201
|
Emerging roles for RNA degradation in viral replication and antiviral defense. Virology 2015; 479-480:600-8. [PMID: 25721579 PMCID: PMC4424162 DOI: 10.1016/j.virol.2015.02.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
Abstract
Viral replication significantly alters the gene expression landscape of infected cells. Many of these changes are driven by viral manipulation of host transcription or translation machinery. Several mammalian viruses encode factors that broadly dampen gene expression by directly targeting messenger RNA (mRNA). Here, we highlight how these factors promote mRNA degradation to globally regulate both host and viral gene expression. Although these viral factors are not homologous and use distinct mechanisms to target mRNA, many of them display striking parallels in their strategies for executing RNA degradation and invoke key features of cellular RNA quality control pathways. In some cases, there is a lack of selectivity for degradation of host versus viral mRNA, indicating that the purposes of virus-induced mRNA degradation extend beyond redirecting cellular resources towards viral gene expression. In addition, several antiviral pathways use RNA degradation as a viral restriction mechanism, and we will summarize new findings related to how these host-encoded ribonucleases target and destroy viral RNA.
Collapse
|
202
|
Raju KK, Natarajan S, Kumar NS, Kumar DA, NM R. Role of cytoplasmic deadenylation and mRNA decay factors in yeast apoptosis. FEMS Yeast Res 2015; 15:fou006. [DOI: 10.1093/femsyr/fou006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
203
|
Grabek KR, Diniz Behn C, Barsh GS, Hesselberth JR, Martin SL. Enhanced stability and polyadenylation of select mRNAs support rapid thermogenesis in the brown fat of a hibernator. eLife 2015; 4. [PMID: 25626169 PMCID: PMC4383249 DOI: 10.7554/elife.04517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
During hibernation, animals cycle between torpor and arousal. These cycles involve
dramatic but poorly understood mechanisms of dynamic physiological regulation at the
level of gene expression. Each cycle, Brown Adipose Tissue (BAT) drives periodic
arousal from torpor by generating essential heat. We applied digital transcriptome
analysis to precisely timed samples to identify molecular pathways that underlie the
intense activity cycles of hibernator BAT. A cohort of transcripts increased during
torpor, paradoxical because transcription effectively ceases at these low
temperatures. We show that this increase occurs not by elevated transcription but
rather by enhanced stabilization associated with maintenance and/or extension of long
poly(A) tails. Mathematical modeling further supports a temperature-sensitive
mechanism to protect a subset of transcripts from ongoing bulk degradation instead of
increased transcription. This subset was enriched in a C-rich motif and genes
required for BAT activation, suggesting a model and mechanism to prioritize
translation of key proteins for thermogenesis. DOI:http://dx.doi.org/10.7554/eLife.04517.001 Many mammals hibernate to avoid food scarcity and harsh conditions during winter.
Hibernation involves entering a state called torpor, which drastically reduces the
amount of energy used by the body. During torpor, body temperature also decreases.
This is particularly exemplified in ground squirrels, whose body temperature can
hover at just above or even below the point of freezing. However, hibernating mammals
cannot remain in this state continuously over the months of hibernation but instead
cycle between bouts of torpor lasting for 1–3 weeks and brief periods of
‘arousal’ lasting between 12–24 hr, during which their body
rapidly warms up. The heat required to start warming up the hibernator is generated from a specialized
form of fat called brown adipose tissue. Normally, the bursts of metabolic activity
that are required to create this heat depend on certain proteins being produced.
Making a protein involves ‘translating’ its sequence from template
molecules called messenger RNA (mRNA), which are ‘transcribed’ from the
gene that encodes the protein. During the low body temperatures experienced during
torpor, both of these processes stop. So how is the hibernator able to quickly and
efficiently heat itself up during the arousal periods of hibernation? Grabek et al. investigated this by analyzing the relative levels of mRNA in the brown
adipose tissue of hibernating 13-lined ground squirrels. Using a special technique to
sample and sequence small fragments of mRNA taken from brown adipose tissue, Grabek
et al. compiled a profile of the mRNA molecules present at different points in the
torpor–arousal cycle and compared this with a similar profile taken from
squirrels that were not hibernating. From this analysis, Grabek et al. detected that a particular group of mRNA molecules
that are required for producing heat increase in abundance during torpor, even though
body temperature is low enough to stop gene transcription. This increased abundance
does not occur because more of the mRNA molecules are made; instead, the mRNA
molecules are modified to become more stable and long lasting. Once the animal warms
up during arousal, gene transcription is reactivated and more new mRNA molecules are
made. Grabek et al. suggest that the key mRNAs required for brown adipose tissue function
are selectively stabilized during torpor through a temperature-dependent protective
mechanism. These mRNAs are then preferentially translated into proteins during
arousal to rapidly and efficiently heat the hibernator. Most other mRNA molecules
degrade throughout torpor, and so their numbers decline as replacements are not
transcribed until body temperature briefly recovers during arousal. Whether this
protective mechanism is also used in other tissues during torpor remains a question
for future work. DOI:http://dx.doi.org/10.7554/eLife.04517.002
Collapse
Affiliation(s)
- Katharine R Grabek
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| | - Cecilia Diniz Behn
- Department of Applied Math and Statistics, Colorado School of Mines, Golden, United States
| | - Gregory S Barsh
- Department of Research, HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Jay R Hesselberth
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| | - Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
204
|
|
205
|
Larsson L, Castilho RM, Giannobile WV. Epigenetics and its role in periodontal diseases: a state-of-the-art review. J Periodontol 2014; 86:556-68. [PMID: 25415244 DOI: 10.1902/jop.2014.140559] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune response to oral bacteria and the subsequent activation of inflammatory signaling is not only dependent on genetic factors. The importance of so-called epigenetic mechanisms presents additional regulatory pathways of genes involved in maintaining chronic inflammation, including gingivitis and periodontitis. The term epigenetics relates to changes in gene expression that are not encoded in the DNA sequence itself and include chemical alterations of DNA and its associated proteins. These changes lead to remodeling of the chromatin and subsequent activation or inactivation of a gene. Epigenetic mechanisms have been found to contribute to disease, including cancer and autoimmune or inflammatory diseases. In this state-of-the art review, the authors provide the latest findings on the involvement of epigenetic modifications in the development of periodontal disease and present emerging therapeutic strategies aimed at epigenetic targets (epidrugs) associated with the disruption of tissue homeostasis and the development of periodontitis.
