201
|
Ward AJ, Norrbom M, Chun S, Bennett CF, Rigo F. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res 2014; 42:5871-9. [PMID: 24589581 PMCID: PMC4027159 DOI: 10.1093/nar/gku184] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are synthetic oligonucleotides that alter expression of disease-associated transcripts via Watson-Crick hybridization. ASOs that function through RNase H or the RNA-induced silencing complex (RISC) result in enzymatic degradation of target RNA. ASOs designed to sterically block access of proteins to the RNA modulate mRNA metabolism but do not typically cause degradation. Here, we rationally design steric blocking ASOs to promote mRNA reduction and characterize the terminating mechanism. Transfection of ASOs complementary to constitutive exons in STAT3 and Sod1 results in greater than 70% reduction of mRNA and protein. The ASOs promote aberrant exon skipping and generation of premature termination codon (PTC)-containing mRNAs. We inhibit the nonsense-mediated mRNA decay (NMD) pathway and show that the PTC-containing mRNAs are recognized by the UPF1 ATPase, cleaved by the SMG6 endonuclease and degraded by the XRN1 cytoplasmic exonuclease. NMD surveillance, however, does not entirely explain the mechanism of decreased STAT3 expression. In addition to exon skipping, ASO treatment causes intron retention and reduction of chromatin-associated STAT3 mRNA. The application of steric blocking ASOs to promote RNA degradation allows one to explore more nucleotide modifications than tolerated by RNase H or RISC-dependent ASOs, with the goal of improving ASO drug properties.
Collapse
Affiliation(s)
- Amanda J Ward
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Michaela Norrbom
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Seung Chun
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - C Frank Bennett
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Frank Rigo
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| |
Collapse
|
202
|
Hashim HZ, Che Abdullah ST, Wan Sulaiman WA, Hoo FK, Basri H. Hunting for a cure: The therapeutic potential of gene therapy in Duchenne muscular dystrophy. Tzu Chi Med J 2014. [DOI: 10.1016/j.tcmj.2014.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
203
|
Gong Q, Stump MR, Zhou Z. Position of premature termination codons determines susceptibility of hERG mutations to nonsense-mediated mRNA decay in long QT syndrome. Gene 2014; 539:190-7. [PMID: 24530480 DOI: 10.1016/j.gene.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/01/2014] [Accepted: 02/10/2014] [Indexed: 01/26/2023]
Abstract
The degradation of human ether-a-go-go-related gene (hERG, KCNH2) transcripts containing premature termination codon (PTC) mutations by nonsense-mediated mRNA decay (NMD) is an important mechanism of long QT syndrome type 2 (LQT2). The mechanisms governing the recognition of PTC-containing hERG transcripts as NMD substrates have not been established. We used a minigene system to study two frameshift mutations, R1032Gfs 25 and D1037Rfs 82. R1032Gfs 25 introduces a PTC in exon 14, whereas D1037Rfs 82 causes a PTC in the last exon (exon 15). We showed that R1032Gfs 25, but not D1037Rfs 82, reduced the level of mutant mRNA compared to the wild-type minigene in an NMD-dependent manner. The deletion of intron 14 prevented degradation of R1032Gfs 25 mRNA indicating that a downstream intron is required for NMD. The recognition and elimination of PTC-containing transcripts by NMD required that the mutation be positioned >54-60 nt upstream of the 3'-most exon-exon junction. Finally, we used a full-length hERG splicing-competent construct to show that inhibition of downstream intron splicing by antisense morpholino oligonucleotides inhibited NMD and rescued the functional expression of a third LQT2 mutation, Y1078. The present study defines the positional requirements for the susceptibility of LQT2 mutations to NMD and posits that the majority of reported LQT2 nonsense and frameshift mutations are potential targets of NMD.
Collapse
Affiliation(s)
- Qiuming Gong
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew R Stump
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Zhengfeng Zhou
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
204
|
Yu Y, Yu Y, Chen P, Li J, Zhu Y, Zhai Y, Yao K. A novel MIP gene mutation associated with autosomal dominant congenital cataracts in a Chinese family. BMC MEDICAL GENETICS 2014; 15:6. [PMID: 24405844 PMCID: PMC3890554 DOI: 10.1186/1471-2350-15-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND The major intrinsic protein gene (MIP), also known as MIP26 or AQP0, is a member of the water-transporting aquaporin family, which plays a critical role in the maintenance of lifelong lens transparency. To date, several mutations in MIP (OMIM 154050) have been linked to hereditary cataracts in humans. However, more pathogenic mutations remain to be identified. In this study, we describe a four-generation Chinese family with a nonsense mutation in MIP associated with an autosomal dominant congenital cataract (ADCC), thus expanding the mutational spectrum of this gene. METHODS A large four-generation Chinese family affected with typical Y-suture cataracts combined with punctuate cortical opacities and 100 ethnically matched controls were recruited. Genomic DNA was extracted from peripheral blood leukocytes to analyze congenital cataract-related candidate genes. Effects of the sequence change on the structure and function of proteins were predicted by bioinformatics analysis. RESULTS Direct sequencing of MIP in all affected members revealed a heterozygous nucleotide exchange c.337C>T predicting an arginine to a stop codon exchange (p.R113X). The substitution co-segregated well in all the affected individuals in the family and was not found in unaffected members or in the 100 unrelated healthy controls. Bioinformatics analysis predicted that the mutation affects the secondary structure and function of the MIP protein. CONCLUSIONS We identified a novel mutation of MIP (p.R113X) in a Chinese cataract family. This is the first nonsense mutation of MIP identified thus far. This novel mutation is also the first disease-causing mutation located in the loop C domain of MIP. The results add to the list of mutations of the MIP linked to cataracts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Yao
- Eye Center, Second Affiliated Hospital of Zhejiang University School of Medicine, No,88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
205
|
Megawati D, Nainggolan IM, Swastika M, Susanah S, Mose JC, Harahap AR, Setianingsih I. Severe α-thalassemia intermedia due to a compound heterozygosity for the highly unstable Hb Adana (HBA2: c.179G>A) and a novel codon 24 (HBA2: c.75T>A) mutation. Hemoglobin 2013; 38:149-51. [PMID: 24351118 PMCID: PMC3971804 DOI: 10.3109/03630269.2013.863206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
HBA2 We report a novel mutation at codon 24 of the α2-globin gene (HBA2: c.75T > A) found in a Sundanese family. This novel mutation was detected during prenatal diagnosis. The couple already had a 7-year-old boy who exhibited clinically severe α-thalassemia intermedia (α-TI), and he was found to be a compound heterozygote for the novel mutation at codon 24 and the previously described Hb Adana (HBA2: c.179G > A) at codon 59 of the α2-globin gene. The father was a carrier of the novel point mutation and showed normal hemoglobin (Hb) and a low mean corpuscular volume (MCV) and mean corpuscular Hb (MCH) value.
Collapse
Affiliation(s)
- Dewi Megawati
- The Eijkman Institute for Molecular Biology , Jakarta , Indonesia
| | | | | | | | | | | | | |
Collapse
|
206
|
Suzuki S, Nakao A, Sarhat AR, Furuya A, Matsuo K, Tanahashi Y, Kajino H, Azuma H. A case of pancreatic agenesis and congenital heart defects with a novelGATA6nonsense mutation: Evidence of haploinsufficiency due to nonsense-mediated mRNA decay. Am J Med Genet A 2013; 164A:476-9. [DOI: 10.1002/ajmg.a.36275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 08/28/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Shigeru Suzuki
- Department of Pediatrics; Asahikawa Medical University; Asahikawa Japan
| | - Atsushi Nakao
- Department of Neonatology; Japanese Red Cross Medical Center; Tokyo Japan
| | - Ashoor R. Sarhat
- Department of Pediatrics; Asahikawa Medical University; Asahikawa Japan
- Department of Pediatrics; Tikrit College of Medicine; Tikrit Iraq
| | - Akiko Furuya
- Department of Pediatrics; Asahikawa Medical University; Asahikawa Japan
| | - Kumihiro Matsuo
- Department of Pediatrics; Asahikawa Medical University; Asahikawa Japan
| | - Yusuke Tanahashi
- Department of Pediatrics; Asahikawa Medical University; Asahikawa Japan
| | - Hiroki Kajino
- Department of Pediatrics; Asahikawa Medical University; Asahikawa Japan
| | - Hiroshi Azuma
- Department of Pediatrics; Asahikawa Medical University; Asahikawa Japan
| |
Collapse
|
207
|
Wakil SM, Ramzan K, Abuthuraya R, Hagos S, Al-Dossari H, Al-Omar R, Murad H, Chedrawi A, Al-Hassnan ZN, Finsterer J, Bohlega S. Infantile-onset ascending hereditary spastic paraplegia with bulbar involvement due to the novel ALS2 mutation c.2761C>T. Gene 2013; 536:217-20. [PMID: 24315819 DOI: 10.1016/j.gene.2013.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
Recessive mutations in the alsin gene cause three clinically distinct motor neuron diseases: juvenile amyotrophic lateral sclerosis (ALS2), juvenile primary lateral sclerosis (JPLS) and infantile-onset ascending hereditary spastic paraplegia (IAHSP). A total of 23 different ALS2 mutations have been described for the three disorders so far. Most of these mutations result in a frameshift leading to a premature truncation of the alsin protein. We report the novel ALS2 truncating mutation c.2761C>T; p.R921X detected by homozygosity mapping and sequencing in two infants affected by IAHSP with bulbar involvement. The mutation c.2761C>T resides in the pleckstrin domain, a characteristic segment of guanine nucleotide exchange factors of the Rho GTPase family, which is involved in the overall neuronal development or maintenance. This study highlights the importance of using homozygosity mapping combined with candidate gene analysis to identify the underlying genetic defect as in this Saudi consanguineous family.
