201
|
Zhu R, Pan X, Wang S, Qiu Z, Gu C, Yao X, Li W. Updated skin transcriptomic atlas depicted by reciprocal contribution of single-nucleus RNA sequencing and single-cell RNA sequencing. J Dermatol Sci 2023; 111:22-31. [PMID: 37407342 DOI: 10.1016/j.jdermsci.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of skin biology, but its utility is restricted by the requirement of fresh samples, inadequate dissociation-induced cell loss or death, and activation during tissue digestion. Single-nucleus RNA sequencing (snRNA-seq) can use frozen, hard-to-dissociate materials, which might be a promising method to circumvent the limitations of scRNA-seq for the skin tissue. OBJECTIVE To profile skin cells using snRNA-seq in parallel with scRNA-seq. METHODS We performed snRNA-seq in parallel with scRNA-seq for the bisected skin sample of one person and integrated previously published scRNA-seq data for analysis. We comparatively analyzed the differences in cell proportions and gene expression between the two methods. The differentiation trajectories of keratinocytes and fibroblasts were analyzed by Slingshot analysis. RESULTS snRNA-seq was less susceptible to contamination from mitochondrial and ribosomal RNA, and exhibited a greater capacity to detect transcription factors. snRNA-seq identified more spatially and functionally relevant keratinocyte clusters that constitute cell trajectories with expected differentiation dynamics. Novel markers, e.g., LYPD3, EMP2, and CSTB, were revealed for different differentiation stages of keratinocytes, and NFIB and GRHL1 were identified as transcription factors involving in the proliferation and functional differentiation of keratinocytes. Fibroblasts were found in a state of activation in scRNA-seq. And scRNA-seq detected a greater number of immune cells. CONCLUSIONS We generated an updated atlas of the skin transcriptome based on the reciprocal contribution of scRNA-seq and snRNA-seq.
Collapse
Affiliation(s)
- Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Xiaoyu Pan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Shangshang Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China.
| |
Collapse
|
202
|
Xue M, Zhu Y, Jiang Y, Han L, Shi M, Su R, Wang L, Xiong C, Wang C, Wang T, Deng S, Wu D, Cao Y, Dong L, Bai F, Zhao S, Deng X, Peng C, Li H, Chen J, Shen B, Jiang L, Chen H. Schwann cells regulate tumor cells and cancer-associated fibroblasts in the pancreatic ductal adenocarcinoma microenvironment. Nat Commun 2023; 14:4600. [PMID: 37524695 PMCID: PMC10390497 DOI: 10.1038/s41467-023-40314-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Neuropathy is a feature more frequently observed in pancreatic ductal adenocarcinoma (PDAC) than other tumors. Schwann cells, the most prevalent cell type in peripheral nerves, migrate toward tumor cells and associate with poor prognosis in PDAC. To unveil the effects of Schwann cells on the neuro-stroma niche, here we perform single-cell RNA-sequencing and microarray-based spatial transcriptome analysis of PDAC tissues. Results suggest that Schwann cells may drive tumor cells and cancer-associated fibroblasts (CAFs) to more malignant subtypes: basal-like and inflammatory CAFs (iCAFs), respectively. Moreover, in vitro and in vivo assays demonstrate that Schwann cells enhance the proliferation and migration of PDAC cells via Midkine signaling and promote the switch of CAFs to iCAFs via interleukin-1α. Culture of tumor cells and CAFs with Schwann cells conditioned medium accelerates PDAC progression. Thus, we reveal that Schwann cells induce malignant subtypes of tumor cells and CAFs in the PDAC milieu.
Collapse
Affiliation(s)
- Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Liwen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijie Deng
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Shulin Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
203
|
Xing L, Simon JM, Ptacek TS, Yi JJ, Loo L, Mao H, Wolter JM, McCoy ES, Paranjape SR, Taylor-Blake B, Zylka MJ. Autism-linked UBE3A gain-of-function mutation causes interneuron and behavioral phenotypes when inherited maternally or paternally in mice. Cell Rep 2023; 42:112706. [PMID: 37389991 PMCID: PMC10530456 DOI: 10.1016/j.celrep.2023.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
The E3 ubiquitin ligase Ube3a is biallelically expressed in neural progenitors and glial cells, suggesting that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent of origin. Here, we engineered a mouse line that harbors an autism-linked UBE3AT485A (T503A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We find that paternally and maternally expressed UBE3AT503A results in elevated UBE3A activity in neural progenitors and glial cells. Expression of UBE3AT503A from the maternal allele, but not the paternal one, leads to a persistent elevation of UBE3A activity in neurons. Mutant mice display behavioral phenotypes that differ by parent of origin. Expression of UBE3AT503A, irrespective of its parent of origin, promotes transient embryonic expansion of Zcchc12 lineage interneurons. Phenotypes of Ube3aT503A mice are distinct from Angelman syndrome model mice. Our study has clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Collapse
Affiliation(s)
- Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC 27599, USA
| | - Travis S Ptacek
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Jason J Yi
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Lipin Loo
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanqian Mao
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC 27599, USA
| | - Eric S McCoy
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Smita R Paranjape
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA.
| |
Collapse
|
204
|
Reuter MS, Sokolowski DJ, Javier Diaz-Mejia J, Keunen J, de Vrijer B, Chan C, Wang L, Ryan G, Chiasson DA, Ketela T, Scherer SW, Wilson MD, Jaeggi E, Chaturvedi RR. Decreased left heart flow in fetal lambs causes left heart hypoplasia and pro-fibrotic tissue remodeling. Commun Biol 2023; 6:770. [PMID: 37481629 PMCID: PMC10363152 DOI: 10.1038/s42003-023-05132-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 07/24/2023] Open
Abstract
Low blood flow through the fetal left heart is often conjectured as an etiology for hypoplastic left heart syndrome (HLHS). To investigate if a decrease in left heart flow results in growth failure, we generate left ventricular inflow obstruction (LVIO) in mid-gestation fetal lambs by implanting coils in their left atrium using an ultrasound-guided percutaneous technique. Significant LVIO recapitulates important clinical features of HLHS: decreased antegrade aortic valve flow, compensatory retrograde perfusion of the brain and ascending aorta (AAo) from the arterial duct, severe left heart hypoplasia, a non-apex forming LV, and a thickened endocardial layer. The hypoplastic AAo have miRNA-gene pairs annotating to cell proliferation that are inversely differentially expressed by bulk RNA-seq. Single-nucleus RNA-seq of the hypoplastic LV myocardium shows an increase in fibroblasts with a reciprocal decrease in cardiomyocyte nuclei proportions. Fibroblasts, cardiomyocytes and endothelial cells from hypoplastic myocardium have increased expression of extracellular matrix component or fibrosis genes with dysregulated fibroblast growth factor signaling. Hence, a severe sustained ( ~ 1/3 gestation) reduction in fetal left heart flow is sufficient to cause left heart hypoplasia. This is accompanied by changes in cellular composition and gene expression consistent with a pro-fibrotic environment and aberrant induction of mesenchymal programs.
Collapse
Affiliation(s)
- Miriam S Reuter
- CGEn, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Dustin J Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - J Javier Diaz-Mejia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Johannes Keunen
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Barbra de Vrijer
- Department of Obstetrics & Gynaecology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- London Health Sciences Centre, Victoria Hospital, London, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liangxi Wang
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Greg Ryan
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David A Chiasson
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Edgar Jaeggi
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada
- Labatt Family Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Rajiv R Chaturvedi
- Ontario Fetal Centre, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada.
- Labatt Family Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
205
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
206
|
Fu XD, Mobley WC. Therapeutic Potential of PTB Inhibition Through Converting Glial Cells to Neurons in the Brain. Annu Rev Neurosci 2023; 46:145-165. [PMID: 37428606 DOI: 10.1146/annurev-neuro-083022-113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion. This review focuses on the debate over this critical issue. Importantly, multiple lines of evidence suggest that Ptbp1 depletion can convert a selective subpopulation of glial cells into neurons and, via this and other mechanisms, reverse deficits in a Parkinson's disease model, emphasizing the importance of future efforts in exploring this therapeutic strategy.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China;
| | - William C Mobley
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
207
|
Reffsin S, Miller J, Ayyanathan K, Dunagin MC, Jain N, Schultz DC, Cherry S, Raj A. Single cell susceptibility to SARS-CoV-2 infection is driven by variable cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547955. [PMID: 37461472 PMCID: PMC10350037 DOI: 10.1101/2023.07.06.547955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The ability of a virus to infect a cell type is at least in part determined by the presence of host factors required for the viral life cycle. However, even within cell types that express known factors needed for infection, not every cell is equally susceptible, suggesting that our knowledge of the full spectrum of factors that promote infection is incomplete. Profiling the most susceptible subsets of cells within a population may reveal additional factors that promote infection. However, because viral infection dramatically alters the state of the cell, new approaches are needed to reveal the state of these cells prior to infection with virus. Here, we used single-cell clone tracing to retrospectively identify and characterize lung epithelial cells that are highly susceptible to infection with SARS-CoV-2. The transcriptional state of these highly susceptible cells includes markers of retinoic acid signaling and epithelial differentiation. Loss of candidate factors identified by our approach revealed that many of these factors play roles in viral entry. Moreover, a subset of these factors exert control over the infectable cell state itself, regulating the expression of key factors associated with viral infection and entry. Analysis of patient samples revealed the heterogeneous expression of these factors across both cells and patients in vivo. Further, the expression of these factors is upregulated in particular inflammatory pathologies. Altogether, our results show that the variable expression of intrinsic cell states is a major determinant of whether a cell can be infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C. Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naveen Jain
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David C. Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
208
|
Ansari I, Solé-Boldo L, Ridnik M, Gutekunst J, Gilliam O, Korshko M, Liwinski T, Jickeli B, Weinberg-Corem N, Shoshkes-Carmel M, Pikarsky E, Elinav E, Lyko F, Bergman Y. TET2 and TET3 loss disrupts small intestine differentiation and homeostasis. Nat Commun 2023; 14:4005. [PMID: 37414790 PMCID: PMC10326054 DOI: 10.1038/s41467-023-39512-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
TET2/3 play a well-known role in epigenetic regulation and mouse development. However, their function in cellular differentiation and tissue homeostasis remains poorly understood. Here we show that ablation of TET2/3 in intestinal epithelial cells results in a murine phenotype characterized by a severe homeostasis imbalance in the small intestine. Tet2/3-deleted mice show a pronounced loss of mature Paneth cells as well as fewer Tuft and more Enteroendocrine cells. Further results show major changes in DNA methylation at putative enhancers, which are associated with cell fate-determining transcription factors and functional effector genes. Notably, pharmacological inhibition of DNA methylation partially rescues the methylation and cellular defects. TET2/3 loss also alters the microbiome, predisposing the intestine to inflammation under homeostatic conditions and acute inflammation-induced death. Together, our results uncover previously unrecognized critical roles for DNA demethylation, possibly occurring subsequently to chromatin opening during intestinal development, culminating in the establishment of normal intestinal crypts.
