201
|
Wu S, Trievel RC, Rice JC. Human SFMBT is a transcriptional repressor protein that selectively binds the N-terminal tail of histone H3. FEBS Lett 2007; 581:3289-96. [PMID: 17599839 PMCID: PMC2045647 DOI: 10.1016/j.febslet.2007.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/07/2007] [Accepted: 06/14/2007] [Indexed: 12/27/2022]
Abstract
Human SFMBT (hSFMBT) is postulated to be a Polycomb (PcG) protein. Similar to other PcG proteins, we found that hSFMBT displays robust transcriptional repressor activity. In addition, hSFMBT localized to the nucleus where it strongly associates with chromatin by directly and selectively binding the N-terminal tail of histone H3. Importantly, we discovered that the four tandem MBT repeats of hSFMBT were sufficient for nuclear matrix-association, N-terminal tail H3 binding, and required for transcriptional repression. These findings indicate that the tandem MBT repeats form a functional structure required for biological activity of hSFMBT and predict similar properties for other MBT domain-containing proteins.
Collapse
Affiliation(s)
- Shumin Wu
- University of Southern California Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
202
|
Kato M, Kato Y, Nishida M, Hayakawa T, Haraguchi T, Hiraoka Y, H Inoue Y, Yamaguchi M. Functional domain analysis of human HP1 isoforms in Drosophila. Cell Struct Funct 2007; 32:57-67. [PMID: 17575412 DOI: 10.1247/csf.06032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Three subtypes of HP1, a conserved non-histone chromosomal protein enriched in heterochromatin, have been identified in humans, HP1alpha, beta and gamma. In the present study, we utilized a Drosophila system to characterize human HP1 functions. Over-expression of HP1beta in eye imaginal discs caused abnormally patterned eyes, with reduced numbers of ommatidia, and over-expression of HP1gamma in wing imaginal discs caused abnormal wings, in which L4 veins were gapped. These phenotypes were specific to the HP1 subtypes and appear to reflect suppressed gene expression. To determine the molecular domains of HP1 required for each specific phenotype, we constructed a series of chimeric molecules with HP1beta and HP1gamma. Our data show that the C-terminal chromo shadow domain (CSD) of HP1gamma is necessary for HP1gamma-type phenotype, whereas for the HP1beta-type phenotype both the chromo domain and the CSD are required. These results suggest human HP1 subtypes use different domains to suppress gene expression in Drosophila cells.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res 2007; 618:163-74. [PMID: 17306846 PMCID: PMC1892579 DOI: 10.1016/j.mrfmmm.2006.05.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/25/2006] [Indexed: 04/15/2023]
Abstract
Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.
Collapse
Affiliation(s)
- Timothy J Moss
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
204
|
Iborra FJ. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation? Theor Biol Med Model 2007; 4:15. [PMID: 17430588 PMCID: PMC1853075 DOI: 10.1186/1742-4682-4-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 04/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. RESULTS The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. CONCLUSION I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.
Collapse
Affiliation(s)
- Francisco J Iborra
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK.
| |
Collapse
|
205
|
Mateos-Langerak J, Brink MC, Luijsterburg MS, van der Kraan I, van Driel R, Verschure PJ. Pericentromeric heterochromatin domains are maintained without accumulation of HP1. Mol Biol Cell 2007; 18:1464-71. [PMID: 17314413 PMCID: PMC1838966 DOI: 10.1091/mbc.e06-01-0025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heterochromatin protein 1 (HP1) family is thought to be an important structural component of heterochromatin. HP1 proteins bind via their chromodomain to nucleosomes methylated at lysine 9 of histone H3 (H3K9me). To investigate the role of HP1 in maintaining heterochromatin structure, we used a dominant negative approach by expressing truncated HP1alpha or HP1beta proteins lacking a functional chromodomain. Expression of these truncated HP1 proteins individually or in combination resulted in a strong reduction of the accumulation of HP1alpha, HP1beta, and HP1gamma in pericentromeric heterochromatin domains in mouse 3T3 fibroblasts. The expression levels of HP1 did not change. The apparent displacement of HP1alpha, HP1beta, and HP1gamma from pericentromeric heterochromatin did not result in visible changes in the structure of pericentromeric heterochromatin domains, as visualized by DAPI staining and immunofluorescent labeling of H3K9me. Our results show that the accumulation of HP1alpha, HP1beta, and HP1gamma at pericentromeric heterochromatin domains is not required to maintain DAPI-stained pericentromeric heterochromatin domains and the methylated state of histone H3 at lysine 9 in such heterochromatin domains.
Collapse
Affiliation(s)
- Julio Mateos-Langerak
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
206
|
Mandel S, Rechavi G, Gozes I. Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Dev Biol 2006; 303:814-24. [PMID: 17222401 DOI: 10.1016/j.ydbio.2006.11.039] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 11/21/2006] [Accepted: 11/21/2006] [Indexed: 11/16/2022]
Abstract
Complete deficiency in activity-dependent neuroprotective protein (ADNP) results in neural tube closure defects and death at days 8.5-9.5 of gestation in the mouse (E8.5-9.5). To elucidate ADNP associated pathways, Affymetrix 22,690-oligonucleotide-based microarrays were used on ADNP knockout and control mouse embryos (E9) separated completely from extra embryonic tissue. Marked differences in expression profiles between ADNP-deficient embryos and ADNP-expressing embryos were discovered. Specifically, a group of dramatically up-regulated gene transcripts in the ADNP-deficient embryos were clustered into a family encoding for proteins enriched in the visceral endoderm such as apolipoproteins, cathepsins and methallotionins. In contrast, a down regulated gene cluster associated with ADNP-deficiency in the developing embryo consisted of organogenesis markers including neurogenesis (Ngfr, neurogenin1, neurod1) and heart development (Myl2). The pluripotent P19 cells were used for ADNP-chromatin-immunoprecipitation, showing direct interactions with multiple relevant gene promoters including members of the up-regulated as well as the down-regulated gene clusters. A comparison between non-differentiated and neuro-differentiated P19 cells revealed increased chromatin interaction of ADNP with chromatin from differentiated cells. These results place ADNP at a crucial point of gene regulation, repressing potential endoderm genes and enhancing genes associated with organogenesis/neurogenesis.
