201
|
Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem Rev 2021; 121:3390-3411. [PMID: 32441527 PMCID: PMC8519031 DOI: 10.1021/acs.chemrev.0c00199] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal infections are a major contributor to infectious disease-related deaths across the globe. Candida species are among the most common causes of invasive mycotic disease, with Candida albicans reigning as the leading cause of invasive candidiasis. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for antifungal development remains limited. Currently, there are only three major classes of drugs approved for the treatment of invasive mycoses, and the efficacy of these agents is compromised by the development of drug resistance in pathogen populations. Notably, the emergence of additional drug-resistant species, such as Candida auris and Candida glabrata, further threatens the limited armamentarium of antifungals available to treat these serious infections. Here, we describe our current arsenal of antifungals and elaborate on the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention. Finally, we highlight some of the most promising therapeutic strategies that may help combat antifungal resistance, including combination therapy, targeting fungal-virulence traits, and modulating host immunity. Overall, a thorough understanding of the mechanistic principles governing antifungal drug resistance is fundamental for the development of novel therapeutics to combat current and emerging fungal threats.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
202
|
Genomic Epidemiology of Candida auris in Qatar Reveals Hospital Transmission Dynamics and a South Asian Origin. J Fungi (Basel) 2021; 7:jof7030240. [PMID: 33807036 PMCID: PMC8004815 DOI: 10.3390/jof7030240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Candida auris is an emerging, multidrug-resistant fungal pathogen that has become a public health threat with an increasing incidence of infections worldwide. Candida auris spreads easily among patients within and between hospitals. Infections and outbreaks caused by C. auris have been reported in the Middle East region including Oman, Kuwait, Saudi Arabia, and Qatar; however, the origin of these isolates is largely unknown. Pathogen whole genome sequencing (WGS) was used to determine the epidemiology and drug resistance mutations of C. auris in Qatar. Forty-four samples isolated from patients in three hospitals and the hospital environment were sequenced by Illumina NextSeq. Core genome single nucleotide polymorphisms (SNPs) revealed that all isolates belonged to the South Asian lineage with genetic heterogeneity that suggests previous acquisition from foreign healthcare. The genetic variability among the outbreak isolates in the two hospitals (A and B) was low. Four environmental isolates clustered with the related clinical isolates, and epidemiologically linked isolates clustered together, suggesting that the ongoing transmission of C. auris could be linked to infected/colonized patients and the hospital environment. Prominent mutations Y132F and K143R in ERG11 linked to increased fluconazole resistance were detected.
Collapse
|
203
|
Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021; 9:microorganisms9030634. [PMID: 33803604 PMCID: PMC8003017 DOI: 10.3390/microorganisms9030634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections represent an expanding threat to public health. During the past decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is now recognized as an emerging species of concern and underscores the urgent need for novel drug development strategies. In this review, we discuss the genomic epidemiology and the main virulence factors of C. auris. We also focus on the different new strategies and results obtained during the past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical descriptors will be carried out along with the description of reported strategies.
Collapse
Affiliation(s)
- Muriel Billamboz
- Inserm, CHU Lille, Institut Pasteur Lille, Université Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement, F-59000 Lille, France
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, INSERM U1285, University of Lille, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| |
Collapse
|
204
|
Welsh RM, Misas E, Forsberg K, Lyman M, Chow NA. Candida auris Whole-Genome Sequence Benchmark Dataset for Phylogenomic Pipelines. J Fungi (Basel) 2021; 7:214. [PMID: 33809682 PMCID: PMC8002225 DOI: 10.3390/jof7030214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 01/20/2023] Open
Abstract
Candida auris is a multidrug-resistant pathogen that represents a serious public health threat due to its rapid global emergence, increasing incidence of healthcare-associated outbreaks, and high rates of antifungal resistance. Whole-genome sequencing and genomic surveillance have the potential to bolster C. auris surveillance networks moving forward. Laboratories conducting genomic surveillance need to be able to compare analyses from various national and international surveillance partners to ensure that results are mutually trusted and understood. Therefore, we established an empirical outbreak benchmark dataset consisting of 23 C. auris genomes to help validate comparisons of genomic analyses and facilitate communication among surveillance networks. Our outbreak benchmark dataset represents a polyclonal phylogeny with three subclades. The genomes in this dataset are from well-vetted studies that are supported by multiple lines of evidence, which demonstrate that the whole-genome sequencing data, phylogenetic tree, and epidemiological data are all in agreement. This C. auris benchmark set allows for standardized comparisons of phylogenomic pipelines, ultimately promoting effective C. auris collaborations.
Collapse
Affiliation(s)
- Rory M. Welsh
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (E.M.); (K.F.); (M.L.); (N.A.C.)
| | | | | | | | | |
Collapse
|
205
|
Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom Bioinform 2021; 3:lqaa108. [PMID: 33575650 PMCID: PMC7787252 DOI: 10.1093/nargab/lqaa108] [Citation(s) in RCA: 855] [Impact Index Per Article: 213.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/26/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
The task of eukaryotic genome annotation remains challenging. Only a few genomes could serve as standards of annotation achieved through a tremendous investment of human curation efforts. Still, the correctness of all alternative isoforms, even in the best-annotated genomes, could be a good subject for further investigation. The new BRAKER2 pipeline generates and integrates external protein support into the iterative process of training and gene prediction by GeneMark-EP+ and AUGUSTUS. BRAKER2 continues the line started by BRAKER1 where self-training GeneMark-ET and AUGUSTUS made gene predictions supported by transcriptomic data. Among the challenges addressed by the new pipeline was a generation of reliable hints to protein-coding exon boundaries from likely homologous but evolutionarily distant proteins. In comparison with other pipelines for eukaryotic genome annotation, BRAKER2 is fully automatic. It is favorably compared under equal conditions with other pipelines, e.g. MAKER2, in terms of accuracy and performance. Development of BRAKER2 should facilitate solving the task of harmonization of annotation of protein-coding genes in genomes of different eukaryotic species. However, we fully understand that several more innovations are needed in transcriptomic and proteomic technologies as well as in algorithmic development to reach the goal of highly accurate annotation of eukaryotic genomes.
Collapse
Affiliation(s)
- Tomáš Brůna
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
| | - Alexandre Lomsadze
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mario Stanke
- Institute of Mathematics and Computer Science, University of Greifswald, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
| | - Mark Borodovsky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
206
|
Chakrabarti A, Sood P. On the emergence, spread and resistance of Candida auris: host, pathogen and environmental tipping points. J Med Microbiol 2021; 70:001318. [PMID: 33599604 PMCID: PMC8346726 DOI: 10.1099/jmm.0.001318] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023] Open
Abstract
Over a decade ago, a multidrug-resistant nosocomial fungus Candida auris emerged worldwide and has since become a significant challenge for clinicians and microbiologists across the globe. A resilient pathogen, C. auris survives harsh disinfectants, desiccation and high-saline environments. It readily colonizes the inanimate environment, susceptible patients and causes invasive infections that exact a high toll. Prone to misidentification by conventional microbiology techniques, C. auris rapidly acquires multiple genetic determinants that confer multidrug resistance. Whole-genome sequencing has identified four distinct clades of C. auris, and possibly a fifth one, in circulation. Even as our understanding of this formidable pathogen grows, the nearly simultaneous emergence of its distinct clades in different parts of the world, followed by their rapid global spread, remains largely unexplained. We contend that certain host-pathogen-environmental factors have been evolving along adverse trajectories for the last few decades, especially in regions where C. auris originally appeared, until these factors possibly reached a tipping point to compel the evolution, emergence and spread of C. auris. Comparative genomics has helped identify several resistance mechanisms in C. auris that are analogous to those seen in other Candida species, but they fail to fully explain how high-level resistance rapidly develops in this yeast. A better understanding of these unresolved aspects is essential not only for the effective management of C. auris patients, hospital outbreaks and its global spread but also for forecasting and tackling novel resistant pathogens that might emerge in the future. In this review, we discuss the emergence, spread and resistance of C. auris, and propose future investigations to tackle this resilient pathogen.
Collapse
Affiliation(s)
- Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Sood
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
207
|
Comparison of Two Commercially Available qPCR Kits for the Detection of Candida auris. J Fungi (Basel) 2021; 7:jof7020154. [PMID: 33671676 PMCID: PMC7926799 DOI: 10.3390/jof7020154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Candida auris is an emerging pathogen with resistance to many commonly used antifungal agents. Infections with C. auris require rapid and reliable detection methods to initiate successful medical treatment and contain hospital outbreaks. Conventional identification methods are prone to errors and can lead to misidentifications. PCR-based assays, in turn, can provide reliable results with low turnaround times. However, only limited data are available on the performance of commercially available assays for C. auris detection. In the present study, the two commercially available PCR assays AurisID (OLM, Newcastle Upon Tyne, UK) and Fungiplex Candida Auris RUO Real-Time PCR (Bruker, Bremen, Germany) were challenged with 29 C. auris isolates from all five clades and eight other Candida species as controls. AurisID reliably detected C. auris with a limit of detection (LoD) of 1 genome copies/reaction. However, false positive results were obtained with high DNA amounts of the closely related species C. haemulonii, C. duobushaemulonii and C. pseudohaemulonii. The Fungiplex Candida Auris RUO Real-Time PCR kit detected C. auris with an LoD of 9 copies/reaction. No false positive results were obtained with this assay. In addition, C. auris could also be detected in human blood samples spiked with pure fungal cultures by both kits. In summary, both kits could detect C. auris-DNA at low DNA concentrations but differed slightly in their limits of detection and specificity.
