201
|
Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med 2019; 69:93-106. [PMID: 31082399 PMCID: PMC6856719 DOI: 10.1016/j.mam.2019.05.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023]
Abstract
The gastrointestinal tract harbors most of the microbiota associated with humans. In recent years, there has been a surge of interest in assessing the relationships between the gut microbiota and several gut alterations, including colorectal cancer. Changes in the gut microbiota in patients suffering colorectal cancer suggest a possible role of host-microbe interactions in the origin and development of this malignancy and, at the same time, open the door for novel ways of preventing, diagnosing, or treating this disease. In this review we survey current knowledge on the healthy microbiome of the gut and how it is altered in colorectal cancer and other related disease conditions. In describing past studies we will critically assess technical limitations of different approaches and point to existing challenges in microbiome research. We will have a special focus on host-microbiome interaction mechanisms that may be important to explain how dysbiosis can lead to chronic inflammation and drive processes that influence carcinogenesis and tumor progression in colon cancer. Finally, we will discuss the potential of recent developments of novel microbiota-based therapeutics and diagnostic tools for colorectal cancer.
Collapse
Affiliation(s)
- Ester Saus
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Susana Iraola-Guzmán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Jesse R Willis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Anna Brunet-Vega
- Oncology Service, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain.
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
202
|
Fei Z, Lijuan Y, Xi Y, Wei W, Jing Z, Miao D, Shuwen H. Gut microbiome associated with chemotherapy-induced diarrhea from the CapeOX regimen as adjuvant chemotherapy in resected stage III colorectal cancer. Gut Pathog 2019; 11:18. [PMID: 31168325 PMCID: PMC6489188 DOI: 10.1186/s13099-019-0299-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Chemotherapy induced diarrhea (CID) is a common side effect in patients receiving chemotherapy for cancer. The aim of our study was to explore the association between gut microorganisms and CID from the CapeOX regimen in resected stage III colorectal cancer (CRC) patients. Results After screening and identification, 17 stool samples were collected from resected stage III CRC patients undergoing the CapeOX regimen. Bacterial 16S ribosomal RNA genes was sequenced, and a bioinformatics analysis was executed to screen for the distinctive gut microbiome and the functional metabolism associated with CID due to the CapeOX regimen. The gut microbial community richness and community diversity were lower in CID (p < 0.05 vs control group). Klebsiella pneumoniae was the most predominant species (31.22%) among the gut microbiome in CRC patients with CID. There were 75 microorganisms with statistically significant differences at the species level between the CRC patients with and without CID (LDA, linear discriminant analysis score > 2), and there were 23 pathways that the differential microorganisms might be involved in. Conclusions The gut microbial community structure and diversity have changed in CRC patients with CID. It may provide novel insights into the prevention and treatment of CID. Electronic supplementary material The online version of this article (10.1186/s13099-019-0299-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zuo Fei
- 1Department of Gastroenterology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Yin Lijuan
- 2Department of Rheumatology & Immunology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Yang Xi
- 3Department of Intervention and Radiotherapy, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Wu Wei
- 1Department of Gastroenterology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Zhong Jing
- 4Department of Central Laboratory, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Da Miao
- 5Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, 313000 Zhejiang China
| | - Han Shuwen
- 6Department of Medical Oncology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| |
Collapse
|
203
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
204
|
Song SD, Jeraldo P, Chen J, Chia N. Extreme value analysis of gut microbial alterations in colorectal cancer. Phys Rev E 2019; 99:032413. [PMID: 30999532 DOI: 10.1103/physreve.99.032413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 11/07/2022]
Abstract
Gut microbes play a key role in colorectal carcinogenesis, yet reaching a consensus on microbial signatures remains a challenge. This is in part due to a reliance on mean value estimates. We present an extreme value analysis for overcoming these limitations. By characterizing a power-law fit to the relative abundances of microbes, we capture the same microbial signatures as more complex meta-analyses. Importantly, we show that our method is robust to the variations inherent in microbial community profiling and point to future directions for developing sensitive, reliable analytical methods.
Collapse
Affiliation(s)
- S D Song
- Neuroscience Program, Wellesley College, 106 Central Street, Wellesley, Massachusetts 02481, USA
| | - P Jeraldo
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA.,Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - J Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - N Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA.,Department of Surgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| |
Collapse
|
205
|
Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, Gandini S, Serrano D, Tarallo S, Francavilla A, Gallo G, Trompetto M, Ferrero G, Mizutani S, Shiroma H, Shiba S, Shibata T, Yachida S, Yamada T, Wirbel J, Schrotz-King P, Ulrich CM, Brenner H, Arumugam M, Bork P, Zeller G, Cordero F, Dias-Neto E, Setubal JC, Tett A, Pardini B, Rescigno M, Waldron L, Naccarati A, Segata N. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med 2019; 25:667-678. [PMID: 30936548 PMCID: PMC9533319 DOI: 10.1038/s41591-019-0405-7] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023]
Abstract
Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.
