201
|
Qin Z, Lu M, Xu X, Hanna M, Shiomi N, Xiao W. DNA-damage tolerance mediated by PCNA*Ub fusions in human cells is dependent on Rev1 but not Polη. Nucleic Acids Res 2013; 41:7356-69. [PMID: 23761444 PMCID: PMC3753651 DOI: 10.1093/nar/gkt542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to replication-blocking lesions, proliferating cell nuclear antigen (PCNA) can be sequentially ubiquitinated at the K164 residue, leading to two modes of DNA-damage tolerance, namely, translesion DNA synthesis (TLS) and error-free lesion bypass. Although the majority of reported data support a model whereby monoubiquitinated PCNA enhances its affinity for TLS polymerases and hence recruits them to the damage sites, this model has also been challenged by several observations. In this study, we expressed the PCNA-164R and ubiquitin (UB) fusion genes in an inducible manner in an attempt to mimic PCNA monoubiquitination in cultured human cells. It was found that expression of both N- and C-terminal PCNA•Ub fusions conferred significant tolerance to ultraviolet (UV)-induced DNA damage. Surprisingly, depletion of Polη, a TLS polymerase dedicated to bypassing UV-induced pyrimidine dimers, did not alter tolerance conferred by PCNA•Ub. In contrast, depletion of Rev1, another TLS polymerase serving as a scaffold for the assembly of the TLS complex, completely abolished PCNA•Ub-mediated damage tolerance. Similar genetic interactions were confirmed when UV-induced monoubiquitination of endogenous PCNA is abolished by RAD18 deletion. Hence, PCNA•Ub fusions bypass the requirement for PCNA monoubiquitination, and UV damage tolerance conferred by these fusions is dependent on Rev1 but independent of Polη.
Collapse
Affiliation(s)
- Zhoushuai Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China, Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada and Project for Environmental Dynamics and Radiation Effects, Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | | | | | |
Collapse
|
202
|
Sebesta M, Burkovics P, Juhasz S, Zhang S, Szabo JE, Lee MYWT, Haracska L, Krejci L. Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair (Amst) 2013; 12:691-8. [PMID: 23731732 PMCID: PMC3744802 DOI: 10.1016/j.dnarep.2013.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 11/16/2022]
Abstract
Homologous recombination (HR) is essential for maintaining genomic integrity, which is challenged by a wide variety of potentially lethal DNA lesions. Regardless of the damage type, recombination is known to proceed by RAD51-mediated D-loop formation, followed by DNA repair synthesis. Nevertheless, the participating polymerases and extension mechanism are not well characterized. Here, we present a reconstitution of this step using purified human proteins. In addition to Pol δ, TLS polymerases, including Pol η and Pol κ, also can extend D-loops. In vivo characterization reveals that Pol η and Pol κ are involved in redundant pathways for HR. In addition, the presence of PCNA on the D-loop regulates the length of the extension tracks by recruiting various polymerases and might present a regulatory point for the various recombination outcomes.
Collapse
Affiliation(s)
- Marek Sebesta
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Bacquin A, Pouvelle C, Siaud N, Perderiset M, Salomé-Desnoulez S, Tellier-Lebegue C, Lopez B, Charbonnier JB, Kannouche PL. The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells. Nucleic Acids Res 2013; 41:6501-13. [PMID: 23677613 PMCID: PMC3711418 DOI: 10.1093/nar/gkt397] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During replication, DNA damage can challenge replication fork progression and cell viability. Homologous Recombination (HR) and Translesion Synthesis (TLS) pathways appear as major players involved in the resumption and completion of DNA replication. How both pathways are coordinated in human cells to maintain genome stability is unclear. Numerous helicases are involved in HR regulation. Among them, the helicase FBH1 accumulates at sites of DNA damage and potentially constrains HR via its anti-recombinase activity. However, little is known about its regulation in vivo. Here, we report a mechanism that controls the degradation of FBH1 after DNA damage. Firstly, we found that the sliding clamp Proliferating Cell Nuclear Antigen (PCNA) is critical for FBH1 recruitment to replication factories or DNA damage sites. We then showed the anti-recombinase activity of FBH1 is partially dependent on its interaction with PCNA. Intriguingly, after its re-localization, FBH1 is targeted for degradation by the Cullin-ring ligase 4-Cdt2 (CRL4Cdt2)–PCNA pathway via a PCNA-interacting peptide (PIP) degron. Importantly, expression of non-degradable FBH1 mutant impairs the recruitment of the TLS polymerase eta to chromatin in UV-irradiated cells. Thus, we propose that after DNA damage, FBH1 might be required to restrict HR and then degraded by the Cdt2–proteasome pathway to facilitate TLS pathway.