Collapse
Affiliation(s)
- Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rula Abuthuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Samya Hagos
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Haya Al-Dossari
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rana Al-Omar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hatem Murad
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Zuhair N Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
208
|
Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 2013; 46 Pt 2:175-86. [PMID: 24239855 DOI: 10.1016/j.neubiorev.2013.10.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a regulatory pathway that functions to degrade transcripts containing premature termination codons (PTCs) and to maintain normal transcriptome homeostasis. Nonsense and frameshift mutations that generate PTCs cause approximately one-third of all known human genetic diseases and thus NMD has a potentially important role in human disease. In genetic disorders in which the affected genes carry PTC-generating mutations, NMD acts as a double-edge sword. While it can benefit the patient by degrading PTC-containing mRNAs that encode detrimental, dominant-negative truncated proteins, it can also make the disease worse when a PTC-containing mRNA is degraded that encodes a mutant but still functional protein. There is evidence that the magnitude of NMD varies between individuals, which, in turn, has been shown to correlate with both clinical presentations and the patients' responses to drugs that promote read-through of PTCs. In this review, we examine the evidence supporting the existence of inter-individual variability in NMD efficiency and discuss the genetic factors that underlie this variability. We propose that inter-individual variability in NMD efficiency is a common phenomenon in human populations and that an individual's NMD efficiency should be taken into consideration when testing, developing, and making therapeutic decisions for diseases caused by genes harboring PTCs.
Collapse
|
209
|
Zünd D, Mühlemann O. Recent transcriptome-wide mapping of UPF1 binding sites reveals evidence for its recruitment to mRNA before translation. ACTA ACUST UNITED AC 2013; 1:e26977. [PMID: 26824025 PMCID: PMC4718051 DOI: 10.4161/trla.26977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/16/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
Abstract
The ATP-dependent RNA helicase UPF1, a key factor in nonsense-mediated mRNA decay (NMD), was so far thought to be recruited specifically to NMD-targeted mRNAs by aberrantly terminating ribosomes. However, two recent publications reporting independently transcriptome-wide mapping of UPF1 occupancy on RNA challenge this model and instead provide evidence that UPF1 binds to mRNA already before translation. According to the new data, UPF1 appears to initially bind all mRNAs along their entire length and gets subsequently stripped off the coding sequence by translating ribosomes. This re-poses the question of where and how UPF1 engages with mRNA and how the NMD-targeted transcripts are selected among the UPF1-bound mRNAs.
Collapse
Affiliation(s)
- David Zünd
- Department of Chemistry and Biochemistry; University of Bern; Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry; University of Bern; Bern, Switzerland
| |
Collapse
|
210
|
CK2-mediated TEL2 phosphorylation augments nonsense-mediated mRNA decay (NMD) by increase of SMG1 stability. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1047-55. [DOI: 10.1016/j.bbagrm.2013.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 11/23/2022]
|
211
|
Liu Y, Allingham RR, Qin X, Layfield D, Dellinger AE, Gibson J, Wheeler J, Ashley-Koch AE, Stamer WD, Hauser MA. Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2013; 54:6382-9. [PMID: 24003086 DOI: 10.1167/iovs.13-12128] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify the specific genes in human trabecular meshwork (TM) related to POAG. METHODS Primary open-angle glaucoma TM specimens were obtained from routine trabeculectomy surgery. Nonglaucomatous control TM specimens were dissected from donor eyes using the same approach as a standard trabeculectomy. All cases were screened for myocilin (MYOC) mutations. Total RNA was extracted, labeled, and hybridized to Illumina HumanWG-6 BeadChips. Expression data were normalized and analyzed using the R package limma in Bioconductor. Pathway analyses were performed using DAVID Bioinformatics Resources. RESULTS Our study included surgical TM specimens from 15 cases and 13 controls. One case was identified with a heterozygous Q368X MYOC mutation. If TMs were available from both eyes in an individual, the expression data were combined for analysis. The following three comparisons were performed for differential analyses: (1) MYOC POAG case versus 14 non-MYOC POAG cases, (2) MYOC POAG case versus 13 controls, and (3) 14 non-MYOC POAG cases versus 13 controls. Limited by one MYOC case in comparisons 1 and 2, expression changes were reported comparing the fold changes but without P values. Comparison 3 identified 483 genes, including 36 components of TM exosomes. Gene ontology analysis identified several enriched functional clusters, including cell adhesion, extracellular matrix, and secretion. CONCLUSIONS This is the largest TM expression study of POAG cases and controls performed to date and represents the first report of TM expression in a patient having POAG with a Q368X MYOC mutation. Our data suggest the potential role of endocytic and exosome pathways in the pathogenesis of POAG.
Collapse
Affiliation(s)
- Yutao Liu
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Congenital long QT syndrome with compound mutations in the KCNH2 gene. Heart Vessels 2013; 29:554-9. [PMID: 24057343 DOI: 10.1007/s00380-013-0406-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Congenital long QT syndrome is a genetic disorder encompassing a family of mutations that can lead to aberrant ventricular electrical activity. We report on two brothers with long QT syndrome caused by compound mutations in the KCNH2 gene inherited from parents who had no prolonged QT interval on electrocardiography. The proband had syncope, and his elder brother suffered from ventricular fibrillation. Genetic testing revealed that both brothers had multiple mutations in the KCNH2 gene, including a missense mutation of C1474T (exon 6) as well as a frameshift/nonsense mutation, resulting from the insertion of 25 nucleotides, which caused an altered amino acid sequence beginning at codon 302 and a premature termination codon (i.e., TAG) at codon 339 (exon 4). Family genetic screening found that their father had the same frameshift mutation, and their mother and sister had the same missense mutation, in the KCNH2 gene. However, these other family members were asymptomatic, with normal QT intervals on electrocardiography. These results suggest that compound mutations in the KCNH2 gene inherited independently from the parents made the phenotypes of their sons more severe.
Collapse
|
213
|
Weh E, Reis LM, Tyler RC, Bick D, Rhead WJ, Wallace S, McGregor TL, Dills SK, Chao MC, Murray JC, Semina EV. Novel B3GALTL mutations in classic Peters plus syndrome and lack of mutations in a large cohort of patients with similar phenotypes. Clin Genet 2013; 86:142-8. [PMID: 23889335 DOI: 10.1111/cge.12241] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 11/30/2022]
Abstract
Peters plus syndrome (PPS) is a rare autosomal-recessive disorder characterized by Peters anomaly of the eye, short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable other systemic abnormalities. In this report, we describe screening of 64 patients affected with PPS, isolated Peters anomaly and PPS-like phenotypes. Mutations in the coding region of B3GALTL were identified in nine patients; six had a documented phenotype of classic PPS and the remaining three had a clinical diagnosis of PPS with incomplete clinical documentation. A total of nine different pathogenic alleles were identified. Five alleles are novel including one frameshift, c.168dupA, p.(Gly57Argfs*11), one nonsense, c.1234C>T, p.(Arg412*), two missense, c.1045G>A, p.(Asp349Asn) and c.1181G>A, p.(Gly394Glu), and one splicing, c.347+5G>T, mutations. Consistent with previous reports, the c.660+1G>A mutation was the most common mutation identified, seen in eight of the nine patients and accounting for 55% of pathogenic alleles in this study and 69% of all reported pathogenic alleles; while two patients were homozygous for this mutation, the majority had a second rare pathogenic allele. We also report the absence of B3GALTL mutations in 55 cases of PPS-like phenotypes or isolated Peters anomaly, further establishing the strong association of B3GALTL mutations with classic PPS only.
Collapse
Affiliation(s)
- E Weh
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Austin ED, Loyd JE. Heritable forms of pulmonary arterial hypertension. Semin Respir Crit Care Med 2013; 34:568-80. [PMID: 24037626 DOI: 10.1055/s-0033-1355443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tremendous progress has been made in understanding the genetics of heritable pulmonary arterial hypertension (HPAH) since its description in the 1950s. Germline mutations in the gene coding bone morphogenetic receptor type 2 (BMPR2) are detectable in the majority of cases of HPAH, and in a small proportion of cases of idiopathic pulmonary arterial hypertension (IPAH). Recent advancements in gene sequencing methods have facilitated the discovery of additional genes with mutations among those with and without familial PAH (CAV1, KCNK3). HPAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, and female predominance. These characteristics suggest that genetic and nongenetic factors modify disease expression, highlighting areas of active investigation. The reduced penetrance makes genetic counseling complex, as the majority of carriers of PAH-related mutations will never be diagnosed with the disease. This issue is increasingly important, as clinical testing for BMPR2 and other mutations is now available for the evaluation of patients and their at-risk kin. The possibilities to avoid mutation transmission, such as the rapidly advancing field of preimplantation genetic testing, highlight the need for all clinicians to understand the genetic features of PAH risk.