Collapse
Affiliation(s)
- Andrew Maltez Thomas
- Department CIBIO, University of Trento, Trento, Italy
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | | | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Chiara Pozzi
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Sonia Tarallo
- Italian Institute for Genomic Medicine, Turin, Italy
| | | | - Gaetano Gallo
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy
| | - Sayaka Mizutani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotsugu Shiroma
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Osaka University, Osaka, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hermann Brenner
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Healthy Sciences, University of Southern Denmark, Odense, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Neurosciences, Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - João Carlos Setubal
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA
| | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Rescigno
- Mucosal Immunology and Microbiota Unit, Humanitas Research Hospital, Milan, Italy
| | - Levi Waldron
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
- Institute for Implementation Science in Population Health, City University of New York, New York, NY, USA
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine, Turin, Italy
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
206
|
Chronic Inflammation as a Link between Periodontitis and Carcinogenesis. Mediators Inflamm 2019; 2019:1029857. [PMID: 31049022 PMCID: PMC6458883 DOI: 10.1155/2019/1029857] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/03/2019] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is characterized by a chronic inflammation produced in response to a disease-associated multispecies bacterial community in the subgingival region. Although the inflammatory processes occur locally in the oral cavity, several studies have determined that inflammatory mediators produced during periodontitis, as well as subgingival species and bacterial components, can disseminate from the oral cavity, contributing therefore, to various extraoral diseases like cancer. Interestingly, carcinogenesis associated with periodontal species has been observed in both the oral cavity and in extra oral sites. In this review, several studies were summarized showing a strong association between orodigestive cancers and poor oral health, presence of periodontitis-associated bacteria, tooth loss, and clinical signs of periodontitis. Proinflammatory pathways were also summarized. Such pathways are activated either by mono- or polymicrobial infections, resulting in an increase in the expression of proinflammatory molecules such as IL-6, IL-8, IL-1β, and TNF-α. In addition, it has been shown that several periodontitis-associated species induce the expression of genes related to cell proliferation, cell cycle, apoptosis, transport, and immune and inflammatory responses. Intriguingly, many of these pathways are linked to carcinogenesis. Among them, the activation of Toll-like receptors (TLRs) and antiapoptotic pathways (such as the PI3K/Akt, JAK/STAT, and MAPK pathways), the reduction of proapoptotic protein expression, the increase in cell migration and invasion, and the enhancement in metastasis are addressed. Considering that periodontitis is a polymicrobial disease, it is likely that mixed species promote carcinogenesis both in the oral cavity and in extra oral tissues and probably—as observed in periodontitis—synergistic and/or antagonistic interactions occur between microbes in the community. To date, a good amount of studies has allowed us to understand how monospecies infections activate pathways involved in tumorigenesis; however, more studies are needed to determine the combined effect of oral species in carcinogenesis.
Collapse
|
207
|
Khamash DF, Mongodin EF, White JR, Voskertchian A, Hittle L, Colantuoni E, Milstone AM. The Association Between the Developing Nasal Microbiota of Hospitalized Neonates and Staphylococcus aureus Colonization. Open Forum Infect Dis 2019; 6:ofz062. [PMID: 30949531 PMCID: PMC6441571 DOI: 10.1093/ofid/ofz062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/08/2019] [Indexed: 11/15/2022] Open
Abstract
Background Hospitalized neonates are at high risk for invasive Staphylococcus aureus infections. S. aureus nasal colonization often precedes infection. The nasal microbiota may preclude or support colonization. We aimed to characterize and compare the nasal microbiota of hospitalized neonates who acquire S. aureus colonization (cases) and those who do not acquire S. aureus (controls). Methods We obtained residual nares samples from hospitalized neonates who were screened weekly for S. aureus nasal colonization and treated with intranasal mupirocin if colonized. Eight cases were matched based on chronologic age and systemic antibiotic exposure to 7 controls. We extracted DNA, sequenced the V3-V4 region of the 16s rRNA gene, and performed taxonomic assignments. The bacterial species richness, relative abundance, and in silico predicted gene content were compared between cases and controls at 7 days before S. aureus acquisition, at the time of acquisition, and 7 days after acquisition and treatment. Results Common commensals including nondiphtheriae corynebacteria were more abundant in the nares of controls and Rothia mucilaginosa was more abundant in cases 7 days after intranasal mupirocin treatment than in cases 7 days before S. aureus acquisition. Controls and treated cases had a higher predicted abundance of genes contributing to the synthesis of certain antimicrobial compounds than in cases before S. aureus acquisition. Conclusions Neonates without S. aureus nasal colonization had a higher abundance of bacterial species that antagonize S. aureus directly or by selecting for beneficial co-colonizers. These differences may inform novel S. aureus infection prevention strategies in high-risk infants.
Collapse
Affiliation(s)
- Dina F Khamash
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Annie Voskertchian
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren Hittle
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth Colantuoni
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Aaron M Milstone
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
208
|
Tomkovich S, Dejea CM, Winglee K, Drewes JL, Chung L, Housseau F, Pope JL, Gauthier J, Sun X, Mühlbauer M, Liu X, Fathi P, Anders RA, Besharati S, Perez-Chanona E, Yang Y, Ding H, Wu X, Wu S, White JR, Gharaibeh RZ, Fodor AA, Wang H, Pardoll DM, Jobin C, Sears CL. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J Clin Invest 2019; 129:1699-1712. [PMID: 30855275 PMCID: PMC6436866 DOI: 10.1172/jci124196] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mucus-invasive bacterial biofilms are identified on the colon mucosa of approximately 50% of colorectal cancer (CRC) patients and approximately 13% of healthy subjects. Here, we test the hypothesis that human colon biofilms comprise microbial communities that are carcinogenic in CRC mouse models. Homogenates of human biofilm-positive colon mucosa were prepared from tumor patients (tumor and paired normal tissues from surgical resections) or biofilm-positive biopsies from healthy individuals undergoing screening colonoscopy; homogenates of biofilm-negative colon biopsies from healthy individuals undergoing screening colonoscopy served as controls. After 12 weeks, biofilm-positive, but not biofilm-negative, human colon mucosal homogenates induced colon tumor formation in 3 mouse colon tumor models (germ-free ApcMinΔ850/+;Il10-/- or ApcMinΔ850/+ and specific pathogen-free ApcMinΔ716/+ mice). Remarkably, biofilm-positive communities from healthy colonoscopy biopsies induced colon inflammation and tumors similarly to biofilm-positive tumor tissues. By 1 week, biofilm-positive human tumor homogenates, but not healthy biopsies, displayed consistent bacterial mucus invasion and biofilm formation in mouse colons. 16S rRNA gene sequencing and RNA-Seq analyses identified compositional and functional microbiota differences between mice colonized with biofilm-positive and biofilm-negative communities. These results suggest human colon mucosal biofilms, whether from tumor hosts or healthy individuals undergoing screening colonoscopy, are carcinogenic in murine models of CRC.