Collapse
Affiliation(s)
- Ihab Ansari
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Llorenç Solé-Boldo
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Meshi Ridnik
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Oliver Gilliam
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Maria Korshko
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Timur Liwinski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, Basel, Switzerland
| | - Birgit Jickeli
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Noa Weinberg-Corem
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Michal Shoshkes-Carmel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Eran Elinav
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
209
|
Zion EH, Ringwalt D, Rinaldi K, Kahney EW, Li Y, Chen X. Old and newly synthesized histones are asymmetrically distributed in Drosophila intestinal stem cell divisions. EMBO Rep 2023; 24:e56404. [PMID: 37255015 PMCID: PMC10328082 DOI: 10.15252/embr.202256404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
We report that preexisting (old) and newly synthesized (new) histones H3 and H4 are asymmetrically partitioned during the division of Drosophila intestinal stem cells (ISCs). Furthermore, the inheritance patterns of old and new H3 and H4 in postmitotic cell pairs correlate with distinct expression patterns of Delta, an important cell fate gene. To understand the biological significance of this phenomenon, we expressed a mutant H3T3A to compromise asymmetric histone inheritance. Under this condition, we observe an increase in Delta-symmetric cell pairs and overpopulated ISC-like, Delta-positive cells. Single-cell RNA-seq assays further indicate that H3T3A expression compromises ISC differentiation. Together, our results indicate that asymmetric histone inheritance potentially contributes to establishing distinct cell identities in a somatic stem cell lineage, consistent with previous findings in Drosophila male germline stem cells.
Collapse
Affiliation(s)
- Emily H Zion
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Daniel Ringwalt
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | | | | | - Yingying Li
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Xin Chen
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
- Howard Hughes Medical InstituteBaltimoreMDUSA
| |
Collapse
|
210
|
Karri K, Waxman DJ. Dysregulation of murine long noncoding single-cell transcriptome in nonalcoholic steatohepatitis and liver fibrosis. RNA (NEW YORK, N.Y.) 2023; 29:977-1006. [PMID: 37015806 PMCID: PMC10275269 DOI: 10.1261/rna.079580.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
211
|
Mendiola AS, Yan Z, Dixit K, Johnson JR, Bouhaddou M, Meyer-Franke A, Shin MG, Yong Y, Agrawal A, MacDonald E, Muthukumar G, Pearce C, Arun N, Cabriga B, Meza-Acevedo R, Alzamora MDPS, Zamvil SS, Pico AR, Ryu JK, Krogan NJ, Akassoglou K. Defining blood-induced microglia functions in neurodegeneration through multiomic profiling. Nat Immunol 2023; 24:1173-1187. [PMID: 37291385 PMCID: PMC10307624 DOI: 10.1038/s41590-023-01522-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/24/2023] [Indexed: 06/10/2023]
Abstract
Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.
Collapse
Affiliation(s)
- Andrew S Mendiola
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | - Zhaoqi Yan
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | - Karuna Dixit
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | | | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | | | | | - Yu Yong
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | | | - Eilidh MacDonald
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | | | - Clairice Pearce
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | - Nikhita Arun
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | - Belinda Cabriga
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | - Rosa Meza-Acevedo
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | - Maria Del Pilar S Alzamora
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
| | - Scott S Zamvil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | | | - Jae Kyu Ryu
- Gladstone Institutes, San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA, USA.
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
212
|
Ducreux B, Barberet J, Guilleman M, Pérez-Palacios R, Teissandier A, Bourc’his D, Fauque P. Assessing the influence of distinct culture media on human pre-implantation development using single-embryo transcriptomics. Front Cell Dev Biol 2023; 11:1155634. [PMID: 37435029 PMCID: PMC10330962 DOI: 10.3389/fcell.2023.1155634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
The use of assisted reproductive technologies is consistently rising across the world. However, making an informed choice on which embryo culture medium should be preferred to ensure satisfactory pregnancy rates and the health of future children critically lacks scientific background. In particular, embryos within their first days of development are highly sensitive to their micro-environment, and it is unknown how their transcriptome adapts to different embryo culture compositions. Here, we determined the impact of culture media composition on gene expression in human pre-implantation embryos. By employing single-embryo RNA-sequencing after 2 or 5 days of the post-fertilization culture in different commercially available media (Ferticult, Global, and SSM), we revealed medium-specific differences in gene expression changes. Embryos cultured pre-compaction until day 2 in Ferticult or Global media notably displayed 266 differentially expressed genes, which were related to essential developmental pathways. Herein, 19 of them could have a key role in early development, based on their previously described dynamic expression changes across development. When embryos were cultured after day 2 in the same media considered more suitable because of its amino acid enrichment, 18 differentially expressed genes thought to be involved in the transition from early to later embryonic stages were identified. Overall, the differences were reduced at the blastocyst stage, highlighting the ability of embryos conceived in a suboptimal in vitro culture medium to mitigate the transcriptomic profile acquired under different pre-compaction environments.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
| | - Julie Barberet
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Magali Guilleman
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| | - Raquel Pérez-Palacios
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | - Patricia Fauque
- Université Bourgogne Franche-Comté—Equipe Génétique des Anomalies du Développement (GAD), INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction—CECOS, Dijon, France
| |
Collapse
|
213
|
Zhao HC, Chen CZ, Tian YZ, Song HQ, Wang XX, Li YJ, He JF, Zhao HL. CD168+ macrophages promote hepatocellular carcinoma tumor stemness and progression through TOP2A/β-catenin/ YAP1 axis. iScience 2023; 26:106862. [PMID: 37275516 PMCID: PMC10238939 DOI: 10.1016/j.isci.2023.106862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Liver cancer stem-like cells (LCSCs) are the main cause of heterogeneity and poor prognosis in hepatocellular carcinoma (HCC). In this study, we aimed to explore the origin of LCSCs and the role of the TOP2A/β-catenin/YAP1 axis in tumor stemness and progression. Using single-cell RNA-seq analysis, we identified TOP2A+CENPF+ LCSCs, which were mainly regulated by CD168+ M2-like macrophages. Furthermore, spatial location analysis and fluorescent staining confirmed that LCSCs were enriched at tumor margins, constituting the spatial heterogeneity of HCC. Mechanistically, TOP2A competitively binds to β-catenin, leading to disassociation of β-catenin from YAP1, promoting HCC stemness and overgrowth. Our study provides valuable insights into the spatial transcriptome heterogeneity of the HCC microenvironment and the critical role of TOP2A/β-catenin/YAP1 axis in HCC stemness and progression.
Collapse
Affiliation(s)
- Hai-Chao Zhao
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang-Zhou Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Zhang Tian
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Huang-Qin Song
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Xiao-Xiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Yan-Jun Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Jie-Feng He
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Hao-Liang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| |
Collapse
|
214
|
Kurland JV, Cutler AA, Stanley JT, Betta ND, Van Deusen A, Pawlikowski B, Hall M, Antwine T, Russell A, Allen MA, Dowell R, Olwin B. Aging disrupts gene expression timing during muscle regeneration. Stem Cell Reports 2023; 18:1325-1339. [PMID: 37315524 PMCID: PMC10277839 DOI: 10.1016/j.stemcr.2023.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle function and regenerative capacity decline during aging, yet factors driving these changes are incompletely understood. Muscle regeneration requires temporally coordinated transcriptional programs to drive myogenic stem cells to activate, proliferate, fuse to form myofibers, and to mature as myonuclei, restoring muscle function after injury. We assessed global changes in myogenic transcription programs distinguishing muscle regeneration in aged mice from young mice by comparing pseudotime trajectories from single-nucleus RNA sequencing of myogenic nuclei. Aging-specific differences in coordinating myogenic transcription programs necessary for restoring muscle function occur following muscle injury, likely contributing to compromised regeneration in aged mice. Differences in pseudotime alignment of myogenic nuclei when comparing aged with young mice via dynamic time warping revealed pseudotemporal differences becoming progressively more severe as regeneration proceeds. Disruptions in timing of myogenic gene expression programs may contribute to incomplete skeletal muscle regeneration and declines in muscle function as organisms age.