Collapse
Affiliation(s)
- Eric D Austin
- Division of Pulmonary, Allergy, and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | |
Collapse
|
215
|
Zhang J, Chen X, Zhang Z, Wang H, Guo L, Liu Y, Zhao X, Cao W, Xing Q, Shao F. The adenosine deaminase acting on RNA 1 p150 isoform is involved in the pathogenesis of dyschromatosis symmetrica hereditaria. Br J Dermatol 2013; 169:637-44. [PMID: 23621630 DOI: 10.1111/bjd.12401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2013] [Indexed: 02/05/2023]
Affiliation(s)
- J.Y. Zhang
- Children's Hospital and Institutes of Biomedical Sciences; Fudan University; 130 Dong-An Road; Shanghai 200032; China
| | - X.D. Chen
- Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; 639 Zhi-Zao-Ju Road; Shanghai 200011; China
| | - Z. Zhang
- Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; 639 Zhi-Zao-Ju Road; Shanghai 200011; China
| | - H.L. Wang
- Children's Hospital and Institutes of Biomedical Sciences; Fudan University; 130 Dong-An Road; Shanghai 200032; China
| | - L. Guo
- Children's Hospital and Institutes of Biomedical Sciences; Fudan University; 130 Dong-An Road; Shanghai 200032; China
| | - Y. Liu
- Children's Hospital and Institutes of Biomedical Sciences; Fudan University; 130 Dong-An Road; Shanghai 200032; China
| | - X.Z. Zhao
- Children's Hospital and Institutes of Biomedical Sciences; Fudan University; 130 Dong-An Road; Shanghai 200032; China
| | - W. Cao
- Zhengzhou People's Hospital; 33 Huanghe Road; Zhengzhou 450053; China
| | - Q.H. Xing
- Children's Hospital and Institutes of Biomedical Sciences; Fudan University; 130 Dong-An Road; Shanghai 200032; China
| | - F.M. Shao
- Department of Urology; People's Hospital of Henan Province; 7 Wei-Wu Road; Zhengzhou 450000; China
| |
Collapse
|
216
|
Takenouchi T, Hida M, Sakamoto Y, Torii C, Kosaki R, Takahashi T, Kosaki K. Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penultimate exon of FBN1 causing a recognizable phenotype. Am J Med Genet A 2013; 161A:3057-62. [PMID: 24039054 DOI: 10.1002/ajmg.a.36157] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 07/01/2013] [Indexed: 11/08/2022]
Abstract
Recently, three marfanoid patients with congenital lipodystrophy and a neonatal progeroid appearance were reported. Although their phenotype was distinct from that of classic Marfan syndrome, they all had a truncating mutation in the penultimate exon, i.e., exon 64, of FBN1, the causative gene for Marfan syndrome. These patients might represent a new entity, but the exact phenotypic and genotypic spectrum remains unknown. Here, we report on a girl born prematurely who exhibited severe congenital lipodystrophy and a neonatal progeroid appearance. The patient exhibited a characteristic growth pattern consisting of an accelerated growth in height with a discrepant poor weight gain. She had a characteristic facial appearance with craniosynostosis. A mutation analysis identified c.8175_8182del8bp, p.Arg2726Glufs*9 in exon 64 of the FBN1 gene. A review of similar, recently reported patients revealed that the cardinal features of these patients include (1) congenital lipodystrophy, (2) premature birth with an accelerated linear growth disproportionate to the weight gain, and (3) a progeroid appearance with distinct facial features. Lines of molecular evidence suggested that this new progeroid syndrome represents a neomorphic phenotype caused by truncated transcripts with an extremely charged protein motif that escapes from nonsense-mediated mRNA decay, altering FBN1-TGF beta signaling, rather than representing the severe end of the hypomorphic phenotype of the FBN1-TGF beta disorder spectrum. We propose that this marfanoid entity comprised of congenital lipodystrophy, a neonatal progeroid appearance, and a peculiar growth profile and caused by rare mutations in the penultimate exon of FBN1, be newly referred to as marfanoid-progeroid syndrome.
Collapse
Affiliation(s)
- Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
217
|
Mostowska A, Zadurska M, Rakowska A, Lianeri M, Jagodziński PP. NovelPAX9mutation associated with syndromic tooth agenesis. Eur J Oral Sci 2013; 121:403-11. [DOI: 10.1111/eos.12071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Małgorzata Zadurska
- Department of Orthodontics, Institute of Dentistry; The Medical University of Warsaw; Warsaw; Poland
| | - Adriana Rakowska
- Department of Dermatology; Central Clinical Hospital of Ministry of Internal Affaires; Warsaw; Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan; Poland
| |
Collapse
|
218
|
Reis LM, Tyler RC, Muheisen S, Raggio V, Salviati L, Han DP, Costakos D, Yonath H, Hall S, Power P, Semina EV. Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes. Hum Genet 2013; 132:761-70. [PMID: 23508780 PMCID: PMC3683360 DOI: 10.1007/s00439-013-1289-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/07/2013] [Indexed: 01/05/2023]
Abstract
Pediatric cataracts are observed in 1-15 per 10,000 births with 10-25 % of cases attributed to genetic causes; autosomal dominant inheritance is the most commonly observed pattern. Since the specific cataract phenotype is not sufficient to predict which gene is mutated, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 23 pedigrees affected with familial dominant cataract. Review of WES data for 36 known cataract genes identified causative mutations in nine pedigrees (39 %) in CRYAA, CRYBB1, CRYBB3, CRYGC (2), CRYGD, GJA8 (2), and MIP and an additional likely causative mutation in EYA1; the CRYBB3 mutation represents the first dominant allele in this gene and demonstrates incomplete penetrance. Examination of crystallin genes not yet linked to human disease identified a novel cataract gene, CRYBA2, a member of the βγ-crystallin superfamily. The p.(Val50Met) mutation in CRYBA2 cosegregated with disease phenotype in a four-generation pedigree with autosomal dominant congenital cataracts with incomplete penetrance. Expression studies detected cryba2 transcripts during early lens development in zebrafish, supporting its role in congenital disease. Our data highlight the extreme genetic heterogeneity of dominant cataract as the eleven causative/likely causative mutations affected nine different genes, and the majority of mutant alleles were novel. Furthermore, these data suggest that less than half of dominant cataract can be explained by mutations in currently known genes.
Collapse
Affiliation(s)
- Linda M. Reis
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - Rebecca C. Tyler
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - Sanaa Muheisen
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - Victor Raggio
- Genetics Department, School of Medicine, Montevideo, PC: 11600, Uruguay
| | - Leonardo Salviati
- Dept. of Woman and Child Health, University of Padova, 35128 Padova, Italy
| | - Dennis P. Han
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Deborah Costakos
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Hagith Yonath
- Sheba Medical Center, Tel Hashomer 52621 and Sackler School of Medicine, Tel Aviv University, Israel
| | - Sarah Hall
- Kadlec Regional Medical Center, Richland WA 99352 USA
| | - Patricia Power
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1 Canada
| | - Elena V. Semina
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| |
Collapse
|
219
|
Abstract
The receptor for advanced glycation end products (RAGE) is a multiligand receptor of environmental stressors which plays key roles in pathophysiological processes, including immune/inflammatory disorders, Alzheimer's disease, diabetic arteriosclerosis, tumorigenesis, and metastasis. Besides the full-length RAGE protein in humans nearly 20 natural occurring RAGE splicing variants were described on mRNA and protein level. These naturally occurring isoforms are characterized by either N-terminally or C-terminally truncations and are discussed as possible regulators of the full-length RAGE receptor either by competitive ligand binding or by displacing the full-length protein in the membrane. Accordingly, expression deregulations of the naturally occurring isoforms were supposed to have significant effect on RAGE-mediated disorders. Thereby the soluble C-truncated RAGE isoforms present in plasma and tissues are the mostly focused isoforms in research and clinics. Deregulations of the circulating levels of soluble RAGE forms were reported in several RAGE-associated pathological disorders including for example atherosclerosis, diabetes, renal failure, Alzheimer's disease, and several cancer types. Regarding other mammalian species, the canine RAGE gene showed high similarities to the corresponding human structures indicating RAGE to be evolutionary highly conserved between both species. Similar to humans the canine RAGE showed a complex and extensive splicing activity leading to a manifold pattern of RAGE isoforms. Due to the similarities seen in several canine and human diseases-including cancer-comparative structural and functional analyses allow the development of RAGE and ligand-specific therapeutic approaches beneficial for human and veterinary medicine.
