bio) was determined using whole-cell bacterial bioreporters. Cu supplementation to feed increased total Cu concentrations ([Cu]total) and [Cu]bio in feces 8-10 fold and at least 670-1000 fold, respectively, but with no significant differences between the two Cu sources. The swine gut microbiome harbored highly abundant and diverse ARGs and MGEs irrespective of the treatments throughout the experiment. Microbiomes differed significantly between pig growth stages and tended to converge over time, but only minor changes in the bacterial community composition and resistome could be linked to Cu supplementation. A significant correlation between bacterial community composition (i.e., bacterial taxa present) and ARG prevalence patterns were observed by Procrustes analysis. Overall, results of the experiment did not provide evidence for Cu-induced co-selection of ARGs or MGEs even at a Cu concentration level exceeding the maximal permitted level for pig diets in the EU (25 to 150 μg Cu g-1 feed depending on pig age).
Collapse
Affiliation(s)
- Julius Emil Brinck
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Asal Forouzandeh
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Ting Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan-Zi Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | - Laia Blavi
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNiBA), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China.
| |
Collapse
|
244
|
Gene-Gene Interactions Reduce Aminoglycoside Susceptibility of Pseudomonas aeruginosa through Efflux Pump-Dependent and -Independent Mechanisms. Antibiotics (Basel) 2023; 12:antibiotics12010152. [PMID: 36671353 PMCID: PMC9854422 DOI: 10.3390/antibiotics12010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa causes a wide range of acute and chronic infections. Aminoglycosides are a cornerstone of treatment, but isolates are often resistant. The purpose of this research was to better understand the genetic basis of aminoglycoside resistance in P. aeruginosa. Bioinformatic approaches identified mutations in resistance-associated genes in the clinical isolates of P. aeruginosa. The common mutations were then engineered into the genome of P. aeruginosa reference strain PAO1. Mutations in the elongation factor gene fusA1 caused the biggest reduction in aminoglycoside susceptibility, with mutations in the two-component regulator gene amgS and the efflux pump regulator gene mexZ having less impact. This susceptibility was further reduced by combinations of mutations. Mutations in fusA1, amgS and mexZ all increased the expression of the mexXY efflux pump that is strongly associated with aminoglycoside resistance. Furthermore, the fusA1 amgS mexZ triple mutant had the highest efflux pump gene expression. Engineering fusA1 and amgS mutants lacking this efflux pump showed that fusA1 and amgS also reduce aminoglycoside susceptibility through additional mechanisms. The fusA1 and amgS mutations reduced bacterial growth, showing that these mutations have a fitness cost. Our findings demonstrate the complex interplay between mutations, efflux pump expression and other mechanisms for reducing the susceptibility of P. aeruginosa to aminoglycosides.
Collapse
|
245
|
Brar B, Marwaha S, Poonia AK, Koul B, Kajla S, Rajput VD. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 2023; 205:62. [PMID: 36629918 DOI: 10.1007/s00203-023-03404-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
In the 20th century, the discovery of antibiotics played an essential role in the fight against infectious diseases, including meningitis, typhoid fever, pneumonia and Mycobacterium tuberculosis. The development of multidrug resistance in microflora due to improper antibiotic use created significant public health issues. Antibiotic resistance has increased at an alarming rate in the past few decades. Multidrug-resistant bacteria (superbugs) such as methicillin-resistant Staphylococcus aureus (MRSA) as well as drug-resistant tuberculosis pose serious health implications. Despite the continuous increase in resistant microbes, the discovery of novel antibiotics is constrained by the cost and complexities of discovery of drugs. The nanotechnology has given new hope in combating this problem. In the present review, recent developments in therapeutics utilizing nanotechnology for novel antimicrobial drug development are discussed. The nanoparticles of silver, gold and zinc oxide have proved to be efficient antimicrobial agents against multidrug-resistant Klebsiella, Pseudomonas, Escherichia Coli and MRSA. Using nanostructures as carriers for antimicrobial agents provides better bioavailability, less chances of sub-therapeutic drug accumulation and less drug-related toxicity. Nanophotothermal therapy using fullerene and antibody functionalized nanostructures are other strategies that can prove to be helpful.
Collapse
Affiliation(s)
- Basanti Brar
- HABITAT, Genome Improvement Primary Producer Company Ltd. Centre of Biofertilizer Production and Technology, HAU, Hisar, 125004, India
| | - Sumnil Marwaha
- ICAR-National Research Centre On Camel, Bikaner, 334001, Rajasthan, India
| | - Anil Kumar Poonia
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India. .,Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Bhupendra Koul
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Subhash Kajla
- Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia.