Collapse
Affiliation(s)
- Jesse V Kurland
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Alicia A Cutler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Jacob T Stanley
- BioFrontiers Institute, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Nicole Dalla Betta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ashleigh Van Deusen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Edgewise Therapeutics, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Brad Pawlikowski
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Department of Pediatrics Section of Section of Hematology, Oncology, Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Monica Hall
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Tiffany Antwine
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Alan Russell
- Edgewise Therapeutics, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Mary Ann Allen
- BioFrontiers Institute, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Robin Dowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA.
| | - Bradley Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
215
|
Werner G, Sanyal A, Mirizio E, Hutchins T, Tabib T, Lafyatis R, Jacobe H, Torok KS. Single-Cell Transcriptome Analysis Identifies Subclusters with Inflammatory Fibroblast Responses in Localized Scleroderma. Int J Mol Sci 2023; 24:9796. [PMID: 37372943 DOI: 10.3390/ijms24129796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Localized scleroderma (LS) is an autoimmune disease with both inflammatory and fibrotic components causing an abnormal deposition of collagen in the skin and underlying tissue, often leading to disfigurement and disability. Much of its pathophysiology is extrapolated from systemic sclerosis (SSc) since the histopathology findings in the skin are nearly identical. However, LS is critically understudied. Single-cell RNA sequencing (scRNA seq) technology provides a novel way to obtain detailed information at the individual cellular level, overcoming this barrier. Here, we analyzed the affected skin of 14 patients with LS (pediatric and adult) and 14 healthy controls. Fibroblast populations were the focus, since they are the main drivers of fibrosis in SSc. We identified 12 fibroblast subclusters in LS, which overall had an inflammatory gene expression (IFN and HLA-associated genes). A myofibroblast-like cluster (SFRP4/PRSS23) was more prevalent in LS subjects and shared many upregulated genes expressed in SSc-associated myofibroblasts, though it also had strong expression of CXCL9/10/11, known CXCR3 ligands. A CXCL2/IRF1 cluster identified was unique to LS, with a robust inflammatory gene signature, including IL-6, and according to cell communication analysis are influenced by macrophages. In summary, potential disease-propagating fibroblasts and associated gene signatures were identified in LS skin via scRNA seq.
Collapse
Affiliation(s)
- Giffin Werner
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Anwesha Sanyal
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Emily Mirizio
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Theresa Hutchins
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heidi Jacobe
- Department of Dermatology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Kathryn S Torok
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
216
|
Billiet L, De Cock L, Sanchez Sanchez G, Mayer RL, Goetgeluk G, De Munter S, Pille M, Ingels J, Jansen H, Weening K, Pascal E, Raes K, Bonte S, Kerre T, Vandamme N, Seurinck R, Roels J, Lavaert M, Van Nieuwerburgh F, Leclercq G, Taghon T, Impens F, Menten B, Vermijlen D, Vandekerckhove B. Single-cell profiling identifies a novel human polyclonal unconventional T cell lineage. J Exp Med 2023; 220:e20220942. [PMID: 36939517 PMCID: PMC10037106 DOI: 10.1084/jem.20220942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
In the human thymus, a CD10+ PD-1+ TCRαβ+ differentiation pathway diverges from the conventional single positive T cell lineages at the early double-positive stage. Here, we identify the progeny of this unconventional lineage in antigen-inexperienced blood. These unconventional T cells (UTCs) in thymus and blood share a transcriptomic profile, characterized by hallmark transcription factors (i.e., ZNF683 and IKZF2), and a polyclonal TCR repertoire with autoreactive features, exhibiting a bias toward early TCRα chain rearrangements. Single-cell RNA sequencing confirms a common developmental trajectory between the thymic and blood UTCs and clearly delineates this unconventional lineage in blood. Besides MME+ recent thymic emigrants, effector-like clusters are identified in this heterogeneous lineage. Expression of Helios and KIR and a decreased CD8β expression are characteristics of this lineage. This UTC lineage could be identified in adult blood and intestinal tissues. In summary, our data provide a comprehensive characterization of the polyclonal unconventional lineage in antigen-inexperienced blood and identify the adult progeny.
Collapse
Affiliation(s)
- Lore Billiet
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Rupert L. Mayer
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joline Ingels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Karin Weening
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Eva Pascal
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Killian Raes
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sarah Bonte
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tessa Kerre
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- VIB Single Cell Core, VIB, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jana Roels
- VIB Single Cell Core, VIB, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Marieke Lavaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Björn Menten
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
217
|
Lubatti G, Stock M, Iturbide A, Ruiz Tejada Segura ML, Riepl M, Tyser RCV, Danese A, Colomé-Tatché M, Theis FJ, Srinivas S, Torres-Padilla ME, Scialdone A. CIARA: a cluster-independent algorithm for identifying markers of rare cell types from single-cell sequencing data. Development 2023; 150:dev201264. [PMID: 37294170 DOI: 10.1242/dev.201264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
A powerful feature of single-cell genomics is the possibility of identifying cell types from their molecular profiles. In particular, identifying novel rare cell types and their marker genes is a key potential of single-cell RNA sequencing. Standard clustering approaches perform well in identifying relatively abundant cell types, but tend to miss rarer cell types. Here, we have developed CIARA (Cluster Independent Algorithm for the identification of markers of RAre cell types), a cluster-independent computational tool designed to select genes that are likely to be markers of rare cell types. Genes selected by CIARA are subsequently integrated with common clustering algorithms to single out groups of rare cell types. CIARA outperforms existing methods for rare cell type detection, and we use it to find previously uncharacterized rare populations of cells in a human gastrula and among mouse embryonic stem cells treated with retinoic acid. Moreover, CIARA can be applied more generally to any type of single-cell omic data, thus allowing the identification of rare cells across multiple data modalities. We provide implementations of CIARA in user-friendly packages available in R and Python.
Collapse
Affiliation(s)
- Gabriele Lubatti
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, D-81377 Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Munich, D-85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich, D-85764 Neuherberg, Germany
| | - Marco Stock
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, D-81377 Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Munich, D-85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich, D-85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, D-85354 Freising, Germany
| | - Ane Iturbide
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, D-81377 Munich, Germany
| | - Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, D-81377 Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Munich, D-85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich, D-85764 Neuherberg, Germany
| | - Melina Riepl
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, D-81377 Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Munich, D-85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich, D-85764 Neuherberg, Germany
| | - Richard C V Tyser
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Anna Danese
- Biomedical Center Munich (BMC), Physiological Genomics, Faculty of Medicine, Ludwig Maximilians University, D-82152 Munich, Germany
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Munich, D-85764 Neuherberg, Germany
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, Ludwig Maximilians University, D-82152 Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Munich, D-85764 Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, D-85748 Munich, Germany
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, D-81377 Munich, Germany
- Faculty of Biology, Ludwig-Maximilians University, D-82152 Munich, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, D-81377 Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Munich, D-85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Munich, D-85764 Neuherberg, Germany
| |
Collapse
|
218
|
DeMartino J, Meister MT, Visser LL, Brok M, Groot Koerkamp MJA, Wezenaar AKL, Hiemcke-Jiwa LS, de Souza T, Merks JHM, Rios AC, Holstege FCP, Margaritis T, Drost J. Single-cell transcriptomics reveals immune suppression and cell states predictive of patient outcomes in rhabdomyosarcoma. Nat Commun 2023; 14:3074. [PMID: 37244912 DOI: 10.1038/s41467-023-38886-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/19/2023] [Indexed: 05/29/2023] Open
Abstract
Paediatric rhabdomyosarcoma (RMS) is a soft tissue malignancy of mesenchymal origin that is thought to arise as a consequence of derailed myogenic differentiation. Despite intensive treatment regimens, the prognosis for high-risk patients remains dismal. The cellular differentiation states underlying RMS and how these relate to patient outcomes remain largely elusive. Here, we use single-cell mRNA sequencing to generate a transcriptomic atlas of RMS. Analysis of the RMS tumour niche reveals evidence of an immunosuppressive microenvironment. We also identify a putative interaction between NECTIN3 and TIGIT, specific to the more aggressive fusion-positive (FP) RMS subtype, as a potential cause of tumour-induced T-cell dysfunction. In malignant RMS cells, we define transcriptional programs reflective of normal myogenic differentiation and show that these cellular differentiation states are predictive of patient outcomes in both FP RMS and the less aggressive fusion-negative subtype. Our study reveals the potential of therapies targeting the immune microenvironment of RMS and suggests that assessing tumour differentiation states may enable a more refined risk stratification.
Collapse
Affiliation(s)
- Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Michael T Meister
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Lindy L Visser
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Mariël Brok
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Marian J A Groot Koerkamp
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Amber K L Wezenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Terezinha de Souza
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Johannes H M Merks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
- Oncode Institute, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
219
|
Liu G, Li Y, Li M, Li S, He Q, Liu S, Su Q, Chen X, Xu M, Zhang ZN, Shao Z, Li W. Charting a high-resolution roadmap for regeneration of pancreatic β cells by in vivo transdifferentiation from adult acinar cells. SCIENCE ADVANCES 2023; 9:eadg2183. [PMID: 37224239 DOI: 10.1126/sciadv.adg2183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Adult mammals have limited capacity to regenerate functional cells. Promisingly, in vivo transdifferentiation heralds the possibility of regeneration by lineage reprogramming from other fully differentiated cells. However, the process of regeneration by in vivo transdifferentiation in mammals is poorly understood. Using pancreatic β cell regeneration as a paradigm, we performed a single-cell transcriptomic study of in vivo transdifferentiation from adult mouse acinar cells to induced β cells. Using unsupervised clustering analysis and lineage trajectory construction, we uncovered that the cell fate remodeling trajectory was linear at the initial stage and the reprogrammed cells either evolved to induced β cells or toward a "dead-end" state after day 4.Moreover, functional analyses identified both p53 and Dnmt3a that acted as reprogramming barriers during the process of in vivo transdifferentiation. Collectively, we decipher a high-resolution roadmap of regeneration by in vivo transdifferentiation and provide a detailed molecular blueprint to facilitate mammalian regeneration.