Collapse
|
208
|
Yi Q, Xiao M, Fan X, Zhang G, Yang Y, Zhang JJ, Duan SM, Cheng JW, Li Y, Zhou ML, Yu SY, Huang JJ, Chen XF, Hou X, Kong F, Kudinha T, Xu YC. Evaluation of Autof MS 1000 and Vitek MS MALDI-TOF MS System in Identification of Closely-Related Yeasts Causing Invasive Fungal Diseases. Front Cell Infect Microbiol 2021; 11:628828. [PMID: 33680993 PMCID: PMC7930211 DOI: 10.3389/fcimb.2021.628828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been accepted as a rapid, accurate, and less labor-intensive method in the identification of microorganisms in clinical laboratories. However, there is limited data on systematic evaluation of its effectiveness in the identification of phylogenetically closely-related yeast species. In this study, we evaluated two commercially available MALDI-TOF systems, Autof MS 1000 and Vitek MS, for the identification of yeasts within closely-related species complexes. A total of 1,228 yeast isolates, representing 14 different species of five species complexes, including 479 of Candida parapsilosis complex, 323 of Candida albicans complex, 95 of Candida glabrata complex, 16 of Candida haemulonii complex (including two Candida auris), and 315 of Cryptococcus neoformans complex, collected under the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) program, were studied. Autof MS 1000 and Vitek MS systems correctly identified 99.2% and 89.2% of the isolates, with major error rate of 0.4% versus 1.6%, and minor error rate of 0.1% versus 3.5%, respectively. The proportion of isolates accurately identified by Autof MS 1000 and Vitek MS per each yeast complex, respectively, was as follows; C. albicans complex, 99.4% vs 96.3%; C. parapsilosis complex, 99.0% vs 79.1%; C glabrata complex, 98.9% vs 94.7%; C. haemulonii complex, 100% vs 93.8%; and C. neoformans, 99.4% vs 95.2%. Overall, Autof MS 1000 exhibited good capacity in yeast identification while Vitek MS had lower identification accuracy, especially in the identification of less common species within phylogenetically closely-related species complexes.
Collapse
Affiliation(s)
- Qiaolian Yi
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Xiao
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing-Jia Zhang
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Si-Meng Duan
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing-Wei Cheng
- Department of Laboratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Lan Zhou
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu-Ying Yu
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing-Jing Huang
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin-Fei Chen
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Hou
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, The University of Sydney, Westmead, NSW, Australia
| | - Timothy Kudinha
- Department of Clinical Laboratory, Charles Sturt University, Orange, NSW, Australia.,New South Wales Health Pathology, Regional and Rural, Orange Hospital, NSW, Australia
| | - Ying-Chun Xu
- Department of Laboratory Medicine, and Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
209
|
Al-Rashdi A, Al-Maani A, Al-Wahaibi A, Alqayoudhi A, Al-Jardani A, Al-Abri S. Characteristics, Risk Factors, and Survival Analysis of Candida auris Cases: Results of One-Year National Surveillance Data from Oman. J Fungi (Basel) 2021; 7:jof7010031. [PMID: 33430221 PMCID: PMC7825686 DOI: 10.3390/jof7010031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Candida auris (C. auris) is an emerging healthcare-associated pathogen resulting in significant morbidity and mortality. The aim of this study is to report data from the national C. auris surveillance system for 2019 and conduct a survival analysis of the reported cohort. Methods: a retrospective analysis was conducted for all C. auris cases reported nationally to the Oman Antimicrobial Surveillance System (OMASS) in 2019, and isolates were sent to the Central Public Health Laboratories (CPHL). Clinical and demographic data were obtained through the E-Surveillance reporting system and the Electronic System (NEHR Al-Shifa) at CPHL. Statistical analysis was done using Kaplan–Meier analysis and Cox proportional hazard models. Results: One hundred and twenty-nine isolates of C. auris were grown from 108 inpatients; 87% were isolated from clinical samples, of which blood was the most common (38.9%). Forty (37%) were ≥65 years of age, 72 (66.7%) were males, and 85 (78.7%) were Omani nationals. Of the total isolates, 43.5% were considered as colonization; 56.5% were considered infection, of which 61.8% of them were candidemia. At least one risk factor was present in 98.1% of patients. The mean time from admission to infection was 1.7 months (SD = 2.8), and the mean length of hospital stay was 3.5 months (SD = 4). Totals of 94.8% and 96.1% of the isolates were non-susceptible to fluconazole and amphotericin, respectively. The variables found to be significantly associated with longer survival post C. auris diagnosis (p < 0.05) were age < 65 years, absence of comorbidities, length of stay < 3 months, colonization, and absence of candidemia. The infection fatality rate was 52.5%. Conclusion: Including C. auris in an ongoing antimicrobial surveillance program provides important data for the comprehensive management of this growing public health threat. The current study shows health care outbreaks of C. auris are ongoing, with 52.5% infection fatality, although our isolates remained sensitive to Echinocandins in vitro.
Collapse
Affiliation(s)
- Azza Al-Rashdi
- Central Public Health Laboratories, Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman;
- Correspondence: (A.A.-R.); (A.A.-M.)
| | - Amal Al-Maani
- Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman; (A.A.-W.); (A.A.); (S.A.-A.)
- Correspondence: (A.A.-R.); (A.A.-M.)
| | - Adil Al-Wahaibi
- Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman; (A.A.-W.); (A.A.); (S.A.-A.)
| | - Abdullah Alqayoudhi
- Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman; (A.A.-W.); (A.A.); (S.A.-A.)
| | - Amina Al-Jardani
- Central Public Health Laboratories, Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman;
| | - Seif Al-Abri
- Directorate General for Disease Surveillance and Control (DGDSC), Ministry of Health, Muscat 393, Oman; (A.A.-W.); (A.A.); (S.A.-A.)
| |
Collapse
|
210
|
Drug Resistance-Associated Mutations in ERG11 of Multidrug-Resistant Candida auris in a Tertiary Care Hospital of Eastern Saudi Arabia. J Fungi (Basel) 2020; 7:jof7010018. [PMID: 33396402 PMCID: PMC7824384 DOI: 10.3390/jof7010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Candida auris is an emerging multi-drug resistant pathogen with high mortality rate; nosocomial infections have been reported worldwide, causing a major challenge for clinicians and microbiological laboratories. The study aims to describe new cases of C. auris and detect drug resistance-associated mutations of C. auris by the sequencing of ERG11 and FKS1 genes. A total of six specimens were collected from blood, urine, ear swab, and groin screening samples. Isolates were incubated for 48 h on Sabouraud Dextrose agar (SDA) at 42 °C, then confirmed by MALDI-TOF MS. Furthermore, antifungal susceptibility testing was performed using the Vitek 2 system to detect Minimum Inhibitory Concentrations (MICs) of six antifungals. Sequences of 18S rRNA gene and ITS regions from isolates and phylogenetic analysis were performed. Gene sequencing was analysed to detect drug resistance-associated mutations by FKS1 and ERG11 genes sequencing. All C. auris isolates were confirmed by MALDI-TOF MS, and evolutionary analyses using sequences of 18S rRNA gene and ITS region. Antifungal susceptibility testing showed that all isolates were resistant to fluconazole. Sequencing of ERG11 and FKS1 genes from the isolates revealed the presence of two (F132Y and K143R) drug resistance-associated mutations in ERG11, however, FKS1 gene was devoid of mutations. The study sheds light on a public health threat of an emerging pathogen, and the hospital implemented strict contact screening and infection control precautions to prevent C. auris infection. Finally, there is a critical need to monitor the antifungal resistance in different geographical areas and implementation of efficient guidelines for treatment.
Collapse
|
211
|
Iyer KR, Camara K, Daniel-Ivad M, Trilles R, Pimentel-Elardo SM, Fossen JL, Marchillo K, Liu Z, Singh S, Muñoz JF, Kim SH, Porco JA, Cuomo CA, Williams NS, Ibrahim AS, Edwards JE, Andes DR, Nodwell JR, Brown LE, Whitesell L, Robbins N, Cowen LE. An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nat Commun 2020; 11:6429. [PMID: 33353950 PMCID: PMC7755909 DOI: 10.1038/s41467-020-20183-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Candida auris is an emerging fungal pathogen that exhibits resistance to multiple drugs, including the most commonly prescribed antifungal, fluconazole. Here, we use a combinatorial screening approach to identify a bis-benzodioxolylindolinone (azoffluxin) that synergizes with fluconazole against C. auris. Azoffluxin enhances fluconazole activity through the inhibition of efflux pump Cdr1, thus increasing intracellular fluconazole levels. This activity is conserved across most C. auris clades, with the exception of clade III. Azoffluxin also inhibits efflux in highly azole-resistant strains of Candida albicans, another human fungal pathogen, increasing their susceptibility to fluconazole. Furthermore, azoffluxin enhances fluconazole activity in mice infected with C. auris, reducing fungal burden. Our findings suggest that pharmacologically targeting Cdr1 in combination with azoles may be an effective strategy to control infection caused by azole-resistant isolates of C. auris.
Collapse
Affiliation(s)
- Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kaddy Camara
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
- Clark+Elbing LLP, Boston, MA, USA
| | | | - Richard Trilles
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | | | - Jen L Fossen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Karen Marchillo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shakti Singh
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - José F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Ashraf S Ibrahim
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - John E Edwards
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
212
|
Rosam K, Monk BC, Lackner M. Sterol 14α-Demethylase Ligand-Binding Pocket-Mediated Acquired and Intrinsic Azole Resistance in Fungal Pathogens. J Fungi (Basel) 2020; 7:jof7010001. [PMID: 33374996 PMCID: PMC7822023 DOI: 10.3390/jof7010001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The fungal cytochrome P450 enzyme sterol 14α-demethylase (SDM) is a key enzyme in the ergosterol biosynthesis pathway. The binding of azoles to the active site of SDM results in a depletion of ergosterol, the accumulation of toxic intermediates and growth inhibition. The prevalence of azole-resistant strains and fungi is increasing in both agriculture and medicine. This can lead to major yield loss during food production and therapeutic failure in medical settings. Diverse mechanisms are responsible for azole resistance. They include amino acid (AA) substitutions in SDM and overexpression of SDM and/or efflux pumps. This review considers AA affecting the ligand-binding pocket of SDMs with a primary focus on substitutions that affect interactions between the active site and the substrate and inhibitory ligands. Some of these interactions are particularly important for the binding of short-tailed azoles (e.g., voriconazole). We highlight the occurrence throughout the fungal kingdom of some key AA substitutions. Elucidation of the role of these AAs and their substitutions may assist drug design in overcoming some common forms of innate and acquired azole resistance.