Collapse
Affiliation(s)
- Agathe Bacquin
- Université Paris-Sud, CNRS-UMR8200 Unit of Genetic Stability and Oncogenesis, Institut de cancérologie Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Yang K, Weinacht CP, Zhuang Z. Regulatory role of ubiquitin in eukaryotic DNA translesion synthesis. Biochemistry 2013; 52:3217-28. [PMID: 23634825 DOI: 10.1021/bi400194r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although often associated with proteasome-mediated protein degradation, ubiquitin plays essential nondegradative roles in a myriad of cellular processes, including chromatin dynamics, membrane trafficking, innate immunity, and DNA damage response. The recent progress in understanding DNA translesion synthesis (TLS), an important branch of DNA damage response, has largely been stimulated by the finding that ubiquitination of an essential nuclear protein, proliferating cell nuclear antigen (PCNA), controls precisely how eukaryotic cells respond to DNA damage. Despite the remarkable activity of the TLS polymerases in synthesizing past the damaged nucleotides, they are intrinsically error-prone on the normal DNA template. Therefore, a stringent regulation of the TLS polymerases is essential for the faithful replication of the DNA genome. Here we review the structure and function of the Y-family TLS polymerases and their interactions with ubiquitin and monoubiquitinated PCNA (Ub-PCNA). Driven by the need for monoubiquitinated PCNA in a sufficient quantity and purity, researchers developed both chemical and enzymatic methods for PCNA monoubiquitination, which have propelled our understanding of the structure of Ub-PCNA by X-ray crystallography and small-angle X-ray scattering. Together with studies using a reconstituted polymerase switching assay, these investigations revealed a surprising conformational flexibility of ubiquitin as a modifier on PCNA. Although the molecular details of TLS in cells still need to be deciphered, two working models, polymerase switching and postreplicative gap filling, have been proposed and tested in both in vitro and cellular systems. Evidence for both models is discussed herein. Compared to PCNA monoubiquitination, polyubiquitination of PCNA in DNA damage response is much less well understood and will be the subject of a future investigation. Given the close connection of DNA damage response and anticancer therapy, an in-depth understanding of the eukaryotic translesion synthesis and its regulation by ubiquitin will likely provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Yang
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|
205
|
Mailand N, Gibbs-Seymour I, Bekker-Jensen S. Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol 2013; 14:269-82. [PMID: 23594953 DOI: 10.1038/nrm3562] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding to a common surface on PCNA; hence these interactions need to be tightly regulated and coordinated to ensure proper chromosome replication and integrity. Control of PCNA-protein interactions is multilayered and involves post-translational modifications, in particular ubiquitylation, accessory factors and regulated degradation of PCNA-associated proteins. This regulatory framework allows cells to maintain a fine-tuned balance between replication fidelity and processivity in response to DNA damage.
Collapse
Affiliation(s)
- Niels Mailand
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
206
|
Abstract
Calpains regulate a wide spectrum of biological functions, including migration, adhesion, apoptosis, secretion, and autophagy, through the modulating cleavage of specific substrates. Ubiquitous microcalpain (μ-calpain) and millicalpain (m-calpain) are heterodimers composed of catalytic subunits encoded, respectively, by CAPN1 and CAPN2 and a regulatory subunit encoded by CAPNS1. Here we show that calpain is required for the stability of the deubiquitinating enzyme USP1 in several cell lines. USP1 modulates DNA replication polymerase choice and repair by deubiquitinating PCNA. The ubiquitinated form of the USP1 substrate PCNA is stabilized in CAPNS1-depleted U2OS cells and mouse embryonic fibroblasts (MEFs), favoring polymerase-η loading on chromatin and increased mutagenesis. USP1 degradation directed by the cell cycle regulator APC/C(cdh1), which marks USP1 for destruction in the G1 phase, is upregulated in CAPNS1-depleted cells. USP1 stability can be rescued upon forced expression of calpain-activated Cdk5/p25, previously reported as a cdh1 repressor. These data suggest that calpain stabilizes USP1 by activating Cdk5, which in turn inhibits cdh1 and, consequently, USP1 degradation. Altogether these findings point to a connection between the calpain system and the ubiquitin pathway in the regulation of DNA damage response and place calpain at the interface between cell cycle modulation and DNA repair.