Collapse
|
220
|
Keeling KM, Wang D, Dai Y, Murugesan S, Chenna B, Clark J, Belakhov V, Kandasamy J, Velu SE, Baasov T, Bedwell DM. Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression. PLoS One 2013; 8:e60478. [PMID: 23593225 PMCID: PMC3622682 DOI: 10.1371/journal.pone.0060478] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/27/2013] [Indexed: 12/16/2022] Open
Abstract
Nonsense suppression therapy is an approach to treat genetic diseases caused by nonsense mutations. This therapeutic strategy pharmacologically suppresses translation termination at Premature Termination Codons (PTCs) in order to restore expression of functional protein. However, the process of Nonsense-Mediated mRNA Decay (NMD), which reduces the abundance of mRNAs containing PTCs, frequently limits this approach. Here, we used a mouse model of the lysosomal storage disease mucopolysaccharidosis I-Hurler (MPS I-H) that carries a PTC in the Idua locus to test whether NMD attenuation can enhance PTC suppression in vivo. Idua encodes alpha-L-iduronidase, an enzyme required for degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. We found that the NMD attenuator NMDI-1 increased the abundance of the PTC-containing Idua transcript. Furthermore, co-administration of NMDI-1 with the PTC suppression drug gentamicin enhanced alpha-L-iduronidase activity compared to gentamicin alone, leading to a greater reduction of GAG storage in mouse tissues, including the brain. These results demonstrate that NMD attenuation significantly enhances suppression therapy in vivo.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Altamura N, Castaldo R, Finotti A, Breveglieri G, Salvatori F, Zuccato C, Gambari R, Panin GC, Borgatti M. Tobramycin is a suppressor of premature termination codons. J Cyst Fibros 2013; 12:806-11. [PMID: 23540394 DOI: 10.1016/j.jcf.2013.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/04/2013] [Accepted: 02/24/2013] [Indexed: 11/19/2022]
Abstract
Premature translation terminations (PTCs) constitute the molecular basis of many genetic diseases, including cystic fibrosis, as they lead to the synthesis of truncated non-functional or partially functional protein. Suppression of translation terminations at PTCs (read-through) has been developed as a therapeutic strategy to restore full-length protein in several genetic diseases. Phenotypic consequences of PTCs can be exacerbated by the nonsense-mediated mRNA decay (NMD) pathway that detects and degrades mRNA containing PTC. Modulation of NMD, therefore, is also of interest as a potential target for the suppression therapy. Tobramycin is an aminoglycoside antibiotic, normally used to treat Pseudomonas aeruginosa pulmonary infection in CF patients. In the present study, by using yeast as a genetic system, we have examined the ability of Tobramycin to suppress PTCs as a function of the presence or absence of NMD. Results demonstrate that Tobramycin exhibits read-through ability on PTCs and preferentially in absence of NMD.
Collapse
Affiliation(s)
- Nicola Altamura
- Institute of Biomembranes and Bioenergetics, CNR, Via Amendola 165/A, 70126 Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Han C, Hong KH, Kim YH, Kim MJ, Song C, Kim MJ, Kim SJ, Raizada MK, Oh SP. SMAD1 deficiency in either endothelial or smooth muscle cells can predispose mice to pulmonary hypertension. Hypertension 2013; 61:1044-52. [PMID: 23478097 DOI: 10.1161/hypertensionaha.111.199158] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A deficiency in bone morphogenetic protein receptor type 2 (BMPR2) signaling is a central contributor in the pathogenesis of pulmonary arterial hypertension (PAH). We have recently shown that endothelial-specific Bmpr2 deletion by a novel L1Cre line resulted in pulmonary hypertension. SMAD1 is one of the canonical signal transducers of the BMPR2 pathway, and its reduced activity has been shown to be associated with PAH. To determine whether SMAD1 is an important downstream mediator of BMPR2 signaling in the pathogenesis of PAH, we analyzed pulmonary hypertension phenotypes in Smad1-conditional knockout mice by deleting the Smad1 gene either in endothelial cells or in smooth muscle cells using L1Cre or Tagln-Cre mouse lines, respectively. A significant number of the L1Cre(+);Smad1 (14/35) and Tagln-Cre(+);Smad1 (4/33) mutant mice showed elevated pulmonary pressure, right ventricular hypertrophy, and a thickening of pulmonary arterioles. A pulmonary endothelial cell line in which the Bmpr2 gene deletion can be induced by 4-hydroxy tamoxifen was established. SMAD1 phosphorylation in Bmpr2-deficient cells was markedly reduced by BMP4 but unaffected by BMP7. The sensitivity of SMAD2 phosphorylation by transforming growth factor-β1 was enhanced in the Bmpr2-deficient cells, and the inhibitory effect of transforming growth factor-β1-mediated SMAD2 phosphorylation by BMP4 was impaired in the Bmpr2-deficient cells. Furthermore, transcript levels of several known transforming growth factor-β downstream genes implicated in pulmonary hypertension were elevated in the Bmpr2-deficient cells. Taken together, these data suggest that SMAD1 is a critical mediator of BMPR2 signaling pertinent to PAH, and that an impaired balance between BMP4 and transforming growth factor-β1 may account for the pathogenesis of PAH.
Collapse
Affiliation(s)
- Chul Han
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
Nonsense-mediated mRNA decay (NMD), which degrades transcripts harboring a premature termination codon (PTC), depends on the helicase up-frameshift 1 (UPF1). However, mRNAs that are not NMD targets also bind UPF1. What governs the timing, position, and function of UPF1 binding to mRNAs remains unclear. We provide evidence that (i) multiple UPF1 molecules accumulate on the 3'-untranslated region (3' UTR) of PTC-containing mRNAs and to an extent that is greater per unit 3' UTR length if the mRNA is an NMD target; (ii) UPF1 binding begins ≥35 nt downstream of the PTC; (iii) enhanced UPF1 binding to the 3' UTR of PTC-containing mRNA relative to its PTC-free counterpart depends on translation; and (iv) the presence of a 3' UTR exon-junction complex (EJC) further enhances UPF1 binding and/or affinity. Our data suggest that NMD involves UPF1 binding along a 3' UTR whether the 3' UTR contains an EJC. This binding explains how mRNAs without a 3' UTR EJC but with an abnormally long 3' UTR can be NMD targets, albeit not as efficiently as their counterparts that contain a 3' UTR EJC.
Collapse
|
224
|
Waye JS, Eng B, Hellens L, Hohenadel BA, Nakamura LM, Walker L. Normal Hb A2β-Thalassemia Trait: Frameshift Mutation (HBB: c.187_251dup) inCiswith the Hb A2’δ-Globin Gene Missense Mutation (HBD: c.49G>C). Hemoglobin 2013; 37:201-4. [DOI: 10.3109/03630269.2012.763171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
225
|
Violante IR, Ribeiro MJ, Edden RAE, Guimarães P, Bernardino I, Rebola J, Cunha G, Silva E, Castelo-Branco M. GABA deficit in the visual cortex of patients with neurofibromatosis type 1: genotype-phenotype correlations and functional impact. Brain 2013; 136:918-25. [PMID: 23404336 DOI: 10.1093/brain/aws368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alterations in the balance between excitatory and inhibitory neurotransmission have been implicated in several neurodevelopmental disorders. Neurofibromatosis type 1 is one of the most common monogenic disorders causing cognitive deficits for which studies on a mouse model (Nfl(+/-)) proposed increased γ-aminobutyric acid-mediated inhibitory neurotransmission as the neural mechanism underlying these deficits. To test whether a similar mechanism translates to the human disorder, we used magnetic resonance spectroscopy to measure γ-aminobutyric acid levels in the visual cortex of children and adolescents with neurofibromatosis type 1 (n = 20) and matched control subjects (n = 26). We found that patients with neurofibromatosis type 1 have significantly lower γ-aminobutyric acid levels than control subjects, and that neurofibromatosis type 1 mutation type significantly predicted cortical γ-aminobutyric acid. Moreover, functional imaging of the visual cortex indicated that blood oxygen level-dependent signal was correlated with γ-aminobutyric acid levels both in patients and control subjects. Our results provide in vivo evidence of γ-aminobutyric acidergic dysfunction in neurofibromatosis type 1 by showing a reduction in γ-aminobutyric acid levels in human patients. This finding is relevant to understand the physiological profile of the disorder and has implications for the identification of targets for therapeutic strategies.