Collapse
Affiliation(s)
- Lena Larsson
- Currently, Department of Periodontology, Institute of Odontology, University of Gothenburg, Sweden; previously, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | | | | |
Collapse
|
206
|
Kubacka D, Miguel RN, Minshall N, Darzynkiewicz E, Standart N, Zuberek J. Distinct features of cap binding by eIF4E1b proteins. J Mol Biol 2014; 427:387-405. [PMID: 25463438 PMCID: PMC4306533 DOI: 10.1016/j.jmb.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
eIF4E1b, closely related to the canonical translation initiation factor 4E (eIF4E1a), cap-binding protein is highly expressed in mouse, Xenopus and zebrafish oocytes. We have previously characterized eIF4E1b as a component of the CPEB mRNP translation repressor complex along with the eIF4E-binding protein 4E-Transporter, the Xp54/DDX6 RNA helicase and additional RNA-binding proteins. eIF4E1b exhibited only very weak interactions with m7GTP-Sepharose and, rather than binding eIF4G, interacted with 4E-T. Here we undertook a detailed examination of both Xenopus and human eIF4E1b interactions with cap analogues using fluorescence titration and homology modeling. The predicted structure of eIF4E1b maintains the α + β fold characteristic of eIF4E proteins and its cap-binding pocket is similarly arranged by critical amino acids: Trp56, Trp102, Glu103, Trp166, Arg112, Arg157 and Lys162 and residues of the C-terminal loop. However, we demonstrate that eIF4E1b is 3-fold less well able to bind the cap than eIF4E1a, both proteins being highly stimulated by methylation at N7 of guanine. Moreover, eIF4E1b proteins are distinguishable from eIF4E1a by a set of conserved amino acid substitutions, several of which are located near to cap-binding residues. Indeed, eIF4E1b possesses several distinct features, namely, enhancement of cap binding by a benzyl group at N7 position of guanine, a reduced response to increasing length of the phosphate chain and increased binding to a cap separated by a linker from Sepharose, suggesting differences in the arrangement of the protein's core. In agreement, mutagenesis of the amino acids differentiating eIF4E1b from eIF4E1a reduces cap binding by eIF4E1a 2-fold, demonstrating their role in modulating cap binding. Sequence analysis of vertebrate eIF4E1a and eIF4E1b proteins identified a set of conserved substitutions, including those near to cap-binding residues. The fluorescence titration assay revealed that human and Xenopus eIF4E1b have 3-fold lower affinity for m7GTP than the eIF4E1a proteins. Additional distinct features of cap binding by eIF4E1b suggest differences in the arrangement of the protein's core and its C-terminal loop. Mutagenesis of the distinguishing amino acids reduced cap binding by eIF4E1a 2-fold, demonstrating their role in modulating affinity to m7GTP.
Collapse
Affiliation(s)
- Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| | - Ricardo Núñez Miguel
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland; Centre of New Technologies, University of Warsaw, Warsaw 02-089, Poland.
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| |
Collapse
|
207
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
208
|
Lee MC, Jänicke A, Beilharz TH. Using Klenow-mediated extension to measure poly(A)-tail length and position in the transcriptome. Methods Mol Biol 2014; 1125:25-42. [PMID: 24590777 DOI: 10.1007/978-1-62703-971-0_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The poly(A)-tail that terminates most mRNA and many noncoding RNA is a convenient "hook" to isolate mRNA. However the length of this tail and its position within the primary RNA transcript can also hold diagnostic value for RNA metabolism. In general, mRNA with a long poly(A)-tail is well translated, whereas a short poly(A)-tail can indicate translational silencing. A short poly(A)-tail is also appended to RNA-decay intermediates via the TRAMP complex. A number of approaches have been developed to measure the length and position of the poly(A)-tail. Here, we describe a simple method to "tag" adenylated RNA using the native function of DNA polymerase I to extend an RNA primer on a DNA template in second-strand DNA synthesis. This function can be harnessed as a means to purify, visualize, and quantitate poly(A)-dynamics of individual RNA and the transcriptome en masse.
Collapse
Affiliation(s)
- Man Chun Lee
- Department of Biochemistry and Molecular Biology, Monash University Australia, Melbourne, VIC, Australia
| | | | | |
Collapse
|
209
|
Abstract
Localization and the associated translational control of mRNA is a well established mechanism for segregating cellular protein expression. Drosophila has been instrumental in deciphering the prevailing mechanisms of mRNA localization and regulation. This review will discuss the diverse roles of mRNA localization in the Drosophila germline, the cis-elements and cellular components regulating localization and the superimposition of translational regulatory mechanisms. Despite a history of discovery, there are still many fundamental questions regarding mRNA localization that remain unanswered. Take home messages, outstanding questions and future approaches that will likely lead to resolving these unknowns in the future are summarized at the end.
Collapse
Affiliation(s)
- Timothy T Weil
- a Department of Zoology ; University of Cambridge ; Cambridge , UK
| |
Collapse
|
210
|
Wurth L, Gebauer F. RNA-binding proteins, multifaceted translational regulators in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:881-6. [PMID: 25316157 DOI: 10.1016/j.bbagrm.2014.10.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) orchestrate transcript fate and function. Even though alterations in post-transcriptional events contribute to key steps of tumor initiation and progression, RBP-mediated control has remained relatively unexplored in cancer. Here, we discuss examples of this promising field focusing on translation regulation, and highlight the variety of molecular mechanisms by which RBPs impinge on translation with consequences for tumorigenesis. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Laurence Wurth
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
211
|
Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U, Horsthemke B, Grümmer R. Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes. PLoS One 2014; 9:e108907. [PMID: 25271735 PMCID: PMC4182777 DOI: 10.1371/journal.pone.0108907] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Maternal effect genes code for oocyte proteins that are important for early embryogenesis. Transcription in oocytes does not take place from the onset of meiotic progression until zygotic genome activation. During this period, protein levels are regulated posttranscriptionally, for example by poly(A) tail length. Posttranscriptional regulation may be impaired in preovulatory and postovulatory aged oocytes, caused by delayed ovulation or delayed fertilization, respectively, and may lead to developmental defects. We investigated transcript levels and poly(A) tail length of ten maternal effect genes in in vivo- and in vitro- (follicle culture) grown oocytes after pre- and postovulatory aging. Quantitative RT-PCR was performed using random hexamer-primed cDNA to determine total transcript levels and oligo(dT)16-primed cDNA to analyze poly(A) tail length. Transcript levels of in vivo preovulatory-aged oocytes remained stable except for decreases in Brg1 and Tet3. Most genes investigated showed a tendency towards increased poly(A) content. Polyadenylation of in vitro preovulatory-aged oocytes was also increased, along with transcript level declines of Trim28, Nlrp2, Nlrp14 and Zar1. In contrast to preovulatory aging, postovulatory aging of in vivo- and in vitro-grown oocytes led to a shortening of poly(A) tails. Postovulatory aging of in vivo-grown oocytes resulted in deadenylation of Nlrp5 after 12 h, and deadenylation of 4 further genes (Tet3, Trim28, Dnmt1, Oct4) after 24 h. Similarly, transcripts of in vitro-grown oocytes were deadenylated after 12 h of postovulatory aging (Tet3, Trim28, Zfp57, Dnmt1, Nlrp5, Zar1). This impact of aging on poly(A) tail length may affect the timed translation of maternal effect gene transcripts and thereby contribute to developmental defects.
Collapse
Affiliation(s)
- Debora Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Martyna Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - Katrin Rademacher
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
212
|
He GJ, Yan YB. Self-association of poly(A)-specific ribonuclease (PARN) triggered by the R3H domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2077-85. [PMID: 25239613 DOI: 10.1016/j.bbapap.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Poly(A)-specific ribonuclease (PARN) is a deadenylase with three RNA-binding domains (the nuclease, R3H and RRM domains) and a C-terminal domain. PARN participates in diverse physiological processes by regulating mRNA fates through deadenylation. PARN mainly exists as a dimer in dilute solutions. In this research, we found that PARN could self-associate into tetramer and high-order oligomers both in vitro and in living cells. Mutational and spectroscopic analysis indicated that PARN oligomerization was triggered by the R3H domain, which led to the solvent-exposed Trp219 fluorophore to become buried in a solvent-inaccessible microenvironment. The RRM and C-terminal domains also played a role in modulating the dissociation rate of the tetrameric PARN. Enzymatic analysis indicated that tetramerization did not affect the catalytic behavior of the full-length PARN and truncated enzymes containing the RRM domain, which might be caused by the high propensity of the dimeric proteins to self-associate into oligomers. Tetramerization significantly enhanced the catalytic activity and processivity of the truncated form with the removal of the RRM and C-terminal domains. The results herein suggested that self-association might be one of the regulation methods for PARN to achieve a highly regulated deadenylase activity. We propose that self-association may facilitate PARN to concentrate around the target mRNAs by restricted diffusion.