Collapse
Affiliation(s)
- Gang Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Yana Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sheng Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Qing He
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Shuxin Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Qiang Su
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Xiangyi Chen
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Minglu Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
- Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai 200120, China
| |
Collapse
|
220
|
Maitra M, Mitsuhashi H, Rahimian R, Chawla A, Yang J, Fiori LM, Davoli MA, Perlman K, Aouabed Z, Mash DC, Suderman M, Mechawar N, Turecki G, Nagy C. Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes. Nat Commun 2023; 14:2912. [PMID: 37217515 PMCID: PMC10203145 DOI: 10.1038/s41467-023-38530-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.
Collapse
Affiliation(s)
- Malosree Maitra
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Anjali Chawla
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Deborah C Mash
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
221
|
Lian E, Pietrobon A, Stanford WL. Differentiation and single-cell RNA-seq analyses of human pluripotent-stem-cell-derived renal organoids. STAR Protoc 2023; 4:102314. [PMID: 37220001 DOI: 10.1016/j.xpro.2023.102314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Here, we present a protocol for the maintenance and differentiation of human pluripotent stem cells into renal organoids. We describe steps for using a series of readily made differentiation media, multiplexed sample single-cell RNA-seq analysis, quality control, and validation of organoids using immunofluorescence. This provides a rapid and reproducible model of human kidney development and renal disease modeling. Finally, we detail genome engineering using CRISPR-Cas9 homology-directed repair for the generation of renal disease models. For complete details on the use and execution of this protocol, please refer to Pietrobon et al.1.
Collapse
Affiliation(s)
- Eric Lian
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8L1, Canada.
| | - Adam Pietrobon
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8L1, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - William L Stanford
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8L1, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
222
|
Perrault EN, Shireman JM, Ali ES, Lin P, Preddy I, Park C, Budhiraja S, Baisiwala S, Dixit K, James CD, Heiland DH, Ben-Sahra I, Pott S, Basu A, Miska J, Ahmed AU. Ribonucleotide reductase regulatory subunit M2 drives glioblastoma TMZ resistance through modulation of dNTP production. SCIENCE ADVANCES 2023; 9:eade7236. [PMID: 37196077 PMCID: PMC10191446 DOI: 10.1126/sciadv.ade7236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
During therapy, adaptations driven by cellular plasticity are partly responsible for driving the inevitable recurrence of glioblastoma (GBM). To investigate plasticity-induced adaptation during standard-of-care chemotherapy temozolomide (TMZ), we performed in vivo single-cell RNA sequencing in patient-derived xenograft (PDX) tumors of GBM before, during, and after therapy. Comparing single-cell transcriptomic patterns identified distinct cellular populations present during TMZ therapy. Of interest was the increased expression of ribonucleotide reductase regulatory subunit M2 (RRM2), which we found to regulate dGTP and dCTP production vital for DNA damage response during TMZ therapy. Furthermore, multidimensional modeling of spatially resolved transcriptomic and metabolomic analysis in patients' tissues revealed strong correlations between RRM2 and dGTP. This supports our data that RRM2 regulates the demand for specific dNTPs during therapy. In addition, treatment with the RRM2 inhibitor 3-AP (Triapine) enhances the efficacy of TMZ therapy in PDX models. We present a previously unidentified understanding of chemoresistance through critical RRM2-mediated nucleotide production.
Collapse
Affiliation(s)
- Ella N. Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jack M. Shireman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabelle Preddy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cheol Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shivani Baisiwala
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karan Dixit
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C. David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical-Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical-Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sebastian Pott
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
223
|
Ranek JS, Stallaert W, Milner J, Stanley N, Purvis JE. Feature selection for preserving biological trajectories in single-cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540043. [PMID: 37214963 PMCID: PMC10197710 DOI: 10.1101/2023.05.09.540043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single-cell technologies can readily measure the expression of thousands of molecular features from individual cells undergoing dynamic biological processes, such as cellular differentiation, immune response, and disease progression. While examining cells along a computationally ordered pseudotime offers the potential to study how subtle changes in gene or protein expression impact cell fate decision-making, identifying characteristic features that drive continuous biological processes remains difficult to detect from unenriched and noisy single-cell data. Given that all profiled sources of feature variation contribute to the cell-to-cell distances that define an inferred cellular trajectory, including confounding sources of biological variation (e.g. cell cycle or metabolic state) or noisy and irrelevant features (e.g. measurements with low signal-to-noise ratio) can mask the underlying trajectory of study and hinder inference. Here, we present DELVE (dynamic selection of locally covarying features), an unsupervised feature selection method for identifying a representative subset of dynamically-expressed molecular features that recapitulates cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effect of unwanted sources of variation confounding inference, and instead models cell states from dynamic feature modules that constitute core regulatory complexes. Using simulations, single-cell RNA sequencing data, and iterative immunofluorescence imaging data in the context of the cell cycle and cellular differentiation, we demonstrate that DELVE selects features that more accurately characterize cell populations and improve the recovery of cell type transitions. This feature selection framework provides an alternative approach for improving trajectory inference and uncovering co-variation amongst features along a biological trajectory. DELVE is implemented as an open-source python package and is publicly available at: https://github.com/jranek/delve.
Collapse
Affiliation(s)
- Jolene S. Ranek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wayne Stallaert
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Milner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie Stanley
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E. Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
224
|
Li X, Andrusivova Z, Czarnewski P, Langseth CM, Andersson A, Liu Y, Gyllborg D, Braun E, Larsson L, Hu L, Alekseenko Z, Lee H, Avenel C, Kallner HK, Åkesson E, Adameyko I, Nilsson M, Linnarsson S, Lundeberg J, Sundström E. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat Neurosci 2023; 26:891-901. [PMID: 37095395 PMCID: PMC10166856 DOI: 10.1038/s41593-023-01312-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.
Collapse
Affiliation(s)
- Xiaofei Li
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, Sweden
| | | | - Alma Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Artificial Intelligence and Machine Learning, Research and Early Development, Genentech. Inc., South San Francisco, CA, USA
| | - Yang Liu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Daniel Gyllborg
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Zhanna Alekseenko
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hower Lee
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christophe Avenel
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Helena Kopp Kallner
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Danderyd Hospital, Danderyd, Sweden
| | - Elisabet Åkesson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- R&D Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Erik Sundström
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
225
|
Nolan TM, Vukašinović N, Hsu CW, Zhang J, Vanhoutte I, Shahan R, Taylor IW, Greenstreet L, Heitz M, Afanassiev A, Wang P, Szekely P, Brosnan A, Yin Y, Schiebinger G, Ohler U, Russinova E, Benfey PN. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 2023; 379:eadf4721. [PMID: 36996230 PMCID: PMC10119888 DOI: 10.1126/science.adf4721] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Brassinosteroids are plant steroid hormones that regulate diverse processes, such as cell division and cell elongation, through gene regulatory networks that vary in space and time. By using time series single-cell RNA sequencing to profile brassinosteroid-responsive gene expression specific to different cell types and developmental stages of the Arabidopsis root, we identified the elongating cortex as a site where brassinosteroids trigger a shift from proliferation to elongation associated with increased expression of cell wall-related genes. Our analysis revealed HOMEOBOX FROM ARABIDOPSIS THALIANA 7 (HAT7) and GT-2-LIKE 1 (GTL1) as brassinosteroid-responsive transcription factors that regulate cortex cell elongation. These results establish the cortex as a site of brassinosteroid-mediated growth and unveil a brassinosteroid signaling network regulating the transition from proliferation to elongation, which illuminates aspects of spatiotemporal hormone responses.
Collapse
Affiliation(s)
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biology, Humboldt Universitat zu Berlin, Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | | | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Matthieu Heitz
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Ping Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Pablo Szekely
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Aiden Brosnan
- Department of Biology, Duke University, Durham, NC, USA
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Uwe Ohler
- Department of Biology, Humboldt Universitat zu Berlin, Berlin, Germany
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
- Department of Computer Science, Humboldt Universitat zu Berlin, Berlin, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
226
|
Wong SWK, Yang S, Kou SC. Estimating and Assessing Differential Equation Models with Time-Course Data. J Phys Chem B 2023; 127:2362-2374. [PMID: 36893480 PMCID: PMC10041644 DOI: 10.1021/acs.jpcb.2c08932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Ordinary differential equation (ODE) models are widely used to describe chemical or biological processes. This Article considers the estimation and assessment of such models on the basis of time-course data. Due to experimental limitations, time-course data are often noisy, and some components of the system may not be observed. Furthermore, the computational demands of numerical integration have hindered the widespread adoption of time-course analysis using ODEs. To address these challenges, we explore the efficacy of the recently developed MAGI (MAnifold-constrained Gaussian process Inference) method for ODE inference. First, via a range of examples we show that MAGI is capable of inferring the parameters and system trajectories, including unobserved components, with appropriate uncertainty quantification. Second, we illustrate how MAGI can be used to assess and select different ODE models with time-course data based on MAGI's efficient computation of model predictions. Overall, we believe MAGI is a useful method for the analysis of time-course data in the context of ODE models, which bypasses the need for any numerical integration.