Collapse
Affiliation(s)
- Katharina Rosam
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute and Department of Oral Biology, Faculty of Dentistry, University of Otago, PO Box 56, 9054 Dunedin, New Zealand;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020 Innsbruck, Austria;
- Correspondence: ; Tel.: +43-512-003-70725
| |
Collapse
|
213
|
Affiliation(s)
- Zoe K. Ross
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
214
|
Experimental Evolution Identifies Adaptive Aneuploidy as a Mechanism of Fluconazole Resistance in Candida auris. Antimicrob Agents Chemother 2020; 65:AAC.01466-20. [PMID: 33077664 DOI: 10.1128/aac.01466-20] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Candida auris is a newly emerging fungal pathogen of humans and has attracted considerable attention from both the clinical and basic research communities. Clinical isolates of C. auris are often resistant to one or more antifungal agents. To explore how antifungal resistance develops, we performed experimental evolution assays using a fluconazole-susceptible isolate of C. auris (BJCA001). After a series of passages through medium containing increasing concentrations of fluconazole, fungal cells acquired resistance. By sequencing and comparing the genomes of the parental fluconazole-susceptible strain and 26 experimentally evolved strains of C. auris, we found that a portion of fluconazole-resistant strains carried one extra copy of chromosome V. In the absence of fluconazole, C. auris cells rapidly became susceptible and lost the extra copy of chromosome V. Genomic and transcriptome sequencing (RNA-Seq) analyses indicate that this chromosome carries a number of drug resistance-related genes, which were transcriptionally upregulated in the resistant, aneuploid strains. Moreover, missense mutations were identified in the genes TAC1B, RRP6, and SFT2 in all experimentally evolved strains. Our findings suggest that the gain of an extra copy of chromosome V is associated with the rapid acquisition of fluconazole resistance and may represent an important evolutionary mechanism of antifungal resistance in C. auris.
Collapse
|
215
|
Abstract
Candida auris has emerged as a serious threat to the health care settings. Advancements in molecular biology have provided several insights into the evolution of C. auris since it was first described in 2009. However, the simultaneous emergence of four different clades of the fungus at distinct geographical locations remains a mystery. The hypotheses already proposed by researchers fall short of explaining how and why C. auris emerged. In this article, we theorize that C. auris emerged from a common ancestor, subsequently migrated to specific geographical locations, and diversified genetically. This hypothesis is supported by genomic insights, historical events, and indirect scientific facts. C. auris adapted to humans at locations and times coinciding with the divergence from the most recent common ancestor, emerging almost simultaneously as an opportunist pathogen due to antiseptic practices. Future research will support or refute this hypothesis.
Collapse
|
216
|
Chatzimoschou A, Giampani A, Meis JF, Roilides E. Activities of nine antifungal agents against Candida auris biofilms. Mycoses 2020; 64:381-384. [PMID: 33270284 DOI: 10.1111/myc.13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Candida auris is a newly described multidrug-resistant fungal pathogen associated with biofilm formation and severe infections with high mortality. OBJECTIVES To study the activities of fluconazole, itraconazole, posaconazole, voriconazole, deoxycholate and liposomal amphotericin B, anidulafungin, caspofungin and micafungin against C auris biofilms and planktonic cells. MATERIALS/METHODS C auris strains originating from 5 clades (South Asian, East Asian, African, South American and Iranian) were tested for biofilm production by safranin staining of the extracellular matrix polysaccharide structure as well as biofilm (BF) and planktonic (PLK) antifungal susceptibility to nine antifungal agents using the XTT reduction assay. RESULTS Candida auris isolates produced mature BF as compared to non-C auris control (Candida albicans and Candida parapsilosis) strains. Four C auris isolates exhibited relatively high MIC's for fluconazole (32-128 mg/L for PLK MIC and 128-1024 mg/L for BF MIC) as compared to the Iranian strain that had PLK and BF MIC's 0.5 and 16, respectively. Itraconazole, posaconazole and voriconazole had relatively low PLK MICs but high BF MICs. A similar pattern was observed with echinocandins; relatively low PLK MIC (0.06-4 mg/L) but quite high BF MICs (4-2048 mg/L). While all isolates exhibited relatively low PLK MICs (0.06-4 mg/L) for both amphotericin B formulations, liposomal amphotericin B showed higher MICs compared to deoxycholate amphotericin B against C auris BF. CONCLUSION Triazoles, echinocandins and liposomal amphotericin B appear to have less activity against C auris biofilms than deoxycholate amphotericin B. Our in vitro model provides evidence for intrinsic C auris biofilm resistance to antifungal agents.
Collapse
Affiliation(s)
- Athanasios Chatzimoschou
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Medical Faculty, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece.,Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands
| | - Athina Giampani
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Medical Faculty, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands.,Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Emmanuel Roilides
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Medical Faculty, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
217
|
Abe M, Katano H, Nagi M, Higashi Y, Sato Y, Kikuchi K, Hasegawa H, Miyazaki Y. Potency of gastrointestinal colonization and virulence of Candida auris in a murine endogenous candidiasis. PLoS One 2020; 15:e0243223. [PMID: 33264362 PMCID: PMC7710084 DOI: 10.1371/journal.pone.0243223] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Candida auris infections have recently emerged worldwide, and this species is highly capable of colonization and is associated with high levels of mortality. However, strain-dependent differences in colonization capabilities and virulence have not yet been reported. OBJECTIVES In the present study, we aimed to clarify the differences between clinically isolated invasive and non-invasive strains of C. auris. METHODS We evaluated colonization, dissemination, and survival rates in wild C57BL/6J mice inoculated with invasive or non-invasive strains of C. auris under cortisone acetate immunosuppression, comparing with those of Candida albicans and Candida glabrata infections. We also evaluated the potency of biofilm formation. RESULTS Stool fungal burdens were significantly higher in mice inoculated with the invasive strains than in those infected with the non-invasive strain. Along with intestinal colonization, liver and kidney fungal burdens were also significantly higher in mice inoculated with the invasive strains. In addition, histopathological findings revealed greater dissemination and colonization of the invasive strains. Regarding biofilm-forming capability, the invasive strain of C. auris exhibited a significantly higher capacity of producing biofilms. Moreover, inoculation with the invasive strains resulted in significantly greater loss of body weight than that noted following infection with the non-invasive strain. CONCLUSIONS Invasive strains showed higher colonization capability and rates of dissemination from gastrointestinal tracts under cortisone acetate immunosuppression than non-invasive strains, although the mortality rates caused by C. auris were lower than those caused by C. albicans.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Minoru Nagi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Higashi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
218
|
Theodoropoulos NM, Bolstorff B, Bozorgzadeh A, Brandeburg C, Cumming M, Daly JS, Ellison RT, Forsberg K, Gade L, Gibson L, Greenough T, Litvintseva AP, Mack DA, Madoff L, Martins PN, McHale E, Melvin Z, Movahedi B, Stiles T, Vallabhaneni S, Levitz SM. Candida auris outbreak involving liver transplant recipients in a surgical intensive care unit. Am J Transplant 2020; 20:3673-3679. [PMID: 32530145 DOI: 10.1111/ajt.16144] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/25/2023]
Abstract
Candida auris is a yeast that is difficult to eradicate and has caused outbreaks in health care facilities. We report a cluster of 5 patients in 1 intensive care unit who were colonized or infected in 2017. The initial 2 patients were recipients of liver transplants who had cultures that grew C auris within 3 days of each other in June 2017 (days 43 and 30 posttransplant). Subsequent screening cultures identified 2 additional patients with C auris colonization. Respiratory and urine cultures from a fifth patient yielded C auris. All isolates were fluconazole resistant but susceptible to echinocandins. Whole genome sequencing showed the strains were clonal, suggesting in-hospital transmission, and related but distinct from New York/New Jersey strains, consistent with a separate introduction. However, no source or contact was found. Two of the 5 patients died. C auris infection likely contributed to 1 patient death by infecting a vascular aneurysm at the graft anastomosis. Strict infection control precautions were initiated to control the outbreak. Our experience reveals that although severe disease from C auris can occur in transplant recipients, outbreaks can be controlled using recommended infection control practices. We have had no further patients infected with C auris to date.
Collapse
Affiliation(s)
- Nicole M Theodoropoulos
- Division of Infectious Disease, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Adel Bozorgzadeh
- Division of Transplant Surgery, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Melissa Cumming
- Massachusetts Department of Public Health, Boston, Massachusetts
| | - Jennifer S Daly
- Division of Infectious Disease, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Richard T Ellison
- Division of Infectious Disease, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Lalitha Gade
- Centers for Disease Control & Prevention, Atlanta, Georgia
| | - Laura Gibson
- Division of Infectious Disease, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Thomas Greenough
- Division of Infectious Disease, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Deborah A Mack
- UMass Memorial Medical Center Infection Control Department, Worcester, Massachusetts
| | - Lawrence Madoff
- Massachusetts Department of Public Health, Boston, Massachusetts
| | - Paulo N Martins
- Division of Transplant Surgery, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Eileen McHale
- Massachusetts Department of Public Health, Boston, Massachusetts
| | - Zita Melvin
- UMass Memorial Medical Center Infection Control Department, Worcester, Massachusetts
| | - Babak Movahedi
- Division of Transplant Surgery, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tracy Stiles
- Massachusetts Department of Public Health, Boston, Massachusetts
| | | | - Stuart M Levitz
- Division of Infectious Disease, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
219
|
Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin B and Other Polyenes-Discovery, Clinical Use, Mode of Action and Drug Resistance. J Fungi (Basel) 2020; 6:E321. [PMID: 33261213 PMCID: PMC7724567 DOI: 10.3390/jof6040321] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Although polyenes were the first broad spectrum antifungal drugs on the market, after 70 years they are still the gold standard to treat a variety of fungal infections. Polyenes such as amphotericin B have a controversial image. They are the antifungal drug class with the broadest spectrum, resistance development is still relatively rare and fungicidal properties are extensive. Yet, they come with a significant host toxicity that limits their use. Relatively recently, the mode of action of polyenes has been revised, new mechanisms of drug resistance were discovered and emergent polyene resistant species such as Candida auris entered the picture. This review provides a short description of the history and clinical use of polyenes, and focusses on the ongoing debate concerning their mode of action, the diversity of resistance mechanisms discovered to date and the most recent trends in polyene resistance development.