Collapse
Affiliation(s)
- Guang-Jun He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
213
|
Yamashita Y, Lambein I, Kobayashi S, Onouchi H, Chiba Y, Naito S. A halt in poly(A) shortening during S-adenosyl-L-methionine-induced translation arrest in CGS1 mRNA of Arabidopsis thaliana. Genes Genet Syst 2014; 88:241-9. [PMID: 24463527 DOI: 10.1266/ggs.88.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cystathionine γ-synthase (CGS) catalyzes the first committed step of methionine (Met) biosynthesis in plants. Expression of the Arabidopsis thaliana CGS1 gene is negatively feedback-regulated in response to the direct Met metabolite S-adenosyl-L-methionine (AdoMet). This regulation occurs at the step of mRNA stability during translation and is coupled with AdoMet-induced CGS1-specific translation arrest. In general, mRNA decay is initiated by a shortening of the poly(A) tail. However, this process has not been studied in detail in cases where regulatory events, such as programmed translation arrest, are involved. Here, we report that the poly(A) tail of the full-length CGS1 mRNA showed an apparent increase from 50-80 nucleotides (nt) to 140-150 nt after the induction of CGS1 mRNA degradation. This finding was unexpected because mRNAs that are destined for degradation harbored longer poly(A) tail than mRNAs that were not targeted for degradation. The results suggest that poly(A) shortening is inhibited or delayed during AdoMet-induced translation arrest of CGS1 mRNA. We propose an explanation for this phenomenon that remains consistent with the recent model of actively translating mRNA. We also found that CGS1 mRNA degradation intermediates, which are 5'-truncated forms of CGS1 mRNA, had a short poly(A) tail of 10-30 nt. This suggests that poly(A) shortening occurs rapidly on the degradation intermediates. The present study highlights CGS1 mRNA degradation as a useful system to understand the dynamic features of poly(A) shortening.
Collapse
Affiliation(s)
- Yui Yamashita
- Graduate School of Life Science, Hokkaido University
| | | | | | | | | | | |
Collapse
|
214
|
Abstract
Poly(A) tails are important regulators of mRNA stability and translational efficiency. Cytoplasmic removal of poly(A) tails by 3'→5' exonucleases (deadenylation) is the rate-limiting step in mRNA degradation. Two exonuclease complexes contribute the majority of the deadenylation activity in eukaryotes: Ccr4-Not and Pan2-Pan3. These can be specifically recruited to mRNA to regulate mRNA stability or translational efficiency, thereby fine-tuning gene expression. In the present review, we discuss the activities and roles of the Pan2-Pan3 deadenylation complex.
Collapse
|
215
|
Abstract
Translational control is central to the gene expression pathway and was the focus of the 2013 annual Translation UK meeting held at the University of Kent. The meeting brought together scientists at all career stages to present and discuss research in the mRNA translation field, with an emphasis on the presentations on the research of early career scientists. The diverse nature of this field was represented by the broad range of papers presented at the meeting. The complexity of mRNA translation and its control is emphasized by the interdisciplinary research approaches required to address this area with speakers highlighting emerging systems biology techniques and their application to understanding mRNA translation and the network of pathways controlling it.
Collapse
|
216
|
Afroz T, Skrisovska L, Belloc E, Guillén-Boixet J, Méndez R, Allain FHT. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev 2014; 28:1498-514. [PMID: 24990967 PMCID: PMC4083092 DOI: 10.1101/gad.241133.114] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
How CPEB RNA-binding proteins regulate cytoplasmic polyadenylation and translation is poorly understood. Allain and colleagues report the structures of the tandem RNA recognition motifs (RRMs) of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. Structural and functional studies reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and zinc-binding domains at the 3′ UTR, which favors the nucleation of ribonucleoprotein complexes for translation regulation. This study provides the molecular basis for the translational regulatory circuit established by CPEB proteins. Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3′ untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein–protein and protein–RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3′ UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.
Collapse
Affiliation(s)
- Tariq Afroz
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8093 Zürich, Switzerland
| | - Lenka Skrisovska
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8093 Zürich, Switzerland
| | - Eulàlia Belloc
- Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | | | - Raúl Méndez
- Institute for Research in Biomedicine, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8093 Zürich, Switzerland
| |
Collapse
|
217
|
Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 2014; 14:361-76. [PMID: 24854588 DOI: 10.1038/nri3682] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Innate immune responses combat infectious microorganisms by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. Multiple genes within each of these functional categories are coordinately and temporally regulated in response to distinct external stimuli. The substantial potential of these responses to drive pathological inflammation and tissue damage highlights the need for rigorous control of these responses. Although transcriptional control of inflammatory gene expression has been studied extensively, the importance of post-transcriptional regulation of these processes is less well defined. In this Review, we discuss the regulatory mechanisms that occur at the level of mRNA splicing, mRNA polyadenylation, mRNA stability and protein translation, and that have instrumental roles in controlling both the magnitude and duration of the inflammatory response.
Collapse
Affiliation(s)
- Susan Carpenter
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Emiliano P Ricci
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Blandine C Mercier
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Katherine A Fitzgerald
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2] Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
218
|
Chapat C, Corbo L. Novel roles of the CCR4-NOT complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:883-901. [PMID: 25044499 DOI: 10.1002/wrna.1254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
The CCR4-NOT complex is a multi-subunit protein complex evolutionarily conserved across eukaryotes which regulates several aspects of gene expression. A fascinating model is emerging in which this complex acts as a regulation platform, controlling gene products 'from birth to death' through the coordination of different cellular machineries involved in diverse cellular functions. Recently the CCR4-NOT functions have been extended to the control of the innate immune response through the regulation of interferon signaling. Thus, a more comprehensive picture of how CCR4-NOT allows the rapid adaptation of cells to external stress, from transcription to mRNA and protein decay, is presented and discussed here. Overall, CCR4-NOT permits the efficient and rapid adaptation of cellular gene expression in response to changes in environmental conditions and stimuli.
Collapse
Affiliation(s)
- Clément Chapat
- Université Lyon 1, Lyon, France; CNRS UMR 5286, Lyon, France; Inserm U1052, Lyon, France; Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | | |
Collapse
|
219
|
Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size--does this protein make my tail look big? Semin Cell Dev Biol 2014; 34:24-32. [PMID: 24910447 DOI: 10.1016/j.semcdb.2014.05.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/31/2014] [Indexed: 12/22/2022]
Abstract
While the phenomenon of polyadenylation has been well-studied, the dynamics of poly(A) tail size and its impact on transcript function and cell biology are less well-appreciated. The goal of this review is to encourage readers to view the poly(A) tail as a dynamic, changeable aspect of a transcript rather than a simple static entity that marks the 3' end of an mRNA. This could open up new angles of regulation in the post-transcriptional control of gene expression throughout development, differentiation and cancer.
