201
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
202
|
Pujari I, Thomas A, Sankar Babu V. Native and non-native host assessment towards metabolic pathway reconstructions of plant natural products. ACTA ACUST UNITED AC 2021; 30:e00619. [PMID: 33996523 PMCID: PMC8091882 DOI: 10.1016/j.btre.2021.e00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022]
Abstract
Plant metabolic networks are highly complex. Engineering the phytochemical pathways fully in heterologous hosts is challenging. Single plant cells with amplified multiple fission enable homogeneity. Homogeneity and high cell division rate can facilitate stable product scale-up.
Plant-based biopreparations are reasonably priced and are devoid of viral, prion and endotoxin contaminants. However, synthesizing these natural plant products by chemical methods is quite expensive. The structural complexity of plant-derived natural products poses a challenge for chemical synthesis at a commercial scale. Failure of commercial-scale synthesis is the chief reason why metabolic reconstructions in heterologous hosts are inevitable. This review discusses plant metabolite pathway reconstructions experimented in various heterologous hosts, and the inherent challenges involved. Plants as native hosts possess enhanced post-translational modification ability, along with rigorous gene edits, unlike microbes. To achieve a high yield of metabolites in plants, increased cell division rate is one of the requisites. This improved cell division rate will promote cellular homogeneity. Incorporation and maintenance of plant cell synchrony, in turn, can program stable product scale-up.
Collapse
Affiliation(s)
- Ipsita Pujari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abitha Thomas
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidhu Sankar Babu
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
203
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
204
|
Mori Y, Noda S, Shirai T, Kondo A. Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant. Nat Commun 2021; 12:2195. [PMID: 33850144 PMCID: PMC8044207 DOI: 10.1038/s41467-021-22504-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The C4 unsaturated compound 1,3-butadiene is an important monomer in synthetic rubber and engineering plastic production. However, microorganisms cannot directly produce 1,3-butadiene when glucose is used as a renewable carbon source via biological processes. In this study, we construct an artificial metabolic pathway for 1,3-butadiene production from glucose in Escherichia coli by combining the cis,cis-muconic acid (ccMA)-producing pathway together with tailored ferulic acid decarboxylase mutations. The rational design of the substrate-binding site of the enzyme by computational simulations improves ccMA decarboxylation and thus 1,3-butadiene production. We find that changing dissolved oxygen (DO) levels and controlling the pH are important factors for 1,3-butadiene production. Using DO-stat fed-batch fermentation, we produce 2.13 ± 0.17 g L-1 1,3-butadiene. The results indicate that we can produce unnatural/nonbiological compounds from glucose as a renewable carbon source via a rational enzyme design strategy.
Collapse
Affiliation(s)
- Yutaro Mori
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Shuhei Noda
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan.
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| |
Collapse
|
205
|
David F, Davis AM, Gossing M, Hayes MA, Romero E, Scott LH, Wigglesworth MJ. A Perspective on Synthetic Biology in Drug Discovery and Development-Current Impact and Future Opportunities. SLAS DISCOVERY 2021; 26:581-603. [PMID: 33834873 DOI: 10.1177/24725552211000669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.
Collapse
Affiliation(s)
- Florian David
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew M Davis
- Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Michael Gossing
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A Hayes
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elvira Romero
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louis H Scott
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
206
|
Phung Hai TA, Tessman M, Neelakantan N, Samoylov AA, Ito Y, Rajput BS, Pourahmady N, Burkart MD. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021; 22:1770-1794. [PMID: 33822601 DOI: 10.1021/acs.biomac.0c01610] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the depletion of fossil fuels, higher oil prices, and greenhouse gas emissions, the scientific community has been conducting an ongoing search for viable renewable alternatives to petroleum-based products, with the anticipation of increased adaptation in the coming years. New academic and industrial developments have encouraged the utilization of renewable resources for the development of ecofriendly and sustainable materials, and here, we focus on those advances that impact polyurethane (PU) materials. Vegetable oils, algae oils, and polysaccharides are included among the major renewable resources that have supported the development of sustainable PU precursors to date. Renewable feedstocks such as algae have the benefit of requiring only sunshine, carbon dioxide, and trace minerals to generate a sustainable biomass source, offering an improved carbon footprint to lessen environmental impacts. Incorporation of renewable content into commercially viable polymer materials, particularly PUs, has increasing and realistic potential. Biobased polyols can currently be purchased, and the potential to expand into new monomers offers exciting possibilities for new product development. This Review highlights the latest developments in PU chemistry from renewable raw materials, as well as the various biological precursors being employed in the synthesis of thermoset and thermoplastic PUs. We also provide an overview of literature reports that focus on biobased polyols and isocyanates, the two major precursors to PUs.
Collapse
Affiliation(s)
- Thien An Phung Hai
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Marissa Tessman
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Nitin Neelakantan
- Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States
| | - Anton A Samoylov
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Yuri Ito
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Bhausaheb S Rajput
- Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| | - Naser Pourahmady
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Algenesis Materials Inc., 1238 Sea Village Drive, Cardiff, California 92007, United States.,Food and Fuel for the 21st Century, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0435, United States
| |
Collapse
|
207
|
Carqueijeiro I, Koudounas K, Dugé de Bernonville T, Sepúlveda LJ, Mosquera A, Bomzan DP, Oudin A, Lanoue A, Besseau S, Lemos Cruz P, Kulagina N, Stander EA, Eymieux S, Burlaud-Gaillard J, Blanchard E, Clastre M, Atehortùa L, St-Pierre B, Giglioli-Guivarc’h N, Papon N, Nagegowda DA, O’Connor SE, Courdavault V. Alternative splicing creates a pseudo-strictosidine β-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus. PLANT PHYSIOLOGY 2021; 185:836-856. [PMID: 33793899 PMCID: PMC8133614 DOI: 10.1093/plphys/kiaa075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by β-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine β-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks β-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of β-glucosidase multimerization, an organization common to many defensive GH1 members.