Collapse
|
207
|
Ulrich HD, Takahashi DT. Readers of PCNA modifications. Chromosoma 2013; 122:259-74. [PMID: 23580141 PMCID: PMC3714560 DOI: 10.1007/s00412-013-0410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/29/2023]
Abstract
The eukaryotic sliding clamp, proliferating cell nuclear antigen (PCNA), acts as a central coordinator of DNA transactions by providing a multivalent interaction surface for factors involved in DNA replication, repair, chromatin dynamics and cell cycle regulation. Posttranslational modifications (PTMs), such as mono- and polyubiquitylation, sumoylation, phosphorylation and acetylation, further expand the repertoire of PCNA’s binding partners. These modifications affect PCNA’s activity in the bypass of lesions during DNA replication, the regulation of alternative damage processing pathways such as homologous recombination and DNA interstrand cross-link repair, or impact on the stability of PCNA itself. In this review, we summarise our current knowledge about how the PTMs are “read” by downstream effector proteins that mediate the appropriate action. Given the variety of interaction partners responding to PCNA’s modified forms, the ensemble of PCNA modifications serves as an instructive model for the study of biological signalling through PTMs in general.
Collapse
Affiliation(s)
- Helle D Ulrich
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| | | |
Collapse
|
208
|
Wang K, Shi Z, Zhang M, Cheng D. Structure of PCNA from Drosophila melanogaster. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:387-92. [PMID: 23545643 PMCID: PMC3614162 DOI: 10.1107/s1744309113004971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/20/2013] [Indexed: 11/10/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) plays essential roles in DNA replication, DNA repair, cell-cycle regulation and chromatin metabolism. The PCNA from Drosophila melanogaster (DmPCNA) was purified and crystallized. The crystal of DmPCNA diffracted to 2.0 Å resolution and belonged to space group H3, with unit-cell parameters a = b = 151.16, c = 38.28 Å. The structure of DmPCNA was determined by molecular replacement. DmPCNA forms a symmetric homotrimer in a head-to-tail manner. An interdomain connector loop (IDCL) links the N- and C-terminal domains. Additionally, the N-terminal and C-terminal domains contact each other through hydrophobic associations. Compared with human PCNA, the IDCL of DmPCNA has conformational changes, which may explain their difference in function. This work provides a structural basis for further functional and evolutionary studies of PCNA.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biology, Qingdao University, Qingdao, Shandong 266021, People’s Republic of China
| | - Zhubing Shi
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People’s Republic of China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230039, People’s Republic of China
| | - Dianlin Cheng
- Department of Biology, Qingdao University, Qingdao, Shandong 266021, People’s Republic of China
| |
Collapse
|
209
|
Ashton NW, Bolderson E, Cubeddu L, O'Byrne KJ, Richard DJ. Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol Biol 2013; 14:9. [PMID: 23548139 PMCID: PMC3626794 DOI: 10.1186/1471-2199-14-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/20/2013] [Indexed: 12/25/2022] Open
Abstract
The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.
Collapse
Affiliation(s)
- Nicholas W Ashton
- Genome Stability Laboratory, Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, 4102, Australia
| | | | | | | | | |
Collapse
|
210
|
Sertic S, Evolvi C, Tumini E, Plevani P, Muzi-Falconi M, Rotondo G. Non-canonical CRL4A/4B(CDT2) interacts with RAD18 to modulate post replication repair and cell survival. PLoS One 2013; 8:e60000. [PMID: 23555860 PMCID: PMC3612035 DOI: 10.1371/journal.pone.0060000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/20/2013] [Indexed: 01/10/2023] Open
Abstract
The Cullin-4CDT2 E3 ubiquitin ligase plays an essential role in DNA replication origin licensing directing degradation of several licensing factors at the G1/S transition in order to prevent DNA re-replication. Recently a RAD18-independent role of Cullin-4CDT2 in PCNA monoubiquitylation has been proposed. In an effort to better understand the function of Cullin-4CDT2 E3 ubiquitin ligase in mammalian Post-Replication Repair during an unperturbed S-phase, we show that down-regulation of Cullin-4CDT2 leads to two distinguishable independent phenotypes in human cells that unveil at least two independent roles of Cullin-4CDT2 in S-phase. Apart from the re-replication preventing activity, we identified a non-canonical Cullin-4CDT2 complex, containing both CUL4A and CUL4B, associated to the COP9 signalosome, that controls a RAD18-dependent damage avoidance pathway essential during an unperturbed S-phase. Indeed, we show that the non-canonical Cullin-4A/4BCDT2 complex binds to RAD18 and it is required to modulate RAD18 protein levels onto chromatin and the consequent dynamics of PCNA monoubiquitylation during a normal S-phase. This function prevents replication stress, ATR hyper-signaling and, ultimately, apoptosis. A very similar PRR regulatory mechanism has been recently described for Spartan. Our findings uncover a finely regulated process in mammalian cells involving Post-Replication Repair factors, COP9 signalosome and a non-canonical Cullin4-based E3 ligase which is essential to tolerate spontaneous damage and for cell survival during physiological DNA replication.