Collapse
Affiliation(s)
- Shmuel Mandel
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
207
|
Zhang P, Du J, Sun B, Dong X, Xu G, Zhou J, Huang Q, Liu Q, Hao Q, Ding J. Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3. Nucleic Acids Res 2006; 34:6621-8. [PMID: 17135209 PMCID: PMC1747190 DOI: 10.1093/nar/gkl989] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human MRG15 is a transcription factor that plays a vital role in embryonic development, cell proliferation and cellular senescence. It comprises a putative chromo domain in the N-terminal part that has been shown to participate in chromatin remodeling and transcription regulation. We report here the crystal structure of human MRG15 chromo domain at 2.2 A resolution. The MRG15 chromo domain consists of a beta-barrel and a long alpha-helix and assumes a structure more similar to the Drosophila MOF chromo barrel domain than the typical HP1/Pc chromo domains. The beta-barrel core contains a hydrophobic pocket formed by three conserved aromatic residues Tyr26, Tyr46 and Trp49 as a potential binding site for a modified residue of histone tail. However, the binding groove for the histone tail seen in the HP1/Pc chromo domains is pre-occupied by an extra beta-strand. In vitro binding assay results indicate that the MRG15 chromo domain can bind to methylated Lys36, but not methylated Lys4, Lys9 and Lys27 of histone H3. These data together suggest that the MRG15 chromo domain may function as an adaptor module which can bind to a modified histone H3 in a mode different from that of the HP1/Pc chromo domains.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Graduate School of Chinese Academy of Sciences320 Yue-Yang Road, Shanghai 200031, China
| | - Jiamu Du
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Graduate School of Chinese Academy of Sciences320 Yue-Yang Road, Shanghai 200031, China
| | - Bingfa Sun
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Graduate School of Chinese Academy of Sciences320 Yue-Yang Road, Shanghai 200031, China
| | - Xianchi Dong
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Graduate School of Chinese Academy of Sciences320 Yue-Yang Road, Shanghai 200031, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Jinqiu Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Qingqiu Huang
- MacCHESS, Cornell High Energy Synchrotron Source, Cornell UniversityIthaca, NY 14853, USA
| | - Qun Liu
- MacCHESS, Cornell High Energy Synchrotron Source, Cornell UniversityIthaca, NY 14853, USA
| | - Quan Hao
- MacCHESS, Cornell High Energy Synchrotron Source, Cornell UniversityIthaca, NY 14853, USA
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- To whom correspondence should be addressed. Tel: +86 21 5492 1619; Fax: +86 21 5492 1116;
| |
Collapse
|
208
|
Eskeland R, Eberharter A, Imhof A. HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors. Mol Cell Biol 2006; 27:453-65. [PMID: 17101786 PMCID: PMC1800810 DOI: 10.1128/mcb.01576-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large portion of the eukaryotic genome is packaged into transcriptionally silent heterochromatin. Several factors that play important roles during the establishment and maintenance of this condensed form have been identified. Methylation of lysine 9 within histone H3 and the subsequent binding of the chromodomain protein heterochromatin protein 1 (HP1) are thought to initiate heterochromatin formation in vivo and to propagate a heterochromatic state lasting through several cell divisions. For the present study we analyzed the binding of HP1 to methylated chromatin in a fully reconstituted system. In contrast to its strong binding to methylated peptides, HP1 binds only weakly to methylated chromatin. However, the addition of recombinant SU(VAR) protein, such as ACF1 or SU(VAR)3-9, facilitates HP1 binding to chromatin methylated at lysine 9 within the H3 N terminus (H3K9). We propose that HP1 has multiple target sites that contribute to its recognition of chromatin, only one of them being methylated at H3K9. These findings have implications for the mechanisms of recognition of specific chromatin modifications in vivo.
Collapse
Affiliation(s)
- Ragnhild Eskeland
- Histone Modifications Group, Adolf-Butenandt Institut, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | | | |
Collapse
|
209
|
Vogel MJ, Guelen L, de Wit E, Hupkes DP, Lodén M, Talhout W, Feenstra M, Abbas B, Classen AK, van Steensel B. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res 2006; 16:1493-504. [PMID: 17038565 PMCID: PMC1665633 DOI: 10.1101/gr.5391806] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heterochromatin is important for gene regulation and chromosome structure, but the genes that are occupied by heterochromatin proteins in the mammalian genome are largely unknown. We have adapted the DamID method to systematically identify target genes of the heterochromatin proteins HP1 and SUV39H1 in human and mouse cells. Unexpectedly, we found that CBX1 (formerly HP1beta) and SUV39H1 bind to genes encoding KRAB domain containing zinc finger (KRAB-ZNF) transcriptional repressors. These genes constitute one of the largest gene families and are organized in clusters in the human genome. Preference of CBX1 for this gene family was observed in both human and mouse cells. High-resolution mapping on human chromosome 19 revealed that CBX1 coats large domains 0.1-4 Mb in size, which coincide with the position of KRAB-ZNF gene clusters. These domains show an intricate CBX1 binding pattern: While CBX1 is globally elevated throughout the domains, it is absent from the promoters and binds more strongly to the 3' ends of KRAB-ZNF genes. KRAB-ZNF domains contain large numbers of LINE elements, which may contribute to CBX1 recruitment. These results uncover a surprising link between heterochromatin and a large family of regulatory genes in mammals. We suggest a role for heterochromatin in the evolution of the KRAB-ZNF gene family.