Collapse
Affiliation(s)
- Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Angela Mosquera
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Natalja Kulagina
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Emily A Stander
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Sébastien Eymieux
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Plateforme IBiSA de Microscopie Electronique, Université de Tours, 37200 Tours, France
- Centre Hospitalier Régional de Tours, 37170 Tours, France
| | - Marc Clastre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Universidad de Antioquia, Sede de Investigación Universitaria, 50010 Medellin, Colombia
| | - Benoit St-Pierre
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
| | | | - Nicolas Papon
- EA3142 “Groupe d'Etude des Interactions Hôte-Pathogène,” Université d’Angers, 49035 Angers, France
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India
| | - Sarah E O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales,” Université de Tours, 37200 Tours, France
- Author for communication:
| |
Collapse
|
208
|
Zhou A, Zhou K, Li Y. Rational design strategies for functional reconstitution of plant cytochrome P450s in microbial systems. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102005. [PMID: 33647811 PMCID: PMC8435529 DOI: 10.1016/j.pbi.2021.102005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 05/08/2023]
Abstract
Plant natural products (NPs) are of pharmaceutical and agricultural significance, yet the low abundance is largely impeding the broad investigation and utilization. Microbial bioproduction is a promising alternative sourcing to plant NPs. Cytochrome P450s (CYPs) play an essential role in plant secondary metabolism, and functional reconstitution of plant CYPs in the microbial system is one of the major challenges in establishing efficient microbial plant NP bioproduction. In this review, we briefly summarized the recent progress in rational engineering strategies for enhanced activity of plant CYPs in Escherichia coli and Saccharomyces cerevisiae, two commonly used microbial hosts. We believe that in-depth foundational investigations on the native microenvironment of plant CYPs are necessary to adapt the microbial systems for more efficient functional reconstitution of plant CYPs.
Collapse
Affiliation(s)
- Anqi Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
209
|
Aguillón AR, Leão RAC, Miranda LSM, de Souza ROMA. Cannabidiol Discovery and Synthesis-a Target-Oriented Analysis in Drug Production Processes. Chemistry 2021; 27:5577-5600. [PMID: 32780909 DOI: 10.1002/chem.202002887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Indexed: 01/13/2023]
Abstract
The current state of evidence and recommendations for cannabidiol (CBD) and its health effects change the legal landscape and aim to destigmatize its phytotherapeutic research. Recently, some countries have included CBD as an antiepileptic product for compassionate use in children with refractory epilepsy. The growing demand for CBD has led to the need for high-purity cannabinoids on the emerging market. The discovery and development of approaches toward CBD synthesis have arisen from the successful extraction of Cannabis plants for cannabinoid fermentation in brewer's yeast. To understand different contributions to the design and enhancement of the synthesis of CBD and its key intermediates, a detailed analysis of the history behind cannabinoid compounds and their optimization is provided herein.
Collapse
Affiliation(s)
- Anderson R Aguillón
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Raquel A C Leão
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| | - Leandro S M Miranda
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, 21941-170, CEP, 21941-910, Brazil
| |
Collapse
|
210
|
Acinetobacter baylyi ADP1-naturally competent for synthetic biology. Essays Biochem 2021; 65:309-318. [PMID: 33769448 DOI: 10.1042/ebc20200136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
Acinetobacter baylyi ADP1 is a non-pathogenic soil bacterium known for its metabolic diversity and high natural transformation and recombination efficiency. For these features, A. baylyi ADP1 has been long exploited in studying bacterial genetics and metabolism. The large pool of information generated in the fundamental studies has facilitated the development of a broad range of sophisticated and robust tools for the genome and metabolic engineering of ADP1. This mini-review outlines and describes the recent advances in ADP1 engineering and tool development, exploited in, for example, pathway and enzyme evolution, genome reduction and stabilization, and for the production of native and non-native products in both pure and rationally designed multispecies cultures. The rapidly expanding toolbox together with the unique features of A. baylyi ADP1 provide a strong base for a microbial cell factory excelling in synthetic biology applications where evolution meets rational engineering.
Collapse
|
211
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
212
|
Hafner J, Payne J, MohammadiPeyhani H, Hatzimanikatis V, Smolke C. A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives. Nat Commun 2021; 12:1760. [PMID: 33741955 PMCID: PMC7979880 DOI: 10.1038/s41467-021-22022-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Plant natural products (PNPs) and their derivatives are important but underexplored sources of pharmaceutical molecules. To access this untapped potential, the reconstitution of heterologous PNP biosynthesis pathways in engineered microbes provides a valuable starting point to explore and produce novel PNP derivatives. Here, we introduce a computational workflow to systematically screen the biochemical vicinity of a biosynthetic pathway for pharmaceutical compounds that could be produced by derivatizing pathway intermediates. We apply our workflow to the biosynthetic pathway of noscapine, a benzylisoquinoline alkaloid (BIA) with a long history of medicinal use. Our workflow identifies pathways and enzyme candidates for the production of (S)-tetrahydropalmatine, a known analgesic and anxiolytic, and three additional derivatives. We then construct pathways for these compounds in yeast, resulting in platforms for de novo biosynthesis of BIA derivatives and demonstrating the value of cheminformatic tools to predict reactions, pathways, and enzymes in synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Jasmin Hafner
- Laboratory of Computational Systems Biotechnology, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - James Payne
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Homa MohammadiPeyhani
- Laboratory of Computational Systems Biotechnology, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Christina Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
213
|
Zakaria MM, Schemmerling B, Ober D. CRISPR/Cas9-Mediated Genome Editing in Comfrey ( Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids. Molecules 2021; 26:1498. [PMID: 33801907 PMCID: PMC7998174 DOI: 10.3390/molecules26061498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Comfrey (Symphytum officinale) is a medicinal plant with anti-inflammatory, analgesic, and proliferative properties. However, its pharmaceutical application is hampered by the co-occurrence of toxic pyrrolizidine alkaloids (PAs) in its tissues. Using a CRISPR/Cas9-based approach, we introduced detrimental mutations into the hss gene encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis. The resulting hairy root (HR) lines were analyzed for the type of gene-editing effect that they exhibited and for their homospermidine and PA content. Inactivation of only one of the two hss alleles resulted in HRs with significantly reduced levels of homospermidine and PAs, whereas no alkaloids were detectable in HRs with two inactivated hss alleles. PAs were detectable once again after the HSS-deficient HRs were fed homospermidine confirming that the inability of these roots to produce PAs was only attributable to the inactivated HSS and not to any unidentified off-target effect of the CRISPR/Cas9 approach. Further analyses showed that PA-free HRs possessed, at least in traces, detectable amounts of homospermidine, and that the PA patterns of manipulated HRs were different from those of control lines. These observations are discussed with regard to the potential use of such a CRISPR/Cas9-mediated approach for the economical exploitation of in vitro systems in a medicinal plant and for further studies of PA biosynthesis in non-model plants.