Collapse
Affiliation(s)
- Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Claudio Evolvi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Emanuela Tumini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- * E-mail: (MM-F); (GR)
| | - Giuseppe Rotondo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- * E-mail: (MM-F); (GR)
| |
Collapse
|
211
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
212
|
Abstract
One of the fundamental challenges facing the cell is to accurately copy its genetic material to daughter cells. When this process goes awry, genomic instability ensues in which genetic alterations ranging from nucleotide changes to chromosomal translocations and aneuploidy occur. Organisms have developed multiple mechanisms that can be classified into two major classes to ensure the fidelity of DNA replication. The first class includes mechanisms that prevent premature initiation of DNA replication and ensure that the genome is fully replicated once and only once during each division cycle. These include cyclin-dependent kinase (CDK)-dependent mechanisms and CDK-independent mechanisms. Although CDK-dependent mechanisms are largely conserved in eukaryotes, higher eukaryotes have evolved additional mechanisms that seem to play a larger role in preventing aberrant DNA replication and genome instability. The second class ensures that cells are able to respond to various cues that continuously threaten the integrity of the genome by initiating DNA-damage-dependent "checkpoints" and coordinating DNA damage repair mechanisms. Defects in the ability to safeguard against aberrant DNA replication and to respond to DNA damage contribute to genomic instability and the development of human malignancy. In this article, we summarize our current knowledge of how genomic instability arises, with a particular emphasis on how the DNA replication process can give rise to such instability.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
213
|
Durando M, Tateishi S, Vaziri C. A non-catalytic role of DNA polymerase η in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks. Nucleic Acids Res 2013; 41:3079-93. [PMID: 23345618 PMCID: PMC3597682 DOI: 10.1093/nar/gkt016] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Trans-lesion DNA synthesis (TLS) is a DNA damage-tolerance mechanism that uses low-fidelity DNA polymerases to replicate damaged DNA. The inherited cancer-propensity syndrome xeroderma pigmentosum variant (XPV) results from error-prone TLS of UV-damaged DNA. TLS is initiated when the Rad6/Rad18 complex monoubiquitinates proliferating cell nuclear antigen (PCNA), but the basis for recruitment of Rad18 to PCNA is not completely understood. Here, we show that Rad18 is targeted to PCNA by DNA polymerase eta (Polη), the XPV gene product that is mutated in XPV patients. The C-terminal domain of Polη binds to both Rad18 and PCNA and promotes PCNA monoubiquitination, a function unique to Polη among Y-family TLS polymerases and dissociable from its catalytic activity. Importantly, XPV cells expressing full-length catalytically-inactive Polη exhibit increased recruitment of other error-prone TLS polymerases (Polκ and Polι) after UV irradiation. These results define a novel non-catalytic role for Polη in promoting PCNA monoubiquitination and provide a new potential mechanism for mutagenesis and genome instability in XPV individuals.
Collapse
Affiliation(s)
- Michael Durando
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
214
|
Yang Y, Durando M, Smith-Roe SL, Sproul C, Greenwalt AM, Kaufmann W, Oh S, Hendrickson EA, Vaziri C. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage. Nucleic Acids Res 2013; 41:2296-312. [PMID: 23295675 PMCID: PMC3575850 DOI: 10.1093/nar/gks1325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H(2)O(2)-induced DNA damage. UVC and H(2)O(2) treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G(0), G(1) and S-phase. Rad18 was important for repressing H(2)O(2)-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G(1), indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H(2)O(2)-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H(2)O(2)-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G(1). In contrast with G(1)-synchronized cultures, S-phase cells were H(2)O(2)-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G(1) (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
215
|
McIntyre J, Vidal AE, McLenigan MP, Bomar MG, Curti E, McDonald JP, Plosky BS, Ohashi E, Woodgate R. Ubiquitin mediates the physical and functional interaction between human DNA polymerases η and ι. Nucleic Acids Res 2012; 41:1649-60. [PMID: 23248005 PMCID: PMC3561947 DOI: 10.1093/nar/gks1277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human DNA polymerases η and ι are best characterized for their ability to facilitate translesion DNA synthesis (TLS). Both polymerases (pols) co-localize in ‘replication factories’ in vivo after cells are exposed to ultraviolet light and this co-localization is mediated through a physical interaction between the two TLS pols. We have mapped the polη-ι interacting region to their respective ubiquitin-binding domains (UBZ in polη and UBM1 and UBM2 in polι), and demonstrate that ubiquitination of either TLS polymerase is a prerequisite for their physical and functional interaction. Importantly, while monoubiquitination of polη precludes its ability to interact with proliferating cell nuclear antigen (PCNA), it enhances its interaction with polι. Furthermore, a polι-ubiquitin chimera interacts avidly with both polη and PCNA. Thus, the ubiquitination status of polη, or polι plays a key regulatory function in controlling the protein partners with which each polymerase interacts, and in doing so, determines the efficiency of targeting the respective polymerase to stalled replication forks where they facilitate TLS.