Collapse
Affiliation(s)
- Aimee L Jalkanen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Stephen J Coleman
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
220
|
Wolf J, Valkov E, Allen MD, Meineke B, Gordiyenko Y, McLaughlin SH, Olsen TM, Robinson CV, Bycroft M, Stewart M, Passmore LA. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO J 2014; 33:1514-26. [PMID: 24872509 PMCID: PMC4158885 DOI: 10.15252/embj.201488373] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conserved eukaryotic Pan2–Pan3 deadenylation complex shortens cytoplasmic mRNA 3′ polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2–Pan3 complex.
Collapse
Affiliation(s)
- Jana Wolf
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Eugene Valkov
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Mark D Allen
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Birthe Meineke
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Tayla M Olsen
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | | | - Mark Bycroft
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Murray Stewart
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
221
|
Temme C, Simonelig M, Wahle E. Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Front Genet 2014; 5:143. [PMID: 24904643 PMCID: PMC4033318 DOI: 10.3389/fgene.2014.00143] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/02/2014] [Indexed: 11/13/2022] Open
Abstract
Controlled shortening of the poly(A) tail of mRNAs is the first step in eukaryotic mRNA decay and can also be used for translational inactivation of mRNAs. The CCR4-NOT complex is the most important among a small number of deadenylases, enzymes catalyzing poly(A) tail shortening. Rates of poly(A) shortening differ between mRNAs as the CCR4-NOT complex is recruited to specific mRNAs by means of either sequence-specific RNA binding proteins or miRNAs. This review summarizes our current knowledge concerning the subunit composition and deadenylation activity of the Drosophila CCR4-NOT complex and the mechanisms by which the complex is recruited to particular mRNAs. We discuss genetic data implicating the complex in the regulation of specific mRNAs, in particular in the context of development.
Collapse
Affiliation(s)
- Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg Halle, Germany
| | - Martine Simonelig
- Genetics and Development, Institute of Human Genetics - CNRS UPR1142 Montpellier, France
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg Halle, Germany
| |
Collapse
|
222
|
Zhu Y, Huang Y, Jung JU, Lu C, Gao SJ. Viral miRNA targeting of bicistronic and polycistronic transcripts. Curr Opin Virol 2014; 7:66-72. [PMID: 24821460 DOI: 10.1016/j.coviro.2014.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/05/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022]
Abstract
Successful viral infection entails a choreographic regulation of viral gene expression program. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes numerous miRNAs that regulate viral life cycle. However, few viral targets have been identified due to the lack of information on KSHV 3' untranslated regions (3'UTRs). Recent genome-wide mapping of KSHV transcripts and 3'UTRs has revealed abundant bicistronic and polycistronic transcripts. The extended 3'UTRs of the 5' proximal genes of bicistronic and polycistronic transcripts offer additional regulatory targets. Indeed, a genome-wide screening of KSHV 3'UTRs has identified several bicistronic and polycistronic transcripts as the novel targets of viral miRNAs. Together, these works have expanded our knowledge of the unique features of KSHV gene regulation program and provided valuable resources for the research community.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Chun Lu
- Department of Immunology and Microbiology, Nanjing Medical University, Nanjing 210029, China
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|
223
|
Zheng D, Tian B. Sizing up the poly(A) tail: insights from deep sequencing. Trends Biochem Sci 2014; 39:255-7. [PMID: 24751511 DOI: 10.1016/j.tibs.2014.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/19/2022]
Abstract
Global investigation of poly(A) tails has been hindered by technical challenges. In a recent advance, two groups developed deep sequencing methods to globally interrogate poly(A) tail length and sequence with high precision, opening new avenues for investigation of poly(A) tail functions in mRNA metabolism. Initial applications of these methods reveal insights into the relationship between poly(A) tail length and translational efficiency, and identify widespread uridylation and guanylation at the 3' ends of transcripts.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ 07103.
| |
Collapse
|
224
|
Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5'-end capping quality control and 3'-end processing. Biochemistry 2014; 53:1882-98. [PMID: 24617759 PMCID: PMC3977584 DOI: 10.1021/bi401715v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Messenger RNA precursors (pre-mRNAs)
are produced as the nascent
transcripts of RNA polymerase II (Pol II) in eukaryotes and must undergo
extensive maturational processing, including 5′-end capping,
splicing, and 3′-end cleavage and polyadenylation. This review
will summarize the structural and functional information reported
over the past few years on the large machinery required for the 3′-end
processing of most pre-mRNAs, as well as the distinct machinery for
the 3′-end processing of replication-dependent histone pre-mRNAs,
which have provided great insights into the proteins and their subcomplexes
in these machineries. Structural and biochemical studies have also
led to the identification of a new class of enzymes (the DXO family
enzymes) with activity toward intermediates of the 5′-end capping
pathway. Functional studies demonstrate that these enzymes are part
of a novel quality surveillance mechanism for pre-mRNA 5′-end
capping. Incompletely capped pre-mRNAs are produced in yeast and human
cells, in contrast to the general belief in the field that capping
always proceeds to completion, and incomplete capping leads to defects
in splicing and 3′-end cleavage in human cells. The DXO family
enzymes are required for the detection and degradation of these defective
RNAs.
Collapse
Affiliation(s)
- Ashley R Jurado
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | | | | | | | | |
Collapse
|
225
|
Chang H, Lim J, Ha M, Kim VN. TAIL-seq: genome-wide determination of poly(A) tail length and 3' end modifications. Mol Cell 2014; 53:1044-52. [PMID: 24582499 DOI: 10.1016/j.molcel.2014.02.007] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/23/2013] [Accepted: 02/03/2014] [Indexed: 01/05/2023]
Abstract
Global investigation of the 3' extremity of mRNA (3'-terminome), despite its importance in gene regulation, has not been feasible due to technical challenges associated with homopolymeric sequences and relative paucity of mRNA. We here develop a method, TAIL-seq, to sequence the very end of mRNA molecules. TAIL-seq allows us to measure poly(A) tail length at the genomic scale. Median poly(A) length is 50-100 nt in HeLa and NIH 3T3 cells. Poly(A) length correlates with mRNA half-life, but not with translational efficiency. Surprisingly, we discover widespread uridylation and guanylation at the downstream of poly(A) tail. The U tails are generally attached to short poly(A) tails (<25 nt), while the G tails are found mainly on longer poly(A) tails (>40 nt), implicating their generic roles in mRNA stability control. TAIL-seq is a potent tool to dissect dynamic control of mRNA turnover and translational control, and to discover unforeseen features of RNA cleavage and tailing.