Collapse
Affiliation(s)
- Hans Carolus
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | - Siebe Pierson
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3001 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3001 Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
220
|
Romera D, Aguilera-Correa JJ, García-Coca M, Mahillo-Fernández I, Viñuela-Sandoval L, García-Rodríguez J, Esteban J. The Galleria mellonella infection model as a system to investigate the virulence of Candida auris strains. Pathog Dis 2020; 78:5937422. [PMID: 33098293 DOI: 10.1093/femspd/ftaa067] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Candida auris is a multiresistant pathogenic yeast commonly isolated from bloodstream infections in immunocompromised patients. In this work, we infected Galleria mellonella larvae with 105 CFU of a reference strains and two clinical isolates of C. albicans and C. auris and we compared the outcomes of infection between both species. Larvae were evaluated every 24 h for a total of 120 h following the G. mellonella Health Index Scoring System, and survival, activity, melanization and cocoon formation were monitored. Our results showed that clinical isolates were significantly more pathogenic than reference strains independently of the tested species, producing lower survival and activity scores and higher melanization scores and being C. albicans strains more virulent than C. auris strains. We did not find differences in mortality between aggregative and non-aggregative C. auris strains, although non-aggregative strains produced significantly lower activity scores and higher melanization scores than aggregative ones. Survival assays using Galleria mellonella have been previously employed to examine and classify strains of this and other microbial species based on their virulence before scaling the experiments to a mammal model. Taken together, these results show how a more complete evaluation of the model can improve the study of C. auris isolates.
Collapse
Affiliation(s)
- David Romera
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - John-Jairo Aguilera-Correa
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - Marta García-Coca
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | - Ignacio Mahillo-Fernández
- Epidemiology and Biostatistics Service, Fundación Jiménez Díaz University Hospital, Av. Reyes Católicos, 2. 28040 Madrid, Spain
| | | | - Julio García-Rodríguez
- Department of Microbiology, La Paz University Hospital, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS Fundación Jiménez Díaz, UAM. Avda. Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
221
|
Chen J, Tian S, Han X, Chu Y, Wang Q, Zhou B, Shang H. Is the superbug fungus really so scary? A systematic review and meta-analysis of global epidemiology and mortality of Candida auris. BMC Infect Dis 2020; 20:827. [PMID: 33176724 PMCID: PMC7656719 DOI: 10.1186/s12879-020-05543-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Candida auris is a new pathogen called "superbug fungus" which caused panic worldwide. There are no large-scale epidemiology studies by now, therefore a systematic review and meta-analysis was undertaken to determine the epidemic situation, drug resistance patterns and mortality of C. auris. METHODS We systematically searched studies on the clinical report of Candida auris in Pubmed, Embase and Cochrane databases until October 6, 2019. A standardized form was used for data collection, and then statics was performed with STATA11.0. RESULTS It showed that more than 4733 cases of C. auris were reported in over 33 countries, with more cases in South Africa, United States of America, India, Spain, United Kingdom, South Korea, Colombia and Pakistan. C. auirs exhibited a decrease in case count after 2016. Clade I and III were the most prevalent clades with more cases reported and wider geographical distribution. Blood stream infection was observed in 32% of the cases, which varied depending on the clades. Resistance to fluconazole, amphotericin B, caspofungin, micafungin and anidulafungin in C. auris were 91, 12, 12.1, 0.8 and 1.1%. The overall mortality of C. auris infection was 39%. Furthermore, subgroup analyses showed that mortality was higher in bloodstream infections (45%), and lower in Europe (20%). CONCLUSIONS Over 4000 cases of C. auris were reported in at least 33 countries, which showed high resistance to fluconazole, moderate resistance to amphotericin B and caspofungin, high sensitivity to micafungin and anidulafungin. The crude mortality for BSI of C. auris was 45% which was similar to some drug-resistant bacteria previously reported. In conclusion, C. auris displayed similar characteristics to some drug resistance organisms. This study depicts several issues of C. auris that are most concerned, and is of great significance for the clinical management.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Sufei Tian
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Xiaoxu Han
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Yunzhuo Chu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Qihui Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Hong Shang
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
- National Clinical Research Center for Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
222
|
Misas E, Chow NA, Gómez OM, Muñoz JF, McEwen JG, Litvintseva AP, Clay OK. Mitochondrial Genome Sequences of the Emerging Fungal Pathogen Candida auris. Front Microbiol 2020; 11:560332. [PMID: 33193142 PMCID: PMC7652928 DOI: 10.3389/fmicb.2020.560332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022] Open
Abstract
Candida auris is an emerging fungal pathogen capable of causing invasive infections in humans. Since its first appearance around 1996, it has been isolated in countries spanning five continents. C. auris is a yeast that has the potential to cause outbreaks in hospitals, can survive in adverse conditions, including dry surfaces and high temperatures, and has been frequently misidentified by traditional methods. Furthermore, strains have been identified that are resistant to two and even all three of the main classes of antifungals currently in use. Several nuclear genome assemblies of C. auris have been published representing different clades and continents, yet until recently, the mitochondrial genomes (mtDNA chromosomes) of this species and the closely related species of C. haemulonii, C. duobushaemulonii, and C. pseudohaemulonii had not been analyzed in depth. We used reads from PacBio and Illumina sequencing to obtain a de novo reference assembly of the mitochondrial genome of the C. auris clade I isolate B8441 from Pakistan. This assembly has a total size of 28.2 kb and contains 13 core protein-coding genes, 25 tRNAs and the 12S and 16S ribosomal subunits. We then performed a comparative analysis by aligning Illumina reads of 129 other isolates from South Asia, Japan, South Africa, and South America with the B8441 reference. The clades of the phylogenetic tree we obtained from the aligned mtDNA sequences were consistent with those derived from the nuclear genome. The mitochondrial genome revealed a generally low genetic variation within clades, although the South Asian clade displayed two sub-branches including strains from both Pakistan and India. In particular, the 86 isolates from Colombia and Venezuela had mtDNA sequences that were all identical at the base level, i.e., a single conserved haplotype or mitochondrial background that exhibited characteristic differences from the Pakistan reference isolate B8441, such as a unique 25-nt insert that may affect function.
Collapse
Affiliation(s)
- Elizabeth Misas
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Wisconsin One Health Consortium, Universidad Nacional de Colombia, Medellín, Colombia
| | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Oscar M. Gómez
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
- Genoma CES, Universidad CES, Medellín, Colombia
| | - José F. Muñoz
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Juan G. McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | | | - Oliver K. Clay
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Translational Microbiology and Emerging Diseases, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
223
|
Abstract
First described in 2009 in Japan, the emerging multidrug-resistant fungal pathogen Candida auris is becoming a worldwide public health threat that has been attracting considerable attention due to its rapid and widespread emergence over the past decade. The reasons behind the recent emergence of this fungus remain a mystery to date. Genetic analyses indicate that this fungal pathogen emerged simultaneously in several different continents, where 5 genetically distinct clades of C. auris were isolated from distinct geographical locations. Although C. auris belongs to the CTG clade (its constituent species translate the CTG codon as serine instead of leucine, as in the standard code), C. auris is a haploid fungal species that is more closely related to the haploid and often multidrug-resistant species Candida haemulonii and Candida lusitaniae and is distantly related to the diploid and clinically common fungal pathogens Candida albicans and Candida tropicalis. Infections and outbreaks caused by C. auris in hospitals settings have been rising over the past several years. Difficulty in its identification, multidrug resistance properties, evolution of virulence factors, associated high mortality rates in patients, and long-term survival on surfaces in the environment make C. auris particularly problematic in clinical settings. Here, we review progress made over the past decade on the biological and clinical aspects of C. auris. Future efforts should be directed toward understanding the mechanistic details of its biology, epidemiology, antifungal resistance, and pathogenesis with a goal of developing novel tools and methods for the prevention, diagnosis, and treatment of C. auris infections.
Collapse
|
224
|
Pchelin IM, Azarov DV, Churina MA, Ryabinin IA, Vibornova IV, Apalko SV, Kruglov AN, Sarana AM, Taraskina AE, Vasilyeva NV. Whole genome sequence of first Candida auris strain, isolated in Russia. Med Mycol 2020; 58:414-416. [PMID: 31290551 DOI: 10.1093/mmy/myz078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023] Open
Abstract
Candida auris is an emergent yeast pathogen, easily transmissible between patients and with high percent of multidrug resistant strains. Here we present a draft genome sequence of the first known Russian strain of C. auris, isolated from a case of candidemia. The strain clustered within South Asian C. auris clade and seemingly represented an independent event of dissemination from the original species range. Observed fluconazole resistance was probably due to F105L and K143R mutations in ERG11.
Collapse
Affiliation(s)
- Ivan M Pchelin
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia.,Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Daniil V Azarov
- Department of Epidemiology, Parasitology and Disinfectology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Maria A Churina
- City Hospital No. 40, Saint Petersburg, Russia.,Clinical Infectious Diseases Hospital named after S.P. Botkin, Saint Petersburg, Russia
| | - Igor A Ryabinin
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Irina V Vibornova
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | | | | | - Andrey M Sarana
- Medical Faculty, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anastasia E Taraskina
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Natalya V Vasilyeva
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia.,Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| |
Collapse
|
225
|
Shivarathri R, Jenull S, Stoiber A, Chauhan M, Mazumdar R, Singh A, Nogueira F, Kuchler K, Chowdhary A, Chauhan N. The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris. mSphere 2020; 5:e00973-20. [PMID: 33055262 PMCID: PMC7565899 DOI: 10.1128/msphere.00973-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs.IMPORTANCECandida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.