Collapse
Affiliation(s)
- Justyna McIntyre
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Deubiquitinases as a signaling target of oxidative stress. Cell Rep 2012; 2:1475-84. [PMID: 23219552 DOI: 10.1016/j.celrep.2012.11.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/28/2012] [Accepted: 11/14/2012] [Indexed: 02/07/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) constitute a large family of cysteine proteases that have a broad impact on numerous biological and pathological processes, including the regulation of genomic stability. DUBs are often assembled onto multiprotein complexes to assist in their localization and substrate selection, yet it remains unclear how the enzymatic activity of DUBs is modulated by intracellular signals. Herein, we show that bursts of reactive oxygen species (ROS) reversibly inactivate DUBs through the oxidation of the catalytic cysteine residue. Importantly, USP1, a key regulator of genomic stability, is reversibly inactivated upon oxidative stress. This, in part, explains the rapid nature of PCNA monoubiquitination-dependent DNA damage tolerance in response to oxidative DNA damage in replicating cells. We propose that DUBs of the cysteine protease family act as ROS sensors in human cells and that ROS-mediated DUB inactivation is a critical mechanism for fine-tuning stress-activated signaling pathways.
Collapse
|
217
|
Sharma S, Canman CE. REV1 and DNA polymerase zeta in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:725-40. [PMID: 23065650 PMCID: PMC5543726 DOI: 10.1002/em.21736] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 05/06/2023]
Abstract
DNA interstrand crosslinks (ICLs) are covalent linkages between two strands of DNA, and their presence interferes with essential metabolic processes such as transcription and replication. These lesions are extremely toxic, and their repair is essential for genome stability and cell survival. In this review, we will discuss how the removal of ICLs requires interplay between multiple genome maintenance pathways and can occur in the absence of replication (replication-independent ICL repair) or during S phase (replication-coupled ICL repair), the latter being the predominant pathway used in mammalian cells. It is now well recognized that translesion DNA synthesis (TLS), especially through the activities of REV1 and DNA polymerase zeta (Polζ), is necessary for both ICL repair pathways operating throughout the cell cycle. Recent studies suggest that the convergence of two replication forks upon an ICL initiates a cascade of events including unhooking of the lesion through the actions of structure-specific endonucleases, thereby creating a DNA double-stranded break (DSB). TLS across the unhooked lesion is necessary for restoring the sister chromatid before homologous recombination repair. Biochemical and genetic studies implicate REV1 and Polζ as being essential for performing lesion bypass across the unhooked crosslink, and this step appears to be important for subsequent events to repair the intermediate DSB. The potential role of Fanconi anemia pathway in the regulation of REV1 and Polζ-dependent TLS and the involvement of additional polymerases, including DNA polymerases kappa, nu, and theta, in the repair of ICLs is also discussed in this review.