Collapse
Affiliation(s)
- Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jaechul Lim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Minju Ha
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
226
|
O'Connell ML, Cavallo WC, Firnberg M. The expression of CPEB proteins is sequentially regulated during zebrafish oogenesis and embryogenesis. Mol Reprod Dev 2014; 81:376-87. [DOI: 10.1002/mrd.22306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/25/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Marcia L. O'Connell
- The Department of Biology; The College of New Jersey; Ewing New Jersey 08628
| | - William C. Cavallo
- The Department of Biology; The College of New Jersey; Ewing New Jersey 08628
| | - Maytal Firnberg
- The Department of Biology; The College of New Jersey; Ewing New Jersey 08628
| |
Collapse
|
227
|
Mao Y, Liu H, Liu Y, Tao S. Deciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae. Nucleic Acids Res 2014; 42:4813-22. [PMID: 24561808 PMCID: PMC4005662 DOI: 10.1093/nar/gku159] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Messenger RNA (mRNA) secondary structure decreases the elongation rate, as ribosomes must unwind every structure they encounter during translation. Therefore, the strength of mRNA secondary structure is assumed to be reduced in highly translated mRNAs. However, previous studies in vitro reported a positive correlation between mRNA folding strength and protein abundance. The counterintuitive finding suggests that mRNA secondary structure affects translation efficiency in an undetermined manner. Here, we analyzed the folding behavior of mRNA during translation and its effect on translation efficiency. We simulated translation process based on a novel computational model, taking into account the interactions among ribosomes, codon usage and mRNA secondary structures. We showed that mRNA secondary structure shortens ribosomal distance through the dynamics of folding strength. Notably, when adjacent ribosomes are close, mRNA secondary structures between them disappear, and codon usage determines the elongation rate. More importantly, our results showed that the combined effect of mRNA secondary structure and codon usage in highly translated mRNAs causes a short ribosomal distance in structural regions, which in turn eliminates the structures during translation, leading to a high elongation rate. Together, these findings reveal how the dynamics of mRNA secondary structure coupling with codon usage affect translation efficiency.
Collapse
Affiliation(s)
- Yuanhui Mao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China, Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China and College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | |
Collapse
|
228
|
Yan YB. Deadenylation: enzymes, regulation, and functional implications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:421-43. [PMID: 24523229 DOI: 10.1002/wrna.1221] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 12/27/2022]
Abstract
Lengths of the eukaryotic messenger RNA (mRNA) poly(A) tails are dynamically changed by the opposing effects of poly(A) polymerases and deadenylases. Modulating poly(A) tail length provides a highly regulated means to control almost every stage of mRNA lifecycle including transcription, processing, quality control, transport, translation, silence, and decay. The existence of diverse deadenylases with distinct properties highlights the importance of regulating poly(A) tail length in cellular functions. The deadenylation activity can be modulated by subcellular locations of the deadenylases, cis-acting elements in the target mRNAs, trans-acting RNA-binding proteins, posttranslational modifications of deadenylase and associated factors, as well as transcriptional and posttranscriptional regulation of the deadenylase genes. Among these regulators, the physiological functions of deadenylases are largely dependent on the interactions with the trans-acting RNA-binding proteins, which recruit deadenylases to the target mRNAs. The task of these RNA-binding proteins is to find and mark the target mRNAs based on their sequence features. Regulation of the regulators can switch on or switch off deadenylation and thereby destabilize or stabilize the targeted mRNAs, respectively. The distinct domain compositions and cofactors provide various deadenylases the structural basis for the recruitments by distinct RNA-binding protein subsets to meet dissimilar cellular demands. The diverse deadenylases, the numerous types of regulators, and the reversible posttranslational modifications together make up a complicated network to precisely regulate intracellular mRNA homeostasis. This review will focus on the diverse regulators of various deadenylases and will discuss their functional implications, remaining problems, and future challenges.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
229
|
Lee SK, Zhao MH, Kwon JW, Li YH, Lin ZL, Jin YX, Kim NH, Cui XS. The association of mitochondrial potential and copy number with pig oocyte maturation and developmental potential. J Reprod Dev 2014; 60:128-35. [PMID: 24492657 PMCID: PMC3999391 DOI: 10.1262/jrd.2013-098] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ATP is critical for oocyte maturation, fertilization, and subsequent embryo development.
Both mitochondrial membrane potential and copy number expand during oocyte maturation. In
order to differentiate the roles of mitochondrial metabolic activity and mtDNA copy number
during oocyte maturation, we used two inhibitors, FCCP (carbonyl cyanide
p-(tri-fluromethoxy)phenyl-hydrazone) and ddC (2’3-dideoxycytidine), to deplete the
mitochondrial membrane potential (Δφm) and mitochondrial copy number,
respectively. FCCP (2000 nM) reduced ATP production by affecting mitochondrial
Δφm, decreased the mRNA expression of Bmp15 (bone
morphogenetic protein 15), and shortened the poly(A) tails of Bmp15,
Gdf9 (growth differentiation factor 9), and Cyclin B1
transcripts. FCCP (200 and 2000 nM) also affected p34cdc2 kinase activity. By
contrast, ddC did not alter ATP production. Instead, ddC significantly decreased mtDNA
copy number (P < 0.05). FCCP (200 and 2000 nM) also decreased extrusion of the first
polar body, whereas ddC at all concentrations did not affect the ability of immature
oocytes to reach metaphase II. Both FCCP (200 and 2000 nM) and ddC (200 and 2000 µM)
reduced parthenogenetic blastocyst formation compared with untreated oocytes. However,
these inhibitors did not affect total cell number and apoptosis. These findings suggest
that mitochondrial metabolic activity is critical for oocyte maturation and that both
mitochondrial metabolic activity and replication contribute to the developmental
competence of porcine oocytes.
Collapse
Affiliation(s)
- Seul-Ki Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju, 361-763, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 2014; 508:66-71. [PMID: 24476825 PMCID: PMC4086860 DOI: 10.1038/nature13007] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/23/2013] [Indexed: 12/16/2022]
Abstract
Poly(A) tails enhance the stability and translation of most eukaryotic
mRNAs, but difficulties in globally measuring poly(A)-tail lengths have impeded
greater understanding of poly(A)-tail function. Here, we describe poly(A)-tail
length profiling by sequencing (PAL-seq) and apply it to measure tail lengths of
millions of individual RNAs isolated from yeasts, cell lines,
Arabidopsis leaves, mouse liver, and zebrafish and frog
embryos. Poly(A)-tail lengths were conserved between orthologous mRNAs, with
mRNAs encoding ribosomal proteins and other “housekeeping”
proteins tending to have shorter tails. As expected, tail lengths were coupled
to translational efficiency in early zebrafish and frog embryos. However, this
strong coupling diminished at gastrulation and was absent in non-embryonic
samples, indicating a rapid developmental switch in the nature of translational
control. This switch complements an earlier switch to zygotic transcriptional
control and explains why the predominant effect of microRNA-mediated
deadenylation concurrently shifts from translational repression to mRNA
destabilization.
Collapse
|
231
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
232
|
Abstract
The polyadenosine (polyA) "tail" is an essential feature at the 3' end of nearly all eukaryotic mRNAs. This appendage has roles in many steps in the gene expression pathway and is subject to extensive regulation. Selection of alternative sites for polyA tail addition is a widely used mechanism to generate alternative mRNAs with distinct 3'UTRs that can be subject to distinct forms of posttranscriptional control. One such type of regulation includes cytoplasmic lengthening and shortening of the polyA tail, which is coupled to changes in mRNA translation and decay. Here we present a general overview of 3' end formation in the nucleus and regulation of the polyA tail in the cytoplasm, with an emphasis on the diverse roles of 3' end regulation in the control of gene expression in different biological systems.
Collapse
Affiliation(s)
- Thomas J Sweet
- Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | | |
Collapse
|
233
|
Solana J, Gamberi C, Mihaylova Y, Grosswendt S, Chen C, Lasko P, Rajewsky N, Aboobaker AA. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation. PLoS Genet 2013; 9:e1004003. [PMID: 24367277 PMCID: PMC3868585 DOI: 10.1371/journal.pgen.1004003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/21/2013] [Indexed: 01/08/2023] Open
Abstract
Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology.