Collapse
Affiliation(s)
- Raju Shivarathri
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sabrina Jenull
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Anton Stoiber
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Rounik Mazumdar
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Ashutosh Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Filomena Nogueira
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
- CCRI-St. Anna Children's Cancer Research Institute, Vienna, Austria
- Labdia-Labordiagnostik GmbH, Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
226
|
Insights into the Multi-Azole Resistance Profile in Candida haemulonii Species Complex. J Fungi (Basel) 2020; 6:jof6040215. [PMID: 33050545 PMCID: PMC7711680 DOI: 10.3390/jof6040215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
The Candida haemulonii complex (C. duobushaemulonii, C. haemulonii, and C. haemulonii var. vulnera) is composed of emerging, opportunistic human fungal pathogens able to cause invasive infections with high rates of clinical treatment failure. This fungal complex typically demonstrates resistance to first-line antifungals, including fluconazole. In the present work, we have investigated the azole resistance mechanisms expressed in Brazilian clinical isolates forming the C. haemulonii complex. Initially, 12 isolates were subjected to an antifungal susceptibility test, and azole cross-resistance was detected in almost all isolates (91.7%). In order to understand the azole resistance mechanistic basis, the efflux pump activity was assessed by rhodamine-6G. The C. haemulonii complex exhibited a significantly higher rhodamine-6G efflux than the other non-albicans Candida species tested (C. tropicalis, C. krusei, and C. lusitaneae). Notably, the efflux pump inhibitors (Phe-Arg and FK506) reversed the fluconazole and voricolazole resistance phenotypes in the C. haemulonii species complex. Expression analysis indicated that the efflux pump (ChCDR1, ChCDR2, and ChMDR1) and ERG11 genes were not modulated by either fluconazole or voriconazole treatments. Further, ERG11 gene sequencing revealed several mutations, some of which culminated in amino acid polymorphisms, as previously reported in azole-resistant Candida spp. Collectively, these data point out the relevance of drug efflux pumps in mediating azole resistance in the C. haemulonii complex, and mutations in ERG11p may contribute to this resistance profile.
Collapse
|
227
|
Fan S, Li C, Bing J, Huang G, Du H. Discovery of the Diploid Form of the Emerging Fungal Pathogen Candida auris. ACS Infect Dis 2020; 6:2641-2646. [PMID: 32902947 DOI: 10.1021/acsinfecdis.0c00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The new multidrug-resistant pathogen Candida auris was first described in 2009 in Japan and has emerged in many countries worldwide. This human fungal pathogen has long been considered a haploid fungus. Here, we report the discovery of the diploid form and spontaneous ploidy shifts in clinical isolates of C. auris. Haploid and diploid cells of C. auris differ in several aspects including growth rates, virulence, and global gene expression profiles. For example, diploid cells exhibit a slower growth rate than haploid cells in in vitro culture media; however, they are more virulent than haploid cells in a mouse systemic infection model. Global transcriptional expression analysis demonstrates that both haploid and diploid cells express a set of ploidy-enriched genes, which are involved in the regulation of metabolism, cell wall maintenance, translation and DNA replication, and other important biological processes. Antifungal susceptibility testing shows that haploid and diploid cells exhibit similar responses when treated with a number of antifungals. Taken together, haploid and diploid cells may have different fitness responses to diverse niches, and ploidy changes could be an adaptive strategy of C. auris to environmental changes. Our findings shed new light on the biology and pathogenesis of this emerging fungal pathogen.
Collapse
Affiliation(s)
- Shuru Fan
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chao Li
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Bing
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Han Du
- Department of Infectious Diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
228
|
What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 2020; 242:126621. [PMID: 33096325 DOI: 10.1016/j.micres.2020.126621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Candida auris is a worrisome fungal pathogen of humans which emerged merely about a decade ago. Ever since then the scientific community worked hard to understand clinically relevant traits, such as virulence factors, antifungal resistance mechanisms, and its ability to adhere to human skin and medical devices. Whole-genome sequencing of clinical isolates and epidemiological studies outlining the path of nosocomial outbreaks have been the focus of research into this pathogenic and multidrug-resistant yeast since its first description in 2009. More recently, work was started by several laboratories to explore the biology of C. auris. Here, we review the insights of studies characterizing the mechanisms underpinning antifungal drug resistance, biofilm formation, morphogenetic switching, cell aggregation, virulence, and pathogenicity of C. auris. We conclude that, although some progress has been made, there is still a long journey ahead of us, before we fully understand this novel pathogen. Critically important is the development of molecular tools for C. auris to make this fungus genetically tractable and traceable. This will allow an in-depth molecular dissection of the life cycle of C. auris, of its characteristics while interacting with the human host, and the mechanisms it employs to avoid being killed by antifungals and the immune system.
Collapse
|
229
|
Fun(gi)omics: Advanced and Diverse Technologies to Explore Emerging Fungal Pathogens and Define Mechanisms of Antifungal Resistance. mBio 2020; 11:mBio.01020-20. [PMID: 33024032 PMCID: PMC7542357 DOI: 10.1128/mbio.01020-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. The landscape of infectious fungal agents includes previously unidentified or rare pathogens with the potential to cause unprecedented casualties in biodiversity, food security, and human health. The influences of human activity, including the crisis of climate change, along with globalized transport, are underlying factors shaping fungal adaptation to increased temperature and expanded geographical regions. Furthermore, the emergence of novel antifungal-resistant strains linked to excessive use of antifungals (in the clinic) and fungicides (in the field) offers an additional challenge to protect major crop staples and control dangerous fungal outbreaks. Hence, the alarming frequency of fungal infections in medical and agricultural settings requires effective research to understand the virulent nature of fungal pathogens and improve the outcome of infection in susceptible hosts. Mycology-driven research has benefited from a contemporary and unified approach of omics technology, deepening the biological, biochemical, and biophysical understanding of these emerging fungal pathogens. Here, we review the current state-of-the-art multi-omics technologies, explore the power of data integration strategies, and highlight discovery-based revelations of globally important and taxonomically diverse fungal pathogens. This information provides new insight for emerging pathogens through an in-depth understanding of well-characterized fungi and provides alternative therapeutic strategies defined through novel findings of virulence, adaptation, and resistance.
Collapse
|
230
|
Susceptibility of the Candida haemulonii Complex to Echinocandins: Focus on Both Planktonic and Biofilm Life Styles and a Literature Review. J Fungi (Basel) 2020; 6:jof6040201. [PMID: 33019733 PMCID: PMC7711677 DOI: 10.3390/jof6040201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023] Open
Abstract
Candida haemulonii complex (C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera) is well-known for its resistance profile to different available antifungal drugs. Although echinocandins are the most effective class of antifungal compounds against the C. haemulonii species complex, clinical isolates resistant to caspofungin, micafungin and anidulafungin have already been reported. In this work, we present a literature review regarding the effects of echinocandins on this emergent fungal complex. Published data has revealed that micafungin and anidulafungin were more effective than caspofungin against the species forming the C. haemulonii complex. Subsequently, we investigated the susceptibilities of both planktonic and biofilm forms of 12 Brazilian clinical isolates of the C. haemulonii complex towards caspofungin and micafungin (anidulafungin was unavailable). The planktonic cells of all the fungal isolates were susceptible to both of the test echinocandins. Interestingly, echinocandins caused a significant reduction in the biofilm metabolic activity (viability) of almost all fungal isolates (11/12, 91.7%). Generally, the biofilm biomasses were also affected (reduction range 20–60%) upon exposure to caspofungin and micafungin. This is the first report of the anti-biofilm action of echinocandins against the multidrug-resistant opportunistic pathogens comprising the C. haemulonii complex, and unveils the therapeutic potential of these compounds.
Collapse
|
231
|
Tracking the origin and evolution of multidrug resistance in Candida auris. THE LANCET MICROBE 2020; 1:e237. [DOI: 10.1016/s2666-5247(20)30124-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022] Open
|
232
|
Jenull S, Tscherner M, Mair T, Kuchler K. ATAC-Seq Identifies Chromatin Landscapes Linked to the Regulation of Oxidative Stress in the Human Fungal Pathogen Candida albicans. J Fungi (Basel) 2020; 6:E182. [PMID: 32967096 PMCID: PMC7559329 DOI: 10.3390/jof6030182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human fungal pathogens often encounter fungicidal stress upon host invasion, but they can swiftly adapt by transcriptional reprogramming that enables pathogen survival. Fungal immune evasion is tightly connected to chromatin regulation. Hence, fungal chromatin modifiers pose alternative treatment options to combat fungal infections. Here, we present an assay for transposase-accessible chromatin using sequencing (ATAC-seq) protocol adapted for the opportunistic pathogen Candida albicans to gain further insight into the interplay of chromatin accessibility and gene expression mounted during fungal adaptation to oxidative stress. The ATAC-seq workflow not only facilitates the robust detection of genomic regions with accessible chromatin but also allows for the precise modeling of nucleosome positions in C. albicans. Importantly, the data reveal genes with altered chromatin accessibility in upstream regulatory regions, which correlate with transcriptional regulation during oxidative stress. Interestingly, many genes show increased chromatin accessibility without change in gene expression upon stress exposure. Such chromatin signatures could predict yet unknown regulatory factors under highly dynamic transcriptional control. Additionally, de novo motif analysis in genomic regions with increased chromatin accessibility upon H2O2 treatment shows significant enrichment for Cap1 binding sites, a major factor of oxidative stress responses in C. albicans. Taken together, the ATAC-seq workflow enables the identification of chromatin signatures and highlights the dynamics of regulatory mechanisms mediating environmental adaptation of C. albicans.