Collapse
Affiliation(s)
- Maartje J. Vogel
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lars Guelen
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel Peric Hupkes
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martin Lodén
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wendy Talhout
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marike Feenstra
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ben Abbas
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anne-Kathrin Classen
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Corresponding author.E-mail ; fax +31.20.669.1383
| |
Collapse
|
210
|
Seitan VC, Banks P, Laval S, Majid NA, Dorsett D, Rana A, Smith J, Bateman A, Krpic S, Hostert A, Rollins RA, Erdjument-Bromage H, Tempst P, Benard CY, Hekimi S, Newbury SF, Strachan T. Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol 2006; 4:e242. [PMID: 16802858 PMCID: PMC1484498 DOI: 10.1371/journal.pbio.0040242] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/17/2006] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae Scc2 binds Scc4 to form an essential complex that loads cohesin onto chromosomes. The prevalence of Scc2 orthologs in eukaryotes emphasizes a conserved role in regulating sister chromatid cohesion, but homologs of Scc4 have not hitherto been identified outside certain fungi. Some metazoan orthologs of Scc2 were initially identified as developmental gene regulators, such as Drosophila Nipped-B, a regulator of cut and Ultrabithorax, and delangin, a protein mutant in Cornelia de Lange syndrome. We show that delangin and Nipped-B bind previously unstudied human and fly orthologs of Caenorhabditis elegans MAU-2, a non-axis-specific guidance factor for migrating cells and axons. PSI-BLAST shows that Scc4 is evolutionarily related to metazoan MAU-2 sequences, with the greatest homology evident in a short N-terminal domain, and protein-protein interaction studies map the site of interaction between delangin and human MAU-2 to the N-terminal regions of both proteins. Short interfering RNA knockdown of human MAU-2 in HeLa cells resulted in precocious sister chromatid separation and in impaired loading of cohesin onto chromatin, indicating that it is functionally related to Scc4, and RNAi analyses show that MAU-2 regulates chromosome segregation in C. elegans embryos. Using antisense morpholino oligonucleotides to knock down Xenopus tropicalis delangin or MAU-2 in early embryos produced similar patterns of retarded growth and developmental defects. Our data show that sister chromatid cohesion in metazoans involves the formation of a complex similar to the Scc2-Scc4 interaction in the budding yeast. The very high degree of sequence conservation between Scc4 homologs in complex metazoans is consistent with increased selection pressure to conserve additional essential functions, such as regulation of cell and axon migration during development.
Collapse
Affiliation(s)
- Vlad C Seitan
- 1Institute of Human Genetics, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Peter Banks
- 1Institute of Human Genetics, University of Newcastle, Newcastle upon Tyne, United Kingdom
- 2Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Steve Laval
- 1Institute of Human Genetics, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Nazia A Majid
- 1Institute of Human Genetics, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Dale Dorsett
- 3Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Amer Rana
- 4Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jim Smith
- 4Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Alex Bateman
- 5Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Sanja Krpic
- 6Erasmus Medical Center, University of Rotterdam, Rotterdam, Netherlands
| | - Arnd Hostert
- 6Erasmus Medical Center, University of Rotterdam, Rotterdam, Netherlands
| | - Robert A Rollins
- 7Weill Graduate School of Medical Sciences, Cornell Medical College, New York, New York, United States of America
| | - Hediye Erdjument-Bromage
- 8Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Paul Tempst
- 8Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | | | | | - Sarah F Newbury
- 2Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Tom Strachan
- 1Institute of Human Genetics, University of Newcastle, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
211
|
Abstract
The accessibility of eukaryotic DNA is dependent upon the hierarchical level of chromatin organization. These include (1) intra-nucleosome interactions, (2) inter-nucleosome interactions and (3) the influence of non-histone chromatin architectural proteins. There appears to be interplay between all these levels, in that one level can override another or that two or more can act in concert. In the first level, the stability of the nucleosome itself is dependent on the number and type of contacts between the core histones and the surrounding DNA, as well as protein-protein interactions within the core histone octamer. Core histone variants, post-translational modifications of the histones, and linker histones binding to the DNA all influence the organization and stability of the nucleosome. When nucleosomes are placed end-to-end in linear chromatin arrays, the second level of organization is revealed. The amino terminal tails of the histone proteins make contacts with adjacent and distant nucleosomes, both within the fiber and between different fibers. The third level of organization is imposed upon these 'intrinsic' constraints, and is due to the influence of chromatin binding proteins that alter the architecture of the underlying fiber. These chromatin architectural proteins can, in some cases, bypass intrinsic constraints and impart their own topological affects, resulting in truly unique, supra-molecular assemblages that undoubtedly influence the accessibility of the underlying DNA. In this review we will provide a brief summary of what has been learned about the intrinsic dynamics of chromatin fibers, and survey the biology and architectural affects of the handful of chromatin architectural proteins that have been identified and characterized. These proteins are likely only a small subset of the architectural proteins encoded within the eukaryotic genome. We hope that an increased understanding and appreciation of the contribution of these proteins to genome accessibility will hasten the identification and characterization of more of these important regulatory factors.
Collapse
Affiliation(s)
- Steven J McBryant
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 80523-1870, USA
| | | | | |
Collapse
|
212
|
Grigoryev SA, Bulynko YA, Popova EY. The end adjusts the means: heterochromatin remodelling during terminal cell differentiation. Chromosome Res 2006; 14:53-69. [PMID: 16506096 DOI: 10.1007/s10577-005-1021-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All cells that constitute mature tissues in an eukaryotic organism undergo a multistep process of cell differentiation. At the terminal stage of this process, cells either cease to proliferate forever or rest for a very long period of time. During terminal differentiation, most of the genes that are required for cell 'housekeeping' functions, such as proto-oncogenes and other cell-cycle and cell proliferation genes, become stably repressed. At the same time, nuclear chromatin undergoes dramatic morphological and structural changes at the higher-order levels of chromatin organization. These changes involve both constitutively inactive chromosomal regions (constitutive heterochromatin) and the formerly active genes that become silenced and structurally modified to form facultative heterochromatin. Here we approach terminal cell differentiation as a unique system that allows us to combine biochemical, ultrastructural and molecular genetic techniques to study the relationship between the hierarchy of chromatin higher-order structures in the nucleus and its function(s) in dynamic packing of genetic material in a form that remains amenable to regulation of gene activity and other DNA-dependent cellular processes.
Collapse
Affiliation(s)
- Sergei A Grigoryev
- Department of Biochemistry and Molecular Biology, H171, Penn State University College of Medicine, Milton S Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
213
|
Coustham V, Bedet C, Monier K, Schott S, Karali M, Palladino F. The C. elegans HP1 homologue HPL-2 and the LIN-13 zinc finger protein form a complex implicated in vulval development. Dev Biol 2006; 297:308-22. [PMID: 16890929 DOI: 10.1016/j.ydbio.2006.04.474] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 12/31/2022]
Abstract
HP1 proteins are essential components of heterochromatin and contribute to the transcriptional repression of euchromatic genes via the recruitment to specific promoters by corepressor proteins including TIF1 and Rb. The Caenorhabditis elegans HP1 homologue HPL-2 acts in the "synMuv" (synthetic multivulval) pathway, which defines redundant negative regulators of a Ras signaling cascade required for vulval induction. Several synMuv genes encode for chromatin-associated proteins involved in transcriptional regulation, including Rb and components of the Mi-2/NuRD and TIP60/NuA4 chromatin remodeling complexes. Here, we show that HPL-2 physically interacts in vitro and in vivo with the multiple zinc finger protein LIN-13, another member of the synMuv pathway. A variant of the conserved PXVXL motif found in many HP1-interacting proteins mediates LIN-13 binding to the CSD of HPL-2. We further show by in vivo localization studies that LIN-13 is required for HPL-2 recruitment in nuclear foci. Our data suggest that the LIN-13/HPL-2 complex may physically link a subset of the Rb related synMuv proteins to chromatin.