Collapse
Affiliation(s)
- Mahmoud M. Zakaria
- Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany; (M.M.Z.); (B.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
| | - Brigitte Schemmerling
- Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany; (M.M.Z.); (B.S.)
| | - Dietrich Ober
- Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany; (M.M.Z.); (B.S.)
| |
Collapse
|
214
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
215
|
Brooks SM, Alper HS. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat Commun 2021; 12:1390. [PMID: 33654085 PMCID: PMC7925609 DOI: 10.1038/s41467-021-21740-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology holds great promise for addressing global needs. However, most current developments are not immediately translatable to 'outside-the-lab' scenarios that differ from controlled laboratory settings. Challenges include enabling long-term storage stability as well as operating in resource-limited and off-the-grid scenarios using autonomous function. Here we analyze recent advances in developing synthetic biological platforms for outside-the-lab scenarios with a focus on three major application spaces: bioproduction, biosensing, and closed-loop therapeutic and probiotic delivery. Across the Perspective, we highlight recent advances, areas for further development, possibilities for future applications, and the needs for innovation at the interface of other disciplines.
Collapse
Affiliation(s)
- Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
216
|
Zhang Y, Shi S. Transcription Factor-Based Biosensor for Dynamic Control in Yeast for Natural Product Synthesis. Front Bioeng Biotechnol 2021; 9:635265. [PMID: 33614618 PMCID: PMC7892902 DOI: 10.3389/fbioe.2021.635265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The synthesis of natural products in yeast has gained remarkable achievements with intensive metabolic engineering efforts. In particular, transcription factor (TF)-based biosensors for dynamic control of gene circuits could facilitate strain evaluation, high-throughput screening (HTS), and adaptive laboratory evolution (ALE) for natural product synthesis. In this review, we summarized recent developments of several TF-based biosensors for core intermediates in natural product synthesis through three important pathways, i.e., fatty acid synthesis pathway, shikimate pathway, and methylerythritol-4-phosphate (MEP)/mevalonate (MVA) pathway. Moreover, we have shown how these biosensors are implemented in synthetic circuits for dynamic control of natural product synthesis and also discussed the design/evaluation principles for improved biosensor performance.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
217
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
218
|
Hiraga K, Mejzlik P, Marcisin M, Vostrosablin N, Gromek A, Arnold J, Wiewiora S, Svarba R, Prihoda D, Clarova K, Klempir O, Navratil J, Tupa O, Vazquez-Otero A, Walas MW, Holy L, Spale M, Kotowski J, Dzamba D, Temesi G, Russell JH, Marshall NM, Murphy GS, Bitton DA. Mutation Maker, An Open Source Oligo Design Platform for Protein Engineering. ACS Synth Biol 2021; 10:357-370. [PMID: 33433999 DOI: 10.1021/acssynbio.0c00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein engineering is the discipline of developing useful proteins for applications in research, therapeutic, and industrial processes by modification of naturally occurring proteins or by invention of de novo proteins. Modern protein engineering relies on the ability to rapidly generate and screen diverse libraries of mutant proteins. However, design of mutant libraries is typically hampered by scale and complexity, necessitating development of advanced automation and optimization tools that can improve efficiency and accuracy. At present, automated library design tools are functionally limited or not freely available. To address these issues, we developed Mutation Maker, an open source mutagenic oligo design software for large-scale protein engineering experiments. Mutation Maker is not only specifically tailored to multisite random and directed mutagenesis protocols, but also pioneers bespoke mutagenic oligo design for de novo gene synthesis workflows. Enabled by a novel bundle of orchestrated heuristics, optimization, constraint-satisfaction and backtracking algorithms, Mutation Maker offers a versatile toolbox for gene diversification design at industrial scale. Supported by in silico simulations and compelling experimental validation data, Mutation Maker oligos produce diverse gene libraries at high success rates irrespective of genes or vectors used. Finally, Mutation Maker was created as an extensible platform on the notion that directed evolution techniques will continue to evolve and revolutionize current and future-oriented applications.
Collapse
Affiliation(s)
- Kaori Hiraga
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Petr Mejzlik
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Matej Marcisin
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Nikita Vostrosablin
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Anna Gromek
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jakub Arnold
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Sebastian Wiewiora
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Rastislav Svarba
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - David Prihoda
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Kamila Clarova
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Ondrej Klempir
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Josef Navratil
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Ondrej Tupa
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | | | - Marcin W. Walas
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Lukas Holy
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Martin Spale
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jakub Kotowski
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - David Dzamba
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Gergely Temesi
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jay H. Russell
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Nicholas M. Marshall
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Grant S. Murphy
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Danny A. Bitton
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| |
Collapse
|
219
|
Hilgers F, Habash SS, Loeschcke A, Ackermann YS, Neumann S, Heck A, Klaus O, Hage-Hülsmann J, Grundler FMW, Jaeger KE, Schleker ASS, Drepper T. Heterologous Production of β-Caryophyllene and Evaluation of Its Activity against Plant Pathogenic Fungi. Microorganisms 2021; 9:microorganisms9010168. [PMID: 33466643 PMCID: PMC7828715 DOI: 10.3390/microorganisms9010168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Terpenoids constitute one of the largest and most diverse groups within the class of secondary metabolites, comprising over 80,000 compounds. They not only exhibit important functions in plant physiology but also have commercial potential in the biotechnological, pharmaceutical, and agricultural sectors due to their promising properties, including various bioactivities against pathogens, inflammations, and cancer. In this work, we therefore aimed to implement the plant sesquiterpenoid pathway leading to β-caryophyllene in the heterologous host Rhodobacter capsulatus and achieved a maximum production of 139 ± 31 mg L-1 culture. As this sesquiterpene offers various beneficial anti-phytopathogenic activities, we evaluated the bioactivity of β-caryophyllene and its oxygenated derivative β-caryophyllene oxide against different phytopathogenic fungi. Here, both compounds significantly inhibited the growth of Sclerotinia sclerotiorum and Fusarium oxysporum by up to 40%, while growth of Alternaria brassicicola was only slightly affected, and Phoma lingam and Rhizoctonia solani were unaffected. At the same time, the compounds showed a promising low inhibitory profile for a variety of plant growth-promoting bacteria at suitable compound concentrations. Our observations thus give a first indication that β-caryophyllene and β-caryophyllene oxide are promising natural agents, which might be applicable for the management of certain plant pathogenic fungi in agricultural crop production.