Collapse
Affiliation(s)
- Shilpy Sharma
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
218
|
Despras E, Delrieu N, Garandeau C, Ahmed-Seghir S, Kannouche PL. Regulation of the specialized DNA polymerase eta: revisiting the biological relevance of its PCNA- and ubiquitin-binding motifs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:752-765. [PMID: 23076824 DOI: 10.1002/em.21741] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 06/01/2023]
Abstract
During translesion synthesis (TLS), low-fidelity polymerases of the Y-family polymerases bypass DNA damages that block the progression of conventional processive DNA polymerases, thereby allowing the completion of DNA replication. Among the TLS polymerases, DNA polymerase eta (polη) performs nucleotide incorporation past ultraviolet (UV) photoproducts and is deficient in cancer-prone xeroderma pigmentosum variant (XPV) syndrome. Upon UV irradiation, the DNA sliding clamp PCNA is monoubiquitylated on its conserved Lys-164. This event is considered to facilitate the TLS process in vivo since polη preferentially interacts with monoubiquitylated PCNA through its ubiquitin-binding domain (UBZ) as well as its PCNA interacting peptide (PIP)-box. However, recent observations questioned this model. Therefore, in this study, we re-examined the relative contribution of the regulatory UBZ and PIP domains of polη in response to UVC. We show that simultaneous invalidation of both motifs confers sensitivity to UVC, sensitization by low concentrations of caffeine, prolonged inhibition of DNA synthesis and persistent S phase checkpoint activation, all characteristic features of XPV cells. While each domain is essential for efficient accumulation of polη in replication factories, mutational inactivation of UBZ or PIP motif only confers a slight sensitivity to UVC indicating that, although informative, polη focus analysis is not a reliable tool to assess the polη's ability to function in TLS in vivo. Taken together, these data indicate that PIP and UBZ motifs are not required for recruitment but for retention of polη at sites of stalled replication forks. We propose that this is a way to ensure that a sufficient amount of the protein is available for its bypass function.
Collapse
Affiliation(s)
- Emmanuelle Despras
- Centre Nationale de la Recherche Scientifique (CNRS) UMR8200 Laboratoire Stabilité Génétique et Oncogenèse, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France.
| | | | | | | | | |
Collapse
|
219
|
Hibbert RG, Sixma TK. Intrinsic flexibility of ubiquitin on proliferating cell nuclear antigen (PCNA) in translesion synthesis. J Biol Chem 2012; 287:39216-23. [PMID: 22989887 PMCID: PMC3493961 DOI: 10.1074/jbc.m112.389890] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/29/2012] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin conjugation provides a crucial signaling role in hundreds of cellular pathways; however, a structural understanding of ubiquitinated substrates is lacking. One important substrate is monoubiquitinated PCNA (PCNA-Ub), which signals for recruitment of damage-tolerant polymerases in the translesion synthesis (TLS) pathway of DNA damage avoidance. We use a novel and efficient enzymatic method to produce PCNA-Ub at high yield with a native isopeptide bond and study its Usp1/UAF1-dependent deconjugation. In solution we find that the ubiquitin moiety is flexible relative to the PCNA, with its hydrophobic patch mostly accessible for recruitment of TLS polymerases, which promotes the interaction with polymerase η. The studies are a prototype for the nature of the ubiquitin modification.
Collapse
Affiliation(s)
- Richard G. Hibbert
- From the Division of Biochemistry and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K. Sixma
- From the Division of Biochemistry and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
220
|
Davis EJ, Lachaud C, Appleton P, Macartney TJ, Näthke I, Rouse J. DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nat Struct Mol Biol 2012; 19:1093-100. [PMID: 23042607 DOI: 10.1038/nsmb.2394] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 02/07/2023]
Abstract
Ubiquitin-binding domains (UBDs) are crucial for recruiting many proteins to sites of DNA damage. Here we characterize C1orf124 (Spartan; referred to as DVC1), which has an UBZ4-type UBD found predominantly in DNA repair proteins. DVC1 associates with DNA replication factories and localizes to sites of DNA damage in human cells, in a manner that requires the ability of the DVC1 UBZ domain to bind to ubiquitin polymers in vitro and a conserved PCNA-interacting motif. DVC1 interacts with the p97 protein 'segregase'. We show that DVC1 recruits p97 to sites of DNA damage, where we propose that p97 facilitates the extraction of the translesion synthesis (TLS) polymerase (Pol) η during DNA repair to prevent excessive TLS and limit the incidence of mutations induced by DNA damage. We introduce DVC1 as a regulator of cellular responses to DNA damage that prevents mutations when DNA damage occurs.