Collapse
Affiliation(s)
- Vincent Coustham
- Laboratoire de Biologie Moleculaire de la Cellule, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | | | | | | | | | | |
Collapse
|
214
|
Norwood LE, Moss TJ, Margaryan NV, Cook SL, Wright L, Seftor EA, Hendrix MJC, Kirschmann DA, Wallrath LL. A requirement for dimerization of HP1Hsalpha in suppression of breast cancer invasion. J Biol Chem 2006; 281:18668-76. [PMID: 16648629 DOI: 10.1074/jbc.m512454200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development and progression of cancer is controlled by gene expression, often regulated through chromatin packaging. Heterochromatin protein 1(Hsalpha) (HP1(Hsalpha)), one of three human HP1 family members, participates in heterochromatin formation and gene regulation. HP1(Hsalpha) possesses an amino-terminal chromodomain, which binds methylated lysine 9 of histone H3 (meK9 H3), and a carboxyl-terminal chromoshadow domain (CSD) that is required for dimerization and interaction with partner proteins. HP1(Hsalpha) is down-regulated in invasive metastatic breast cancer cells compared with poorly invasive nonmetastatic breast cancer cells. Expression of EGFP-HP1(Hsalpha) in highly invasive MDA-MB-231 cells causes a reduction in in vitro invasion, without affecting cell growth. Conversely, knock-down of HP1(Hsalpha) levels in the poorly invasive breast cancer cell line MCF-7 increased invasion, without affecting cell growth. To determine whether functions of the CSD were required for the regulation of invasion, mutant forms of HP1(Hsalpha) were expressed in MDA-MB-231 cells. A W174A mutation that disrupts interactions between HP1(Hsalpha) and PXVXL-containing partner proteins reduced invasion similar to that of the wild type protein. In contrast, an I165E mutation that disrupts dimerization of HP1(Hsalpha) did not decrease invasion. No gross changes in localization and abundance of HP1(Hsbeta), HP1(Hsgamma), and meK9 H3 were observed upon expression of wild type and mutant forms of HP1(Hsalpha) in MDA-MB-231 cells. Taken together, these data demonstrate that modulation of HP1(Hsalpha) alters the invasive potential of breast cancer cells through mechanisms requiring HP1 dimerization, but not interactions with PXVXL-containing proteins.
Collapse
Affiliation(s)
- Laura E Norwood
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Kaller M, Euteneuer U, Nellen W. Differential effects of heterochromatin protein 1 isoforms on mitotic chromosome distribution and growth in Dictyostelium discoideum. EUKARYOTIC CELL 2006; 5:530-43. [PMID: 16524908 PMCID: PMC1398066 DOI: 10.1128/ec.5.3.530-543.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterochromatin protein 1 (HP1) is a well-characterized heterochromatin component conserved from fission yeast to humans. We identified three HP1-like genes (hcpA, hcpB, and hcpC) in the Dictyostelium discoideum genome. Two of these (hcpA and hcpB) are expressed, and the proteins colocalized as green fluorescent protein (GFP) fusion proteins in one major cluster at the nuclear periphery that was also characterized by histone H3 lysine 9 dimethylation, a histone modification so far not described for Dictyostelium. The data strongly suggest that this cluster represents the centromeres. Both single-knockout strains displayed only subtle phenotypes, suggesting that both isoforms have largely overlapping functions. In contrast, disruption of both isoforms appeared to be lethal. Furthermore, overexpression of a C-terminally truncated form of HcpA resulted in phenotypically distinct growth defects that were characterized by a strong decrease in cell viability. Although genetic evidence implies functional redundancy, overexpression of GFP-HcpA, but not GFP-HcpB, caused growth defects that were accompanied by an increase in the frequency of atypic anaphase bridges. Our data indicate that Dictyostelium discoideum cells are sensitive to changes in HcpA and HcpB protein levels and that the two isoforms display different in vivo and in vitro affinities for each other. Since the RNA interference (RNAi) machinery is frequently involved in chromatin remodeling, we analyzed if knockouts of RNAi components influenced the localization of H3K9 dimethylation and HP1 isoforms in Dictyostelium. Interestingly, heterochromatin organization appeared to be independent of functional RNAi.
Collapse
Affiliation(s)
- Markus Kaller
- Kassel University, FB 18, Abt. Genetik, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | | | | |
Collapse
|
216
|
Hermkes R, Funke S, Richter C, Kuhlmann J, Schünemann D. The alpha-helix of the second chromodomain of the 43 kDa subunit of the chloroplast signal recognition particle facilitates binding to the 54 kDa subunit. FEBS Lett 2006; 580:3107-11. [PMID: 16678173 DOI: 10.1016/j.febslet.2006.04.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/14/2006] [Accepted: 04/19/2006] [Indexed: 11/20/2022]
Abstract
Chloroplasts of higher plants contain a unique signal recognition particle (cpSRP) that consists of two proteins, cpSRP54 and cpSRP43. CpSRP43 is composed of a four ankyrin repeat domain and three functionally distinct chromodomains (CDs). In this report we confirm previously published data that the second chromodomain (CD2) provides the primary binding site for cpSRP54. However, quantitative binding analysis demonstrates that cpSRP54 binds to CD2 significantly less efficiently than it binds to full-length cpSRP43. Further analysis of the binding interface of cpSRP by mutagenesis studies and a pepscan approach demonstrates that the C-terminal alpha-helix of CD2 facilitates binding to cpSRP54.
Collapse
Affiliation(s)
- Rebecca Hermkes
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
217
|
Abstract
The posttranslational modification of histone proteins via methylation has important functions in gene activation, transcriptional silencing, establishment of chromatin states, and likely many aspects of DNA metabolism. The identification of numerous effector protein domains with the capability of binding methylated histones has significantly advanced our understanding of how such histone modifications may exert their biological effects. Here, we summarize aspects of the generation of arginine and lysine methylation marks on core histones, the characterization of the protein modules that interact with them, and how histone methylation cross-talks with other modifications.