Collapse
Affiliation(s)
- Jordi Solana
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Chiara Gamberi
- Department of Biology, McGill University, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Yuliana Mihaylova
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Stefanie Grosswendt
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Chen Chen
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
234
|
Christie M, Boland A, Huntzinger E, Weichenrieder O, Izaurralde E. Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins. Mol Cell 2013; 51:360-73. [PMID: 23932717 DOI: 10.1016/j.molcel.2013.07.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/03/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022]
Abstract
The PAN2-PAN3 deadenylase complex functions in general and miRNA-mediated mRNA degradation and is specifically recruited to miRNA targets by GW182/TNRC6 proteins. We describe the PAN3 adaptor protein crystal structure that, unexpectedly, forms intertwined and asymmetric homodimers. Dimerization is mediated by a coiled coil that links an N-terminal pseudokinase to a C-terminal knob domain. The PAN3 pseudokinase binds ATP, and this function is required for mRNA degradation in vivo. We further identified conserved surfaces required for mRNA degradation, including the binding surface for the PAN2 deadenylase on the knob domain. The most remarkable structural feature is the presence of a tryptophan-binding pocket at the dimer interface, which mediates binding to TNRC6C in human cells. Together, our data reveal the structural basis for the interaction of PAN3 with PAN2 and the recruitment of the PAN2-PAN3 complex to miRNA targets by TNRC6 proteins.
Collapse
Affiliation(s)
- Mary Christie
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
235
|
Yoda M, Cifuentes D, Izumi N, Sakaguchi Y, Suzuki T, Giraldez AJ, Tomari Y. Poly(A)-specific ribonuclease mediates 3'-end trimming of Argonaute2-cleaved precursor microRNAs. Cell Rep 2013; 5:715-26. [PMID: 24209750 DOI: 10.1016/j.celrep.2013.09.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are typically generated as ~22-nucleotide double-stranded RNAs via the processing of precursor hairpins by the ribonuclease III enzyme Dicer, after which they are loaded into Argonaute (Ago) proteins to form an RNA-induced silencing complex (RISC). However, the biogenesis of miR-451, an erythropoietic miRNA conserved in vertebrates, occurs independently of Dicer and instead requires cleavage of the 3' arm of the pre-miR-451 precursor hairpin by Ago2. The 3' end of the Ago2-cleaved pre-miR-451 intermediate is then trimmed to the mature length by an unknown nuclease. Here, using a classical chromatographic approach, we identified poly(A)-specific ribonuclease (PARN) as the enzyme responsible for the 3'-5' exonucleolytic trimming of Ago2-cleaved pre-miR-451. Surprisingly, our data show that trimming of Ago2-cleaved precursor miRNAs is not essential for target silencing, indicating that RISC is functional with miRNAs longer than the mature length. Our findings define the maturation step in the miRNA biogenesis pathway that depends on Ago2-mediated cleavage.
Collapse
Affiliation(s)
- Mayuko Yoda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Medical Genome Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
236
|
Combining different mRNA capture methods to analyze the transcriptome: analysis of the Xenopus laevis transcriptome. PLoS One 2013; 8:e77700. [PMID: 24143257 PMCID: PMC3797054 DOI: 10.1371/journal.pone.0077700] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 09/13/2013] [Indexed: 11/19/2022] Open
Abstract
mRNA sequencing (mRNA-seq) is a commonly used technique to survey gene expression from organisms with fully sequenced genomes. Successful mRNA-seq requires purification of mRNA away from the much more abundant ribosomal RNA, which is typically accomplished by oligo-dT selection. However, mRNAs with short poly-A tails are captured poorly by oligo-dT based methods. We demonstrate that combining mRNA capture via oligo-dT with mRNA capture by the 5’ 7-methyl guanosine cap provides a more complete view of the transcriptome and can be used to assay changes in mRNA poly-A tail length on a genome-wide scale. We also show that using mRNA-seq reads from both capture methods as input for de novo assemblers provides a more complete reconstruction of the transcriptome than either method used alone. We apply these methods of mRNA capture and de novo assembly to the transcriptome of Xenopus laevis, a well-studied frog that currently lacks a finished sequenced genome, to discover transcript sequences for thousands of mRNAs that are currently absent from public databases. The methods we describe here will be broadly applicable to many organisms and will provide insight into the transcriptomes of organisms with sequenced and unsequenced genomes.
Collapse
|
237
|
Spies N, Burge CB, Bartel DP. 3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res 2013; 23:2078-90. [PMID: 24072873 PMCID: PMC3847777 DOI: 10.1101/gr.156919.113] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Variation in protein output across the genome is controlled at several levels, but the relative contributions of different regulatory mechanisms remain poorly understood. Here, we obtained global measurements of decay and translation rates for mRNAs with alternative 3′ untranslated regions (3′ UTRs) in murine 3T3 cells. Distal tandem isoforms had slightly but significantly lower mRNA stability and greater translational efficiency than proximal isoforms on average. The diversity of alternative 3′ UTRs also enabled inference and evaluation of both positively and negatively acting cis-regulatory elements. The 3′ UTR elements with the greatest implied influence were microRNA complementary sites, which were associated with repression of 32% and 4% at the stability and translational levels, respectively. Nonetheless, both the decay and translation rates were highly correlated for proximal and distal 3′ UTR isoforms from the same genes, implying that in 3T3 cells, alternative 3′ UTR sequences play a surprisingly small regulatory role compared to other mRNA regions.
Collapse
Affiliation(s)
- Noah Spies
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
238
|
Chen IH, Cheng JH, Huang YW, Lin NS, Hsu YH, Tsai CH. Characterization of the polyadenylation activity in a replicase complex from Bamboo mosaic virus-infected Nicotiana benthamiana plants. Virology 2013; 444:64-70. [PMID: 23768785 PMCID: PMC7111917 DOI: 10.1016/j.virol.2013.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/30/2022]
Abstract
Bamboo mosaic virus (BaMV) has a positive-sense single-stranded RNA genome with a 5' cap and a 3' poly(A) tail. To characterize polyadenylation activity in the BaMV replicase complex, we performed the in vitro polyadenylation with various BaMV templates. We conducted a polyadenylation activity assay for BaMV RNA by using a partially purified BaMV replicase complex. The results showed that approximately 200 adenylates at the 3' end of the RNA were generated on the endogenous RNA templates. Specific fractions derived from uninfected Nicotiana benthamiana plants enhanced the polyadenylation activity, implying that host factors are involved in polyadenylation. Furthermore, polyadenylation can be detected in newly synthesized plus-strand RNA in vitro when using the exogenous BaMV minus-strand minigenome. For polyadenylation on the exogenous plus-strand minigenome, the 3' end requires at least 4A to reach 22% polyadenylation activity. The results indicate that the BaMV replicase complex recognizes the 3' end of BaMV for polyadenylation.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jai-Hong Cheng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Na-Sheng Lin
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| |
Collapse
|
239
|
Curanovic D, Cohen M, Singh I, Slagle CE, Leslie CS, Jaffrey SR. Global profiling of stimulus-induced polyadenylation in cells using a poly(A) trap. Nat Chem Biol 2013; 9:671-3. [PMID: 23995769 PMCID: PMC3805764 DOI: 10.1038/nchembio.1334] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/05/2013] [Indexed: 11/25/2022]
Abstract
Polyadenylation of mRNA leads to increased protein expression in response to diverse stimuli, but it is difficult to identify mRNAs that become polyadenylated in living cells. Here we describe a click chemistry-compatible nucleoside analog that is selectively incorporated into poly(A) tails of transcripts in cells. Next-generation sequencing of labeled mRNAs enables a transcriptome-wide profile of polyadenylation and provides insights into the mRNA sequence elements that are correlated with polyadenylation.