Collapse
Affiliation(s)
| | | | | | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria; (S.J.); (M.T.); (T.M.)
| |
Collapse
|
233
|
Sphingolipidomics of drug resistant Candida auris clinical isolates reveal distinct sphingolipid species signatures. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158815. [PMID: 32942047 PMCID: PMC7695621 DOI: 10.1016/j.bbalip.2020.158815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
Independent studies from our group and others have provided evidence that sphingolipids (SLs) influence the antimycotic susceptibility of Candida species. We analyzed the molecular SL signatures of drug-resistant clinical isolates of Candida auris, which have emerged as a global threat over the last decade. This included Indian hospital isolates of C. auris, which were either resistant to fluconazole (FLCR) or amphotericin B (AmBR) or both drugs. Relative to Candida glabrata and Candida albicans strains, these C. auris isolates were susceptible to SL pathway inhibitors such as myriocin and aureobasidin A, suggesting that SL content may influence azole and AmB susceptibilities. Our analysis of SLs confirmed the presence of 140 SL species within nine major SL classes, namely the sphingoid bases, Cer, αOH-Cer, dhCer, PCer, αOH-PCer, αOH-GlcCer, GlcCer, and IPC. Other than for αOH-GlcCer, most of the SLs were found at higher concentrations in FLCR isolates as compared to the AmBR isolates. SLs were at intermediate levels in FLCR + AmBR isolates. The observed diversity of molecular species of SL classes based on fatty acyl composition was further reflected in their distinct specific imprint, suggesting their influence in drug resistance. Together, the presented data improves our understanding of the dynamics of SL structures, their synthesis, and link to the drug resistance in C. auris. Candida auris isolates are susceptible to sphingolipid inhibitors myriocin and aureobasidin A. The distribution of sphingolipid species is distinct among C. auris isolates resistant to different antifungals. Phytoceramides are the most abundant class of sphingolipid. Cer(d18:1/18:1) is the major of ceramide species in C. auris. d19:2 glucosylceramide backbone is typically in abundance in AmB resistant C. auris isolates.
Collapse
|
234
|
Antifungal Resistance in Candida auris: Molecular Determinants. Antibiotics (Basel) 2020; 9:antibiotics9090568. [PMID: 32887362 PMCID: PMC7558570 DOI: 10.3390/antibiotics9090568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Since Candida auris integrates strains resistant to multiple antifungals, research has been conducted focused on knowing which molecular mechanisms are involved. This review aims to summarize the results obtained in some of these studies. A search was carried out by consulting websites and online databases. The analysis indicates that most C. auris strains show higher resistance to fluconazole, followed by amphotericin B, and less resistance to 5-fluorocytosine and caspofungin. In C. auris, antifungal resistance to amphotericin B has been linked to an overexpression of several mutated ERG genes that lead to reduced ergosterol levels; fluconazole resistance is mostly explained by mutations identified in the ERG11 gene, as well as a higher number of copies of this gene and the overexpression of efflux pumps. For 5-fluorocytosine, it is hypothesized that the resistance is due to mutations in the FCY2, FCY1, and FUR1 genes. Resistance to caspofungin has been associated with a mutation in the FKS1 gene. Finally, resistance to each antifungal is closely related to the type of clade to which the strain belongs.
Collapse
|
235
|
Vatanshenassan M, Boekhout T, Mauder N, Robert V, Maier T, Meis JF, Berman J, Then E, Kostrzewa M, Hagen F. Evaluation of Microsatellite Typing, ITS Sequencing, AFLP Fingerprinting, MALDI-TOF MS, and Fourier-Transform Infrared Spectroscopy Analysis of Candida auris. J Fungi (Basel) 2020; 6:jof6030146. [PMID: 32854308 PMCID: PMC7576496 DOI: 10.3390/jof6030146] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Candida auris is an emerging opportunistic yeast species causing nosocomial outbreaks at a global scale. A few studies have focused on the C. auris genotypic structure. Here, we compared five epidemiological typing tools using a set of 96 C. auris isolates from 14 geographical areas. Isolates were analyzed by microsatellite typing, ITS sequencing, amplified fragment length polymorphism (AFLP) fingerprint analysis, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and Fourier-transform infrared (FTIR) spectroscopy methods. Microsatellite typing grouped the isolates into four main clusters, corresponding to the four known clades in concordance with whole genome sequencing studies. The other investigated typing tools showed poor performance compared with microsatellite typing. A comparison between the five methods showed the highest agreement between microsatellite typing and ITS sequencing with 45% similarity, followed by microsatellite typing and the FTIR method with 33% similarity. The lowest agreement was observed between FTIR spectroscopy, MALDI-TOF MS, and ITS sequencing. This study indicates that microsatellite typing is the tool of choice for C. auris outbreak investigations. Additionally, FTIR spectroscopy requires further optimization and evaluation before it can be used as an epidemiological typing method, comparable with microsatellite typing, as a rapid method for tracing nosocomial fungal outbreaks.
Collapse
Affiliation(s)
- Mansoureh Vatanshenassan
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Norman Mauder
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- BioAware, B-4280 Hannut, Belgium
| | - Thomas Maier
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands;
- Center of Expertise in Mycology Radboudumc, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, 80060-000 Curitiba, Brazil
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, 6997801 Tel Aviv, Israel;
| | - Euníce Then
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
- Correspondence: (M.K.); (F.H.); Tel.: +49-421-2205-1258 (M.K.); +31-30-2122-600 (F.H.)
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: (M.K.); (F.H.); Tel.: +49-421-2205-1258 (M.K.); +31-30-2122-600 (F.H.)
| |
Collapse
|
236
|
Bruno M, Kersten S, Bain JM, Jaeger M, Rosati D, Kruppa MD, Lowman DW, Rice PJ, Graves B, Ma Z, Jiao YN, Chowdhary A, Renieris G, van de Veerdonk FL, Kullberg BJ, Giamarellos-Bourboulis EJ, Hoischen A, Gow NAR, Brown AJP, Meis JF, Williams DL, Netea MG. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol 2020; 5:1516-1531. [PMID: 32839538 DOI: 10.1038/s41564-020-0780-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/27/2020] [Indexed: 01/26/2023]
Abstract
Candida auris is among the most important emerging fungal pathogens, yet mechanistic insights into its immune recognition and control are lacking. Here, we integrate transcriptional and functional immune-cell profiling to uncover innate defence mechanisms against C. auris. C. auris induces a specific transcriptome in human mononuclear cells, a stronger cytokine response compared with Candida albicans, but a lower macrophage lysis capacity. C. auris-induced innate immune activation is mediated through the recognition of C-type lectin receptors, mainly elicited by structurally unique C. auris mannoproteins. In in vivo experimental models of disseminated candidiasis, C. auris was less virulent than C. albicans. Collectively, these results demonstrate that C. auris is a strong inducer of innate host defence, and identify possible targets for adjuvant immunotherapy.
Collapse
Affiliation(s)
- Mariolina Bruno
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Simone Kersten
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith M Bain
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK
| | - Martin Jaeger
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Diletta Rosati
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael D Kruppa
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Douglas W Lowman
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Peter J Rice
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Bridget Graves
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zuchao Ma
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Yue Ning Jiao
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - George Renieris
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Bart-Jan Kullberg
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | | | - Alexander Hoischen
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK.,MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Aberdeen, Aberdeen, UK.,MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jacques F Meis
- Center of Expertise in Mycology, Radboud University Medical Center and Canisius Wilhelmina Hospital, Nijmegen, the Netherlands.,Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - David L Williams
- Departments of Surgery, Biomedical Sciences and Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
237
|
Lima SL, Rossato L, Salles de Azevedo Melo A. Evaluation of the potential virulence of Candida haemulonii species complex and Candida auris isolates in Caenorhabditis elegans as an in vivo model and correlation to their biofilm production capacity. Microb Pathog 2020; 148:104461. [PMID: 32835773 DOI: 10.1016/j.micpath.2020.104461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/19/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Candida haemulonii species complex (Can. haemulonii sensu stricto, Can. duobushaemulonii and Can. haemulonii var. vulnera) and related species (Can. auris and Can. pseudohaemulonii) have attracted attention due to reduced susceptibility to azoles and amphotericin B. Furthermore, attributes of potential virulence have been recognized in Can. haemulonii species complex and Can. auris, like the capability to form biofilm, which represent the most important risk factors for persistent candidemia. However, the relationship between biofilm production and impact on host mortality is still unclear. To evaluate the potential virulence of Can. haemulonii species complex and Can. auris isolates by correlating biofilm production and capacity to kill Caenorhabditis elegans as an in vivo model. In this study, virulence factors were characterized among a total of sixty-six Can. haemulonii species complex and Can. auris isolates to gain insight about virulence traits of these pathogenic yeasts by evaluating the in vitro biofilm production and potential pathogenicity for Cae. elegans, as an in vivo infection model. All clinical isolates tested were biofilm producer, inter- and intra-specific differences on the biofilm forming capacity by the strains were observed. Can. auris and Can. haemuolonii var. vulnera showed similar biofilm production, both higher than Can. haemulonii sensu stricto and Can. duobushaemulonii. Regarding the virulence of the Cae. elegans model, Can. haemulonii species complex and Can. auris isolates were capable of causing infection in Cae. elegans, and our data suggest that the high biofilm production by Can. haemulonii var. vulnera and Can. duobushaemulonii isolates may impact in the pathogenicity caused on Cae. elegans.
Collapse
Affiliation(s)
- Soraia Lopes Lima
- Special Laboratory of Mycology, Federal University of São Paulo, São Paulo, Brazil
| | - Luana Rossato
- Special Laboratory of Mycology, Federal University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
238
|
Antifungal Susceptibility of Clinical Yeast Isolates from a Large Canadian Reference Laboratory and Application of Whole-Genome Sequence Analysis To Elucidate Mechanisms of Acquired Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00402-20. [PMID: 32571812 DOI: 10.1128/aac.00402-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022] Open
Abstract
To understand the epidemiology and susceptibility patterns of yeast infections in Ontario, Canada, we examined 4,715 clinical yeast isolates submitted to our laboratory for antifungal susceptibility testing from 2014 to 2018. Candida albicans was the most frequently submitted species (43.0%), followed by C. glabrata (21.1%), C. parapsilosis (15.0%), and C. tropicalis (6.2%). Twenty-three other Candida spp. (11.6%) and 4 non-Candida species (3.1%) were also identified. Few changes in species distribution were observed from 2014 to 2018, but the total numbers of yeast isolates sent for testing increased, with an annual 7.4% change. According to CLSI clinical breakpoints, resistance rates remained low overall. Moderate fluconazole resistance was noted among C. glabrata (9%), C. parapsilosis (9%), and C. tropicalis (12%) isolates. Only 1% of C. glabrata isolates were resistant to caspofungin, micafungin, and anidulafungin. Whole-genome sequence analysis confirmed 11 cases of acquired resistance to azoles or echinocandins via in-host evolution. There were mutations in the gene for the catalytic subunit of 1,3-beta-glucan synthase-mediated echinocandin resistance in 3 of 3 C. albicans strains, 3 of 4 C. glabrata strains, and 1 strain of C. tropicalis Azole resistance was likely caused by a homozygous ERG3 mutation in 1 C. albicans strain and a previously undescribed chromosomal-duplication event involving ERG11 and TAC1 orthologs in 1 C. tropicalis strain. While antifungal resistance rates remain low among yeast isolates in Ontario, ongoing surveillance is necessary to inform empirical therapy for optimal patient management and to guide antifungal stewardship.