Collapse
Affiliation(s)
- Samuel W K Wong
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shihao Yang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - S C Kou
- Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
227
|
Gao SM, Qi Y, Zhang Q, Mohammed AS, Lee YT, Guan Y, Li H, Fu Y, Wang MC. Aging Atlas Reveals Cell-Type-Specific Regulation of Pro-longevity Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530490. [PMID: 36909655 PMCID: PMC10002668 DOI: 10.1101/2023.02.28.530490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Organism aging occurs at the multicellular level; however, how pro-longevity mechanisms slow down aging in different cell types remains unclear. We generated single-cell transcriptomic atlases across the lifespan of Caenorhabditis elegans under different pro-longevity conditions (http://mengwanglab.org/atlas). We found cell-specific, age-related changes across somatic and germ cell types and developed transcriptomic aging clocks for different tissues. These clocks enabled us to determine tissue-specific aging-slowing effects of different pro-longevity mechanisms, and identify major cell types sensitive to these regulations. Additionally, we provided a systemic view of alternative polyadenylation events in different cell types, as well as their cell-type-specific changes during aging and under different pro-longevity conditions. Together, this study provides molecular insights into how aging occurs in different cell types and how they respond to pro-longevity strategies.
Collapse
|
228
|
Pioli KT, Lau KH, Pioli PD. Thymus antibody-secreting cells possess an interferon gene signature and are preferentially expanded in young female mice. iScience 2023; 26:106223. [PMID: 36890795 PMCID: PMC9986522 DOI: 10.1016/j.isci.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Antibody-secreting cells (ASCs) are key contributors to humoral immunity through immunoglobulin production and the potential to be long-lived. ASC persistence has been recognized in the autoimmune thymus (THY); however, only recently has this population been appreciated in healthy THY tissue. We showed that the young female THY was skewed toward higher production of ASCs relative to males. However, these differences disappeared with age. In both sexes, THY ASCs included Ki-67+ plasmablasts which required CD154(CD40L) signals for their propagation. Single cell RNA-sequencing revealed that THY ASCs were enriched for an interferon responsive transcriptional signature relative to those from bone marrow and spleen. Flow cytometry confirmed that THY ASCs had increased levels of Toll-like receptor 7 as well as CD69 and major histocompatibility complex class II. Overall, we identified fundamental aspects of THY ASC biology which may be leveraged for future in depth studies of this population in both health and disease.
Collapse
Affiliation(s)
- KimAnh T. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter D. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
229
|
MafB-restricted local monocyte proliferation precedes lung interstitial macrophage differentiation. Nat Immunol 2023; 24:827-840. [PMID: 36928411 PMCID: PMC10154211 DOI: 10.1038/s41590-023-01468-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Resident tissue macrophages (RTMs) are differentiated immune cells that populate distinct niches and exert important tissue-supportive functions. RTM maintenance is thought to rely either on differentiation from monocytes or on RTM self-renewal. Here, we used a mouse model of inducible lung interstitial macrophage (IM) niche depletion and refilling to investigate the development of IMs in vivo. Using time-course single-cell RNA-sequencing analyses, bone marrow chimeras and gene targeting, we found that engrafted Ly6C+ classical monocytes proliferated locally in a Csf1 receptor-dependent manner before differentiating into IMs. The transition from monocyte proliferation toward IM subset specification was controlled by the transcription factor MafB, while c-Maf specifically regulated the identity of the CD206+ IM subset. Our data provide evidence that, in the mononuclear phagocyte system, the ability to proliferate is not merely restricted to myeloid progenitor cells and mature RTMs but is also a tightly regulated capability of monocytes developing into RTMs in vivo.
Collapse
|
230
|
Chen Y, Liu S, Papageorgiou LG, Theofilatos K, Tsoka S. Optimisation Models for Pathway Activity Inference in Cancer. Cancers (Basel) 2023; 15:1787. [PMID: 36980673 PMCID: PMC10046797 DOI: 10.3390/cancers15061787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND With advances in high-throughput technologies, there has been an enormous increase in data related to profiling the activity of molecules in disease. While such data provide more comprehensive information on cellular actions, their large volume and complexity pose difficulty in accurate classification of disease phenotypes. Therefore, novel modelling methods that can improve accuracy while offering interpretable means of analysis are required. Biological pathways can be used to incorporate a priori knowledge of biological interactions to decrease data dimensionality and increase the biological interpretability of machine learning models. METHODOLOGY A mathematical optimisation model is proposed for pathway activity inference towards precise disease phenotype prediction and is applied to RNA-Seq datasets. The model is based on mixed-integer linear programming (MILP) mathematical optimisation principles and infers pathway activity as the linear combination of pathway member gene expression, multiplying expression values with model-determined gene weights that are optimised to maximise discrimination of phenotype classes and minimise incorrect sample allocation. RESULTS The model is evaluated on the transcriptome of breast and colorectal cancer, and exhibits solution results of good optimality as well as good prediction performance on related cancer subtypes. Two baseline pathway activity inference methods and three advanced methods are used for comparison. Sample prediction accuracy, robustness against noise expression data, and survival analysis suggest competitive prediction performance of our model while providing interpretability and insight on key pathways and genes. Overall, our work demonstrates that the flexible nature of mathematical programming lends itself well to developing efficient computational strategies for pathway activity inference and disease subtype prediction.
Collapse
Affiliation(s)
- Yongnan Chen
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London WC2B 4BG, UK
| | - Songsong Liu
- School of Management, Harbin Institute of Technology, Harbin 150001, China
| | - Lazaros G Papageorgiou
- The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London SE1 7EH, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London WC2B 4BG, UK
| |
Collapse
|
231
|
Vercauteren Drubbel A, Beck B. Single-cell transcriptomics uncovers the differentiation of a subset of murine esophageal progenitors into taste buds in vivo. SCIENCE ADVANCES 2023; 9:eadd9135. [PMID: 36888721 PMCID: PMC9995038 DOI: 10.1126/sciadv.add9135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mouse esophagus is lined with a stratified epithelium, which is maintained by the constant renewal of unipotent progenitors. In this study, we profiled mouse esophagus by single-cell RNA sequencing and found taste buds specifically in the cervical segment of the esophagus. These taste buds have the same cellular composition as the ones from the tongue but express fewer taste receptor types. State-of-the-art transcriptional regulatory network analysis allowed the identification of specific transcription factors associated to the differentiation of immature progenitors into the three different taste bud cell types. Lineage tracing experiments revealed that esophageal taste buds arise from squamous bipotent progenitor, thus demonstrating that all esophageal progenitors are not unipotent. Our cell resolution characterization of cervical esophagus epithelium will enable a better understanding of esophageal progenitor potency and insights into the mechanisms involved in the development of taste buds.
Collapse
Affiliation(s)
| | - Benjamin Beck
- IRIBHM, ULB/ Faculty of medicine, 808 Route de Lennik, 1070 Brussels, Belgium
- Welbio/FNRS Principal investigator at IRIBHM, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
232
|
Liu Y, Zhang M, Liao Y, Chen H, Su D, Tao Y, Li J, Luo K, Wu L, Zhang X, Yang R. Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing. Front Immunol 2023; 14:1142088. [PMID: 36999022 PMCID: PMC10044346 DOI: 10.3389/fimmu.2023.1142088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
IntroductionFull-thickness skin wound healing remains a serious undertaking for patients. While stem cell-derived exosomes have been proposed as a potential therapeutic approach, the underlying mechanism of action has yet to be fully elucidated. The current study aimed to investigate the impact of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exosomes) on the single-cell transcriptome of neutrophils and macrophages in the context of wound healing.MethodsUtilizing single-cell RNA sequencing, the transcriptomic diversity of neutrophils and macrophages was analyzed in order to predict the cellular fate of these immune cells under the influence of hucMSC-Exosomes and to identify alterations of ligand-receptor interactions that may influence the wound microenvironment. The validity of the findings obtained from this analysis was subsequently corroborated by immunofluorescence, ELISA, and qRT-PCR. Neutrophil origins were characterized based on RNA velocity profiles.ResultsThe expression of RETNLG and SLC2A3 was associated with migrating neutrophils, while BCL2A1B was linked to proliferating neutrophils. The hucMSC-Exosomes group exhibited significantly higher levels of M1 macrophages (215 vs 76, p < 0.00001), M2 macrophages (1231 vs 670, p < 0.00001), and neutrophils (930 vs 157, p < 0.00001) when compared to control group. Additionally, it was observed that hucMSC-Exosomes elicit alterations in the differentiation trajectories of macrophages towards more anti-inflammatory phenotypes, concomitant with changes in ligand-receptor interactions, thereby facilitating healing.DiscussionThis study has revealed the transcriptomic heterogeneity of neutrophils and macrophages in the context of skin wound repair following hucMSC-Exosomes interventions, providing a deeper understanding of cellular responses to hucMSC-Exosomes, a rising target of wound healing intervention.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yong Liao
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Dandan Su
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Yuandong Tao
- Department of Pediatric Urology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiangbo Li
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing, China
| | - Kai Luo
- Biomedical Treatment Center, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lihua Wu
- Biomedical Treatment Center, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xingyue Zhang
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Rongya Yang
- Department of Dermatology, the Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Rongya Yang,
| |
Collapse
|
233
|
Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8 + T lymphocytes. Neuron 2023; 111:696-710.e9. [PMID: 36603584 DOI: 10.1016/j.neuron.2022.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
The crosstalk between the nervous and immune systems has gained increasing attention for its emerging role in neurological diseases. Radiation-induced brain injury (RIBI) remains the most common medical complication of cranial radiotherapy, and its pathological mechanisms have yet to be elucidated. Here, using single-cell RNA and T cell receptor sequencing, we found infiltration and clonal expansion of CD8+ T lymphocytes in the lesioned brain tissues of RIBI patients. Furthermore, by strategies of genetic or pharmacologic interruption, we identified a chemotactic action of microglia-derived CCL2/CCL8 chemokines in mediating the infiltration of CCR2+/CCR5+ CD8+ T cells and tissue damage in RIBI mice. Such a chemotactic axis also participated in the progression of cerebral infarction in the mouse model of ischemic injury. Our findings therefore highlight the critical role of microglia in mediating the dysregulation of adaptive immune responses and reveal a potential therapeutic strategy for non-infectious brain diseases.