Collapse
Affiliation(s)
- Sarah Tomkovich
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christine M. Dejea
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Julia L. Drewes
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Liam Chung
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Franck Housseau
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Jillian L. Pope
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Josee Gauthier
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Xiaolun Sun
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marcus Mühlbauer
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Xiuli Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Payam Fathi
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sepideh Besharati
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hua Ding
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Xinqun Wu
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shaoguang Wu
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Hao Wang
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Drew M. Pardoll
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, USA
| | - Cynthia L. Sears
- Bloomberg-Kimmel Institute for Immunotherapy, Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
209
|
Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 2019; 11:11. [PMID: 30803449 PMCID: PMC6388476 DOI: 10.1186/s13073-019-0621-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the number of studies investigating the impact of the gut microbiome in colorectal cancer (CRC) has risen sharply. As a result, we now know that various microbes (and microbial communities) are found more frequently in the stool and mucosa of individuals with CRC than healthy controls, including in the primary tumors themselves, and even in distant metastases. We also know that these microbes induce tumors in various mouse models, but we know little about how they impact colon epithelial cells (CECs) directly, or about how these interactions might lead to modifications at the genetic and epigenetic levels that trigger and propagate tumor growth. Rates of CRC are increasing in younger individuals, and CRC remains the second most frequent cause of cancer-related deaths globally. Hence, a more in-depth understanding of the role that gut microbes play in CRC is needed. Here, we review recent advances in understanding the impact of gut microbes on the genome and epigenome of CECs, as it relates to CRC. Overall, numerous studies in the past few years have definitively shown that gut microbes exert distinct impacts on DNA damage, DNA methylation, chromatin structure and non-coding RNA expression in CECs. Some of the genes and pathways that are altered by gut microbes relate to CRC development, particularly those involved in cell proliferation and WNT signaling. We need to implement more standardized analysis strategies, collate data from multiple studies, and utilize CRC mouse models to better assess these effects, understand their functional relevance, and leverage this information to improve patient care.
Collapse
Affiliation(s)
- Jawara Allen
- Department of Medicine, Johns Hopkins University School of Medicine, Orleans Street, Baltimore, MD, 21231, USA
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Orleans Street, Baltimore, MD, 21231, USA. .,Bloomberg-Kimmel Institute for Immunotherapy and Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, North Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
210
|
Megat Mohd Azlan PIH, Chin SF, Low TY, Neoh HM, Jamal R. Analyzing the Secretome of Gut Microbiota as the Next Strategy For Early Detection of Colorectal Cancer. Proteomics 2019; 19:e1800176. [PMID: 30557447 DOI: 10.1002/pmic.201800176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/02/2018] [Indexed: 12/20/2022]
Abstract
Dysbiosis of gut microbiome can contribute to inflammation, and subsequently initiation and progression of colorectal cancer (CRC). Throughout these stages, various proteins and metabolites are secreted to the external environment by microorganisms or the hosts themselves. Studying these proteins may help enhance our understanding of the host-microorganism relationship or they may even serve as useful biomarkers for CRC. However, secretomic studies of gut microbiome of CRC patients, until now, are scarcely performed. In this review article, the focus is on the roles of gut microbiome in CRC, the current findings on CRC secretome are highlighted, and the emerging challenges and strategies to drive forward this area of research are addressed.
Collapse
Affiliation(s)
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
211
|
Buret AG, Motta JP, Allain T, Ferraz J, Wallace JL. Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron? J Biomed Sci 2019; 26:1. [PMID: 30602371 PMCID: PMC6317250 DOI: 10.1186/s12929-018-0495-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota interacting with an intact mucosal surface are key to the maintenance of homeostasis and health. This review discusses the current state of knowledge of the biofilm mode of growth of these microbiota communities, and how in turn their disruptions may cause disease. Beyond alterations of relative microbial abundance and diversity, the aim of the review is to focus on the disruptions of the microbiota biofilm structure and function, the dispersion of commensal bacteria, and the mechanisms whereby these dispersed commensals may become pathobionts. Recent findings have linked iron acquisition to the expression of virulence factors in gut commensals that have become pathobionts. Causal studies are emerging, and mechanisms common to enteropathogen-induced disruptions, as well as those reported for Inflammatory Bowel Disease and colo-rectal cancer are used as examples to illustrate the great translational potential of such research. These new observations shed new light on our attempts to develop new therapies that are able to protect and restore gut microbiota homeostasis in the many disease conditions that have been linked to microbiota dysbiosis.