Collapse
Affiliation(s)
- Inês R Violante
- IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Alvelos MI, Vinagre J, Fonseca E, Barbosa E, Teixeira-Gomes J, Sobrinho-Simões M, Soares P. MEN1 intragenic deletions may represent the most prevalent somatic event in sporadic primary hyperparathyroidism. Eur J Endocrinol 2013; 168:119-28. [PMID: 23093699 DOI: 10.1530/eje-12-0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Primary hyperparathyroidism (pHPT) is characterised by an inappropriate over production of parathyroid hormone and it is the most frequent pathological condition of the parathyroid glands. A minority of the cases belong to familial forms, but most of them are sporadic. The genetic alterations underlying the sporadic forms of pHPT remain poorly understood. The main goal of our study is to perform the molecular characterisation of a series of sporadic pHPT cases. DESIGN AND METHODS We have studied matched blood and tumour from 24 patients with pHPT, who went to a medical appointment in Hospital Pedro Hispano. Informed consent was obtained from all individuals. The MEN1, RET and CDKN1B molecular study was carried out in the germline DNA by PCR/SSCP and direct sequencing. Parathyroid tumours were further analysed by the same methods for MEN1, CDKN1B and CTNNB1 genetic alterations. The multiplex ligation-dependent probe amplification technique enabled the evaluation of MEN1 gene deletions. Protein expression for menin, cyclin D1, parafibromin, p27(Kip1), β-catenin and Ki-67 was conducted by immunohistochemistry. RESULTS The study of parathyroid tumours detected two somatic MEN1 mutations (c.249_252delGTCT and c.115_163del49bp) and revealed the presence of MEN1 intragenic deletions in 54% (13/24) of the tumours. In RET and CDKN1B genes only previously described, non-pathogenic variants were found. Cyclin D1 protein was overexpressed in 13% (3/24) of tumours. CONCLUSIONS These results suggest that MEN1 alterations, remarkably intragenic deletions, may represent the most prevalent genetic alteration in sporadic parathyroid tumours.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- Institute of Molecular Pathology and Immunology of the University of Porto, 4200-465 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
227
|
Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. PLoS One 2013; 8:e53151. [PMID: 23301036 PMCID: PMC3536807 DOI: 10.1371/journal.pone.0053151] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
Abstract
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive tubular disorder characterized by excessive renal magnesium and calcium excretion and chronic kidney failure. This rare disease is caused by mutations in the CLDN16 and CLDN19 genes. These genes encode the tight junction proteins claudin-16 and claudin-19, respectively, which regulate the paracellular ion reabsortion in the kidney. Patients with mutations in the CLDN19 gene also present severe visual impairment. Our goals in this study were to examine the clinical characteristics of a large cohort of Spanish patients with this disorder and to identify the disease causing mutations. We included a total of 31 patients belonging to 27 unrelated families and studied renal and ocular manifestations. We then analyzed by direct DNA sequencing the coding regions of CLDN16 and CLDN19 genes in these patients. Bioinformatic tools were used to predict the consequences of mutations. Clinical evaluation showed ocular defects in 87% of patients, including mainly myopia, nystagmus and macular colobomata. Twenty two percent of patients underwent renal transplantation and impaired renal function was observed in another 61% of patients. Results of the genetic analysis revealed CLDN19 mutations in all patients confirming the clinical diagnosis. The majority of patients exhibited the previously described p.G20D mutation. Haplotype analysis using three microsatellite markers showed a founder effect for this recurrent mutation in our cohort. We also identified four new pathogenic mutations in CLDN19, p.G122R, p.I41T, p.G75C and p.G75S. A strategy based on microsequencing was designed to facilitate the genetic diagnosis of this disease. Our data indicate that patients with CLDN19 mutations have a high risk of progression to chronic renal disease.
Collapse
|
228
|
Ben-Salem S, Begum M, Ali B, Al-Gazali L. A Novel Aberrant Splice Site Mutation in RAB23 Leads to an Eight Nucleotide Deletion in the mRNA and Is Responsible for Carpenter Syndrome in a Consanguineous Emirati Family. Mol Syndromol 2013; 3:255-261. [PMID: 23599695 PMCID: PMC3569107 DOI: 10.1159/000345653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 02/05/2023] Open
Abstract
Carpenter syndrome is caused by mutations in the RAB23 gene that encodes a small GTPase of the Rab subfamily of proteins. Rab proteins are known to be involved in the regulation of cellular trafficking and signal transduction. Currently, only few mutations in RAB23 have been reported in patients with Carpenter syndrome. In this paper, we report the clinical features, molecular and functional analysis of 2 children from an Emirati consanguineous family with this syndrome. The affected children exhibit the typical features including craniosynostosis, typical facial appearance, polysyndactyly, and obesity. Molecular analysis of the RAB23 gene revealed a homozygous mutation affecting the first nucleotide of the acceptor splice site of exon 5 (c.482-1G>A). This mutation affects the authentic mRNA splicing and activates a cryptic acceptor site within exon 5. Thus, the erroneous splicing results in an eight nucleotide deletion, followed by a frameshift and premature termination codon at position 161 (p.V161fsX3). Due to the loss of the C-terminally prenylatable cysteine residue, the truncated protein will probably fail to associate with the target cellular membranes due to the absence of the necessary lipid modification. The p.V161fsX3 extends the spectrum of RAB23 mutations and points to the crucial role of prenylation in the pathogenesis of Carpenter syndrome within this family.
Collapse
Affiliation(s)
- S. Ben-Salem
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - M.A. Begum
- Department of Obstetrics and Gynecology, Tawam Hospital, Al-Ain, United Arab Emirates
| | - B.R. Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates
| | - L. Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, United Arab Emirates
| |
Collapse
|
229
|
Hatta Y, Nakamura A, Hara S, Kamijo T, Iwata J, Hamajima T, Abe M, Okada M, Ushio M, Tsuyuki K, Tajima T. Clinical and molecular analysis of six Japanese patients with a renal form of pseudohypoaldosteronism type 1. Endocr J 2013. [PMID: 23197115 DOI: 10.1507/endocrj.ej12-0330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pseudohypoaldosteronism type 1 (PHA1) is a rare condition characterized by neonatal salt loss with elevated plasma aldosterone and renin levels. Two types of PHA1 have been described: an autosomal recessive systemic form and an autosomal dominant renal form, in which the target organ defect is confined to the renal tubules. The dominant renal form of PHA1 is caused by heterozygous mutations in the NR3C2 gene, which encodes the mineralocorticoid receptor (MR). We determined clinical and biochemical parameters in two familial and four sporadic Japanese patient and analyzed the status of the NR3C2 gene. Failure to thrive was noted in five of the six patients. In one of the familial cases, the mother had an episode of failure to thrive when she was a toddler, but received no medical treatment. NaCl supplementation was discontinued in four of the six patients after they reached one year of age and they have grown normally thereafter. However, in one patient, 9 g/day of salt has been required to maintain serum Na concentration after 1 year of age. Analysis of NR3C2 identified three novel mutations [c. C1951T (p.R651X), c.304_305delGC (p.A102fsX103), c.del 603A (p.T201fsX34)] and one previously reported mutation [c.A2839G (p.947X)]. p.R651X was identified in one familial case and one unrelated sporadic patient. The patient who has been supplemented with large amount of salt was heterozygous for c.del 603A in exon 2. In conclusion, our study expands the spectrum of phenotypes, and characterized mutations of NR3C2 in the renal form of PHA1.
Collapse
Affiliation(s)
- Yoriko Hatta
- Department of Pediatrics, Tosei General Hospital, Seto 489-0065, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Xu WY, Gu MM, Sun LH, Guo WT, Zhu HB, Ma JF, Yuan WT, Kuang Y, Ji BJ, Wu XL, Chen Y, Zhang HX, Sun FT, Huang W, Huang L, Chen SD, Wang ZG. A nonsense mutation in DHTKD1 causes Charcot-Marie-Tooth disease type 2 in a large Chinese pedigree. Am J Hum Genet 2012; 91:1088-94. [PMID: 23141294 DOI: 10.1016/j.ajhg.2012.09.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/16/2012] [Accepted: 09/20/2012] [Indexed: 12/30/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease represents a clinically and genetically heterogeneous group of inherited neuropathies. Here, we report a five-generation family of eight affected individuals with CMT disease type 2, CMT2. Genome-wide linkage analysis showed that the disease phenotype is closely linked to chromosomal region 10p13-14, which spans 5.41 Mb between D10S585 and D10S1477. DNA-sequencing analysis revealed a nonsense mutation, c.1455T>G (p.Tyr485(∗)), in exon 8 of dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1) in all eight affected individuals, but not in other unaffected individuals in this family or in 250 unrelated normal persons. DHTKD1 mRNA expression levels in peripheral blood of affected persons were observed to be half of those in unaffected individuals. In vitro studies have shown that, compared to wild-type mRNA and DHTKD1, mutant mRNA and truncated DHTKD1 are significantly decreased by rapid mRNA decay in transfected cells. Inhibition of nonsense-mediated mRNA decay by UPF1 silencing effectively rescued the decreased levels of mutant mRNA and protein. More importantly, DHTKD1 silencing was found to lead to impaired energy production, evidenced by decreased ATP, total NAD(+) and NADH, and NADH levels. In conclusion, our data demonstrate that the heterozygous nonsense mutation in DHTKD1 is one of CMT2-causative genetic alterations, implicating an important role for DHTKD1 in mitochondrial energy production and neurological development.
Collapse
Affiliation(s)
- Wang-Yang Xu
- State Key Laboratory of Medical Genomics, Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Suzuki K, Sugawara T, Ishida Y, Suwabe A. Compound heterozygous mutations (p.Leu13Pro and p.Tyr294*) associated with factor VII deficiency cause impaired secretion through ineffective translocation and extensive intracellular degradation of factor VII. Thromb Res 2012; 131:166-72. [PMID: 23141848 DOI: 10.1016/j.thromres.2012.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/10/2012] [Accepted: 10/17/2012] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Congenital coagulation factor VII (FVII) deficiency is a rare coagulation disease. We investigated the molecular mechanisms of this FVII deficiency in a patient with compound heterozygous mutations. METHODS A 22-year-old Japanese female was diagnosed with asymptomatic FVII deficiency. The FVII activity and antigen were greatly reduced (activity, 13.0%; antigen, 10.8%). We analyzed the F7 gene of this patient and characterized mutant FVII proteins using in vitro expression studies. RESULTS Sequence analysis revealed that the patient was compound heterozygous with a point mutation (p.Leu13Pro) in the central hydrophobic core of the signal peptides and a novel non-sense mutation (p.Tyr294*) in the catalytic domain. Expression studies revealed that mutant FVII with p.Leu13Pro (FVII13P) showed less accumulation in the cells (17.5%) and less secretion into the medium (64.8%) than wild type showed. Truncated FVII resulting from p.Tyr294* (FVII294X) was also decreased in the cells (32.0%), but was not secreted into the medium. Pulse-chase experiments revealed that both mutants were extensively degraded intracellularly compared to wild type. The majority of FVII13P cannot translocate into endoplasmic reticulum (ER). However, a small amount of FVII13P was processed normally with post-translational modifications and was secreted into the medium. The fact that FVII294X was observed only in ER suggests that it is retained in ER. Proteasome apparently plays a central role in these degradations. CONCLUSIONS These findings demonstrate that both mutant FVIIs impaired secretion through ineffective translocation to and retention in ER with extensive intracellular degradation, resulting in an insufficient phenotype.