Collapse
Affiliation(s)
- Michael S Torok
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
218
|
Huang Y, Myers MP, Xu RM. Crystal Structure of the HP1-EMSY Complex Reveals an Unusual Mode of HP1 Binding. Structure 2006; 14:703-12. [PMID: 16615912 DOI: 10.1016/j.str.2006.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/09/2005] [Accepted: 01/07/2006] [Indexed: 11/27/2022]
Abstract
Heterochromatin protein-1 (HP1) plays an essential role in both the assembly of higher-order chromatin structure and epigenetic inheritance. The C-terminal chromo shadow domain (CSD) of HP1 is responsible for homodimerization and interaction with a number of chromatin-associated nonhistone proteins, including EMSY, which is a BRCA2-interacting protein that has been implicated in the development of breast and ovarian cancer. We have determined the crystal structure of the HP1beta CSD in complex with the N-terminal domain of EMSY at 1.8 A resolution. Surprisingly, the structure reveals that EMSY is bound by two HP1 CSD homodimers, and the binding sequences differ from the consensus HP1 binding motif PXVXL. This structural information expands our understanding of HP1 binding specificity and provides insights into interactions between HP1 homodimers that are likely to be important for heterochromatin formation.
Collapse
Affiliation(s)
- Ying Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
219
|
Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 2006; 8:407-15. [PMID: 16531993 DOI: 10.1038/ncb1383] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 01/11/2006] [Indexed: 11/08/2022]
Abstract
Currently, the mammalian heterochromatic proteins HP1alpha, HP1beta and the pan-nuclear HP1gamma are considered 'gatekeepers' of methyl-K9-H3-mediated silencing. Understanding how the binding of these proteins to post-translationally modified histones is switched on and off will further our knowledge of how the histone code is modulated. Here, we report that all three HP1 isoforms can be extensively modified, similar to histones, suggesting that the silencing of gene expression may be further regulated beyond the histone code. To assess the potential impact of these modifications, we analysed the phosphorylation of HP1gamma at Ser 83 as a 'model modification'. We demonstrate that P-Ser 83-HP1gamma has an exclusively euchromatic localization, interacts with Ku70 (a regulatory protein involved in multiple nuclear procesess), has impaired silencing activity and serves as a marker for transcription elongation. These observations predict that regulation of silencing by methyl-K9-H3 through modification of mammalian HP1 proteins may be more complex than previously thought and suggests the existence of an HP1-mediated 'silencing subcode' that underlies the instructions of the histone code.
Collapse
Affiliation(s)
- Gwen Lomberk
- Gastroenterology Research Unit, Department of Medicine, and Mayo Clinic Cancer Center, Rochester, MN 55605, USA
| | | | | | | |
Collapse
|
220
|
Bonvin AMJJ, Boelens R, Kaptein R. NMR analysis of protein interactions. Curr Opin Chem Biol 2006; 9:501-8. [PMID: 16122968 DOI: 10.1016/j.cbpa.2005.08.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 08/09/2005] [Indexed: 11/28/2022]
Abstract
Recent technological advances in NMR spectroscopy have alleviated the size limitations for the determination of biomolecular structures in solution. At the same time, novel NMR parameters such as residual dipolar couplings are providing greater accuracy. As this review shows, the structures of protein-protein and protein-nucleic acid complexes up to 50 kDa can now be accurately determined. Although de novo structure determination still requires considerable effort, information on interaction surfaces from chemical shift perturbations is much easier to obtain. Advances in modelling and data-driven docking procedures allow this information to be used for determining approximate structures of biomolecular complexes. As a result, a wealth of information has become available on the way in which proteins interact with other biomolecules. Of particular interest is the fact that these NMR-based methods can be applied to weak and transient protein-protein complexes that are difficult to study by other structural methods.
Collapse
Affiliation(s)
- Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
221
|
Abstract
Heterochromatin Protein 1 (HP1) was first discovered in Drosophila as a dominant suppressor of position-effect variegation and a major component of heterochromatin. The HP1 family is evolutionarily conserved, with members in fungi, plants and animals but not prokaryotes, and there are multiple members within the same species. The amino-terminal chromodomain binds methylated lysine 9 of histone H3, causing transcriptional repression. The highly conserved carboxy-terminal chromoshadow domain enables dimerization and also serves as a docking site for proteins involved in a wide variety of nuclear functions, from transcription to nuclear architecture. In addition to heterochromatin packaging, it is becoming increasingly clear that HP1 proteins have diverse roles in the nucleus, including the regulation of euchromatic genes. HP1 proteins are amenable to posttranslational modifications that probably regulate these distinct functions, thereby creating a subcode within the context of the 'histone code' of histone posttranslational modifications.
Collapse
Affiliation(s)
- Gwen Lomberk
- Gastroenterology Research Unit, Saint Mary's Hospital, Mayo Clinic, Rochester, MN 55905, USA
| | - Lori Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Raul Urrutia
- Gastroenterology Research Unit, Saint Mary's Hospital, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
222
|
Zemach A, Li Y, Ben-Meir H, Oliva M, Mosquna A, Kiss V, Avivi Y, Ohad N, Grafi G. Different domains control the localization and mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis nuclei. THE PLANT CELL 2006; 18:133-45. [PMID: 16361394 PMCID: PMC1323489 DOI: 10.1105/tpc.105.036855] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants possess a single gene for the structurally related HETEROCHROMATIN PROTEIN1 (HP1), termed LIKE-HP1 (LHP1). We investigated the subnuclear localization, binding properties, and dynamics of LHP1 proteins in Arabidopsis thaliana cells. Transient expression assays showed that tomato (Solanum lycopersicum) LHP1 fused to green fluorescent protein (GFP; Sl LHP1-GFP) and Arabidopsis LHP1 (At LHP1-GFP) localized to heterochromatic chromocenters and showed punctuated distribution within the nucleus; tomato but not Arabidopsis LHP1 was also localized within the nucleolus. Mutations of aromatic cage residues that recognize methyl K9 of histone H3 abolished their punctuated distribution and localization to chromocenters. Sl LHP1-GFP plants displayed cell type-dependent subnuclear localization. The diverse localization pattern of tomato LHP1 did not require the chromo shadow domain (CSD), whereas the chromodomain alone was insufficient for localization to chromocenters; a nucleolar localization signal was identified within the hinge region. Fluorescence recovery after photobleaching showed that Sl LHP1 is a highly mobile protein whose localization and retention are controlled by distinct domains; retention at the nucleolus and chromocenters is conferred by the CSD. Our results imply that LHP1 recruitment to chromatin is mediated, at least in part, through interaction with methyl K9 and that LHP1 controls different nuclear processes via transient binding to its nuclear sites.