Collapse
Affiliation(s)
- Dusica Curanovic
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
240
|
Abstract
The addition of poly(A) tails to eukaryotic nuclear mRNAs promotes their stability, export to the cytoplasm and translation. Subsequently, the balance between exonucleolytic deadenylation and selective re-establishment of translation-competent poly(A) tails by cytoplasmic poly(A) polymerases is essential for the appropriate regulation of gene expression from oocytes to neurons. In recent years, surprising roles for cytoplasmic poly(A) polymerase-related enzymes that add uridylyl, rather than adenylyl, residues to RNA 3' ends have also emerged. These terminal uridylyl transferases promote the turnover of certain mRNAs but also modify microRNAs, their precursors and other small RNAs to modulate their stability or biological functions.
Collapse
Affiliation(s)
- Chris J Norbury
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
241
|
Kubacka D, Kamenska A, Broomhead H, Minshall N, Darzynkiewicz E, Standart N. Investigating the consequences of eIF4E2 (4EHP) interaction with 4E-transporter on its cellular distribution in HeLa cells. PLoS One 2013; 8:e72761. [PMID: 23991149 PMCID: PMC3749138 DOI: 10.1371/journal.pone.0072761] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/15/2013] [Indexed: 11/25/2022] Open
Abstract
In addition to the canonical eIF4E cap-binding protein, eukaryotes have evolved sequence–related variants with distinct features, some of which have been shown to negatively regulate translation of particular mRNAs, but which remain poorly characterised. Mammalian eIF4E proteins have been divided into three classes, with class I representing the canonical cap-binding protein eIF4E1. eIF4E1 binds eIF4G to initiate translation, and other eIF4E-binding proteins such as 4E-BPs and 4E-T prevent this interaction by binding eIF4E1 with the same consensus sequence YX 4Lϕ. We investigate here the interaction of human eIF4E2 (4EHP), a class II eIF4E protein, which binds the cap weakly, with eIF4E-transporter protein, 4E-T. We first show that ratios of eIF4E1:4E-T range from 50:1 to 15:1 in HeLa and HEK293 cells respectively, while those of eIF4E2:4E-T vary from 6:1 to 3:1. We next provide evidence that eIF4E2 binds 4E-T in the yeast two hybrid assay, as well as in pull-down assays and by recruitment to P-bodies in mammalian cells. We also show that while both eIF4E1 and eIF4E2 bind 4E-T via the canonical YX 4Lϕ sequence, nearby downstream sequences also influence eIF4E:4E-T interactions. Indirect immunofluorescence was used to demonstrate that eIF4E2, normally homogeneously localised in the cytoplasm, does not redistribute to stress granules in arsenite-treated cells, nor to P-bodies in Actinomycin D-treated cells, in contrast to eIF4E1. Moreover, eIF4E2 shuttles through nuclei in a Crm1-dependent manner, but in an 4E-T–independent manner, also unlike eIF4E1. Altogether we conclude that while both cap-binding proteins interact with 4E-T, and can be recruited by 4E-T to P-bodies, eIF4E2 functions are likely to be distinct from those of eIF4E1, both in the cytoplasm and nucleus, further extending our understanding of mammalian class I and II cap-binding proteins.
Collapse
Affiliation(s)
- Dorota Kubacka
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Anastasiia Kamenska
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helen Broomhead
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
242
|
Nishihara T, Zekri L, Braun JE, Izaurralde E. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res 2013; 41:8692-705. [PMID: 23863838 PMCID: PMC3794582 DOI: 10.1093/nar/gkt619] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNA (miRNA)-induced silencing complexes (miRISCs) repress translation and promote degradation of miRNA targets. Target degradation occurs through the 5′-to-3′ messenger RNA (mRNA) decay pathway, wherein, after shortening of the mRNA poly(A) tail, the removal of the 5′ cap structure by decapping triggers irreversible decay of the mRNA body. Here, we demonstrate that miRISC enhances the association of the decapping activators DCP1, Me31B and HPat with deadenylated miRNA targets that accumulate when decapping is blocked. DCP1 and Me31B recruitment by miRISC occurs before the completion of deadenylation. Remarkably, miRISC recruits DCP1, Me31B and HPat to engineered miRNA targets transcribed by RNA polymerase III, which lack a cap structure, a protein-coding region and a poly(A) tail. Furthermore, miRISC can trigger decapping and the subsequent degradation of mRNA targets independently of ongoing deadenylation. Thus, miRISC increases the local concentration of the decapping machinery on miRNA targets to facilitate decapping and irreversibly shut down their translation.
Collapse
Affiliation(s)
- Tadashi Nishihara
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
243
|
Emerging roles for ribonucleoprotein modification and remodeling in controlling RNA fate. Trends Cell Biol 2013; 23:504-10. [PMID: 23756094 DOI: 10.1016/j.tcb.2013.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/26/2022]
Abstract
In the cell, mRNAs and non-coding RNAs exist in association with proteins to form ribonucleoprotein (RNP) complexes. Regulation of RNP stability and function is achieved by alterations to the RNP through poorly understood mechanisms into which recent studies have now begun to provide insight. This emerging body of work points to chemical modification of RNPs at the RNA or protein level and ATP-dependent RNP remodeling by RNA helicases/RNA-dependent ATPases as central events that dictate RNA fate. Some RNP modifications serve as tags for recruitment of regulatory proteins, with RNP modifiers and recruited proteins analogous to the writers and readers of chromatin modification, respectively. This review highlights examples in which RNP modification and ATP-dependent remodeling play key roles in the control of eukaryotic RNA fate, suggesting that we are only at the beginning of uncovering the multitude of ways in which RNP modification and remodeling impact RNA regulation.
Collapse
|
244
|
Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013; 280:4230-50. [PMID: 23601051 DOI: 10.1111/febs.12294] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
The polyadenosine RNA binding protein polyadenylate-binding nuclear protein 1 (PABPN1) plays key roles in post-transcriptional processing of RNA. Although PABPN1 is ubiquitously expressed and presumably contributes to control of gene expression in all tissues, mutation of the PABPN1 gene causes the disease oculopharyngeal muscular dystrophy (OPMD), in which a limited set of skeletal muscles are affected. A major goal in the field of OPMD research is to understand why mutation of a ubiquitously expressed gene leads to a muscle-specific disease. PABPN1 plays a well-documented role in controlling the poly(A) tail length of RNA transcripts but new functions are emerging through studies that exploit a variety of unbiased screens as well as model organisms. This review addresses (a) the molecular function of PABPN1 incorporating recent findings that reveal novel cellular functions for PABPN1 and (b) the approaches that are being used to understand the molecular defects that stem from expression of mutant PABPN1. The long-term goal in this field of research is to understand the key molecular functions of PABPN1 in muscle as well as the mechanisms that underlie the pathological consequences of mutant PABPN1. Armed with this information, researchers can seek to develop therapeutic approaches to enhance the quality of life for patients afflicted with OPMD.