Collapse
|
234
|
Mohammed M, Dziedziech A, Sekar V, Ernest M, Alves E Silva TL, Balan B, Emami SN, Biryukova I, Friedländer MR, Jex A, Jacobs-Lorena M, Henriksson J, Vega-Rodriguez J, Ankarklev J. Single-Cell Transcriptomics To Define Plasmodium falciparum Stage Transition in the Mosquito Midgut. Microbiol Spectr 2023; 11:e0367122. [PMID: 36847501 PMCID: PMC10100735 DOI: 10.1128/spectrum.03671-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 h after blood feeding, including the zygote and ookinete stages. This study revealed the temporal gene expression of the ApiAP2 family of transcription factors and of parasite stress genes in response to the harsh environment of the mosquito midgut. Further, employing structural protein prediction analyses, we found several upregulated genes predicted to encode intrinsically disordered proteins (IDPs), a category of proteins known for their importance in regulation of transcription, translation, and protein-protein interactions. IDPs are known for their antigenic properties and may serve as suitable targets for antibody- or peptide-based transmission suppression strategies. In total, this study uncovers the P. falciparum transcriptome from early to late parasite development in the mosquito midgut, inside its natural vector, which provides an important resource for future malaria transmission-blocking initiatives. IMPORTANCE The malaria parasite Plasmodium falciparum causes more than half a million deaths per year. The current treatment regimen targets the symptom-causing blood stage inside the human host. However, recent incentives in the field call for novel interventions to block parasite transmission from humans to the mosquito vector. Therefore, we need to better understand the parasite biology during its development inside the mosquito, including a deeper understanding of the expression of genes controlling parasite progression during these stages. Here, we have generated single-cell transcriptome data, covering P. falciparum's development, from gamete to ookinete inside the mosquito midgut, uncovering previously untapped parasite biology, including a repertoire of novel biomarkers to be explored in future transmission-blocking efforts. We anticipate that our study provides an important resource, which can be further explored to improve our understanding of the parasite biology as well as aid in guiding future malaria intervention strategies.
Collapse
Affiliation(s)
- Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vaishnovi Sekar
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Medard Ernest
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Thiago Luiz Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - S. Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R. Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Aaron Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Johan Henriksson
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics, Department of Cell and Molecular Biology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
235
|
Zhang L, He CH, Coffey S, Yin D, Hsu IU, Su C, Ye Y, Zhang C, Spurrier J, Nicholson L, Rothlin CV, Ghosh S, Gopal PP, Hafler DA, Zhao H, Strittmatter SM. Single-cell transcriptomic atlas of Alzheimer's disease middle temporal gyrus reveals region, cell type and sex specificity of gene expression with novel genetic risk for MERTK in female. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.18.23286037. [PMID: 36865305 PMCID: PMC9980267 DOI: 10.1101/2023.02.18.23286037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Alzheimer's disease, the most common age-related neurodegenerative disease, is closely associated with both amyloid-ß plaque and neuroinflammation. Two thirds of Alzheimer's disease patients are females and they have a higher disease risk. Moreover, women with Alzheimer's disease have more extensive brain histological changes than men along with more severe cognitive symptoms and neurodegeneration. To identify how sex difference induces structural brain changes, we performed unbiased massively parallel single nucleus RNA sequencing on Alzheimer's disease and control brains focusing on the middle temporal gyrus, a brain region strongly affected by the disease but not previously studied with these methods. We identified a subpopulation of selectively vulnerable layer 2/3 excitatory neurons that that were RORB-negative and CDH9-expressing. This vulnerability differs from that reported for other brain regions, but there was no detectable difference between male and female patterns in middle temporal gyrus samples. Disease-associated, but sex-independent, reactive astrocyte signatures were also present. In clear contrast, the microglia signatures of diseased brains differed between males and females. Combining single cell transcriptomic data with results from genome-wide association studies (GWAS), we identified MERTK genetic variation as a risk factor for Alzheimer's disease selectively in females. Taken together, our single cell dataset revealed a unique cellular-level view of sex-specific transcriptional changes in Alzheimer's disease, illuminating GWAS identification of sex-specific Alzheimer's risk genes. These data serve as a rich resource for interrogation of the molecular and cellular basis of Alzheimer's disease.
Collapse
|
236
|
Zhang G, Xu X, Zhu L, Li S, Chen R, Lv N, Li Z, Wang J, Li Q, Zhou W, Yang P, Liu J. A Novel Molecular Classification Method for Glioblastoma Based on Tumor Cell Differentiation Trajectories. Stem Cells Int 2023; 2023:2826815. [PMID: 37964983 PMCID: PMC10643041 DOI: 10.1155/2023/2826815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2023] Open
Abstract
The latest 2021 WHO classification redefines glioblastoma (GBM) as the hierarchical reporting standard by eliminating glioblastoma, IDH-mutant and only retaining the tumor entity of "glioblastoma, IDH-wild type." Knowing that subclassification of tumors based on molecular features is supposed to facilitate the therapeutic choice and increase the response rate in cancer patients, it is necessary to carry out molecular classification of the newly defined GBM. Although differentiation trajectory inference based on single-cell sequencing (scRNA-seq) data holds great promise for identifying cell heterogeneity, it has not been used in the study of GBM molecular classification. Single-cell transcriptome sequencing data from 10 GBM samples were used to identify molecular classification based on differentiation trajectories. The expressions of identified features were validated by public bulk RNA-sequencing data. Clinical feasibility of the classification system was examined in tissue samples by immunohistochemical (IHC) staining and immunofluorescence, and their clinical significance was investigated in public cohorts and clinical samples with complete clinical follow-up information. By analyzing scRNA-seq data of 10 GBM samples, four differentiation trajectories from the glioblastoma stem cell-like (GSCL) cluster were identified, based on which malignant cells were classified into five characteristic subclusters. Each cluster exhibited different potential drug sensitivities, pathways, functions, and transcriptional modules. The classification model was further examined in TCGA and CGGA datasets. According to the different abundance of five characteristic cell clusters, the patients were classified into five groups which we named Ac-G, Class-G, Neo-G, Opc-G, and Undiff-G groups. It was found that the Undiff-G group exhibited the worst overall survival (OS) in both TCGA and CGGA cohorts. In addition, the classification model was verified by IHC staining in 137 GBM samples to further clarify the difference in OS between the five groups. Furthermore, the novel biomarkers of glioblastoma stem cells (GSCs) were also described. In summary, we identified five classifications of GBM and found that they exhibited distinct drug sensitivities and different prognoses, suggesting that the new grouping system may be able to provide important prognostic information and have certain guiding significance for the treatment of GBM, and identified the GSCL cluster in GBM tissues and described its characteristic program, which may help develop new potential therapeutic targets for GSCs in GBM.
Collapse
Affiliation(s)
- Guanghao Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiaolong Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Luojiang Zhu
- Neurosurgery Department, 922th Hospital of Joint Logistics Support Force, PLA, China
| | - Sisi Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Rundong Chen
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Nan Lv
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zifu Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing Wang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qiang Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wang Zhou
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
237
|
Song WM, Chia PL, Zhou X, Walsh M, Silva J, Zhang B. Pseudo-temporal dynamics of chemoresistant triple negative breast cancer cells reveal EGFR/HER2 inhibition as synthetic lethal during mid-neoadjuvant chemotherapy. iScience 2023; 26:106064. [PMID: 36824282 PMCID: PMC9942122 DOI: 10.1016/j.isci.2023.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
In the absence of targetable hormonal axes, chemoresistance for triple-negative breast cancer (TNBC) often compromises patient outcomes. To investigate the underlying tumor dynamics, we performed trajectory analysis on the single-nuclei RNA-seq (snRNA-seq) of chemoresistant tumor clones during neoadjuvant chemotherapy (NAC). It revealed a common tumor trajectory across multiple patients with HER2-like expansions during NAC. Genome-wide CRISPR-Cas9 knock-out on mammary epithelial cells revealed chemosensitivity-promoting knock-outs were up-regulated along the tumor trajectory. Furthermore, we derived a consensus gene signature of TNBC chemoresistance by comparing the trajectory transcriptome with chemoresistant transcriptomes from TNBC cell lines and poor prognosis patient samples to predict FDA-approved drugs, including afatinib (pan-HER inhibitor), targeting the consensus signature. We validated the synergistic efficacy of afatinib and paclitaxel in chemoresistant TNBC cells and confirmed pharmacological suppression of the consensus signature. The study provides a dynamic model of chemoresistant tumor transcriptome, and computational framework for pharmacological intervention.
Collapse
Affiliation(s)
- Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Pei-Ling Chia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
238
|
Cang Z, Zhao Y, Almet AA, Stabell A, Ramos R, Plikus MV, Atwood SX, Nie Q. Screening cell-cell communication in spatial transcriptomics via collective optimal transport. Nat Methods 2023; 20:218-228. [PMID: 36690742 PMCID: PMC9911355 DOI: 10.1038/s41592-022-01728-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/21/2022] [Indexed: 01/24/2023]
Abstract
Spatial transcriptomic technologies and spatially annotated single-cell RNA sequencing datasets provide unprecedented opportunities to dissect cell-cell communication (CCC). However, incorporation of the spatial information and complex biochemical processes required in the reconstruction of CCC remains a major challenge. Here, we present COMMOT (COMMunication analysis by Optimal Transport) to infer CCC in spatial transcriptomics, which accounts for the competition between different ligand and receptor species as well as spatial distances between cells. A collective optimal transport method is developed to handle complex molecular interactions and spatial constraints. Furthermore, we introduce downstream analysis tools to infer spatial signaling directionality and genes regulated by signaling using machine learning models. We apply COMMOT to simulation data and eight spatial datasets acquired with five different technologies to show its effectiveness and robustness in identifying spatial CCC in data with varying spatial resolutions and gene coverages. Finally, COMMOT identifies new CCCs during skin morphogenesis in a case study of human epidermal development.