Collapse
Affiliation(s)
- Assaf Zemach
- Department of Plant Sciences, Weizman Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Brink MC, van der Velden Y, de Leeuw W, Mateos-Langerak J, Belmont AS, van Driel R, Verschure PJ. Truncated HP1 lacking a functional chromodomain induces heterochromatinization upon in vivo targeting. Histochem Cell Biol 2005; 125:53-61. [PMID: 16283356 DOI: 10.1007/s00418-005-0088-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
Packaging of the eukaryotic genome into higher order chromatin structures is tightly related to gene expression. Pericentromeric heterochromatin is typified by accumulations of heterochromatin protein 1 (HP1), methylation of histone H3 at lysine 9 (MeH3K9) and global histone deacetylation. HP1 interacts with chromatin by binding to MeH3K9 through the chromodomain (CD). HP1 dimerizes with itself and binds a variety of proteins through its chromoshadow domain. We have analyzed at the single cell level whether HP1 lacking its functional CD is able to induce heterochromatinization in vivo. We used a lac-operator array-based system in mammalian cells to target EGFP-lac repressor tagged truncated HP1alpha and HP1beta to a lac operator containing gene-amplified chromosome region in living cells. After targeting truncated HP1alpha or HP1beta we observe enhanced tri-MeH3K9 and recruitment of endogenous HP1alpha and HP1beta to the chromosome region. We show that CD-less HP1alpha can induce chromatin condensation, whereas the effect of truncated HP1beta is less pronounced. Our results demonstrate that after lac repressor-mediated targeting, HP1alpha and HP1beta without a functional CD are able to induce heterochromatinization.
Collapse
Affiliation(s)
- Maartje C Brink
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
224
|
Ekblad CMS, Chavali GB, Basu BP, Freund SMV, Veprintsev D, Hughes-Davies L, Kouzarides T, Doherty AJ, Itzhaki LS. Binding of EMSY to HP1beta: implications for recruitment of HP1beta and BS69. EMBO Rep 2005; 6:675-80. [PMID: 15947784 PMCID: PMC1369107 DOI: 10.1038/sj.embor.7400415] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/03/2004] [Accepted: 04/05/2005] [Indexed: 11/08/2022] Open
Abstract
EMSY is a large nuclear protein that binds to the transactivation domain of BRCA2. EMSY contains an approximately 100-residue segment at the amino terminus called the ENT (EMSY N-terminal) domain. Plant proteins containing ENT domains also contain members of the royal family of chromatin-remodelling domains. It has been proposed that EMSY may have a role in chromatin-related processes. This is supported by the observation that a number of chromatin-regulator proteins, including HP1beta and BS69, bind directly to EMSY by means of a conserved motif adjacent to the ENT domain. Here, we report the crystal structure of residues 1-108 of EMSY at 2.0 A resolution. The structure contains both the ENT domain and the HP1beta/BS69-binding motif. This binding motif forms an extended peptide-like conformation that adopts distinct orientations in each subunit of the dimer. Biophysical and nuclear magnetic resonance analyses show that the main complex formed by EMSY and the chromoshadow domain of HP1 (HP1-CSD) consists of one EMSY dimer sandwiched between two HP1-CSD dimers. The HP1beta-binding motif is necessary and sufficient for EMSY to bind to the chromoshadow domain of HP1beta.
Collapse
Affiliation(s)
- Caroline M S Ekblad
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - Gayatri B Chavali
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK
| | - Balaka P Basu
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK
| | - Stefan M V Freund
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK
| | - Dmitry Veprintsev
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK
| | - Luke Hughes-Davies
- Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - Tony Kouzarides
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
- Tel: +44 1273 678123; Fax: +44 1273 678121; E-mail:
| | - Laura S Itzhaki
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
- Tel: +44 1223 763344; Fax: +44 1223 763241; E-mail:
| |
Collapse
|
225
|
Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005; 438:1116-22. [PMID: 16222246 DOI: 10.1038/nature04219] [Citation(s) in RCA: 724] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 09/16/2005] [Indexed: 01/01/2023]
Abstract
Tri-methylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging and heterochromatin formation. Here we show that HP1alpha, -beta, and -gamma are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged. However, the additional, transient modification of histone H3 by phosphorylation of serine 10 next to the more stable methyl-lysine 9 mark is sufficient to eject HP1 proteins from their binding sites. Inhibition or depletion of the mitotic kinase Aurora B, which phosphorylates serine 10 on histone H3, causes retention of HP1 proteins on mitotic chromosomes, suggesting that H3 serine 10 phosphorylation is necessary for the dissociation of HP1 from chromatin in M phase. These findings establish a regulatory mechanism of protein-protein interactions, through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Stephens GE, Slawson EE, Craig CA, Elgin SCR. Interaction of heterochromatin protein 2 with HP1 defines a novel HP1-binding domain. Biochemistry 2005; 44:13394-403. [PMID: 16201764 PMCID: PMC2534139 DOI: 10.1021/bi051006+] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterochromatin Protein 2 (HP2) is a nonhistone chromosomal protein from Drosophila melanogaster localized principally in the pericentric heterochromatin, telomeres, and fourth chromosome, all regions associated with HP1. Mutations in HP2 can suppress position effect variegation, indicating a role in gene silencing and heterochromatin formation [Shaffer, C. D. et al. (2002) Proc. Natl. Acad. Sci.U.S.A. 99, 14332-14337]. In vitro coimmunoprecipitation experiments with various peptides from HP2 have identified a single HP1-binding domain. Conserved domains in HP2, including those within the HP1-binding region, have been identified by recovering and sequencing Su(var)2-HP2 from D. willistoni and D. virilis, as well as examining available sequence data from D. pseudoobscura. A PxVxL motif, shown to be an HP1-binding domain in many HP1-interacting proteins, is observed but is not well-conserved in location and sequence and does not mediate HP2 binding to HP1. The sole HP1-binding domain is composed of two conserved regions of 12 and 16 amino acids separated by 19 amino acids. Site-directed mutagenesis within the two conserved regions has shown that the 16 amino acid domain is critical for HP1 binding. This constitutes a novel domain for HP1 interaction, providing a critical link for heterochromatin formation in Drosophila.