Collapse
Affiliation(s)
- Ayan Banerjee
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
245
|
Abstract
Neurons have their own systems for regulating RNA. Several multigene families encode RNA binding proteins (RNABPs) that are uniquely expressed in neurons, including the well-known neuron-specific markers ELAV and NeuN and the disease antigen NOVA. New technologies have emerged in recent years to assess the function of these proteins in vivo, and the answers are yielding insights into how and why neurons may regulate RNA in special ways-to increase cellular complexity, to localize messenger RNA (mRNA) spatially, and to regulate their expression in response to synaptic stimuli. The functions of such restricted neuronal proteins are likely to be complemented by more widely expressed RNABPs that may themselves have developed specialized functions in neurons, including Argonaute/microRNAs (miRNAs). Here we review what is known about such RNABPs and explore the potential biologic and neurologic significance of neuronal RNA regulatory systems.
Collapse
Affiliation(s)
- Robert B Darnell
- Department of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
246
|
Bava FA, Eliscovich C, Ferreira PG, Miñana B, Ben-Dov C, Guigó R, Valcárcel J, Méndez R. CPEB1 coordinates alternative 3'-UTR formation with translational regulation. Nature 2013; 495:121-5. [PMID: 23434754 DOI: 10.1038/nature11901] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/11/2013] [Indexed: 12/21/2022]
Abstract
More than half of mammalian genes generate multiple messenger RNA isoforms that differ in their 3' untranslated regions (3' UTRs) and therefore in regulatory sequences, often associated with cell proliferation and cancer; however, the mechanisms coordinating alternative 3'-UTR processing for specific mRNA populations remain poorly defined. Here we report that the cytoplasmic polyadenylation element binding protein 1 (CPEB1), an RNA-binding protein that regulates mRNA translation, also controls alternative 3'-UTR processing. CPEB1 shuttles to the nucleus, where it co-localizes with splicing factors and mediates shortening of hundreds of mRNA 3' UTRs, thereby modulating their translation efficiency in the cytoplasm. CPEB1-mediated 3'-UTR shortening correlates with cell proliferation and tumorigenesis. CPEB1 binding to pre-mRNAs not only directs the use of alternative polyadenylation sites, but also changes alternative splicing by preventing U2AF65 recruitment. Our results reveal a novel function of CPEB1 in mediating alternative 3'-UTR processing, which is coordinated with regulation of mRNA translation, through its dual nuclear and cytoplasmic functions.
Collapse
Affiliation(s)
- Felice-Alessio Bava
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
247
|
Gotic I, Schibler U. The ticking tail: daily oscillations in mRNA poly(A) tail length drive circadian cycles in protein synthesis. Genes Dev 2013; 26:2669-72. [PMID: 23249731 DOI: 10.1101/gad.210690.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Genes & Development, Kojima and colleagues (pp. 2724-2736) examined the impact of mRNA poly(A) tail length on circadian gene expression. Their study demonstrates how dynamic changes in transcript poly(A) tail length can lead to rhythmic protein expression, irrespective of whether mRNA accumulation is circadian or constitutive.
Collapse
Affiliation(s)
- Ivana Gotic
- Department of Molecular Biology, National Centre of Competence in Research "Frontiers in Genetics," University of Geneva, CH-1211 Geneva-4, Switzerland.
| | | |
Collapse
|
248
|
Bawankar P, Loh B, Wohlbold L, Schmidt S, Izaurralde E. NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain. RNA Biol 2013; 10:228-44. [PMID: 23303381 PMCID: PMC3594282 DOI: 10.4161/rna.23018] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CCR4-NOT complex plays a crucial role in post-transcriptional mRNA regulation in eukaryotes. This complex catalyzes the removal of mRNA poly(A) tails, thereby repressing translation and committing an mRNA to degradation. The conserved core of the complex is assembled by the interaction of at least two modules: the NOT module, which minimally consists of NOT1, NOT2 and NOT3, and a catalytic module comprising two deadenylases, CCR4 and POP2/CAF1. Additional complex subunits include CAF40 and two newly identified human subunits, NOT10 and C2orf29. The role of the NOT10 and C2orf29 subunits and how they are integrated into the complex are unknown. Here, we show that the Drosophila melanogaster NOT10 and C2orf29 orthologs form a complex that interacts with the N-terminal domain of NOT1 through C2orf29. These interactions are conserved in human cells, indicating that NOT10 and C2orf29 define a conserved module of the CCR4-NOT complex. We further investigated the assembly of the D. melanogaster CCR4-NOT complex, and demonstrate that the conserved armadillo repeat domain of CAF40 interacts with a region of NOT1, comprising a domain of unknown function, DUF3819. Using tethering assays, we show that each subunit of the CCR4-NOT complex causes translational repression of an unadenylated mRNA reporter and deadenylation and degradation of a polyadenylated reporter. Therefore, the recruitment of a single subunit of the complex to an mRNA target induces the assembly of the complete CCR4-NOT complex, resulting in a similar regulatory outcome.
Collapse
Affiliation(s)
- Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
249
|
Barckmann B, Simonelig M. Control of maternal mRNA stability in germ cells and early embryos. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:714-24. [PMID: 23298642 DOI: 10.1016/j.bbagrm.2012.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/21/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
mRNA regulation is essential in germ cells and early embryos. In particular, late oogenesis and early embryogenesis occur in the absence of transcription and rely on maternal mRNAs stored in oocytes. These maternal mRNAs subsequently undergo a general decay in embryos during the maternal-to-zygotic transition in which the control of development switches from the maternal to the zygotic genome. Regulation of mRNA stability thus plays a key role during these early stages of development and is tightly interconnected with translational regulation and mRNA localization. A common mechanism in these three types of regulation implicates variations in mRNA poly(A) tail length. Recent advances in the control of mRNA stability include the widespread and essential role of regulated deadenylation in early developmental processes, as well as the mechanisms regulating mRNA stability which involve RNA binding proteins, microRNAs and interplay between the two. Also emerging are the roles that other classes of small non-coding RNAs, endo-siRNAs and piRNAs play in the control of mRNA decay, including connections between the regulation of transposable elements and cellular mRNA regulation through the piRNA pathway. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Bridlin Barckmann
- mRNA Regulation and Development, Institute of Human Genetics, Montpellier Cedex 5, France
| | | |
Collapse
|
250
|
Venigalla RKC, Turner M. RNA-binding proteins as a point of convergence of the PI3K and p38 MAPK pathways. Front Immunol 2012; 3:398. [PMID: 23272005 PMCID: PMC3530045 DOI: 10.3389/fimmu.2012.00398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022] Open
Abstract
Understanding the mechanisms by which signal transduction pathways mediate changes in RNA abundance requires the examination of the fate of RNA from its transcription to its degradation. Evidence suggests that RNA abundance is partly regulated by post-transcriptional mechanisms affecting RNA decay and this in turn is modulated by some of the same signaling pathways that control transcription. Furthermore, the translation of mRNA is a key regulatory step that is influenced by signal transduction. These processes are regulated, in part, by RNA-binding proteins (RBPs) which bind to sequence-specific RNA elements. The function of RBPs is controlled and co-ordinated by phosphorylation. Based on the current literature we hypothesize that RBPs may be a point of convergence for the activity of different kinases such as phosphoinositide-3-kinase and mitogen-activated protein kinase which regulate RBP localization and function.
Collapse
Affiliation(s)
- Ram K C Venigalla
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute Babraham, UK
| | | |
Collapse
|