Collapse
Affiliation(s)
- Zixuan Cang
- Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA
| | - Yanxiang Zhao
- Department of Mathematics, The George Washington University, Washington, DC, USA
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Adam Stabell
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Raul Ramos
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Maksim V Plikus
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Scott X Atwood
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
239
|
Tian T, Zhong C, Lin X, Wei Z, Hakonarson H. Complex hierarchical structures in single-cell genomics data unveiled by deep hyperbolic manifold learning. Genome Res 2023; 33:232-246. [PMID: 36849204 PMCID: PMC10069463 DOI: 10.1101/gr.277068.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/24/2023] [Indexed: 03/01/2023]
Abstract
With the advances in single-cell sequencing techniques, numerous analytical methods have been developed for delineating cell development. However, most are based on Euclidean space, which would distort the complex hierarchical structure of cell differentiation. Recently, methods acting on hyperbolic space have been proposed to visualize hierarchical structures in single-cell RNA-seq (scRNA-seq) data and have been proven to be superior to methods acting on Euclidean space. However, these methods have fundamental limitations and are not optimized for the highly sparse single-cell count data. To address these limitations, we propose scDHMap, a model-based deep learning approach to visualize the complex hierarchical structures of scRNA-seq data in low-dimensional hyperbolic space. The evaluations on extensive simulation and real experiments show that scDHMap outperforms existing dimensionality-reduction methods in various common analytical tasks as needed for scRNA-seq data, including revealing trajectory branches, batch correction, and denoising the count matrix with high dropout rates. In addition, we extend scDHMap to visualize single-cell ATAC-seq data.
Collapse
Affiliation(s)
- Tian Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Cheng Zhong
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Xiang Lin
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Zhi Wei
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, New Jersey 07102, USA;
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
240
|
Sountoulidis A, Marco Salas S, Braun E, Avenel C, Bergenstråhle J, Theelke J, Vicari M, Czarnewski P, Liontos A, Abalo X, Andrusivová Ž, Mirzazadeh R, Asp M, Li X, Hu L, Sariyar S, Martinez Casals A, Ayoglu B, Firsova A, Michaëlsson J, Lundberg E, Wählby C, Sundström E, Linnarsson S, Lundeberg J, Nilsson M, Samakovlis C. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat Cell Biol 2023; 25:351-365. [PMID: 36646791 PMCID: PMC9928586 DOI: 10.1038/s41556-022-01064-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/23/2022] [Indexed: 01/18/2023]
Abstract
The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Collapse
Affiliation(s)
- Alexandros Sountoulidis
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergio Marco Salas
- Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christophe Avenel
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jonas Theelke
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marco Vicari
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Liontos
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xesus Abalo
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Žaneta Andrusivová
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michaela Asp
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Sanem Sariyar
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Martinez Casals
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Ayoglu
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Alexandra Firsova
- Science for Life Laboratory, Solna, Sweden
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- BioImage Informatics Facility, Science for Life Laboratory, SciLifeLab, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Solna, Sweden.
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Christos Samakovlis
- Science for Life Laboratory, Solna, Sweden.
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Pneumology, Cardiopulmonary Institute, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
241
|
Luo Q, Pui HP, Chen J, Yu L, Jannig PR, Pei Y, Zhao L, Chen X, Petropoulos S, Ruas JL, Wu J, Deng Q. Epiblast-like stem cells established by Wnt/β-catenin signaling manifest distinct features of formative pluripotency and germline competence. Cell Rep 2023; 42:112021. [PMID: 36848234 PMCID: PMC10026833 DOI: 10.1016/j.celrep.2023.112021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Different formative pluripotent stem cells harboring similar functional properties have been recently established to be lineage neutral and germline competent yet have distinct molecular identities. Here, we show that WNT/β-catenin signaling activation sustains transient mouse epiblast-like cells as epiblast-like stem cells (EpiLSCs). EpiLSCs display metastable formative pluripotency with bivalent cellular energy metabolism and unique transcriptomic features and chromatin accessibility. We develop single-cell stage label transfer (scSTALT) to study the formative pluripotency continuum and reveal that EpiLSCs recapitulate a unique developmental period in vivo, filling the gap of the formative pluripotency continuum between other published formative stem cells. WNT/β-catenin signaling activation counteracts differentiation effects of activin A and bFGF by preventing complete dissolution of naive pluripotency regulatory network. Moreover, EpiLSCs have direct competence toward germline specification, which is further matured by an FGF receptor inhibitor. Our EpiLSCs can serve as an in vitro model for mimicking and studying early post-implantation development and pluripotency transition.
Collapse
Affiliation(s)
- Qing Luo
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Han-Pin Pui
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 141 52 Huddinge, Sweden
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 20092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 20092, China
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Paulo R Jannig
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Linxuan Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Sophie Petropoulos
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 141 52 Huddinge, Sweden; Department of Medicine, Centre de recherche du CHUM, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden.
| |
Collapse
|
242
|
Liu X, Yin K, Chen L, Chen W, Li W, Zhang T, Sun Y, Yuan M, Wang H, Song Y, Wang S, Hu S, Zhou Z. Lineage-specific regulatory changes in hypertrophic cardiomyopathy unraveled by single-nucleus RNA-seq and spatial transcriptomics. Cell Discov 2023; 9:6. [PMID: 36646705 PMCID: PMC9842679 DOI: 10.1038/s41421-022-00490-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/29/2022] [Indexed: 01/18/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder characterized by cardiomyocyte hypertrophy and cardiac fibrosis. Pathological cardiac remodeling in the myocardium of HCM patients may progress to heart failure. An in-depth elucidation of the lineage-specific changes in pathological cardiac remodeling of HCM is pivotal for the development of therapies to mitigate the progression. Here, we performed single-nucleus RNA-seq of the cardiac tissues from HCM patients or healthy donors and conducted spatial transcriptomic assays on tissue sections from patients. Unbiased clustering of 55,122 nuclei from HCM and healthy conditions revealed 9 cell lineages and 28 clusters. Lineage-specific changes in gene expression, subpopulation composition, and intercellular communication in HCM were discovered through comparative analyses. According to the results of pseudotime ordering, differential expression analysis, and differential regulatory network analysis, potential key genes during the transition towards a failing state of cardiomyocytes such as FGF12, IL31RA, and CREB5 were identified. Transcriptomic dynamics underlying cardiac fibroblast activation were also uncovered, and potential key genes involved in cardiac fibrosis were obtained such as AEBP1, RUNX1, MEOX1, LEF1, and NRXN3. Using the spatial transcriptomic data, spatial activity patterns of the candidate genes, pathways, and subpopulations were confirmed on patient tissue sections. Moreover, we showed experimental evidence that in vitro knockdown of AEBP1 could promote the activation of human cardiac fibroblasts, and overexpression of AEBP1 could attenuate the TGFβ-induced activation. Our study provided a comprehensive analysis of the lineage-specific regulatory changes in HCM, which laid the foundation for targeted drug development in HCM.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Kunlun Yin
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Taojun Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Yang Sun
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
- Department of Pathology, Fuwai Hospital, Beijing, China
| | - Meng Yuan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Hongyue Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
- Department of Pathology, Fuwai Hospital, Beijing, China
| | - Yunhu Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China
| | - Shuiyun Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
243
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523119. [PMID: 36711947 PMCID: PMC9881922 DOI: 10.1101/2023.01.07.523119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
|
244
|
Olaniru OE, Kadolsky U, Kannambath S, Vaikkinen H, Fung K, Dhami P, Persaud SJ. Single-cell transcriptomic and spatial landscapes of the developing human pancreas. Cell Metab 2023; 35:184-199.e5. [PMID: 36513063 DOI: 10.1016/j.cmet.2022.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Current differentiation protocols have not been successful in reproducibly generating fully functional human beta cells in vitro, partly due to incomplete understanding of human pancreas development. Here, we present detailed transcriptomic analysis of the various cell types of the developing human pancreas, including their spatial gene patterns. We integrated single-cell RNA sequencing with spatial transcriptomics at multiple developmental time points and revealed distinct temporal-spatial gene cascades. Cell trajectory inference identified endocrine progenitor populations and branch-specific genes as the progenitors differentiate toward alpha or beta cells. Spatial differentiation trajectories indicated that Schwann cells are spatially co-located with endocrine progenitors, and cell-cell connectivity analysis predicted that they may interact via L1CAM-EPHB2 signaling. Our integrated approach enabled us to identify heterogeneity and multiple lineage dynamics within the mesenchyme, showing that it contributed to the exocrine acinar cell state. Finally, we have generated an interactive web resource for investigating human pancreas development for the research community.
Collapse
Affiliation(s)
- Oladapo Edward Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Ulrich Kadolsky
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK; Genomics WA, University of Western Australia, Harry Perkins Institute of Medical Research and Telethon Kids Institute QEII Campus, Nedlands, Perth, WA 6009, Australia
| | - Shichina Kannambath
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK
| | - Heli Vaikkinen
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK
| | - Kathy Fung
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK
| | - Pawan Dhami
- Genomics Research Platform and Single Cell Laboratory, Biomedical Research Centre, Guy's and St. Thomas' NHS Trust, London, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
245
|
Dong X, Bacher R. Analysis of Single-Cell RNA-seq Data. Methods Mol Biol 2023; 2629:95-114. [PMID: 36929075 DOI: 10.1007/978-1-0716-2986-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
As single-cell RNA sequencing experiments continue to advance scientific discoveries across biological disciplines, an increasing number of analysis tools and workflows for analyzing the data have been developed. In this chapter, we describe a standard workflow and elaborate on relevant data analysis tools for analyzing single-cell RNA sequencing data. We provide recommendations for the appropriate use of commonly used methods, with code examples and analysis interpretations.