Collapse
Affiliation(s)
- Gena E Stephens
- Department of Biology, Washington University, CB-1229, St. Louis, Missouri 63130, USA.
| | | | | | | |
Collapse
|
227
|
Vermaak D, Henikoff S, Malik HS. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet 2005; 1:96-108. [PMID: 16103923 PMCID: PMC1183528 DOI: 10.1371/journal.pgen.0010009] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 05/13/2005] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1), which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of “junk DNA” in eukaryotic genomes. Eukaryotic genomes are organized into good and bad neighborhoods. In fruit fly genomes, most genes are found in euchromatin—good neighborhoods that tend to be amenable to gene expression and deficient in selfish mobile elements. Conversely, heterochromatic regions are deficient in genes but chock full of mobile genetic elements, both dead and alive. Cells expend considerable effort to maintain this organization, to prevent bad neighborhoods from exerting their negative influence on the rest of the genome. At the forefront of this organization are the HP1 proteins, which are involved in the compaction and silencing of heterochromatic sequences. First discovered in Drosophila, HP1 proteins have been subsequently found in virtually all fungi, plants, and animals. Most HP1 proteins evolve under stringent evolutionary pressures, suggesting that they lack any discriminatory power in their action. However, a recent paper by Vermaak finds that one of the five HP1 encoding genes in Drosophila genomes, rhino, bucks the trend and evolves rapidly. rhino is predominantly expressed in ovaries, which is where many mobile elements are also active. Their results suggest that rhino has been constantly evolving to police a particularly dynamic, novel compartment in heterochromatin with exquisite specificity. Thus, instead of a genomic wasteyard that genes shun and where transposons go to die, heterochromatin now appears to have been shaped by a constant struggle for evolutionary dominance.
Collapse
Affiliation(s)
- Danielle Vermaak
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven Henikoff
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Harmit S Malik
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
228
|
Lechner MS, Schultz DC, Negorev D, Maul GG, Rauscher FJ. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem Biophys Res Commun 2005; 331:929-37. [PMID: 15882967 DOI: 10.1016/j.bbrc.2005.04.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Indexed: 01/08/2023]
Abstract
The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.
Collapse
Affiliation(s)
- Mark S Lechner
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
229
|
Nielsen PR, Nietlispach D, Buscaino A, Warner RJ, Akhtar A, Murzin AG, Murzina NV, Laue ED. Structure of the chromo barrel domain from the MOF acetyltransferase. J Biol Chem 2005; 280:32326-31. [PMID: 15964847 DOI: 10.1074/jbc.m501347200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We report here the structure of the putative chromo domain from MOF, a member of the MYST family of histone acetyltransferases that acetylates histone H4 at Lys-16 and is part of the dosage compensation complex in Drosophila. We found that the structure of this domain is a beta-barrel that is distinct from the alpha + beta fold of the canonical chromo domain. Despite the differences, there are similarities that support an evolutionary relationship between the two domains, and we propose the name "chromo barrel." The chromo barrel domains may be divided into two groups, MSL3-like and MOF-like, on the basis of whether a group of conserved aromatic residues is present or not. The structure suggests that, although the MOF-like domains may have a role in RNA binding, the MSL3-like domains could instead bind methylated residues. The MOF chromo barrel shares a common fold with other chromatin-associated modules, including the MBT-like repeat, Tudor, and PWWP domains. This structural similarity suggests a probable evolutionary pathway from these other modules to the canonical chromo domains (or vice versa) with the chromo barrel domain representing an intermediate structure.
Collapse
Affiliation(s)
- Peter R Nielsen
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Stewart MD, Li J, Wong J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 2005; 25:2525-38. [PMID: 15767660 PMCID: PMC1061631 DOI: 10.1128/mcb.25.7.2525-2538.2005] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H3 lysine 9 (H3-K9) methylation has been shown to correlate with transcriptional repression and serve as a specific binding site for heterochromatin protein 1 (HP1). In this study, we investigated the relationship between H3-K9 methylation, transcriptional repression, and HP1 recruitment by comparing the effects of tethering two H3-K9-specific histone methyltransferases, SUV39H1 and G9a, to chromatin on transcription and HP1 recruitment. Although both SUV39H1 and G9a induced H3-K9 methylation and repressed transcription, only SUV39H1 was able to recruit HP1 to chromatin. Targeting HP1 to chromatin required not only K9 methylation but also a direct protein-protein interaction between SUV39H1 and HP1. Targeting methyl-K9 or a HP1-interacting region of SUV39H1 alone to chromatin was not sufficient to recruit HP1. We also demonstrate that methyl-K9 can suppress transcription independently of HP1 through a mechanism involving histone deacetylation. In an effort to understand how H3-K9 methylation led to histone deacetylation in both H3 and H4, we found that H3-K9 methylation inhibited histone acetylation by p300 but not its association with chromatin. Collectively, these data indicate that H3-K9 methylation alone can suppress transcription but is insufficient for HP1 recruitment in the context of chromatin exemplifying the importance of chromatin-associated factors in reading the histone code.
Collapse
Affiliation(s)
- M David Stewart
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
231
|
Stewart MD, Li J, Wong J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 2005. [PMID: 15767660 DOI: 10.1128/mcb.25.7.2525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Histone H3 lysine 9 (H3-K9) methylation has been shown to correlate with transcriptional repression and serve as a specific binding site for heterochromatin protein 1 (HP1). In this study, we investigated the relationship between H3-K9 methylation, transcriptional repression, and HP1 recruitment by comparing the effects of tethering two H3-K9-specific histone methyltransferases, SUV39H1 and G9a, to chromatin on transcription and HP1 recruitment. Although both SUV39H1 and G9a induced H3-K9 methylation and repressed transcription, only SUV39H1 was able to recruit HP1 to chromatin. Targeting HP1 to chromatin required not only K9 methylation but also a direct protein-protein interaction between SUV39H1 and HP1. Targeting methyl-K9 or a HP1-interacting region of SUV39H1 alone to chromatin was not sufficient to recruit HP1. We also demonstrate that methyl-K9 can suppress transcription independently of HP1 through a mechanism involving histone deacetylation. In an effort to understand how H3-K9 methylation led to histone deacetylation in both H3 and H4, we found that H3-K9 methylation inhibited histone acetylation by p300 but not its association with chromatin. Collectively, these data indicate that H3-K9 methylation alone can suppress transcription but is insufficient for HP1 recruitment in the context of chromatin exemplifying the importance of chromatin-associated factors in reading the histone code.