Collapse
Affiliation(s)
- Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Samer S. Habash
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Yannic Sebastian Ackermann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Stefan Neumann
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Achim Heck
- Institute of Bio- and Geosciences (IBG-1: Biotechnology) Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
| | - Florian M. W. Grundler
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology) Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - A. Sylvia S. Schleker
- INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany; (S.S.H.); (S.N.); (F.M.W.G.)
- Correspondence: (A.S.S.S.); (T.D.)
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (F.H.); (A.L.); (Y.S.A.); (O.K.); (J.H.-H.); (K.-E.J.)
- Correspondence: (A.S.S.S.); (T.D.)
| |
Collapse
|
220
|
Herath HMPD, Taki AC, Sleebs BE, Hofmann A, Nguyen N, Preston S, Davis RA, Jabbar A, Gasser RB. Advances in the discovery and development of anthelmintics by harnessing natural product scaffolds. ADVANCES IN PARASITOLOGY 2021; 111:203-251. [PMID: 33482975 DOI: 10.1016/bs.apar.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Widespread resistance to currently-used anthelmintics represents a major obstacle to controlling parasitic nematodes of livestock animals. Given the reliance on anthelmintics in many control regimens, there is a need for the continued discovery and development of new nematocides. Enabling such a focus are: (i) the major chemical diversity of natural products; (ii) the availability of curated, drug-like extract-, fraction- and/or compound-libraries from natural sources; (iii) the utility and practicality of well-established whole-worm bioassays for Haemonchus contortus-an important parasitic nematodes of livestock-to screen natural product libraries; and (iv) the availability of advanced chromatographic (HPLC), spectroscopic (NMR) and spectrometric (MS) techniques for bioassay-guided fractionation and structural elucidation. This context provides a sound basis for the identification and characterisation of anthelmintic candidates from natural sources. This chapter provides a background on the importance and impact of helminth infections/diseases, parasite control and aspects of drug discovery, and reviews recent work focused on (i) screening well-defined compound libraries to establish the methods needed for large-scale screening of natural extract libraries; (ii) discovering plant and marine extracts with nematocidal or nematostatic activity, and purifying bioactive compounds and assessing their potential for further development; and (iii) synthesising analogues of selected purified natural compounds for the identification of possible 'lead' candidates. The chapter describes some lessons learned from this work and proposes future areas of focus for drug discovery. Collectively, the findings from this recent work show potential for selected natural product scaffolds as candidates for future development. Developing such candidates via future chemical optimisation, efficacy and safety evaluations, broad spectrum activity assessments, and target identification represents an exciting prospect and, if successful, could pave the way to subsequent pre-clinical and clinical evaluations.
Collapse
Affiliation(s)
- H M P Dilrukshi Herath
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Nghi Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia; Faculty of Science and Technology, Federation University, Ballarat, Victoria, Australia
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
221
|
Tong L, Zhao Q, Datan E, Lin GQ, Minn I, Pomper MG, Yu B, Romo D, He QL, Liu JO. Triptolide: reflections on two decades of research and prospects for the future. Nat Prod Rep 2021; 38:843-860. [PMID: 33146205 DOI: 10.1039/d0np00054j] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Triptolide is a bioactive diterpene triepoxide isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal plant whose extracts have been used as anti-inflammatory and immunosuppressive remedies for centuries. Although triptolide and its analogs exhibit potent bioactivities against various cancers, and inflammatory and autoimmune diseases, none of them has been approved to be used in the clinic. This review highlights advances in material sourcing, molecular mechanisms, clinical progress and new drug design strategies for triptolide over the past two decades, along with some prospects for the future course of development of triptolide.
Collapse
Affiliation(s)
- Lu Tong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Emmanuel Datan
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205, USA.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. and CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Daniel Romo
- Department of Chemistry and Biochemistry, The CPRIT Synthesis and Drug Lead Discovery Laboratory, Baylor University, Waco, Texas 76710, USA
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jun O Liu
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205, USA.
| |
Collapse
|
222
|
Mou SB, Xiao W, Wang HQ, Chen KY, Xiang Z. Syntheses of the Carotane-type Terpenoids (+)-Schisanwilsonene A and (+)-Tormesol via a Two-Stage Approach. Org Lett 2020; 23:400-404. [DOI: 10.1021/acs.orglett.0c03894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hua-Qi Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
223
|
Voigt CA. Synthetic biology 2020-2030: six commercially-available products that are changing our world. Nat Commun 2020; 11:6379. [PMID: 33311504 PMCID: PMC7733420 DOI: 10.1038/s41467-020-20122-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 01/05/2023] Open
Abstract
Synthetic biology will transform how we grow food, what we eat, and where we source materials and medicines. Here I have selected six products that are now on the market, highlighting the underlying technologies and projecting forward to the future that can be expected over the next ten years.
Collapse
Affiliation(s)
- Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Boston, USA.
| |
Collapse
|
224
|
Sadler JC. The Bipartisan Future of Synthetic Chemistry and Synthetic Biology. Chembiochem 2020; 21:3489-3491. [PMID: 33201568 DOI: 10.1002/cbic.202000418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/13/2020] [Indexed: 01/05/2023]
Abstract
Synthetic biology holds great potential for sustainable chemical synthesis, yet is limited to accessing a relatively small area of chemical space. By interfacing this new technology with the versatility and scope of synthetic chemistry, the best of both worlds can be harnessed to drive a green chemical industry.
Collapse
Affiliation(s)
- Joanna C Sadler
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| |
Collapse
|
225
|
Ma J, Gu Y, Xu P. A roadmap to engineering antiviral natural products synthesis in microbes. Curr Opin Biotechnol 2020; 66:140-149. [PMID: 32795662 PMCID: PMC7419324 DOI: 10.1016/j.copbio.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
Natural products continue to be the inspirations for us to discover and acquire new drugs. The seemingly unstoppable viruses have kept records high to threaten human health and well-being. The diversity and complexity of natural products (NPs) offer remarkable efficacy and specificity to target viral infection steps and serve as excellent source for antiviral agents. The discovery and production of antiviral NPs remain challenging due to low abundance in their native hosts. Reconstruction of NP biosynthetic pathways in microbes is a promising solution to overcome this limitation. In this review, we surveyed 23 most prominent NPs (from more than 200 antiviral NP candidates) with distinct antiviral mode of actions and summarized the recent metabolic engineering effort to produce these compounds in various microbial hosts. We envision that the scalable and low-cost production of novel antiviral NPs, enabled by metabolic engineering, may light the hope to control and eradicate the deadliest viruses that plague our society and humanity.