Collapse
Affiliation(s)
- Emily J Davis
- Medical Research Council Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | |
Collapse
|
221
|
Centore RC, Yazinski SA, Tse A, Zou L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol Cell 2012; 46:625-35. [PMID: 22681887 DOI: 10.1016/j.molcel.2012.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
PCNA is a key component of DNA replication and repair machineries. DNA damage-induced PCNA ubiquitylation serves as a molecular mark to orchestrate postreplication repair. Here, we have identified and characterized Spartan, a protein that specifically recognizes ubiquitylated PCNA and plays an important role in cellular resistance to UV radiation. In vitro, Spartan engages ubiquitylated PCNA via both a PIP box and a UBZ domain. In cells, Spartan is recruited to sites of UV damage in a manner dependent upon the PIP box, the UBZ domain, and PCNA ubiquitylation. Furthermore, Spartan colocalizes and interacts with Rad18, the E3 ubiquitin ligase that modifies PCNA. Surprisingly, while Spartan is recruited by ubiquitylated PCNA, knockdown of Spartan compromised chromatin association of Rad18, monoubiquitylation of PCNA, and localization of Pol η to UV damage. Thus, as a "reader" of ubiquitylated PCNA, Spartan promotes an unexpected feed-forward loop to enhance PCNA ubiquitylation and translesion DNA synthesis.
Collapse
Affiliation(s)
- Richard C Centore
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
222
|
Ghosal G, Leung JWC, Nair BC, Fong KW, Chen J. Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis. J Biol Chem 2012; 287:34225-33. [PMID: 22902628 DOI: 10.1074/jbc.m112.400135] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage-induced proliferating cell nuclear antigen (PCNA) ubiquitination serves as the key event mediating post-replication repair. Post-replication repair involves either translesion synthesis (TLS) or damage avoidance via template switching. In this study, we have identified and characterized C1orf124 as a regulator of TLS. C1orf124 co-localizes and interacts with unmodified and mono-ubiquitinated PCNA at UV light-induced damage sites, which require the PIP box and UBZ domain of C1orf124. C1orf124 also binds to the AAA-ATPase valosin-containing protein via its SHP domain, and cellular resistance to UV radiation mediated by C1orf124 requires its interactions with valosin-containing protein and PCNA. Interestingly, C1orf124 binds to replicative DNA polymerase POLD3 and PDIP1 under normal conditions but preferentially associates with TLS polymerase η (POLH) upon UV damage. Depletion of C1orf124 compromises PCNA monoubiquitination, RAD18 chromatin association, and RAD18 localization to UV damage sites. Thus, C1orf124 acts at multiple steps in TLS, stabilizes RAD18 and ubiquitinated PCNA at damage sites, and facilitates the switch from replicative to TLS polymerase to bypass DNA lesion.
Collapse
Affiliation(s)
- Gargi Ghosal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
223
|
Masuda Y, Suzuki M, Kawai H, Hishiki A, Hashimoto H, Masutani C, Hishida T, Suzuki F, Kamiya K. En bloc transfer of polyubiquitin chains to PCNA in vitro is mediated by two different human E2-E3 pairs. Nucleic Acids Res 2012; 40:10394-407. [PMID: 22904075 PMCID: PMC3488225 DOI: 10.1093/nar/gks763] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Post-replication DNA repair in eukaryotes is regulated by ubiquitination of proliferating cell nuclear antigen (PCNA). Monoubiquitination catalyzed by RAD6–RAD18 (an E2–E3 complex) stimulates translesion DNA synthesis, whereas polyubiquitination, promoted by additional factors such as MMS2–UBC13 (a UEV–E2 complex) and HLTF (an E3 ligase), leads to template switching in humans. Here, using an in vitro ubiquitination reaction system reconstituted with purified human proteins, we demonstrated that PCNA is polyubiquitinated predominantly via en bloc transfer of a pre-formed ubiquitin (Ub) chain rather than by extension of the Ub chain on monoubiquitinated PCNA. Our results support a model in which HLTF forms a thiol-linked Ub chain on UBC13 (UBC13∼Ubn) and then transfers the chain to RAD6∼Ub, forming RAD6∼Ubn+1. The resultant Ub chain is subsequently transferred to PCNA by RAD18. Thus, template switching may be promoted under certain circumstances in which both RAD18 and HLTF are coordinately recruited to sites of stalled replication.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Machida Y, Kim MS, Machida YJ. Spartan/C1orf124 is important to prevent UV-induced mutagenesis. Cell Cycle 2012; 11:3395-402. [PMID: 22894931 DOI: 10.4161/cc.21694] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Uninterrupted replication across damaged DNA is critical to prevent replication fork collapse and resulting double-strand DNA breaks. Rad18-mediated PCNA ubiquitination is a crucial event that triggers a number of downstream pathways important for lesion bypass. Here, we report characterization of Spartan, an evolutionarily conserved protein containing a PCNA-interacting peptide motif, called a PIP box, and a UBZ4 ubiquitin-binding domain. Spartan is a nuclear protein and forms DNA damage-induced foci that colocalize with markers for stalled DNA replication. Focus formation of Spartan requires its PIP-box and the UBZ4 domain and is dependent on Rad18 and the PCNA ubiquitination site, indicating that Spartan is recruited to ubiquitinated PCNA. Spartan depletion results in increased mutagenesis during replication of UV-damaged DNA. Taken together, our data suggest that Spartan is recruited to sites of stalled replication via ubiquitinated PCNA and plays an important role to prevent mutations associated with replication of damaged DNA.