Collapse
Affiliation(s)
- Andre Gerald Buret
- Departments of Biological Sciences, and Pharmacology and Therapeutics, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.
| | - Jean-Paul Motta
- Departments of Biological Sciences, and Pharmacology and Therapeutics, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.,Institute of Digestive Health Research, INSERM UMR1220, Université Toulouse Paul Sabatier, Toulouse, France
| | - Thibault Allain
- Departments of Biological Sciences, and Pharmacology and Therapeutics, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Jose Ferraz
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, T2N 1N4, Canada
| | - John Lawrence Wallace
- Departments of Biological Sciences, and Pharmacology and Therapeutics, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| |
Collapse
|
212
|
Metabolomics and 16S rRNA sequencing of human colorectal cancers and adjacent mucosa. PLoS One 2018; 13:e0208584. [PMID: 30576312 PMCID: PMC6303059 DOI: 10.1371/journal.pone.0208584] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is ranked the third most common cancer in human worldwide. However, the exact mechanisms of CRC are not well established. Furthermore, there may be differences between mechanisms of CRC in the Asian and in the Western populations. In the present study, we utilized a liquid chromatography-mass spectrometry (LC-MS) metabolomic approach supported by the 16S rRNA next-generation sequencing to investigate the functional and taxonomical differences between paired tumor and unaffected (normal) surgical biopsy tissues from 17 Malaysian patients. Metabolomic differences associated with steroid biosynthesis, terpenoid biosynthesis and bile metabolism could be attributed to microbiome differences between normal and tumor sites. The relative abundances of Anaerotruncus, Intestinimonas and Oscillibacter displayed significant relationships with both steroid biosynthesis and terpenoid and triterpenoid biosynthesis pathways. Metabolites involved in serotonergic synapse/ tryptophan metabolism (Serotonin and 5-Hydroxy-3-indoleacetic acid [5-HIAA]) were only detected in normal tissue samples. On the other hand, S-Adenosyl-L-homocysteine (SAH), a metabolite involves in methionine metabolism and methylation, was frequently increased in tumor relative to normal tissues. In conclusion, this study suggests that local microbiome dysbiosis may contribute to functional changes at the cancer sites. Results from the current study also contributed to the list of metabolites that are found to differ between normal and tumor sites in CRC and supported our quest for understanding the mechanisms of carcinogenesis.
Collapse
|
213
|
Abstract
Although the gut microbiome has been linked to colorectal cancer (CRC) development, associations of microbial taxa with CRC status are often inconsistent across studies. We have recently shown that tumor genomics, a factor that is rarely incorporated in analyses of the CRC microbiome, has a strong effect on the composition of the microbiota. Here, we discuss these results in the wider context of studies characterizing interaction between host genetics and the microbiome, and describe the implications of our findings for understanding the role of the microbiome in CRC.
Collapse
Affiliation(s)
- Michael B. Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA,CONTACT Ran Blekhman Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| |
Collapse
|
214
|
Gut Microbiota, Fusobacteria, and Colorectal Cancer. Diseases 2018; 6:diseases6040109. [PMID: 30544946 PMCID: PMC6313651 DOI: 10.3390/diseases6040109] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/09/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota has emerged as an environmental contributor to colorectal cancer (CRC) in both animal models and human studies. It is now generally accepted that bacteria are ubiquitous colonizers of all exposed human body surfaces, including the entire alimentary tract (5). Recently, the concept that a normal bacterial microbiota is essential for the development of inflammation-induced carcinoma has emerged from studies of well-known colonic bacterial microbiota. This review explores the evidence for a role of fusobacteria, an anaerobic gram-negative bacterium that has repeatedly been detected at colorectal tumor sites in higher abundance than surrounding histologically normal tissue. Mechanistic studies provide insight on the interplay between fusobacteria, other gut microbiota, barrier functions, and host responses. Studies have shown that fusobacteria activate host inflammatory responses designed to protect against pathogens that promote tumor growth. We discuss how future research identifying the pathophysiology underlying fusobacteria colon colonization during colorectal cancer may lead to new therapeutic targets for cancer. Furthermore, disease-protective strategies suppressing tumor development by targeting the local tumor environment via bacteria represent another exciting avenue for researchers and are highlighted in this review.
Collapse
|
215
|
Flavonoids and Colorectal Cancer Prevention. Antioxidants (Basel) 2018; 7:antiox7120187. [PMID: 30544686 PMCID: PMC6316869 DOI: 10.3390/antiox7120187] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/03/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer, but despite advances in treatment, it remains the second most common cause of cancer-related mortality. Prevention may, therefore, be a key strategy in reducing colorectal cancer deaths. Given reports of an inverse association between fruit and vegetable consumption with colorectal cancer risk, there has been significant interest in understanding the metabolism and bioactivity of flavonoids, which are highly abundant in fruits and vegetables and account for their pigmentation. In this review, we discuss host and microbiota-mediated metabolism of flavonoids and the potential mechanisms by which flavonoids can exert protective effects against colon tumorigenesis, including regulation of signaling pathways involved in apoptosis, cellular proliferation, and inflammation and modulation of the gut microbiome.