Collapse
Affiliation(s)
- Jingbo Ma
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Yang Gu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
226
|
Mannochio-Russo H, Bueno PCP, Bauermeister A, de Almeida RF, Dorrestein PC, Cavalheiro AJ, Bolzani VS. Can Statistical Evaluation Tools for Chromatographic Method Development Assist in the Natural Products Workflow? A Case Study on Selected Species of the Plant Family Malpighiaceae. JOURNAL OF NATURAL PRODUCTS 2020; 83:3239-3249. [PMID: 33196207 DOI: 10.1021/acs.jnatprod.0c00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proper chromatographic methods may reduce the challenges inherent in analyzing natural product extracts, especially when utilizing hyphenated detection techniques involving mass spectrometry. As there are many variations one can introduce during chromatographic method development, this can become a daunting and time-consuming task. To reduce the number of runs and time needed, the use of instrumental automatization and commercial software to apply Quality by Design and statistical analysis automatically can be a valuable approach to investigate complex matrices. To evaluate this strategy in the natural products workflow, a mixture of nine species from the family Malpighiaceae was investigated. By this approach, the entire data collection and method development procedure (comprising screening, optimization, and robustness simulation) was accomplished in only 4 days, resulting in very low limits of detection and quantification. The analysis of the individual extracts also proved the efficiency of the use of a mixture of extracts for this workflow. Molecular networking and library searches were used to annotate a total of 61 compounds, including O-glycosylated flavonoids, C-glycosylated flavonoids, quinic/shikimic acid derivatives, sterols, and other phenols, which were efficiently separated by the method developed. These results support the potential of statistical tools for chromatographic method optimization as an efficient approach to reduce time and maximize resources, such as solvents, to get proper chromatographic conditions.
Collapse
Affiliation(s)
- Helena Mannochio-Russo
- NuBBE, Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 14800-901, Araraquara, SP Brazil
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Paula Carolina P Bueno
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, 14049-900, Ribeirão Preto, SP Brazil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Anelize Bauermeister
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical Sciences Institute, University of São Paulo, 05508-900 São Paulo, SP Brazil
| | - Rafael Felipe de Almeida
- Department of Biological Sciences, Lamol Lab, Feira de Santana State University (UEFS), Feira de Santana, BA 44036-900, Brazil
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Alberto José Cavalheiro
- NuBBE, Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 14800-901, Araraquara, SP Brazil
| | - Vanderlan S Bolzani
- NuBBE, Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 14800-901, Araraquara, SP Brazil
| |
Collapse
|
227
|
Pereira R, Mohamed ET, Radi MS, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution. Proc Natl Acad Sci U S A 2020; 117:27954-27961. [PMID: 33106428 PMCID: PMC7668050 DOI: 10.1073/pnas.2013044117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Toxicity from the external presence or internal production of compounds can reduce the growth and viability of microbial cell factories and compromise productivity. Aromatic compounds are generally toxic for microorganisms, which makes their production in microbial hosts challenging. Here we use adaptive laboratory evolution to generate Saccharomyces cerevisiae mutants tolerant to two aromatic acids, coumaric acid and ferulic acid. The evolution experiments were performed at low pH (3.5) to reproduce conditions typical of industrial processes. Mutant strains tolerant to levels of aromatic acids near the solubility limit were then analyzed by whole genome sequencing, which revealed prevalent point mutations in a transcriptional activator (Aro80) that is responsible for regulating the use of aromatic amino acids as the nitrogen source. Among the genes regulated by Aro80, ESBP6 was found to be responsible for increasing tolerance to aromatic acids by exporting them out of the cell. Further examination of the native function of Esbp6 revealed that this transporter can excrete fusel acids (byproducts of aromatic amino acid catabolism) and this role is shared with at least one additional transporter native to S. cerevisiae (Pdr12). Besides conferring tolerance to aromatic acids, ESBP6 overexpression was also shown to significantly improve the secretion in coumaric acid production strains. Overall, we showed that regulating the activity of transporters is a major mechanism to improve tolerance to aromatic acids. These findings can be used to modulate the intracellular concentration of aromatic compounds to optimize the excretion of such products while keeping precursor molecules inside the cell.
Collapse
Affiliation(s)
- Rui Pereira
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Elsayed T Mohamed
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Mohammad S Radi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Adam M Feist
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
228
|
Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Curr Opin Chem Biol 2020; 58:146-154. [PMID: 33152607 DOI: 10.1016/j.cbpa.2020.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Nature exploits biosynthetic cascades to construct numerous molecules from a limited set of starting materials. A deeper understanding of biosynthesis and extraordinary developments in gene technology has allowed the manipulation of natural pathways and construction of artificial cascades for the preparation of a range of molecules, which would be challenging to access using traditional synthetic chemical approaches. Alongside these metabolic engineering strategies, there has been continued interest in developing in vivo and in vitro biocatalytic cascades. Advancements in both metabolic engineering and biocatalysis are complementary, and this article aims to highlight some of the most exciting developments in these two areas with a particular focus on exploring those that have the potential to advance both pathway engineering and more traditional biocatalytic cascade development.
Collapse
|
229
|
Muhammad A, Feng X, Rasool A, Sun W, Li C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol Adv 2020; 43:107555. [DOI: 10.1016/j.biotechadv.2020.107555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
230
|
Bradley SA, Zhang J, Jensen MK. Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Front Bioeng Biotechnol 2020; 8:594126. [PMID: 33195162 PMCID: PMC7644825 DOI: 10.3389/fbioe.2020.594126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Plants produce some of the most potent therapeutics and have been used for thousands of years to treat human diseases. Today, many medicinal natural products are still extracted from source plants at scale as their complexity precludes total synthesis from bulk chemicals. However, extraction from plants can be an unreliable and low-yielding source for human therapeutics, making the supply chain for some of these life-saving medicines expensive and unstable. There has therefore been significant interest in refactoring these plant pathways in genetically tractable microbes, which grow more reliably and where the plant pathways can be more easily engineered to improve the titer, rate and yield of medicinal natural products. In addition, refactoring plant biosynthetic pathways in microbes also offers the possibility to explore new-to-nature chemistry more systematically, and thereby help expand the chemical space that can be probed for drugs as well as enable the study of pharmacological properties of such new-to-nature chemistry. This perspective will review the recent progress toward heterologous production of plant medicinal alkaloids in microbial systems. In particular, we focus on the refactoring of halogenated alkaloids in yeast, which has created an unprecedented opportunity for biosynthesis of previously inaccessible new-to-nature variants of the natural alkaloid scaffolds.