Collapse
Affiliation(s)
- Keijiro Suzuki
- Department of Laboratory Medicine, Iwate Medical University School of Medicine, Morioka, Iwate, Japan.
| | | | | | | |
Collapse
|
232
|
Nguyen LS, Jolly L, Shoubridge C, Chan WK, Huang L, Laumonnier F, Raynaud M, Hackett A, Field M, Rodriguez J, Srivastava AK, Lee Y, Long R, Addington AM, Rapoport JL, Suren S, Hahn CN, Gamble J, Wilkinson MF, Corbett MA, Gecz J. Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Mol Psychiatry 2012; 17:1103-15. [PMID: 22182939 PMCID: PMC4281019 DOI: 10.1038/mp.2011.163] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/27/2011] [Accepted: 10/24/2011] [Indexed: 11/09/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway was originally discovered by virtue of its ability to rapidly degrade aberrant mRNAs with premature termination codons. More recently, it was shown that NMD also directly regulates subsets of normal transcripts, suggesting that NMD has roles in normal biological processes. Indeed, several NMD factors have been shown to regulate neurological events (for example, neurogenesis and synaptic plasticity) in numerous vertebrate species. In man, mutations in the NMD factor gene UPF3B, which disrupts a branch of the NMD pathway, cause various forms of intellectual disability (ID). Using Epstein Barr virus-immortalized B cells, also known as lymphoblastoid cell lines (LCLs), from ID patients that have loss-of-function mutations in UPF3B, we investigated the genome-wide consequences of compromised NMD and the role of NMD in neuronal development and function. We found that ~5% of the human transcriptome is impacted in UPF3B patients. The UPF3B paralog, UPF3A, is stabilized in all UPF3B patients, and partially compensates for the loss of UPF3B function. Interestingly, UPF3A protein, but not mRNA, was stabilised in a quantitative manner that inversely correlated with the severity of patients' phenotype. This suggested that the ability to stabilize the UPF3A protein is a crucial modifier of the neurological symptoms due to loss of UPF3B. We also identified ARHGAP24, which encodes a GTPase-activating protein, as a canonical target of NMD, and we provide evidence that deregulation of this gene inhibits axon and dendrite outgrowth and branching. Our results demonstrate that the UPF3B-dependent NMD pathway is a major regulator of the transcriptome and that its targets have important roles in neuronal cells.
Collapse
Affiliation(s)
- LS Nguyen
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| | - L Jolly
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| | - C Shoubridge
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| | - WK Chan
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - L Huang
- Department of Reproductive Medicine, University of California, San Diego, CA, USA
| | - F Laumonnier
- INSERM, U930, Tours, France
- CNRS, ERL3106, Tours, France
- University Francois-Rabelais, UMR ‘Imaging and Brain’, Tours, France
| | - M Raynaud
- INSERM, U930, Tours, France
- University Francois-Rabelais, UMR ‘Imaging and Brain’, Tours, France
- CHRU de Tours, Service de Genetique, Tours, France
| | - A Hackett
- GOLD Service, Hunter Genetics, Newcastle, Australia
| | - M Field
- GOLD Service, Hunter Genetics, Newcastle, Australia
| | - J Rodriguez
- J.C. Self Research Institute, Greenwood Genetic Centre, Greenwood, SC, USA
| | - AK Srivastava
- J.C. Self Research Institute, Greenwood Genetic Centre, Greenwood, SC, USA
| | - Y Lee
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - R Long
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - AM Addington
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - JL Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - S Suren
- Human Developmental Biology Resource, Neural Development Unit, UCL Institute of Child Health, London, UK
| | - CN Hahn
- Department of Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - J Gamble
- Centenary Institute of Cancer Medicine & Cell Biology, University of Sydney, NSW, Australia
| | - MF Wilkinson
- Department of Reproductive Medicine, University of California, San Diego, CA, USA
| | - MA Corbett
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| | - J Gecz
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
- Department of Genetic Medicine, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
233
|
Nicholson P, Joncourt R, Mühlemann O. Analysis of nonsense-mediated mRNA decay in mammalian cells. CURRENT PROTOCOLS IN CELL BIOLOGY 2012; Chapter 27:Unit27.4. [PMID: 22733442 DOI: 10.1002/0471143030.cb2704s55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway acts to selectively identify and degrade mRNAs that contain a premature translation termination codon (PTC), and hence reduce the accumulation of potentially toxic truncated proteins. NMD is one of the best studied mRNA quality-control mechanisms in eukaryotes, and it has become clear during recent years that many physiological mRNAs are also NMD substrates, signifying a role for NMD beyond mRNA quality control as a translation-dependent post-transcriptional regulator of gene expression. Despite a great deal of scientific research for over twenty years, the process of NMD is far from being fully understood with regard to its physiological relevance to the cell, the molecular mechanisms that underpin this pathway, all of the factors that are involved, and the exact cellular locations of NMD. This unit details some of the fundamental RNA based approaches taken to examine aspects of NMD, such as creating PTC+ reporter genes, knocking down key NMD factors via RNAi, elucidating the important functions of NMD factors by complementation assays or Tethered Function Assays, and measuring RNA levels by reverse-transcription quantitative PCR.
Collapse
|
234
|
Tani H, Imamachi N, Salam KA, Mizutani R, Ijiri K, Irie T, Yada T, Suzuki Y, Akimitsu N. Identification of hundreds of novel UPF1 target transcripts by direct determination of whole transcriptome stability. RNA Biol 2012; 9:1370-9. [PMID: 23064114 DOI: 10.4161/rna.22360] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UPF1 eliminates aberrant mRNAs harboring premature termination codons, and regulates the steady-state levels of normal physiological mRNAs. Although genome-wide studies of UPF1 targets performed, previous studies did not distinguish indirect UPF1 targets because they could not determine UPF1-dependent altered RNA stabilities. Here, we measured the decay rates of the whole transcriptome in UPF1-depleted HeLa cells using BRIC-seq, an inhibitor-free method for directly measuring RNA stability. We determined the half-lives and expression levels of 9,229 transcripts. An amount of 785 transcripts were stabilized in UPF1-depleted cells. Among these, the expression levels of 76 transcripts were increased, but those of the other 709 transcripts were not altered. RNA immunoprecipitation showed UPF1 bound to the stabilized transcripts, suggesting that UPF1 directly degrades the 709 transcripts. Many UPF1 targets in this study were newly identified. This study clearly demonstrates that direct determination of RNA stability is a powerful approach for identifying targets of RNA degradation factors.
Collapse
Affiliation(s)
- Hidenori Tani
- Radioisotope Center, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Hoehn KB, McGaugh SE, Noor MAF. Effects of premature termination codon polymorphisms in the Drosophila pseudoobscura subclade. J Mol Evol 2012; 75:141-50. [PMID: 23132097 PMCID: PMC3508312 DOI: 10.1007/s00239-012-9528-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/24/2012] [Indexed: 12/15/2022]
Abstract
Premature termination codon (PTC) mutations can have dramatic effects--both adaptive and deleterious--on gene expression and function. Here, we examine the number and selective effects of PTC mutations within the Drosophila pseudoobscura subclade using 18 resequenced genomes aligned to the reference genome. We located and characterized 1,679 PTC mutations in 605 genes across each of these genomes relative to the D. pseudoobscura reference genome, and use RT-PCR to confirm transcription of a subset of these genes containing PTC mutations. We confirm previous findings that genes containing PTC mutations are less selectively constrained and less broadly expressed than non-PTC-containing genes, suggesting that the most of these mutations are at least mildly deleterious. Further, we find highly significant codon usage bias in regions downstream of the PTC in 38 of these PTC-containing genes, suggesting that some of these PTC mutations--if not alternatively spliced out of the transcript--have neutral effects. Ultimately, these analyzes support the view that the PTC mutations are mostly detrimental, but are nonetheless common enough in genomes that a subset could be effectively neutral.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Biology Department, Duke University, PO Box 90388, Durham, NC 27708, USA.
| | | | | |
Collapse
|
236
|
Guo WT, Xu WY, Gu MM. [Nonsense-mediated mRNA decay and human monogenic disease]. YI CHUAN = HEREDITAS 2012; 34:935-42. [PMID: 22917898 DOI: 10.3724/sp.j.1005.2012.00935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a widespread quality control mechanism in eukaryotic cells. It can recognize and degrade aberrant transcripts harbouring a premature translational termination codon (PTC), and thereby prevent the production of C-terminally truncated proteins which might be deleterious. Approximately, 30% of human genetic diseases are caused by transcripts containing PTCs. These transcripts are potential targets of NMD. As for monogenic diseases, NMD has effects on the phenotype or mode of inheritance. Here, we explain the mechanism of this surveillance pathway, and take several neuromuscular disorders as examples to discuss its influence for human monogenic diseases. The deeper understanding for NMD will shed light on the nosogenesis and therapies of monogenic diseases.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | | | | |
Collapse
|
237
|
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly progressive and fatal disease for which there is an ever-expanding body of genetic and related pathophysiological information on disease pathogenesis. The most common single culprit gene known is BMPR2, and animal models of the disease in several forms exist. There is a wealth of genetic data regarding modifiers of disease expression, penetrance, and severity. Despite the rapid accumulation of data in the last decade, a complete picture of the molecular pathogenesis of PAH leading to novel therapies is lacking. In this review, we attempt to summarize the current understanding of PAH from the genetic perspective. The most recent PAH demographics are discussed. Heritable PAH in the post-BMPR2 era is examined in detail as the most robust model of PAH genetics in both animal models and human pedigrees. Important downstream molecular pathways and modifiers of disease expression are reviewed in light of what is known about PAH pathogenesis. Current and emerging therapies are examined in light of genetic data. The role of genetic testing in PAH in the post-BMPR2 era is discussed. Finally, directions for future investigations that ideally will fulfill the promise of novel therapeutic or preventive strategies are discussed.