Collapse
|
216
|
Hurtado CG, Wan F, Housseau F, Sears CL. Roles for Interleukin 17 and Adaptive Immunity in Pathogenesis of Colorectal Cancer. Gastroenterology 2018; 155:1706-1715. [PMID: 30218667 PMCID: PMC6441974 DOI: 10.1053/j.gastro.2018.08.056] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Sporadic colorectal cancer is one of the most common and lethal cancers worldwide. The locations and functions of immune cells in the colorectal tumor microenvironment are complex and heterogeneous. T-helper (Th)1 cell-mediated responses against established colorectal tumors are associated with better outcomes of patients (time of relapse-free or overall survival), whereas Th17 cell-mediated responses and production of interleukin 17A (IL17A) have been associated with worse outcomes of patients. Tumors that develop in mouse models of colorectal cancer are rarely invasive and differ in many ways from human colorectal tumors. However, these mice have been used to study the mechanisms by which Th17 cells and IL17A promote colorectal tumor initiation and growth, which appear to involve their direct effects on colon epithelial cells. Specific members of the colonic microbiota may promote IL17A production and IL17A-producing cell functions in the colonic mucosa to promote carcinogenesis. Increasing our understanding of the interactions between the colonic microbiota and the mucosal immune response, the roles of Th17 cells and IL17 in these interactions, and how these processes are altered during colon carcinogenesis, could lead to new strategies for preventing or treating colorectal cancer.
Collapse
Affiliation(s)
- Christopher G Hurtado
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Franck Housseau
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland; Blomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Cynthia L Sears
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland; Blomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
217
|
Liss MA, White JR, Goros M, Gelfond J, Leach R, Johnson-Pais T, Lai Z, Rourke E, Basler J, Ankerst D, Shah DP. Metabolic Biosynthesis Pathways Identified from Fecal Microbiome Associated with Prostate Cancer. Eur Urol 2018; 74:575-582. [PMID: 30007819 PMCID: PMC6716160 DOI: 10.1016/j.eururo.2018.06.033] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The fecal microbiome is associated with prostate cancer risk factors (obesity, inflammation) and can metabolize and produce various products that may influence cancer but have yet to be defined in prostate cancer. OBJECTIVE To investigate gut bacterial diversity, identify specific metabolic pathways associated with disease, and develop a microbiome risk profile for prostate cancer. DESIGN, SETTING, AND PARTICIPANTS After prospective collection of 133 rectal swab samples 2 wk before the transrectal prostate biopsy, we perform 16S rRNA amplicon sequencing on 105 samples (64 with cancer, 41 without cancer). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was applied to infer functional categories associated with taxonomic composition. The p values were adjusted using the false discovery rate. The α- and β-diversity analyses were performed using QIIME. The Mann-Whitney U test was employed to evaluate the statistical significance of β-diversity distances within and between groups of interest, and least absolute shrinkage and selection operator (LASSO) regression analysis was used to determine pathway significance. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The detection of prostate cancer on transrectal prostate needle biopsy and 16s microbiome profile. RESULTS AND LIMITATIONS We identified significant associations between total community composition and cancer/non-cancer status (Bray-Curtis distance metric, p<0.01). We identified significant differences in enrichments of Bacteroides and Streptococcus species in cancer (all p<0.04). Folate (LDA 3.8) and arginine (LDA 4.1) were the most significantly altered pathways. We formed a novel microbiome-derived risk factor for prostate cancer based on 10 aberrant metabolic pathways (area under curve=0.64, p=0.02). CONCLUSIONS Microbiome analyses on men undergoing prostate biopsy noted mostly similar bacterial species diversity among men diagnosed with and without prostate cancer. The microbiome may have subtle influences on prostate cancer but are likely patient-specific and would require paired analysis and precise manipulation, such as improvement of natural bacterial folate production. PATIENT SUMMARY Microbiome evaluation may provide patients with personalized data regarding the presence or absence of particular bacteria that have metabolic functions and implications regarding prostate cancer risk. The study provides a basis to investigate the manipulation of aberrant microbiomes to reduce prostate cancer risk.
Collapse
Affiliation(s)
- Michael A Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veterans Healthcare System, San Antonio, TX, USA.
| | | | - Martin Goros
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jonathan Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Robin Leach
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teresa Johnson-Pais
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
| | - Elizabeth Rourke
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Joseph Basler
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Donna Ankerst
- Department of Urology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dimpy P Shah
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
218
|
Hale VL, Jeraldo P, Chen J, Mundy M, Yao J, Priya S, Keeney G, Lyke K, Ridlon J, White BA, French AJ, Thibodeau SN, Diener C, Resendis-Antonio O, Gransee J, Dutta T, Petterson XM, Sung J, Blekhman R, Boardman L, Larson D, Nelson H, Chia N. Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers. Genome Med 2018; 10:78. [PMID: 30376889 PMCID: PMC6208080 DOI: 10.1186/s13073-018-0586-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/08/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Links between colorectal cancer (CRC) and the gut microbiome have been established, but the specific microbial species and their role in carcinogenesis remain an active area of inquiry. Our understanding would be enhanced by better accounting for tumor subtype, microbial community interactions, metabolism, and ecology. METHODS We collected paired colon tumor and normal-adjacent tissue and mucosa samples from 83 individuals who underwent partial or total colectomies for CRC. Mismatch repair (MMR) status was determined in each tumor sample and classified as either deficient MMR (dMMR) or proficient MMR (pMMR) tumor subtypes. Samples underwent 16S rRNA gene sequencing and a subset of samples from 50 individuals were submitted for targeted metabolomic analysis to quantify amino acids and short-chain fatty acids. A PERMANOVA was used to identify the biological variables that explained variance within the microbial communities. dMMR and pMMR microbial communities were then analyzed separately using a generalized linear mixed effects model that accounted for MMR status, sample location, intra-subject variability, and read depth. Genome-scale metabolic models were then used to generate microbial interaction networks for dMMR and pMMR microbial communities. We assessed global network properties as well as the metabolic influence of each microbe within the dMMR and pMMR networks. RESULTS We demonstrate distinct roles for microbes in dMMR and pMMR CRC. Bacteroides fragilis and sulfidogenic Fusobacterium nucleatum were significantly enriched in dMMR CRC, but not pMMR CRC. These findings were further supported by metabolic modeling and metabolomics indicating suppression of B. fragilis in pMMR CRC and increased production of amino acid proxies for hydrogen sulfide in dMMR CRC. CONCLUSIONS Integrating tumor biology and microbial ecology highlighted distinct microbial, metabolic, and ecological properties unique to dMMR and pMMR CRC. This approach could critically improve our ability to define, predict, prevent, and treat colorectal cancers.