| |
Collapse
|
246
|
Li W, Liu C, Ho HC, Shi L, Zeng Y, Yang X, Huang Q, Pei Y, Huang C, Yang L. Association between antibiotic resistance and increasing ambient temperature in China: An ecological study with nationwide panel data. THE LANCET REGIONAL HEALTH - WESTERN PACIFIC 2023; 30:100628. [PMID: 36406382 PMCID: PMC9672962 DOI: 10.1016/j.lanwpc.2022.100628] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Background Antibiotic resistance leads to longer hospital stays, higher medical costs, and increased mortality. However, research into the relationship between climate change and antibiotic resistance remains inconclusive. This study aims to address the gap in the literature by exploring the association of antibiotic resistance with regional ambient temperature and its changes over time. Methods Data were obtained from the China Antimicrobial Surveillance Network (CHINET), monitoring the prevalence of carbapenem-resistant Acinetobacter baumannii (CRAB), Klebsiella pneumoniae (CRKP) and Pseudomonas aeruginosa (CRPA) in 28 provinces/regions over the period from 2005 to 2019. Log-linear regression models were established to determine the association between ambient temperature and antibiotic resistance after adjustment for variations in socioeconomic, health service, and environmental factors. Findings A 1 °C increase in average ambient temperature was associated with 1.14-fold increase (95%-CI [1.07–1.23]) in CRKP prevalence and 1.06-fold increase (95%-CI [1.03–1.08]) in CRPA prevalence. There was an accumulative effect of year-by-year changes in ambient temperature, with the four-year sum showing the greatest effect on antibiotic resistance. Higher prevalence of antibiotic resistance was also associated with higher antibiotic consumption, lower density of health facilities, higher density of hospital beds and higher level of corruption. Interpretation Higher prevalence of antibiotic resistance is associated with increased regional ambient temperature. The development of antibiotic resistance under rising ambient temperature differs across various strains of bacteria. Funding The 10.13039/501100012166National Key R&D Program of China (grant number: 2018YFA0606200), 10.13039/501100001809National Natural Science Foundation of China (grant number: 72074234), 10.13039/501100012476Fundamental Scientific Research Funds for Central Universities, P.R. China (grant number: 22qntd4201), 10.13039/100001547China Medical Board (grant number: CMB-OC-19-337).
Collapse
Affiliation(s)
- Weibin Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chaojie Liu
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Hung Chak Ho
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lin Shi
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingchao Zeng
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qixian Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yi Pei
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Lianping Yang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- Corresponding author.
| |
Collapse
|
247
|
Abiri A, Patel TR, Nguyen E, Birkenbeuel JL, Tajudeen BA, Choby G, Wang EW, Schlosser RJ, Palmer JN, Adappa ND, Kuan EC. Postoperative protocols following endoscopic skull base surgery: An evidence-based review with recommendations. Int Forum Allergy Rhinol 2023; 13:42-71. [PMID: 35678720 DOI: 10.1002/alr.23041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Postoperative management strategies for endoscopic skull base surgery (ESBS) vary widely because of limited evidence-based guidance. METHODS The PubMed, EMBASE, and Cochrane databases were systematically reviewed from January 1990 through February 2022 to examine 18 postoperative considerations for ESBS. Nonhuman studies, articles written in a language other than English, and case reports were excluded. Studies were assessed for levels of evidence, and each topic's aggregate grade of evidence was evaluated. RESULTS A total of 74 studies reporting on 18 postoperative practices were reviewed. Postoperative pain management, prophylactic antibiotics, and lumbar drain use had the highest grades of evidence (B). The literature currently lacks high quality evidence for a majority of the reviewed ESBS precautions. There were no relevant studies to address postoperative urinary catheter use and medical intracranial pressure reduction. CONCLUSION The evidence for postoperative ESBS precautions is heterogeneous, scarce, and generally of low quality. Although this review identified the best evidence available in the literature, it suggests the urgent need for more robust evidence. Therefore, additional high-quality studies are needed in order to devise optimal postoperative ESBS protocols.
Collapse
Affiliation(s)
- Arash Abiri
- Department of Otolaryngology, Head and Neck Surgery, University of California Irvine, Orange, California, USA
| | - Tirth R Patel
- Department of Otolaryngology, Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Emily Nguyen
- Department of Otolaryngology, Head and Neck Surgery, University of California Irvine, Orange, California, USA
| | - Jack L Birkenbeuel
- Department of Otolaryngology, Head and Neck Surgery, University of California Irvine, Orange, California, USA
| | - Bobby A Tajudeen
- Department of Otolaryngology, Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Garret Choby
- Department of Otolaryngology, Head and Neck Surgery and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric W Wang
- Department of Otolaryngology, Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Rodney J Schlosser
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James N Palmer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward C Kuan
- Department of Otolaryngology, Head and Neck Surgery, University of California Irvine, Orange, California, USA
- Department of Neurological Surgery, University of California Irvine, Orange, California, USA
| |
Collapse
|
248
|
Wortel MT, Agashe D, Bailey SF, Bank C, Bisschop K, Blankers T, Cairns J, Colizzi ES, Cusseddu D, Desai MM, van Dijk B, Egas M, Ellers J, Groot AT, Heckel DG, Johnson ML, Kraaijeveld K, Krug J, Laan L, Lässig M, Lind PA, Meijer J, Noble LM, Okasha S, Rainey PB, Rozen DE, Shitut S, Tans SJ, Tenaillon O, Teotónio H, de Visser JAGM, Visser ME, Vroomans RMA, Werner GDA, Wertheim B, Pennings PS. Towards evolutionary predictions: Current promises and challenges. Evol Appl 2023; 16:3-21. [PMID: 36699126 PMCID: PMC9850016 DOI: 10.1111/eva.13513] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.