Collapse
Affiliation(s)
| | | | - Michael K. Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
231
|
Kong D, Li S, Smolke CD. Discovery of a previously unknown biosynthetic capacity of naringenin chalcone synthase by heterologous expression of a tomato gene cluster in yeast. SCIENCE ADVANCES 2020; 6:6/44/eabd1143. [PMID: 33127687 PMCID: PMC7608815 DOI: 10.1126/sciadv.abd1143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 05/11/2023]
Abstract
Chalcone synthase (CHS) canonically catalyzes carbon-carbon bond formation through iterative decarboxylative Claisen condensation. Here, we characterize a previously unidentified biosynthetic capability of SlCHS to catalyze nitrogen-carbon bond formation, leading to the production of a hydroxycinnamic acid amide (HCAA) compound. By expressing a putative tomato (Solanum lycopersicum) gene cluster in yeast (Saccharomyces cerevisiae), we elucidate the activity of a pathway consisting of a carboxyl methyltransferase (SlMT2), which methylates the yeast primary metabolite 3-hydroxyanthranilic acid (3-HAA) to form a methyl ester, and a SlCHS, which catalyzes the condensation of 3-HAA methyl ester and p-coumaroyl-coenzyme A (CoA) through formation of an amide bond. We demonstrate that this aminoacylation activity could be a common secondary activity in plant CHSs by validating the activity in vitro with variants from S. lycopersicum and Arabidopsis thaliana Our work demonstrates yeast as a platform for characterizing putative plant gene clusters with the potential for compound structure and enzymatic activity discovery.
Collapse
Affiliation(s)
- Deze Kong
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA 94305, USA
| | - Sijin Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, 230A Olin Hall, Cornell University, Ithaca, NY 14853, USA
| | - Christina D Smolke
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
232
|
Romanowski S, Eustáquio AS. Synthetic biology for natural product drug production and engineering. Curr Opin Chem Biol 2020; 58:137-145. [DOI: 10.1016/j.cbpa.2020.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
|
233
|
Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Curr Opin Biotechnol 2020; 65:17-24. [DOI: 10.1016/j.copbio.2019.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/22/2023]
|
234
|
Guirimand G, Kulagina N, Papon N, Hasunuma T, Courdavault V. Innovative Tools and Strategies for Optimizing Yeast Cell Factories. Trends Biotechnol 2020; 39:488-504. [PMID: 33008642 DOI: 10.1016/j.tibtech.2020.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic engineering (ME) aims to develop efficient microbial cell factories that can produce a wide variety of valuable compounds, ideally at the highest yield and from various feedstocks. We summarize recent developments in ME methods for tailoring different yeast cell factories (YCFs). In particular, we highlight the most timely and cutting-edge molecular tools and strategies for biosynthetic pathway optimization (including genome-editing tools), combinatorial transcriptional and post-transcriptional engineering (cis/trans regulators), dynamic control of metabolic fluxes (e.g., rewiring of primary metabolism), and spatial reconfiguration of metabolic pathways. Finally, we discuss challenges and perspectives for adaptive laboratory evolution (ALE) of yeast to advance ME of microbial cell factories.
Collapse
Affiliation(s)
- Gregory Guirimand
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France
| | - Natalja Kulagina
- Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA 3142, Université Angers and Université Brest, Structure Féderative de Recherche (SFR) 4208 Interactions Cellulaires et Applications Thérapeutiques (ICAT), Angers, France
| | - Tomohisa Hasunuma
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France.
| |
Collapse
|
235
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories. Biotechnol Adv 2020; 45:107635. [PMID: 32976930 DOI: 10.1016/j.biotechadv.2020.107635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Plant cell suspension culture (PCSC) has emerged as a viable technology to produce plant specialized metabolites (PSM). While Taxol® and ginsenoside are two examples of successfully commercialized PCSC-derived PSM, widespread utilization of the PCSC platform has yet to be realized primarily due to a lack of understanding of the molecular genetics of PSM biosynthesis. Recent advances in computational, molecular and synthetic biology tools provide the opportunity to rapidly characterize and harness the specialized metabolic potential of plants. Here, we discuss the prospects of integrating computational modeling, artificial intelligence, and precision genome editing (CRISPR/Cas and its variants) toolboxes to discover the genetic regulators of PSM. We also explore how synthetic biology can be applied to develop metabolically optimized PSM-producing native and heterologous PCSC systems. Taken together, this review provides an interdisciplinary approach to realize and link the potential of next-generation computational and molecular tools to convert PCSC into commercially viable PSM-producing biofactories.
Collapse
Affiliation(s)
- Sagar S Arya
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001, India; Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - James E Rookes
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - David M Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Sangram K Lenka
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001, India.
| |
Collapse
|
236
|
Morris JS, Caldo KMP, Liang S, Facchini PJ. PR10/Bet v1-like Proteins as Novel Contributors to Plant Biochemical Diversity. Chembiochem 2020; 22:264-287. [PMID: 32700448 DOI: 10.1002/cbic.202000354] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Pathogenesis-related (PR) proteins constitute a broad class of plant proteins with analogues found throughout nature from bacteria to higher eukaryotes. PR proteins were first noted in plants as part of the hypersensitive response, but have since been assigned an array of biological roles. The PR10/Bet v1-like proteins are a subset of PR proteins characterized by an ability to bind a wide range of lipophilic ligands, uniquely positioning them as contributors to specialized biosynthetic pathways. PR10/Bet v1-like proteins participate in the production of plant alkaloids and phenolics including flavonoids, both as general binding proteins and in special cases as catalysts. Owing initially to the perceived allergenic properties of PR10/Bet v1-like proteins, many were studied at the structural level to elucidate the basis for ligand binding. These studies provided a foundation for more recent efforts to understand higher-level structural order and how PR10/Bet v1-like proteins catalyse key reactions in plant pathways. Synthetic biology aimed at reconstituting plant-specialized metabolism in microorganisms uses knowledge of these proteins to fine-tune performance in new systems.