Collapse
Affiliation(s)
- Vanessa L Hale
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Patricio Jeraldo
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jun Chen
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Michael Mundy
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Janet Yao
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sambhawa Priya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Gary Keeney
- Division of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kelly Lyke
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jason Ridlon
- Carl R. Woese Institute for Genomic Biology, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Bryan A White
- Carl R. Woese Institute for Genomic Biology, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Amy J French
- Division of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Stephen N Thibodeau
- Division of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Christian Diener
- Human Systems Biology Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
- Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| | - Jaime Gransee
- Mayo Clinic Metabolomics Core Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Tumpa Dutta
- Mayo Clinic Metabolomics Core Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Xuan-Mai Petterson
- Mayo Clinic Metabolomics Core Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Lisa Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - David Larson
- Division of Colon and Rectal Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Heidi Nelson
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Colon and Rectal Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
219
|
Jarvis KG, Daquigan N, White JR, Morin PM, Howard LM, Manetas JE, Ottesen A, Ramachandran P, Grim CJ. Microbiomes Associated With Foods From Plant and Animal Sources. Front Microbiol 2018; 9:2540. [PMID: 30405589 PMCID: PMC6206262 DOI: 10.3389/fmicb.2018.02540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022] Open
Abstract
Food microbiome composition impacts food safety and quality. The resident microbiota of many food products is influenced throughout the farm to fork continuum by farming practices, environmental factors, and food manufacturing and processing procedures. Currently, most food microbiology studies rely on culture-dependent methods to identify bacteria. However, advances in high-throughput DNA sequencing technologies have enabled the use of targeted 16S rRNA gene sequencing to profile complex microbial communities including non-culturable members. In this study we used 16S rRNA gene sequencing to assess the microbiome profiles of plant and animal derived foods collected at two points in the manufacturing process; post-harvest/pre-retail (cilantro) and retail (cilantro, masala spice mixes, cucumbers, mung bean sprouts, and smoked salmon). Our findings revealed microbiome profiles, unique to each food, that were influenced by the moisture content (dry spices, fresh produce), packaging methods, such as modified atmospheric packaging (mung bean sprouts and smoked salmon), and manufacturing stage (cilantro prior to retail and at retail). The masala spice mixes and cucumbers were comprised mainly of Proteobacteria, Firmicutes, and Actinobacteria. Cilantro microbiome profiles consisted mainly of Proteobacteria, followed by Bacteroidetes, and low levels of Firmicutes and Actinobacteria. The two brands of mung bean sprouts and the three smoked salmon samples differed from one another in their microbiome composition, each predominated by either by Firmicutes or Proteobacteria. These data demonstrate diverse and highly variable resident microbial communities across food products, which is informative in the context of food safety, and spoilage where indigenous bacteria could hamper pathogen detection, and limit shelf life.
Collapse
Affiliation(s)
- Karen G. Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Ninalynn Daquigan
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Paul M. Morin
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Laura M. Howard
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Julia E. Manetas
- Office of Regulatory Affairs, Northeast Food and Feed Laboratory, U.S. Food and Drug Administration, Jamaica, NY, United States
| | - Andrea Ottesen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
220
|
Godoy-Vitorino F, Romaguera J, Zhao C, Vargas-Robles D, Ortiz-Morales G, Vázquez-Sánchez F, Sanchez-Vázquez M, de la Garza-Casillas M, Martinez-Ferrer M, White JR, Bittinger K, Dominguez-Bello MG, Blaser MJ. Cervicovaginal Fungi and Bacteria Associated With Cervical Intraepithelial Neoplasia and High-Risk Human Papillomavirus Infections in a Hispanic Population. Front Microbiol 2018; 9:2533. [PMID: 30405584 PMCID: PMC6208322 DOI: 10.3389/fmicb.2018.02533] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/04/2018] [Indexed: 01/28/2023] Open
Abstract
The human cervicovaginal microbiota resides at an interface between the host and the environment and may affect susceptibility to disease. Puerto Rican women have high human papillomavirus (HPV) infection and cervical cancer rates. We hypothesized that the population structure of the cervicovaginal bacterial and fungal biota changed with cervical squamous intraepithelial lesions and HPV infections. DNA was extracted from cervix, introitus, and anal sites of 62 patients attending high-risk San Juan clinics. The 16S rRNA V4 region and ITS-2 fungal regions were amplified and sequenced using Illumina technology. HPV genotyping was determined by reverse hybridization with the HPV SPF10-LiPA25 kit. HPV prevalence was 84% of which ∼44% subjects were infected with high-risk HPV, ∼35% were co-infected with as many as 9 HPV types and ∼5% were infected with exclusively low-risk HPV types. HPV diversity did not change with cervical dysplasia. Cervical bacteria were more diverse in patients with CIN3 pre-cancerous lesions. We found enrichment of Atopobium vaginae and Gardnerella vaginalis in patients with CIN3 lesions. We found no significant bacterial biomarkers associated with HPV infections. Fungal diversity was significantly higher in cervical samples with high-risk HPV and introitus samples of patients with Atypical Squamous Cells of Undetermined Significance (ASCUS). Fungal biomarker signatures for vagina and cervix include Sporidiobolaceae and Sacharomyces for ASCUS, and Malassezia for high-risk HPV infections. Our combined data suggests that specific cervicovaginal bacterial and fungal populations are related to the host epithelial microenvironment, and could play roles in cervical dysplasia.