Collapse
Affiliation(s)
- Meike T. Wortel
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Deepa Agashe
- National Centre for Biological SciencesBangaloreIndia
| | | | - Claudia Bank
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Gulbenkian Science InstituteOeirasPortugal
| | - Karen Bisschop
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Origins CenterGroningenThe Netherlands
- Laboratory of Aquatic Biology, KU Leuven KulakKortrijkBelgium
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Origins CenterGroningenThe Netherlands
| | | | - Enrico Sandro Colizzi
- Origins CenterGroningenThe Netherlands
- Mathematical InstituteLeiden UniversityLeidenThe Netherlands
| | | | | | - Bram van Dijk
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jacintha Ellers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Ken Kraaijeveld
- Leiden Centre for Applied BioscienceUniversity of Applied Sciences LeidenLeidenThe Netherlands
| | - Joachim Krug
- Institute for Biological PhysicsUniversity of CologneCologneGermany
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of NanoscienceTU DelftDelftThe Netherlands
| | - Michael Lässig
- Institute for Biological PhysicsUniversity of CologneCologneGermany
| | - Peter A. Lind
- Department Molecular BiologyUmeå UniversityUmeåSweden
| | - Jeroen Meijer
- Theoretical Biology and Bioinformatics, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Luke M. Noble
- Institute de Biologie, École Normale Supérieure, CNRS, InsermParisFrance
| | | | - Paul B. Rainey
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRSParisFrance
| | - Daniel E. Rozen
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Shraddha Shitut
- Origins CenterGroningenThe Netherlands
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | | | | | | | | | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Renske M. A. Vroomans
- Origins CenterGroningenThe Netherlands
- Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | | |
Collapse
|
249
|
CanB is a metabolic mediator of antibiotic resistance in Neisseria gonorrhoeae. Nat Microbiol 2023; 8:28-39. [PMID: 36604513 DOI: 10.1038/s41564-022-01282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/28/2022] [Indexed: 01/07/2023]
Abstract
The evolution of the obligate human pathogen Neisseria gonorrhoeae has been shaped by selective pressures from diverse host niche environments and antibiotics. The varying prevalence of antibiotic resistance across N. gonorrhoeae lineages suggests that underlying metabolic differences may influence the likelihood of acquisition of specific resistance mutations. We hypothesized that the requirement for supplemental CO2, present in approximately half of isolates, reflects one such example of metabolic variation. Here, using a genome-wide association study and experimental investigations, we show that CO2 dependence is attributable to a single substitution in a β-carbonic anhydrase, CanB. CanB19E is necessary and sufficient for growth in the absence of CO2, and the hypomorphic CanB19G variant confers CO2 dependence. Furthermore, ciprofloxacin resistance is correlated with CanB19G in clinical isolates, and the presence of CanB19G increases the likelihood of acquisition of ciprofloxacin resistance. Together, our results suggest that metabolic variation has affected the acquisition of fluoroquinolone resistance.
Collapse
|
250
|
Evolutionary rescue of resistant mutants is governed by a balance between radial expansion and selection in compact populations. Nat Commun 2022; 13:7916. [PMID: 36564390 PMCID: PMC9789051 DOI: 10.1038/s41467-022-35484-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mutation-mediated treatment resistance is one of the primary challenges for modern antibiotic and anti-cancer therapy. Yet, many resistance mutations have a substantial fitness cost and are subject to purifying selection. How emerging resistant lineages may escape purifying selection via subsequent compensatory mutations is still unclear due to the difficulty of tracking such evolutionary rescue dynamics in space and time. Here, we introduce a system of fluorescence-coupled synthetic mutations to show that the probability of evolutionary rescue, and the resulting long-term persistence of drug resistant mutant lineages, is dramatically increased in dense microbial populations. By tracking the entire evolutionary trajectory of thousands of resistant lineages in expanding yeast colonies we uncover an underlying quasi-stable equilibrium between the opposing forces of radial expansion and natural selection, a phenomenon we term inflation-selection balance. Tailored computational models and agent-based simulations corroborate the fundamental nature of the observed effects and demonstrate the potential impact on drug resistance evolution in cancer. The described phenomena should be considered when predicting multi-step evolutionary dynamics in any mechanically compact cellular population, including pathogenic microbial biofilms and solid tumors. The insights gained will be especially valuable for the quantitative understanding of response to treatment, including emerging evolution-based therapy strategies.
Collapse
|