Collapse
Affiliation(s)
- Joshua P Fessel
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee, US
| | | | | |
Collapse
|
238
|
Damé MCF, Xavier GM, Oliveira-Filho JP, Borges AS, Oliveira HN, Riet-Correa F, Schild AL. A nonsense mutation in the tyrosinase gene causes albinism in water buffalo. BMC Genet 2012; 13:62. [PMID: 22817390 PMCID: PMC3411452 DOI: 10.1186/1471-2156-13-62] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022] Open
Abstract
Background Oculocutaneous albinism (OCA) is an autosomal recessive hereditary pigmentation disorder affecting humans and several other animal species. Oculocutaneous albinism was studied in a herd of Murrah buffalo to determine the clinical presentation and genetic basis of albinism in this species. Results Clinical examinations and pedigree analysis were performed in an affected herd, and wild-type and OCA tyrosinase mRNA sequences were obtained. The main clinical findings were photophobia and a lack of pigmentation of the hair, skin, horns, hooves, mucosa, and iris. The results of segregation analysis suggest that this disease is acquired through recessive inheritance. In the OCA buffalo, a single-base substitution was detected at nucleotide 1,431 (G to A), which leads to the conversion of tryptophan into a stop codon at residue 477. Conclusion This premature stop codon produces an inactive protein, which is responsible for the OCA buffalo phenotype. These findings will be useful for future studies of albinism in buffalo and as a possible model to study diseases caused by a premature stop codon.
Collapse
|
239
|
Johnson JK, Waddell N, Chenevix-Trench G. The application of nonsense-mediated mRNA decay inhibition to the identification of breast cancer susceptibility genes. BMC Cancer 2012; 12:246. [PMID: 22703186 PMCID: PMC3409022 DOI: 10.1186/1471-2407-12-246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/15/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Identification of novel, highly penetrant, breast cancer susceptibility genes will require the application of additional strategies beyond that of traditional linkage and candidate gene approaches. Approximately one-third of inherited genetic diseases, including breast cancer susceptibility, are caused by frameshift or nonsense mutations that truncate the protein product 1. Transcripts harbouring premature termination codons are selectively and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. Blocking the NMD pathway in any given cell will stabilise these mutant transcripts, which can then be detected using gene expression microarrays. This technique, known as gene identification by nonsense-mediated mRNA decay inhibition (GINI), has proved successful in identifying sporadic nonsense mutations involved in many different cancer types. However, the approach has not yet been applied to identify germline mutations involved in breast cancer. We therefore attempted to use GINI on lymphoblastoid cell lines (LCLs) from multiple-case, non- BRCA1/2 breast cancer families in order to identify additional high-risk breast cancer susceptibility genes. METHODS We applied GINI to a total of 24 LCLs, established from breast-cancer affected and unaffected women from three multiple-case non-BRCA1/2 breast cancer families. We then used Illumina gene expression microarrays to identify transcripts stabilised by the NMD inhibition. RESULTS The expression profiling identified a total of eight candidate genes from these three families. One gene, PPARGC1A, was a candidate in two separate families. We performed semi-quantitative real-time reverse transcriptase PCR of all candidate genes but only PPARGC1A showed successful validation by being stabilised in individuals with breast cancer but not in many unaffected members of the same family. Sanger sequencing of all coding and splice site regions of PPARGC1A did not reveal any protein truncating mutations. Haplotype analysis using short tandem repeat microsatellite markers did not indicate the presence of a haplotype around PPARGC1A which segregated with disease in the family. CONCLUSIONS The application of the GINI method to LCLs to identify transcripts harbouring germline truncating mutations is challenging due to a number of factors related to cell type, microarray sensitivity and variations in NMD efficiency.
Collapse
Affiliation(s)
- Julie K Johnson
- Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
240
|
Pinotti M, Caruso P, Canella A, Campioni M, Tagariello G, Castaman G, Giacomelli S, Belvini D, Bernardi F. Ribosome readthrough accounts for secreted full-length factor IX in hemophilia B patients with nonsense mutations. Hum Mutat 2012; 33:1373-6. [PMID: 22618954 DOI: 10.1002/humu.22120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/07/2012] [Indexed: 01/08/2023]
Abstract
We investigated the spontaneous ribosome readthrough, virtually unexplored in genes encoding secreted proteins, over coagulation F9 nonsense mutations. Expression of recombinant factor IX (FIX) in eukaryotic cells demonstrated appreciable levels of secreted FIX molecules for the mutations p.R162* (5 ± 0.3% of rFIX-wt antigen levels), p.R294* (3.1 ± 1.1%) and p.R298* (2.5 ± 0.7%), but not for the p.L103*. Western blotting revealed a large proportion of truncated molecules, which correlated with small amounts of full-length FIX (rFIX-162*, ∼0.5%; rFIX-294*; and rFIX-298*, ∼0.2%). Western blotting of plasma from FIX deficient (Hemophilia B) patients revealed traces of full-length FIX for the p.R294* and p.R298* mutations, but not for the p.L103* mutation that triggered major FIX mRNA decay. The detection of full-length proteins has clinical implication, particularly for post-therapeutic immunological complications in Hemophilia. Data in patients' plasma and in vitro, obtained in the proper protein context, support a ribosome readthrough gradient, consistent with its predicted determinants of efficiency.
Collapse
Affiliation(s)
- Mirko Pinotti
- Dipartimento di Biochimica e Biologia Molecolare and LTTA Centre, Università di Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Morgado A, Almeida F, Teixeira A, Silva AL, Romão L. Unspliced precursors of NMD-sensitive β-globin transcripts exhibit decreased steady-state levels in erythroid cells. PLoS One 2012; 7:e38505. [PMID: 22675570 PMCID: PMC3366927 DOI: 10.1371/journal.pone.0038505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and rapidly degrades mRNAs carrying premature translation-termination codons (PTCs). Mammalian NMD depends on both splicing and translation, and requires recognition of the premature stop codon by the cytoplasmic ribosomes. Surprisingly, some published data have suggested that nonsense codons may also affect the nuclear metabolism of the nonsense-mutated transcripts. To determine if nonsense codons could influence nuclear events, we have directly assessed the steady-state levels of the unspliced transcripts of wild-type and PTC-containing human β-globin genes stably transfected in mouse erythroleukemia (MEL) cells, after erythroid differentiation induction, or in HeLa cells. Our analyses by ribonuclease protection assays and reverse transcription-coupled quantitative PCR show that β-globin pre-mRNAs carrying NMD-competent PTCs, but not those containing a NMD-resistant PTC, exhibit a significant decrease in their steady-state levels relatively to the wild-type or to a missense-mutated β-globin pre-mRNA. On the contrary, in HeLa cells, human β-globin pre-mRNAs carrying NMD-competent PTCs accumulate at normal levels. Functional analyses of these pre-mRNAs in MEL cells demonstrate that their low steady-state levels do not reflect significantly lower pre-mRNA stabilities when compared to the normal control. Furthermore, our results also provide evidence that the relative splicing efficiencies of intron 1 and 2 are unaffected. This set of data highlights potential nuclear pathways that might be promoter- and/or cell line-specific, which recognize the NMD-sensitive transcripts as abnormal. These specialized nuclear pathway(s) may be superimposed on the general NMD mechanism.
Collapse
Affiliation(s)
- Ana Morgado
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Fátima Almeida
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Alexandre Teixeira
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Centro de Investigação em Genética Molecular Humana, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Luísa Silva
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Romão
- Departamento de Genética, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioFIG–Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
242
|
|
243
|
Xu F, Xu S, Wiermer M, Zhang Y, Li X. The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:916-28. [PMID: 22248079 DOI: 10.1111/j.1365-313x.2012.04906.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant resistance (R) proteins protect cells from infections through recognizing effector molecules produced by pathogens and initiating downstream defense cascades. To mount proper immune responses, the expression of R genes has to be tightly controlled transcriptionally and post-transcriptionally. Intriguingly, alternative splicing of the R genes of the nucleotide binding leucine-rich repeat (NB-LRR) type was observed in different plant species, but its regulatory mechanism remains elusive. Here, we report the positional cloning and functional analysis of modifier of snc1,12 (mos12-1), a partial loss-of-function mutant that can suppress the constitutive defense responses conferred by the gain-of-function R gene mutant suppressor of npr1-1 constitutive 1 (snc1). MOS12 encodes an arginine-rich protein that is homologous to human cyclin L. A null allele of mos12-2 is lethal, suggesting it has a vital role in plant growth and development. MOS12 localizes to the nucleus, and the mos12-1 mutation results in altered splicing patterns of SNC1 and RPS4, indicating that MOS12 is required for the proper splicing of target R genes. MOS12 co-immunoprecipitates with MOS4, indicating that MOS12 associates with the MOS4-associated complex (MAC). Accordingly, splicing patterns of SNC1 and RPS4 are changed in most MAC core mutants. Our study highlights the contribution of MOS12 and the MAC in the alternative splicing of R genes, providing regulatory details on how alternative splicing is used to fine-tune R gene expression in plant immunity.