Collapse
Affiliation(s)
- Jeremy S Morris
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N N4, Canada
| | - Kristian Mark P Caldo
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N N4, Canada
| | - Siyu Liang
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N N4, Canada
| |
Collapse
|
237
|
Srinivasan P, Smolke CD. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 2020; 585:614-619. [PMID: 32879484 PMCID: PMC7529995 DOI: 10.1038/s41586-020-2650-9] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023]
Abstract
Tropane alkaloids from nightshade plants are neurotransmitter inhibitors that are used for treating neuromuscular disorders and are classified as essential medicines by the World Health Organization1,2. Challenges in global supplies have resulted in frequent shortages of these drugs3,4. Further vulnerabilities in supply chains have been revealed by events such as the Australian wildfires5 and the COVID-19 pandemic6. Rapidly deployable production strategies that are robust to environmental and socioeconomic upheaval7,8 are needed. Here we engineered baker's yeast to produce the medicinal alkaloids hyoscyamine and scopolamine, starting from simple sugars and amino acids. We combined functional genomics to identify a missing pathway enzyme, protein engineering to enable the functional expression of an acyltransferase via trafficking to the vacuole, heterologous transporters to facilitate intracellular routing, and strain optimization to improve titres. Our integrated system positions more than twenty proteins adapted from yeast, bacteria, plants and animals across six sub-cellular locations to recapitulate the spatial organization of tropane alkaloid biosynthesis in plants. Microbial biosynthesis platforms can facilitate the discovery of tropane alkaloid derivatives as new therapeutic agents for neurological disease and, once scaled, enable robust and agile supply of these essential medicines.
Collapse
Affiliation(s)
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
238
|
|
239
|
Arnesen JA, Kildegaard KR, Cernuda Pastor M, Jayachandran S, Kristensen M, Borodina I. Yarrowia lipolytica Strains Engineered for the Production of Terpenoids. Front Bioeng Biotechnol 2020; 8:945. [PMID: 32923433 PMCID: PMC7456906 DOI: 10.3389/fbioe.2020.00945] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Terpenoids are a diverse group of over 55,000 compounds with potential applications as advanced fuels, bulk and fine chemicals, pharmaceutical ingredients, agricultural chemicals, etc. To facilitate their bio-based production, there is a need for plug-and-play hosts, capable of high-level production of different terpenoids. Here we engineer Yarrowia lipolytica platform strains for the overproduction of mono-, sesqui-, di-, tri-, and tetraterpenoids. The monoterpene platform strain was evaluated by expressing Perilla frutescens limonene synthase, which resulted in limonene titer of 35.9 mg/L and was 100-fold higher than when the same enzyme was expressed in the strain without mevalonate pathway improvement. Expression of Callitropsis nootkatensis valencene synthase in the sesquiterpene platform strain resulted in 113.9 mg/L valencene, an 8.4-fold increase over the control strain. Platform strains for production of squalene, complex triterpenes, or diterpenes and carotenoids were also constructed and resulted in the production of 402.4 mg/L squalene, 22 mg/L 2,3-oxidosqualene, or 164 mg/L β-carotene, respectively. The presented terpenoid platform strains can facilitate the evaluation of terpenoid biosynthetic pathways and are a convenient starting point for constructing efficient cell factories for the production of various terpenoids. The platform strains and exemplary terpenoid strains can be obtained from Euroscarf.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Marc Cernuda Pastor
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sidharth Jayachandran
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
240
|
Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. J Ind Microbiol Biotechnol 2020; 47:815-828. [PMID: 32772209 DOI: 10.1007/s10295-020-02300-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/30/2020] [Indexed: 01/26/2023]
Abstract
Microbial fermentation platforms offer a cost-effective and sustainable alternative to plant cultivation and chemical synthesis for the production of many plant-derived pharmaceuticals. Plant alkaloids, particularly benzylisoquinoline alkaloids and monoterpene indole alkaloids, and recently cannabinoids have become attractive targets for microbial biosynthesis owing to their medicinal importance. Recent advances in the discovery of pathway components, together with the application of synthetic biology tools, have facilitated the assembly of plant alkaloid and cannabinoid pathways in the microbial hosts Escherichia coli and Saccharomyces cerevisiae. This review highlights key aspects of these pathways in the framework of overcoming bottlenecks in microbial production to further improve end-product titers. We discuss the opportunities that emerge from a better understanding of the pathway components by further study of the plant, and strategies for generation of new and advanced medicinal compounds.
Collapse
|
241
|
Cao M, Tran VG, Zhao H. Unlocking nature's biosynthetic potential by directed genome evolution. Curr Opin Biotechnol 2020; 66:95-104. [PMID: 32721868 DOI: 10.1016/j.copbio.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
Microorganisms have been increasingly explored as microbial cell factories for production of fuels, chemicals, drugs, and materials. Among the various metabolic engineering strategies, directed genome evolution has emerged as one of the most powerful tools to unlock the full biosynthetic potential of microorganisms. Here we summarize the directed genome evolution strategies that have been developed in recent years, including adaptive laboratory evolution and various targeted genome-scale engineering strategies, and discuss their applications in basic and applied biological research.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
242
|
Zhao Y, Yao Z, Ploessl D, Ghosh S, Monti M, Schindler D, Gao M, Cai Y, Qiao M, Yang C, Cao M, Shao Z. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories. ACS Synth Biol 2020; 9:1736-1752. [PMID: 32396718 DOI: 10.1021/acssynbio.0c00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We broadened the usage of DNA transposon technology by demonstrating its capacity for the rapid creation of expression libraries for long biochemical pathways, which is beyond the classical application of building genome-scale knockout libraries in yeasts. This strategy efficiently leverages the readily available fine-tuning impact provided by the diverse transcriptional environment surrounding each random integration locus. We benchmark the transposon-mediated integration against the nonhomologous end joining-mediated strategy. The latter strategy was demonstrated for achieving pathway random integration in other yeasts but is associated with a high false-positive rate in the absence of a high-throughput screening method. Our key innovation of a nonreplicable circular DNA platform increased the possibility of identifying top-producing variants to 97%. Compared to the classical DNA transposition protocol, the design of a nonreplicable circular DNA skipped the step of counter-selection for plasmid removal and thus not only reduced the time required for the step of library creation from 10 to 5 d but also efficiently removed the "transposition escapers", which undesirably represented almost 80% of the entire population as false positives. Using one endogenous product (i.e., shikimate) and one heterologous product (i.e., (S)-norcoclaurine) as examples, we presented a streamlined procedure to rapidly identify high-producing variants with titers significantly higher than the reported data in the literature. We selected Scheffersomyces stipitis, a representative nonconventional yeast, as a demo, but the strategy can be generalized to other nonconventional yeasts. This new exploration of transposon technology, therefore, adds a highly versatile tool to accelerate the development of novel species as microbial cell factories for producing value-added chemicals.