Collapse
Affiliation(s)
- Filipa Godoy-Vitorino
- Microbiome Lab, Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Josefina Romaguera
- Department of Obstetrics and Gynecology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Daniela Vargas-Robles
- Department of Biology, University of Puerto Rico, San Juan, PR, Puerto Rico
- Servicio Autónomo Centro Amazónico de Investigación y Control de Enfermedades Tropicales Simón Bolívar, MPPS, Puerto Ayacucho, Venezuela
| | - Gilmary Ortiz-Morales
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Frances Vázquez-Sánchez
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | | | - Manuel de la Garza-Casillas
- Microbial Ecology and Genomics Laboratory, Department of Natural Sciences, Inter American University of Puerto Rico, San Juan, PR, United States
| | - Magaly Martinez-Ferrer
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Pharmaceutical Sciences, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | | | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology and of Anthropology, Rutgers University, New Brunswick, NJ, United States
| | - Martin J. Blaser
- Department of Medicine and Department of Microbiology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
221
|
Abstract
Purpose of Review The trillions of microbes collectively referred to as the human microbiota, inhabit the human body and establish a beneficial relationship with the host. It is clear however that dysbiosis impacting microbial diversity in the gut, may lead to development of inflammatory and malignant gastrointestinal diseases including colorectal cancer (CRC). We provide a literature review of the recent influx of information related to the alterations in gut microbiota composition that influences CRC incidence and progression. Recent Findings A growing body of evidence implicates altered gut microbiota in the development of CRC. Profiles of CRC associated microbiota have been shown to differ from those in healthy subjects and bacterial phylotypes vary depending on the primary tumor location. The compositional variation in the microbial profile is not restricted to cancerous tissue however and is different between cancers of the proximal and distal colons, respectively. More recently, studies have shed light on the "driver-passenger" model for CRC wherein, driver bacteria cause inflammation, increased cell proliferation and production of genotoxic substances to contribute towards mutational acquisition associated with adenoma-carcinoma sequence. These changes facilitate gradual replacement of driver bacteria by passengers that either promote or suppress tumor progression. Significant advances have also been made in associating individual bacterial species to consensus molecular subtypes (CMS) of CRC and this remarkable development is expected to galvanize scientific community into advancing therapeutic strategies for CRC. Summary Increasing evidence suggests a link between the intestinal microbiota and CRC development although the mechanisms through which the bacterial constituents of the microbiome contribute towards CRC are complex and yet to be fully fathomed. Thus, more exhaustive and mechanistic studies are needed to identify key interactions amongst diet, microbial community and metabolites that help facilitate the adenoma-carcinoma sequence evolution in CRC. It is expected that development of therapeutics based on microbial association with CMS will likely facilitate the translation of molecular subtypes into the clinic for CRCs and potentially other malignancies.
Collapse
|
222
|
Cordero OJ, Varela-Calviño R. Oral hygiene might prevent cancer. Heliyon 2018; 4:e00879. [PMID: 30417145 PMCID: PMC6218413 DOI: 10.1016/j.heliyon.2018.e00879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Many evidences support that species from the Human Oral Microbiome Database such as Fusobacterium nucleatum or Bacteroides, linked previously to periodontitis and appendicitis, play a role in colorectal cancer (CRC), including metastasis. These typically oral species are invasive anaerobes that form biofilms in their virulent state. Aspirin (a NSAID) has been recently included into routine CRC prevention rationale. NSAIDs can prevent the growth of neoplastic lesions by inhibiting COX enzymes and another set of recently identified COX-independent targets, which include the WNT, AMPK and MTOR signaling pathways, the crosstalk between nucleoli and NF-κB transcriptional activity in apoptosis, and the biochemistry of platelets. These are signaling pathways related to tumor-promoting inflammation. In this process, pathogens or simple deregulation of the microbiota play an important role in CRC. Aspirin and other NSAIDs are efficient inhibitors of biofilm formation and able to control periodontitis development preventing inflammation related to the microbiota of the gingival tissue, so its seems plausible to include this pathway in the mechanisms that aspirin uses to prevent CRC. We propose arguments suggesting that current oral hygiene methods and other future developments against periodontitis might prevent CRC and probably other cancers, alone or in combination with other options; and that the multidisciplinary studies needed to prove this hypothesis might be relevant for cancer prevention.
Collapse
Affiliation(s)
- Oscar J. Cordero
- University of Santiago de Compostela, Department of Biochemistry and Molecular Biology, Campus Vida, 15782 Santiago de Compostela, Spain
| | | |
Collapse
|
223
|
Tytgat HLP, Nobrega FL, van der Oost J, de Vos WM. Bowel Biofilms: Tipping Points between a Healthy and Compromised Gut? Trends Microbiol 2018; 27:17-25. [PMID: 30219265 DOI: 10.1016/j.tim.2018.08.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Bacterial communities are known to impact human health and disease. Mixed species biofilms, mostly pathogenic in nature, have been observed in dental and gastric infections as well as in intestinal diseases, chronic gut wounds and colon cancer. Apart from the appendix, the presence of thick polymicrobial biofilms in the healthy gut mucosa is still debated. Polymicrobial biofilms containing potential pathogens appear to be an early-warning signal of developing disease and can be regarded as a tipping point between a healthy and a diseased state of the gut mucosa. Key biofilm-forming pathogens and associated molecules hold promise as biomarkers. Criteria to distinguish microcolonies from biofilms are crucial to provide clarity when reporting biofilm-related phenomena in health and disease in the gut.