Collapse
Affiliation(s)
- Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
244
|
Gorbenko del Blanco D, de Graaff LCG, Visser TJ, Hokken-Koelega ACS. Growth hormone insensitivity syndrome caused by a heterozygous GHR mutation: phenotypic variability owing to moderation by nonsense-mediated decay. Clin Endocrinol (Oxf) 2012; 76:706-12. [PMID: 22117696 DOI: 10.1111/j.1365-2265.2011.04304.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Growth hormone insensitivity syndrome (GHIS) is characterized by extreme short stature and resistance to the actions of growth hormone (GH). The heterogeneity ranges from the most severe form, known as Laron syndrome, to less severe phenotypes like idiopathic short stature and partial GH insensitivity. Here, we aimed to identify and characterize the molecular cause of severe short stature in a patient with resistance to GH treatment. PATIENT We describe a male patient born small for gestational age [38 weeks gestation, length 38·5 cm; -7·8 standard deviation score (SDS), weight 1350 g; -4·84 SDS]. At the age of 7 years (109·7 cm; -2·89 SD), he received GH treatment (1 mg/m(2)/day) for 1 year without any increase in height SDS, IGF-I or IGFBP-3 levels. Double-GH-dose treatment for another year did not result in any improvement in growth factor level either. The patient does not have the typical Laron craniofacial and somatic features. RESULTS Analysis of GHR showed a heterozygous nonsense mutation (c.703C>T; p.Arg217X). Extensive mutation screening as well as copy number variation analysis of other candidate genes in the GH-IGF-I axis excluded any additional genetic defects. Analysis of the patient's fibroblasts showed that growth hormone receptor (GHR) messenger ribonucleic acid (mRNA) expressed from the mutant allele was degraded by a mechanism called nonsense-mediated mRNA decay (NMD). CONCLUSIONS GHIS in this patient is because of a heterozygous nonsense mutation in GHR. Our study is the first to demonstrate that NMD is involved in the phenotypic variability of GHIS caused by GHR mutations.
Collapse
|
245
|
Qadah T, Finlayson J, Newbound C, Pell N, Pascoe M, Greenwood L, Holmes P, Grey D, Beilby J, Ghassemifar R. Molecular and Cellular Characterization of a New α-Thalassemia Mutation (HBA2:c.94A>C) Generating an Alternative Splice Site and a Premature Stop Codon. Hemoglobin 2012; 36:244-52. [DOI: 10.3109/03630269.2012.670683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
246
|
Waye JS, Walker L, Eng B. α +-Thalassemia Trait Caused by a Frameshift Mutation in Exon 2 of the α2-Globin Gene [HBA2 c.244delT]. Hemoglobin 2012; 36:205-7. [DOI: 10.3109/03630269.2012.656172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
247
|
Damjanovich K, Langa C, Blanco FJ, McDonald J, Botella LM, Bernabeu C, Wooderchak-Donahue W, Stevenson DA, Bayrak-Toydemir P. 5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2011; 6:85. [PMID: 22192717 PMCID: PMC3277489 DOI: 10.1186/1750-1172-6-85] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/22/2011] [Indexed: 11/11/2022] Open
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by epistaxis, arteriovenous malformations, and telangiectases. The majority of the patients have a mutation in the coding region of the activin A receptor type II-like 1 (ACVRL1) or Endoglin (ENG) gene. However, in approximately 15% of cases, sequencing analysis and deletion/duplication testing fail to identify mutations in the coding regions of these genes. Knowing its vital role in transcription and translation control, we were prompted to investigate the 5'untranslated region (UTR) of ENG. Methods and Results We sequenced the 5'UTR of ENG for 154 HHT patients without mutations in ENG or ACVRL1 coding regions. We found a mutation (c.-127C > T), which is predicted to affect translation initiation and alter the reading frame of endoglin. This mutation was found in a family with linkage to the ENG, as well as in three other patients, one of which had an affected sibling with the same mutation. In vitro expression studies showed that a construct with the c.-127C > T mutation alters the translation and decreases the level of the endoglin protein. In addition, a c.-9G > A mutation was found in three patients, one of whom was homozygous for this mutation. Expression studies showed decreased protein levels suggesting that the c.-9G > A is a hypomorphic mutation. Conclusions Our results emphasize the need for the inclusion of the 5'UTR region of ENG in clinical testing for HHT.
Collapse
Affiliation(s)
- Kristy Damjanovich
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Branchini A, Rizzotto L, Mariani G, Napolitano M, Lapecorella M, Giansily-Blaizot M, Mari R, Canella A, Pinotti M, Bernardi F. Natural and engineered carboxy-terminal variants: decreased secretion and gain-of-function result in asymptomatic coagulation factor VII deficiency. Haematologica 2011; 97:705-9. [PMID: 22180436 DOI: 10.3324/haematol.2011.049403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We report 2 asymptomatic homozygotes for the nonsense p.R462X mutation affecting the carboxy-terminus of coagulation factor VII (FVII, 466 aminoacids). FVII levels of 3-5% and 2.7 ± 0.4% were found in prothrombin time-based and activated factor X (FXa) generation assays with human thromboplastins. Noticeably, FVII antigen levels were barely detectable (0.7 ± 0.2%) which suggested a gain-of-function effect. This effect was more pronounced with bovine thromboplastin (4.8 ± 0.9%) and disappeared with rabbit thromboplastin (0.7 ± 0.2%). This suggests that the mutation influences tissue factor/FVII interactions. Whereas the recombinant rFVII-462X variant confirmed an increase in specific activity (~400%), a panel of nonsense (p.P466X, p.F465X, p.P464X, p.A463X) and missense (p.R462A, p.R462Q, p.R462W) mutations of the FVII carboxy-terminus resulted in reduced secretion but normal specific activity. These data provide evidence for counteracting pleiotropic effects of the p.R462X mutation, which explains the asymptomatic FVII deficiency, and contributes to our understanding of the role of the highly variable carboxy-terminus of coagulation serine proteases.
Collapse
Affiliation(s)
- Alessio Branchini
- Dipartimento di Biochimica e Biologia Molecolare and LTTA Centre, Università degli Studi di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Error prevention and mitigation as forces in the evolution of genes and genomes. Nat Rev Genet 2011; 12:875-81. [PMID: 22094950 DOI: 10.1038/nrg3092] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Why are short introns rarely a multiple of three nucleotides long? Why do essential genes cluster? Why are genes in operons often lined up in the order in which they are needed in the encoded pathway? In this Opinion article, we argue that these and many other - ostensibly disparate - observations are all pieces of an emerging picture in which multiple aspects of gene anatomy and genome architecture have evolved in response to error-prone gene expression.
Collapse
|
250
|
Pinotti M, Bernardi F, Dal Mas A, Pagani F. RNA-based therapeutic approaches for coagulation factor deficiencies. J Thromb Haemost 2011; 9:2143-52. [PMID: 21854538 DOI: 10.1111/j.1538-7836.2011.04481.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Substitutive therapy has significantly ameliorated the quality of life of patients with coagulation factor deficiencies. However, there are some limitations that support research towards alternative therapeutic approaches. Here we focus on the rescue of coagulation factor biosynthesis by targeting the RNA processing and translation, which would permit restoration of the altered gene expression while maintaining the gene regulation in the physiological tissues. The essential prerequisite of the three reported RNA-based correction approaches (i-iii), which rely on mutation types and are applicable even to large size mRNAs, is the presence in cells of the precursor (pre-mRNA) or mature mRNA forms. (i) In the F7 gene, modification of the small nuclear RNA U1 (U1 snRNA), the key component of the spliceosomal U1 ribonucleoprotein, re-directs correct usage of a mutated exon-intron junction, triggering synthesis of correct mRNA and secretion of functional factor (F)VII. (ii) Spliceosome-mediated RNA trans-splicing (SMaRT) between mutated and engineered pre-mRNAs produces normal FVIII mRNA and secretion of functional protein. (iii) Aminoglycoside drugs induce ribosome readthrough and suppress premature translation termination caused by nonsense mutations in FVII, VIII and IX. The rescued expression levels ranged from very low (aminoglycosides) to moderate (U1 snRNA and SMaRT), which could result in amelioration of the disease phenotypes. These findings prompt further studies aimed at demonstrating the clinical translatability of RNA-based strategies, which might open new avenues in the treatment of coagulation factor deficiencies.
Collapse
Affiliation(s)
- M Pinotti
- Department of Biochemistry and Molecular Biology, University of Ferrara, Trieste, Italy
| | | | | | | |
Collapse
|