Collapse
Affiliation(s)
- M David Stewart
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
232
|
Abstract
Polycomb group proteins preserve body patterning through development by maintaining transcriptional silencing of homeotic genes. A long-standing hypothesis is that silencing involves creating chromatin structure that is repressive to gene transcription. We demonstrate by electron microscopy that core components of Polycomb Repressive Complex 1 induce compaction of defined nucleosomal arrays. Compaction by Polycomb proteins requires nucleosomes but not histone tails. Each Polycomb complex can compact about three nucleosomes. A region of Posterior Sex Combs that is important for gene silencing in vivo is also important for chromatin compaction, linking the two activities. This mechanism of chromatin compaction might be central to stable gene silencing by the Polycomb group.
Collapse
Affiliation(s)
- Nicole J Francis
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
233
|
Cammas F, Herzog M, Lerouge T, Chambon P, Losson R. Association of the transcriptional corepressor TIF1beta with heterochromatin protein 1 (HP1): an essential role for progression through differentiation. Genes Dev 2004; 18:2147-60. [PMID: 15342492 PMCID: PMC515292 DOI: 10.1101/gad.302904] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcriptional intermediary factor 1beta (TIF1beta) is a corepressor for KRAB-domain-containing zinc finger proteins and is believed to play essential roles in cell physiology by regulating chromatin organization at specific loci through association with chromatin remodeling and histone-modifying activities and recruitment of heterochromatin protein 1 (HP1) proteins. In this study, we have engineered a modified embryonal carcinoma F9 cell line (TIF1beta(HP1box/-)) expressing a mutated TIF1beta protein (TIF1beta(HP1box)) unable to interact with HP1 proteins. Phenotypic analysis of TIF1beta(HP1box/-) and TIF1beta(+/-) cells shows that TIF1beta-HP1 interaction is not required for differentiation of F9 cells into primitive endoderm-like (PrE) cells on retinoic acid (RA) treatment but is essential for further differentiation into parietal endoderm-like (PE) cells on addition of cAMP and for differentiation into visceral endoderm-like cells on treatment of vesicles with RA. Complementation experiments reveal that TIF1beta-HP1 interaction is essential only during a short window of time within early differentiating PrE cells to establish a selective transmittable competence to terminally differentiate on further cAMP inducing signal. Moreover, the expression of three endoderm-specific genes, GATA6, HNF4, and Dab2, is down-regulated in TIF1beta(HP1box/-) cells compared with wild-type cells during PrE differentiation. Collectively, these data demonstrate that the interaction between TIF1beta and HP1 proteins is essential for progression through differentiation by regulating the expression of endoderm differentiation master players.
Collapse
Affiliation(s)
- Florence Cammas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, BP10142, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
234
|
Lindroth AM, Shultis D, Jasencakova Z, Fuchs J, Johnson L, Schubert D, Patnaik D, Pradhan S, Goodrich J, Schubert I, Jenuwein T, Khorasanizadeh S, Jacobsen SE. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J 2004; 23:4286-96. [PMID: 15457214 PMCID: PMC524394 DOI: 10.1038/sj.emboj.7600430] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/07/2004] [Indexed: 01/13/2023] Open
Abstract
Both DNA methylation and post-translational histone modifications contribute to gene silencing, but the mechanistic relationship between these epigenetic marks is unclear. Mutations in two Arabidopsis genes, the KRYPTONITE (KYP) histone H3 lysine 9 (H3K9) methyltransferase and the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase, cause a reduction of CNG DNA methylation, suggesting that H3K9 methylation controls CNG DNA methylation. Here we show that the chromodomain of CMT3 can directly interact with the N-terminal tail of histone H3, but only when it is simultaneously methylated at both the H3K9 and H3K27 positions. Furthermore, using chromatin immunoprecipitation analysis and immunohistolocalization experiments, we found that H3K27 methylation colocalizes with H3K9 methylation at CMT3-controlled loci. The H3K27 methylation present at heterochromatin was not affected by mutations in KYP or in several Arabidopsis PcG related genes including the Enhancer of Zeste homologs, suggesting that a novel pathway controls heterochromatic H3K27 methylation. Our results suggest a model in which H3K9 methylation by KYP, and H3K27 methylation by an unknown enzyme provide a combinatorial histone code for the recruitment of CMT3 to silent loci.
Collapse
Affiliation(s)
- Anders M Lindroth
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Shultis
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Zuzana Jasencakova
- The Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jörg Fuchs
- The Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Lianna Johnson
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel Schubert
- Institute of Plant Molecular Science (IMPS), School of Biology, University of Edinburgh, Edinburgh, UK
| | | | | | - Justin Goodrich
- Institute of Plant Molecular Science (IMPS), School of Biology, University of Edinburgh, Edinburgh, UK
| | - Ingo Schubert
- The Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Thomas Jenuwein
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Vienna, Austria
| | - Sepideh Khorasanizadeh
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
235
|
Abstract
Heterochromatin remains condensed throughout the cell cycle, is generally transcriptionally inert and is built and maintained by groups of factors with each group member sharing a similar function. In mammals, these groups include sequence-specific transcriptional repressors, functional RNA and proteins involved in DNA and histone methylation. Heterochromatin is cemented together via interactions within and between each protein group and is maintained by the cell's replication machinery. It can be constitutive (permanent) or facultative (developmentally regulated) and be any size, from a gene promotor to a whole genome. By studying the formation of facultative heterochromatin, we have gained information about how heterochromatin is assembled. We have discovered that there are many different architectural plans for the building of heterochromatin, leading to a seemingly never-ending variety of heterochromatic loci, with each built according to a general rule.
Collapse
Affiliation(s)
- Jeffrey M Craig
- Chromosome Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Melbourne, Victoria 3052, Australia.
| |
Collapse
|