Collapse
Affiliation(s)
- Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands; Institute of Microbiology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Franklin L Nobrega
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands; Kavli Institute of Nanoscience and Department of BioNanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands; Faculty of Medicine, Immunobiology Research Program, Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki, Finland.
| |
Collapse
|
224
|
Tilg H, Adolph TE, Gerner RR, Moschen AR. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018; 33:954-964. [PMID: 29657127 DOI: 10.1016/j.ccell.2018.03.004] [Citation(s) in RCA: 538] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Experimental evidence from the past years highlights a key role for the intestinal microbiota in inflammatory and malignant gastrointestinal diseases. Diet exhibits a strong impact on microbial composition and provides risk for developing colorectal carcinoma (CRC). Large metagenomic studies in human CRC associated microbiome signatures with the colorectal adenoma-carcinoma sequence, suggesting a fundamental role of the intestinal microbiota in the evolution of gastrointestinal malignancy. Basic science established a critical function for the intestinal microbiota in promoting tumorigenesis. Further studies are needed to decipher the mechanisms of tumor promotion and microbial co-evolution in CRC, which may be exploited therapeutically in the future.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
225
|
Wong SH, Kwong TNY, Wu CY, Yu J. Clinical applications of gut microbiota in cancer biology. Semin Cancer Biol 2018; 55:28-36. [PMID: 29782923 DOI: 10.1016/j.semcancer.2018.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
The involvement of microorganisms in cancer has been increasing recognized. Collectively, microorganisms have been estimated to account for ∼20% of all cancers worldwide. Recent advances in metagenomics and bioinformatics have provided new insights on the microbial ecology in different tumors, pinpointing the roles of microorganisms in cancer formation, development and response to treatments. Furthermore, studies have emphasized the importance of host-microbial and inter-microbial interactions in the cancer microbiota. These studies have not only revolutionized our understanding of cancer biology, but also opened up new opportunities for cancer prevention, diagnosis, prognostication and treatment. This review article aims to summarize the microbiota in various cancers and their treatments, and explore clinical applications for such relevance.
Collapse
Affiliation(s)
- Sunny H Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Thomas N Y Kwong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Chun-Ying Wu
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; College of Public Health and Graduate Institute of Clinical Medicine, China Medical University, Taichung, Taiwan.
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
226
|
Microbial networking in cancer: when two toxins collide. Br J Cancer 2018; 118:1407-1409. [PMID: 29773837 PMCID: PMC5988818 DOI: 10.1038/s41416-018-0101-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/19/2023] Open
Abstract
A recent study by Dejea et al. has demonstrated that two enterotoxigenic bacteria frequently associated with sporadic colorectal cancer, Bacteroides fragilis and pks+ Escherichia coli, are found together in biofilms on tissue from patients with familial adenomatous polyposis. In preclinical mouse models, these two bacteria and their corresponding toxins work synergistically to promote colon cancer.
Collapse
|
227
|
Zhang S, Cai S, Ma Y. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions. J Cancer 2018; 9:1652-1659. [PMID: 29760804 PMCID: PMC5950595 DOI: 10.7150/jca.24048] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
The initiation and progression of colorectal cancer (CRC) involves genetic and epigenetic alterations influenced by dietary and environmental factors. Increasing evidence has linked the intestinal microbiota and colorectal cancer. More recently, Fusobacterium nucleatum (Fn), an opportunistic commensal anaerobe in the oral cavity, has been associated with CRC. Several research teams have reported an overabundance of Fn in human CRC and have elucidated the possible mechanisms by which Fn is involved in colorectal carcinogenesis in vitro and in mouse models. However, the mechanisms by which Fn promotes colorectal carcinogenesis remain unclear. To provide new perspectives for early diagnosis, the identification of high risk populations and treatment for colorectal cancer, this review will summarize the relative research progresses regarding the relationship between Fn and colorectal cancer.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
228
|
Sears CL. The who, where and how of fusobacteria and colon cancer. eLife 2018; 7:e28434. [PMID: 29533185 PMCID: PMC5849411 DOI: 10.7554/elife.28434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 01/22/2023] Open
Abstract
The association between the bacterium Fusobacterium nucleatum and human colon cancer is more complicated than it first appeared.
Collapse
Affiliation(s)
- Cynthia L Sears
- Bloomberg-Kimmel Institute for ImmunotherapyJohns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
229
|
Yang Y, Jobin C. Colorectal cancer: Hand-in-hand - colorectal cancer metastasizes with microorganisms. Nat Rev Gastroenterol Hepatol 2018; 15:133-134. [PMID: 29339812 DOI: 10.1038/nrgastro.2017.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ye Yang
- Department of Medicine, University of Florida, 2033 Mowry Road, Gainesville, Florida 32611, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, 2033 Mowry Road, Gainesville, Florida 32611, USA.,Department of Infectious Diseases and Immunology and the Department of Anatomy and Cell Biology at the University of Florida
| |
Collapse
|