Collapse
Affiliation(s)
- Yuxin Zhao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Saptarshi Ghosh
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Marco Monti
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Daniel Schindler
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Yizhi Cai
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, United States
- Bioeconomy Institute, Iowa State University, Ames, Iowa, United States
- Interdepartmental Microbiology Program, Iowa State University, Ames, Iowa, United States
- The Ames Laboratory, Ames, Iowa, United States
| |
Collapse
|
243
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
244
|
Patron NJ. Beyond natural: synthetic expansions of botanical form and function. THE NEW PHYTOLOGIST 2020; 227:295-310. [PMID: 32239523 PMCID: PMC7383487 DOI: 10.1111/nph.16562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Powered by developments that enabled genome-scale investigations, systems biology emerged as a field aiming to understand how phenotypes emerge from network functions. These advances fuelled a new engineering discipline focussed on synthetic reconstructions of complex biological systems with the goal of predictable rational design and control. Initially, progress in the nascent field of synthetic biology was slow due to the ad hoc nature of molecular biology methods such as cloning. The application of engineering principles such as standardisation, together with several key technical advances, enabled a revolution in the speed and accuracy of genetic manipulation. Combined with mathematical and statistical modelling, this has improved the predictability of engineering biological systems of which nonlinearity and stochasticity are intrinsic features leading to remarkable achievements in biotechnology as well as novel insights into biological function. In the past decade, there has been slow but steady progress in establishing foundations for synthetic biology in plant systems. Recently, this has enabled model-informed rational design to be successfully applied to the engineering of plant gene regulation and metabolism. Synthetic biology is now poised to transform the potential of plant biotechnology. However, reaching full potential will require conscious adjustments to the skillsets and mind sets of plant scientists.
Collapse
Affiliation(s)
- Nicola J. Patron
- Engineering BiologyEarlham InstituteNorwich Research Park, NorwichNorfolkNR4 7UZUK
| |
Collapse
|
245
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
246
|
Luo LQ, Chen YG, Li DS, Liu Y, Li SH. Production of the Inaccessible Sesquiterpene (-)-5-Epieremophilene by Metabolically Engineered Escherichia coli. Chem Biodivers 2020; 17:e2000219. [PMID: 32352210 DOI: 10.1002/cbdv.202000219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/30/2020] [Indexed: 11/12/2022]
Abstract
(-)-5-Epieremophilene, an epimer of the versatile sesquiterpene (+)-valencene, is an inaccessible natural product catalyzed by three sesquiterpene synthases (SmSTPSs1-3) of the Chinese medicinal herb Salvia miltiorrhiza, and its biological activity remains less explored. In this study, three metabolically engineered Escherichia coli strains were constructed for (-)-5-epieremophilene production with yields of 42.4-76.0 mg/L in shake-flask culture. Introducing an additional copy of farnesyl diphosphate synthase (FDPS) gene through fusion expression of SmSTPS1-FDPS or dividing the FDP synthetic pathway into two modules resulted in significantly improved production, and ultimately 250 mg of (-)-5-epieremophilene were achieved. Biological assay indicated that (-)-5-epieremophilene showed significant antifeedant activity against Helicoverpa armigera (EC50 =1.25 μg/cm2 ), a common pest of S. miltiorrhiza, implying its potential defensive role in the plant. The results provided an ideal material supply for studying other potential biological activities of (-)-5-epieremophilene, and also a strategy for manipulating terpene production in engineered E. coli using synthetic biology.
Collapse
Affiliation(s)
- Liu-Qiong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
247
|
Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 2020; 4:172-193. [PMID: 37128046 DOI: 10.1038/s41570-020-0176-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature's abundance of natural products.
Collapse
|
248
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
249
|
Ren H, Shi C, Zhao H. Computational Tools for Discovering and Engineering Natural Product Biosynthetic Pathways. iScience 2020; 23:100795. [PMID: 31926431 PMCID: PMC6957853 DOI: 10.1016/j.isci.2019.100795] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/24/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
Natural products (NPs), also known as secondary metabolites, are produced in bacteria, fungi, and plants. NPs represent a rich source of antibacterial, antifungal, and anticancer agents. Recent advances in DNA sequencing technologies and bioinformatics unveiled nature's great potential for synthesizing numerous NPs that may confer unprecedented structural and biological features. However, discovering novel bioactive NPs by genome mining remains a challenge. Moreover, even with interesting bioactivity, the low productivity of many NPs significantly limits their practical applications. Here we discuss the progress in developing bioinformatics tools for efficient discovery of bioactive NPs. In addition, we highlight computational methods for optimizing the productivity of NPs of pharmaceutical importance.
Collapse
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chengyou Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Departments of Chemistry, Biochemistry, and Bioengineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
250
|
Vilela A, Bacelar E, Pinto T, Anjos R, Correia E, Gonçalves B, Cosme F. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods 2019; 8:E643. [PMID: 31817355 PMCID: PMC6963671 DOI: 10.3390/foods8120643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Flavours and fragrances are especially important for the beverage and food industries. Biosynthesis or extraction are the two main ways to obtain these important compounds that have many different chemical structures. Consequently, the search for new compounds is challenging for academic and industrial investigation. This overview aims to present the current state of art of beverage fragrance biotechnology, including recent advances in sensory and sensor methodologies and statistical techniques for data analysis. An overview of all the recent findings in beverage and food fragrance biotechnology, including those obtained from natural sources by extraction processes (natural plants as an important source of flavours) or using enzymatic precursor (hydrolytic enzymes), and those obtained by de novo synthesis (microorganisms' respiration/fermentation of simple substrates such as glucose and sucrose), are reviewed. Recent advances have been made in what concerns "beverage fragrances construction" as also in their application products. Moreover, novel sensory and sensor methodologies, primarily used for fragrances quality evaluation, have been developed, as have statistical techniques for sensory and sensors data treatments, allowing a rapid and objective analysis.
Collapse
Affiliation(s)
- Alice Vilela
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Eunice Bacelar
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Teresa Pinto
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Rosário Anjos
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Elisete Correia
- CQ-VR, Chemistry Research Centre, Department of Mathematics, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Berta Gonçalves
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Fernanda Cosme
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|