Collapse
|
239
|
Arastehfar A, Lass-Flörl C, Garcia-Rubio R, Daneshnia F, Ilkit M, Boekhout T, Gabaldon T, Perlin DS. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J Fungi (Basel) 2020; 6:E138. [PMID: 32824785 PMCID: PMC7557958 DOI: 10.3390/jof6030138] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/22/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Human fungal pathogens are attributable to a significant economic burden and mortality worldwide. Antifungal treatments, although limited in number, play a pivotal role in decreasing mortality and morbidities posed by invasive fungal infections (IFIs). However, the recent emergence of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due to azole-resistant C. parapsilosis, C. tropicalis, and Aspergillus spp. in azole-naïve patients pose a serious health threat considering the limited number of systemic antifungals available to treat IFIs. Although advancing for major fungal pathogens, the understanding of fungal attributes contributing to antifungal resistance is just emerging for several clinically important MDR fungal pathogens. Further complicating the matter are the distinct differences in antifungal resistance mechanisms among various fungal species in which one or more mechanisms may contribute to the resistance phenotype. In this review, we attempt to summarize the burden of antifungal resistance for selected non-albicansCandida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life. Moreover, we highlight the different molecular mechanisms between antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of antifungal resistance in a species level.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey;
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (F.D.); (T.B.)
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Toni Gabaldon
- Life Sciences Programme, Barcelona, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| |
Collapse
|
240
|
Wurster S, Bandi A, Beyda ND, Albert ND, Raman NM, Raad II, Kontoyiannis DP. Drosophila melanogaster as a model to study virulence and azole treatment of the emerging pathogen Candida auris. J Antimicrob Chemother 2020; 74:1904-1910. [PMID: 31225606 DOI: 10.1093/jac/dkz100] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Candida auris is an emerging, often MDR, yeast pathogen. Efficient animal models are needed to study its pathogenicity and treatment. Therefore, we developed a C. auris fruit fly infection model. METHODS TollI-RXA/Tollr632 female flies were infected with 10 different C. auris strains from the CDC Antimicrobial Resistance bank panel. We used three clinical Candida albicans strains as controls. For drug protection assays, fly survival was assessed along with measurement of fungal burden (cfu/g tissue) and histopathology in C. auris-infected flies fed with fluconazole- or posaconazole-containing food. RESULTS Despite slower in vitro growth, all 10 C. auris isolates caused significantly greater mortality than C. albicans in infected flies, with >80% of C. auris-infected flies dying by day 7 post-infection (versus 67% with C. albicans, P < 0.001-0.005). Comparison of C. auris isolates from different geographical clades revealed more rapid in vitro growth of South American isolates and greater virulence in infected flies, whereas the aggregative capacity of C. auris strains had minimal impact on their growth and pathogenicity. Survival protection and decreased fungal burden of fluconazole- or posaconazole-fed flies infected with two C. auris strains were in line with the isolates' disparate in vitro azole susceptibility. High reproducibility of survival curves for both non-treated and antifungal-treated infected flies was seen, with coefficients of variation of 0.00-0.31 for 7 day mortality. CONCLUSIONS Toll-deficient flies could provide a fast, reliable and inexpensive model to study pathogenesis and drug activity in C. auris candidiasis.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashwini Bandi
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas D Beyda
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Nathaniel D Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitya M Raman
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isaam I Raad
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
241
|
Ramos LS, Oliveira SSC, Braga-Silva LA, Branquinha MH, Santos ALS. Secreted aspartyl peptidases by the emerging, opportunistic and multidrug-resistant fungal pathogens comprising the Candida haemulonii complex. Fungal Biol 2020; 124:700-707. [PMID: 32690251 DOI: 10.1016/j.funbio.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/12/2023]
Abstract
The opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera) are notable for their intrinsic resistance to different antifungal classes. Little is known about the virulence attributes in this emerging fungal complex. However, it is well-recognized that enzymes play important roles in virulence/pathogenesis of candidiasis. Herein, we aimed to identify aspartyl-type peptidases in 12 clinical isolates belonging to the C. haemulonii complex. All isolates were able to grow in a chemically defined medium containing albumin as the sole nitrogen source, and a considerable consumption of this protein occurred after 72-96 h. C. haemulonii var. vulnera isolates showed the lowest albumin degradation capability and the poorest growth rate. The measurement of secreted aspartyl peptidase (Sap) activity, using the cathepsin D fluorogenic substrate, varied from 91.6 to 413.3 arbitrary units and the classic aspartyl peptidase inhibitor, pepstatin A, significantly blocked the Sap released by C. haemulonii complex. No differences were observed in the Sap activity among the three fungal species. Flow cytometry, using a polyclonal antibody against Sap1-3 of C. albicans, detected homologous proteins at the surface of C. haemulonii complex (anti-Sap1-3-labeled cells ranged from 24.6 to 79.1%). Additionally, the immunoblotting assay, conducted with the same Sap1-3 antibody, recognized a protein of ∼50 kDa in all fungal isolates. A glimpse in the genome of these fungi revealed several potential proteins containing Sap1-3-like conserved domain. Altogether, our results demonstrated the potential of C. haemulonii species complex to produce Saps, an important virulence factor of Candida spp.
Collapse
Affiliation(s)
- Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lys A Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
242
|
Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 2020; 9:e58349. [PMID: 32687060 PMCID: PMC7371428 DOI: 10.7554/elife.58349] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| |
Collapse
|
243
|
Misas E, Escandón P, McEwen JG, Clay OK. The LUFS domain, its transcriptional regulator proteins, and drug resistance in the fungal pathogen Candida auris. Protein Sci 2020; 28:2024-2029. [PMID: 31503375 DOI: 10.1002/pro.3727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
The LUFS domain (LUG/LUH, Flo8, single-strand DNA-binding protein [SSBP]) is a well-conserved and apparently ancient region found in diverse proteins and taxa. This domain, which has as its most obvious structural feature a series of three helices, has been identified in transcriptional regulator proteins of animals, plants, and fungi. Recently, in these pages (Wang et al., Protein Sci., 2019, 28:788-793), the first crystal structure of a LUFS domain was reported, for the human SSBP2, a transcriptional repressor. We briefly address how the new insights into LUFS structures might contribute to a better understanding of an important transcriptional activator of yeasts that contains the LUFS domain, Flo8, and consider how a focus on the LUFS domain and its variation could help us to understand etiologies of drug resistance in a recently emerged pathogenic fungus, Candida auris.
Collapse
Affiliation(s)
- Elizabeth Misas
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan G McEwen
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oliver K Clay
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,Translational Microbiology and Emerging Diseases (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
244
|
Increasing Prevalence of Multidrug-Resistant Candida haemulonii Species Complex among All Yeast Cultures Collected by a Reference Laboratory over the Past 11 Years. J Fungi (Basel) 2020; 6:jof6030110. [PMID: 32679832 PMCID: PMC7558365 DOI: 10.3390/jof6030110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023] Open
Abstract
There is worldwide concern with the increasing rates of infections due to multiresistant Candida isolates reported in tertiary medical centers. We checked for historical trends in terms of prevalence rates and antifungal susceptibility of the Candida haemulonii species complex in our yeast stock culture collected during the last 11 years. The isolates were identified by sequencing the rDNA internal transcribed spacer (ITS) region, and antifungal susceptibility tests for amphotericin B, voriconazole, fluconazole, anidulafungin, and 5-fluorocytosine were performed by the Clinical and Laboratory Standards Institute (CLSI) microbroth method. A total of 49 isolates were identified as Candida haemuloniisensu stricto (n = 21), followed by C. haemulonii var. vulnera (n = 15) and C. duobushaemulonii (n = 13), including 38 isolates cultured from patients with deep-seated Candida infections. The prevalence of the C. haemulonii species complex increased from 0.9% (18 isolates among 1931) in the first period (December 2008 to June 2013) to 1.7% (31 isolates among 1868) in the second period (July 2014 to December 2019) of analysis (p = 0.047). All isolates tested exhibited high minimum inhibition concentrations for amphotericin B and fluconazole, but they remained susceptible to 5-fluorocytosine and anidulafungin. We were able to demonstrate the increased isolation of the multiresistant Candida haemulonii species complex in our culture collection, where most isolates were cultured from patients with deep-seated infections.