Collapse
Affiliation(s)
- Xiaoru Dong
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
246
|
Putri GH, Chung J, Edwards DN, Marsh-Wakefield F, Koprinska I, Dervish S, King NJC, Ashhurst TM, Read MN. TrackSOM: Mapping immune response dynamics through clustering of time-course cytometry data. Cytometry A 2023; 103:54-70. [PMID: 35758217 DOI: 10.1002/cyto.a.24668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 01/20/2023]
Abstract
Mapping the dynamics of immune cell populations over time or disease-course is key to understanding immunopathogenesis and devising putative interventions. We present TrackSOM, a novel method for delineating cellular populations and tracking their development over a time- or disease-course cytometry datasets. We demonstrate TrackSOM-enabled elucidation of the immune response to West Nile Virus infection in mice, uncovering heterogeneous subpopulations of immune cells and relating their functional evolution to disease severity. TrackSOM is easy to use, encompasses few parameters, is quick to execute, and enables an integrative and dynamic overview of the immune system kinetics that underlie disease progression and/or resolution.
Collapse
Affiliation(s)
- Givanna H Putri
- School of Computer Science, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Chung
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,Viral Immunopathology Laboratory, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Davis N Edwards
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Vascular Immunology Unit, Department of Pathology, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Cytometry Core Research Facility, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Irena Koprinska
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia
| | - Suat Dervish
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas J C King
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas M Ashhurst
- The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,Vascular Immunology Unit, Department of Pathology, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark N Read
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Initiative, The University of Sydney, Sydney, New South Wales, Australia.,Viral Immunopathology Laboratory, Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
247
|
Qu JH, Telljohann R, Byshkov R, Lakatta EG. Characterization of diverse populations of sinoatrial node cells and their proliferation potential at single nucleus resolution. Heliyon 2022; 9:e12708. [PMID: 36632093 PMCID: PMC9826826 DOI: 10.1016/j.heliyon.2022.e12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Background Each heartbeat is initiated in the sinoatrial node (SAN), and although a recent study (GSE130710) using single nucleus RNA-seq had discovered different populations of cell types within SAN tissue, the distinct potential functions of these cell types have not been delineated. Methods To infer some special potential functions of different SAN cell clusters, we applied principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) to the GSE130710 dataset to reduce dimensions, followed by Pseudotime trajectory and AUCell analyses, ANOVA and Hurdle statistical models, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments to determine functional potential of cell types. Nuclear EdU immuno-labeling of SAN tissue confirmed cell type proliferation. Findings We identified elements of a coupled clock system known to drive SAN cell pacemaking within the GSE130710 sinus node myocyte cluster, which, surprisingly, manifested signals of suppressed fatty acid and nitrogen metabolism and reduced immune gene expression. Proliferation signaling was enriched in endocardial, epicardial, epithelial cells, and macrophages, in which, fatty acid and nitrogen metabolic signals were also suppressed, but immune signaling was enhanced. EdU labeling was rare in pacemaker cells but was robust in interstitial cells. Interpretation Pacemaker cells that initiate each heartbeat manifest suppressed fatty acid and nitrogen metabolism and limited immune signaling and proliferation potential. In contrast, other populations of SAN cells not directly involved in the initiation of heartbeats, manifest robust proliferation and immune potential, likely to ensure an environment required to sustain healthy SAN tissue pacemaker function.
Collapse
|
248
|
Montserrat-Vazquez S, Ali NJ, Matteini F, Lozano J, Zhaowei T, Mejia-Ramirez E, Marka G, Vollmer A, Soller K, Sacma M, Sakk V, Mularoni L, Mallm JP, Plass M, Zheng Y, Geiger H, Florian MC. Transplanting rejuvenated blood stem cells extends lifespan of aged immunocompromised mice. NPJ Regen Med 2022; 7:78. [PMID: 36581635 PMCID: PMC9800381 DOI: 10.1038/s41536-022-00275-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
One goal of regenerative medicine is to rejuvenate tissues and extend lifespan by restoring the function of endogenous aged stem cells. However, evidence that somatic stem cells can be targeted in vivo to extend lifespan is still lacking. Here, we demonstrate that after a short systemic treatment with a specific inhibitor of the small RhoGTPase Cdc42 (CASIN), transplanting aged hematopoietic stem cells (HSCs) from treated mice is sufficient to extend the healthspan and lifespan of aged immunocompromised mice without additional treatment. In detail, we show that systemic CASIN treatment improves strength and endurance of aged mice by increasing the myogenic regenerative potential of aged skeletal muscle stem cells. Further, we show that CASIN modifies niche localization and H4K16ac polarity of HSCs in vivo. Single-cell profiling reveals changes in HSC transcriptome, which underlie enhanced lymphoid and regenerative capacity in serial transplantation assays. Overall, we provide proof-of-concept evidence that a short systemic treatment to decrease Cdc42 activity improves the regenerative capacity of different endogenous aged stem cells in vivo, and that rejuvenated HSCs exert a broad systemic effect sufficient to extend murine health- and lifespan.
Collapse
Affiliation(s)
- Sara Montserrat-Vazquez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Noelle J. Ali
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Francesca Matteini
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Lozano
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | - Tu Zhaowei
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Eva Mejia-Ramirez
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gina Marka
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Angelika Vollmer
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Karin Soller
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Mehmet Sacma
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Vadim Sakk
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - Loris Mularoni
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Mireya Plass
- grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain ,grid.417656.7Gene Regulation of Cell Identity Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Yi Zheng
- grid.239573.90000 0000 9025 8099Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Hartmut Geiger
- grid.6582.90000 0004 1936 9748Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - M. Carolina Florian
- grid.417656.7Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain ,grid.417656.7Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet de Llobregat, Barcelona, Spain ,grid.512890.7Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
249
|
Gavish A, Chain B, Salame TM, Antebi YE, Nevo S, Reich-Zeliger S, Friedman N. From pseudo to real-time dynamics of T cell thymic differentiation. iScience 2022; 26:105826. [PMID: 36624839 PMCID: PMC9823121 DOI: 10.1016/j.isci.2022.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/14/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Numerous methods have recently emerged for ordering single cells along developmental trajectories. However, accurate depiction of developmental dynamics can only be achieved after rescaling the trajectory according to the relative time spent at each developmental point. We formulate a model which estimates local cell densities and fluxes, and incorporates cell division and apoptosis rates, to infer the real-time dimension of the developmental trajectory. We validate the model using mathematical simulations and apply it to experimental high dimensional cytometry data obtained from the mouse thymus to construct the true time profile of the thymocyte developmental process. Our method can easily be implemented in any of the existing tools for trajectory inference.
Collapse
Affiliation(s)
- Avishai Gavish
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel,Corresponding author
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
| | - Tomer M. Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yaron E. Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomit Reich-Zeliger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel,Corresponding author
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
250
|
Schreibing F, Hannani MT, Kim H, Nagai JS, Ticconi F, Fewings E, Bleckwehl T, Begemann M, Torow N, Kuppe C, Kurth I, Kranz J, Frank D, Anslinger TM, Ziegler P, Kraus T, Enczmann J, Balz V, Windhofer F, Balfanz P, Kurts C, Marx G, Marx N, Dreher M, Schneider RK, Saez-Rodriguez J, Costa I, Hayat S, Kramann R. Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling. Front Immunol 2022; 13:1066176. [PMID: 36591270 PMCID: PMC9800604 DOI: 10.3389/fimmu.2022.1066176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.
Collapse
Affiliation(s)
- Felix Schreibing
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany,Department of Renal and Hypertensive Disorders, Rheumatological and Immunological Diseases (Medical Clinic II), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Monica T. Hannani
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany,Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Hyojin Kim
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - James S. Nagai
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, Aachen, Germany,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Fabio Ticconi
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, Aachen, Germany,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleanor Fewings
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Tore Bleckwehl
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Natalia Torow
- Institute of Medical Microbiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany,Department of Renal and Hypertensive Disorders, Rheumatological and Immunological Diseases (Medical Clinic II), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jennifer Kranz
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany,Department of Urology and Pediatric Urology, RWTH Aachen University, Aachen, Germany,Department of Urology and Kidney Transplantation, Martin Luther University (Saale), Halle, Germany
| | - Dario Frank
- Department of Medicine, St Antonius Hospital, Eschweiler, Germany
| | - Teresa M. Anslinger
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany,Department of Renal and Hypertensive Disorders, Rheumatological and Immunological Diseases (Medical Clinic II), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Patrick Ziegler
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jürgen Enczmann
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frank Windhofer
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Paul Balfanz
- Department of Cardiology, Angiology and Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Cardiology, Angiology and Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rebekka K. Schneider
- Institute of Cell and Tumor Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany,Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Ivan Costa
- Institute for Computational Genomics, Medical Faculty, RWTH Aachen University, Aachen, Germany,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany,Department of Renal and Hypertensive Disorders, Rheumatological and Immunological Diseases (Medical Clinic II), Medical Faculty, RWTH Aachen University, Aachen, Germany,Department of Internal Medicine, Erasmus Medical Center (MC), Rotterdam, Netherlands,*Correspondence: Rafael Kramann,
| |
Collapse
|