Collapse
|
245
|
Rodrigues LS, Gazara RK, Passarelli-Araujo H, Valengo AE, Pontes PVM, Nunes-da-Fonseca R, de Souza RF, Venancio TM, Dalla-Costa LM. First Genome Sequences of Two Multidrug-Resistant Candida haemulonii var. vulnera Isolates From Pediatric Patients With Candidemia. Front Microbiol 2020; 11:1535. [PMID: 32719671 PMCID: PMC7350289 DOI: 10.3389/fmicb.2020.01535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Candida haemulonii is a complex formed by C. haemulonii sensu stricto, C. haemulonii var. vulnera, and C. duobushaemulonii. Members of this complex are opportunistic pathogens closely related to C. pseudohaemulonii, C. lusitaniae, and C. auris, all members of a multidrug-resistant clade. Complete genome sequences for all members of this group are available in the GenBank database, except for C. haemulonii var. vulnera. Here, we report the first draft genomes of two C. haemulonii var. vulnera (isolates K1 and K2) and comparative genome analysis of closely related fungal species. The isolates were biofilm producers and non-susceptible to amphotericin B and fluconazole. The draft genomes comprised 350 and 387 contigs and total genome sizes of 13.21 and 13.26 Mb, with 5,479 and 5,507 protein-coding genes, respectively, allowing the identification of virulence and resistance genes. Comparative analyses of orthologous genes within the multidrug-resistant clade showed a total of 4,015 core clusters, supporting the conservation of 24,654 proteins and 3,849 single-copy gene clusters. Candida haemulonii var. vulnera shared a larger number of clusters with C. haemulonii and C. auris; however, more singletons were identified in C. lusitaniae and C. auris. Additionally, a multiple sequence alignment of Erg11p proteins revealed variants likely involved in reduced susceptibility to azole and polyene antifungal agents. The data presented in this work will, therefore, be of utmost importance for researchers studying the biology of the C. haemulonii complex and related species.
Collapse
Affiliation(s)
- Luiza Souza Rodrigues
- Faculdades Pequeno Príncipe, Curitiba, Brazil.,Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Rajesh Kumar Gazara
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India.,Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Paula Veronesi Marinho Pontes
- Instituto de Biodiversidade e Sustentabilidade, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Instituto de Biodiversidade e Sustentabilidade, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Robson Francisco de Souza
- Laboratório de Estrutura e Evolução de Proteínas, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe, Curitiba, Brazil.,Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
246
|
Human Infections Caused by Clonally Related African Clade (Clade III) Strains of Candida auris in the Greater Houston Region. J Clin Microbiol 2020; 58:JCM.02063-19. [PMID: 32295894 DOI: 10.1128/jcm.02063-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
Candida auris is a pathogen of considerable public health importance. It was first reported in 2009. Five clades, determined by genomic analysis and named by the distinct regions where they were initially identified, have been defined. We previously completed a draft genome sequence of an African clade (clade III) strain cultured from the urine of a patient hospitalized in the greater Houston metropolitan region (strain LOM). Although initially uncommon, reports of the African clade in the United States have grown to include a recent cluster in California. Here, we describe a second human C. auris infection in the Houston area. Whole-genome sequence analysis demonstrated the Houston patient isolates to be clonally related to one another but distantly related to other African clade organisms recovered in the United States or elsewhere. Infections in these patients were present on admission to the hospital and occurred several months apart. Taken together, the data demonstrate the emergence and persistence of a clonal C. auris population and highlights the importance of routine high-resolution genomic surveillance of emerging human pathogens in the clinical laboratory.
Collapse
|
247
|
Candida albicans Genetic Background Influences Mean and Heterogeneity of Drug Responses and Genome Stability during Evolution in Fluconazole. mSphere 2020; 5:5/3/e00480-20. [PMID: 32581072 PMCID: PMC7316494 DOI: 10.1128/msphere.00480-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial resistance is an evolutionary phenomenon with clinical implications. We tested how replicates from diverse strains of Candida albicans, a prevalent human fungal pathogen, evolve in the commonly prescribed antifungal drug fluconazole. Replicates on average increased in fitness in the level of drug they were evolved to, with the least fit parental strains improving the most. Very few replicates increased resistance above the drug level they were evolved in. Notably, many replicates increased in genome size and changed in drug tolerance (a drug response where a subpopulation of cells grow slowly in high levels of drug), and variability among replicates in fitness, tolerance, and genome size was higher in strains that initially were more sensitive to the drug. Genetic background influenced the average degree of adaptation and the evolved variability of many phenotypes, highlighting that different strains from the same species may respond and adapt very differently during adaptation. The importance of within-species diversity in determining the evolutionary potential of a population to evolve drug resistance or tolerance is not well understood, including in eukaryotic pathogens. To examine the influence of genetic background, we evolved replicates of 20 different clinical isolates of Candida albicans, a human fungal pathogen, in fluconazole, the commonly used antifungal drug. The isolates hailed from the major C. albicans clades and had different initial levels of drug resistance and tolerance to the drug. The majority of replicates rapidly increased in fitness in the evolutionary environment, with the degree of improvement inversely correlated with parental strain fitness in the drug. Improvement was largely restricted to up to the evolutionary level of drug: only 4% of the evolved replicates increased resistance (MIC) above the evolutionary level of drug. Prevalent changes were altered levels of drug tolerance (slow growth of a subpopulation of cells at drug concentrations above the MIC) and increased diversity of genome size. The prevalence and predominant direction of these changes differed in a strain-specific manner, but neither correlated directly with parental fitness or improvement in fitness. Rather, low parental strain fitness was correlated with high levels of heterogeneity in fitness, tolerance, and genome size among evolved replicates. Thus, parental strain background is an important determinant in mean improvement to the evolutionary environment as well as the diversity of evolved phenotypes, and the range of possible responses of a pathogen to an antimicrobial drug cannot be captured by in-depth study of a single strain background. IMPORTANCE Antimicrobial resistance is an evolutionary phenomenon with clinical implications. We tested how replicates from diverse strains of Candida albicans, a prevalent human fungal pathogen, evolve in the commonly prescribed antifungal drug fluconazole. Replicates on average increased in fitness in the level of drug they were evolved to, with the least fit parental strains improving the most. Very few replicates increased resistance above the drug level they were evolved in. Notably, many replicates increased in genome size and changed in drug tolerance (a drug response where a subpopulation of cells grow slowly in high levels of drug), and variability among replicates in fitness, tolerance, and genome size was higher in strains that initially were more sensitive to the drug. Genetic background influenced the average degree of adaptation and the evolved variability of many phenotypes, highlighting that different strains from the same species may respond and adapt very differently during adaptation.
Collapse
|
248
|
Gade L, Muñoz JF, Sheth M, Wagner D, Berkow EL, Forsberg K, Jackson BR, Ramos-Castro R, Escandón P, Dolande M, Ben-Ami R, Espinosa-Bode A, Caceres DH, Lockhart SR, Cuomo CA, Litvintseva AP. Understanding the Emergence of Multidrug-Resistant Candida: Using Whole-Genome Sequencing to Describe the Population Structure of Candida haemulonii Species Complex. Front Genet 2020; 11:554. [PMID: 32587603 PMCID: PMC7298116 DOI: 10.3389/fgene.2020.00554] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022] Open
Abstract
The recent emergence of a multidrug-resistant yeast, Candida auris, has drawn attention to the closely related species from the Candida haemulonii complex that include C. haemulonii, Candida duobushaemulonii, Candida pseudohaemulonii, and the recently identified Candida vulturna. Here, we used antifungal susceptibility testing and whole-genome sequencing (WGS) to investigate drug resistance and genetic diversity among isolates of C. haemulonii complex from different geographic areas in order to assess population structure and the extent of clonality among strains. Although most isolates of all four species were genetically distinct, we detected evidence of the in-hospital transmission of C. haemulonii and C. duobushaemulonii in one hospital in Panama, indicating that these species are also capable of causing outbreaks in healthcare settings. We also detected evidence of the rising azole resistance among isolates of C. haemulonii and C. duobushaemulonii in Colombia, Panama, and Venezuela linked to substitutions in ERG11 gene as well as amplification of this gene in C. haemulonii in isolates in Colombia suggesting the presence of evolutionary pressure for developing azole resistance in this region. Our results demonstrate that these species need to be monitored as possible causes of outbreaks of invasive infection.
Collapse
Affiliation(s)
- Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jose F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, United States
| | - Mili Sheth
- Biotechnology Core Facility Branch, DSR/NCEZID - Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Darlene Wagner
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States.,IHRC, Inc., Atlanta, GA, United States
| | - Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kaitlin Forsberg
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brendan R Jackson
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ruben Ramos-Castro
- Department of Clinical and Molecular Microbiology, Instituto Conmemorativo Gorgas de Estudios de La Salud, Panama City, Panama
| | - Patricia Escandón
- Grupo de Microbiologia, Instituto Nacional de Salud, Bogotá, Colombia
| | - Maribel Dolande
- Departamento de Micología, Instituto Nacional de Higiene Rafael Rangel, Caracas, Venezuela
| | - Ronen Ben-Ami
- Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andrés Espinosa-Bode
- DGHP (Division of Global Health Protection), Central America Region Office, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Diego H Caceres
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, Netherlands
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, United States
| | - Anastasia P Litvintseva
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
249
|
Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Candida auris: a fungus with identity crisis. Pathog Dis 2020; 78:ftaa034. [PMID: 32643757 PMCID: PMC7371155 DOI: 10.1093/femspd/ftaa034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Candida auris is a new fungal species that has puzzlingly and simultaneously emerged on five continents. Since its identification in 2009, the scientific community has witnessed an exponential emergence of infection episodes and outbreaks in healthcare facilities world-wide. Candida auris exhibits several concerning features compared to other related Candida species, including persistent colonization of skin and nosocomial surfaces, ability to resist common disinfectants and to spread rapidly among patients. Resistance to multiple drug classes and misidentification by available laboratory identification systems has complicated clinical management, and outcomes of infection have generally been poor with mortality rates approaching 68%. Currently, the origins of C. auris are unclear, and therefore, it is impossible to determine whether environmental and climactic changes were contributing factors in its recent emergence as a pathogen. Nevertheless, a robust response involving rapid diagnostics, prompt interventions and implementation of precautions, are paramount in curtailing the spread of infections by this fungal species. Importantly, there is a pressing need for the development of new antifungal drugs. In this article, we present a brief overview highlighting some of the important aspects of C. auris epidemiology, pathogenesis and its puzzling global emergence.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Ahmed S Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
250
|
Tan X, Baugh K, Bulman ZP, Wenzler E. Review of the Current Management of Urinary Tract Infections due to Fluconazole-Resistant and Non-Albicans Candida Species. CURRENT FUNGAL INFECTION REPORTS 2020. [DOI: 10.1007/s12281-020-00388-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|