Collapse
Affiliation(s)
- Yuka Machida
- Division of Oncology Research, Mayo College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
225
|
Suzuki M, Takahashi T. Aberrant DNA replication in cancer. Mutat Res 2012; 743-744:111-117. [PMID: 22968031 DOI: 10.1016/j.mrfmmm.2012.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/11/2022]
Abstract
Genomic instability plays an important role in cancer susceptibility, though the mechanics of its development remain unclear. An often-stated hypothesis is that error-prone phenotypes in DNA replication or aberrations in translesion DNA synthesis lead to genomic instability and cancer. Mutations in core DNA replication proteins have been identified in human cancer, although DNA replication is essential for cell proliferation and most mutations eliminating this function are deleterious. With recent developments in this field we review and discuss the possible involvement of DNA replication proteins in carcinogenesis.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
226
|
Chea J, Zhang S, Zhao H, Zhang Z, Lee EYC, Darzynkiewicz Z, Lee MYWT. Spatiotemporal recruitment of human DNA polymerase delta to sites of UV damage. Cell Cycle 2012; 11:2885-95. [PMID: 22801543 DOI: 10.4161/cc.21280] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human DNA polymerase δ (Pol δ) is involved in various DNA damage responses in addition to its central role in DNA replication. The Pol δ4 holoenzyme consists of four subunits, p125, p50, p68 and p12. It has been established that the p12 subunit is rapidly degraded in response to DNA damage by UV leading to the in vivo conversion of Pol δ4 to Pol δ3, a trimeric form lacking the p12 subunit. We provide the first analysis of the time-dependent recruitment of the individual Pol δ subunits to sites of DNA damage produced by UV irradiation through 5 μm polycarbonate filters by immunofluorescence microscopy and laser scanning cytometry (LSC). Quantitative analysis demonstrates that the recruitments of the three large subunits was near complete by 2 h and did not change significantly up to 4 h after UV exposure. However, the recruitment of p12 was incomplete even at 4 h, with about 70% of the Pol δ lacking the p12 subunit. ChIP analysis of Pol δ after global UV irradiation further demonstrates that only p125, p50 and p68 were present. Thus, Pol δ3 is the predominant form of Pol δ at sites of UV damage as a result of p12 degradation. Using LSC, we have further confirmed that Pol δ was recruited to CPD damage sites in all phases of the cell cycle. Collectively, our results show that Pol δ at the DNA damage site is the Pol δ trimer lacking p12 regardless of the cell cycle phase.
Collapse
Affiliation(s)
- Jennifer Chea
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | | | | | | | | | | | | |
Collapse
|
227
|
Genetic polymorphisms in translesion synthesis genes are associated with colorectal cancer risk and metastasis in Han Chinese. Gene 2012; 504:151-5. [DOI: 10.1016/j.gene.2012.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/13/2012] [Accepted: 05/18/2012] [Indexed: 11/23/2022]
|
228
|
Ubiquitylation of terminal deoxynucleotidyltransferase inhibits its activity. PLoS One 2012; 7:e39511. [PMID: 22808041 PMCID: PMC3394778 DOI: 10.1371/journal.pone.0039511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
Terminal deoxynucleotidyltransferase (TdT), which template-independently synthesizes DNA during V(D)J recombination in lymphoid cells, is ubiquitylated by a BPOZ-2/Cul3 complex, as the ubiquitin ligase, and then degraded by the 26 S proteasome. We show here that TdT is ubiquitylated by the Cul3-based ubiquitylation system in vitro. Because TdT could also be ubiquitylated in the absence of Cul/BPOZ-2, we determined that it could also be directly ubiquitylated by the E2 proteins UbcH5a/b/c and UbcH6, E3-independently. Furthermore, the ubiquitylated TdT inhibited its nucleotidyltransferase activity.
Collapse
|
229
|
Weston R, Peeters H, Ahel D. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev 2012; 26:1558-72. [PMID: 22759634 DOI: 10.1101/gad.193516.112] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To efficiently duplicate their genomic content, cells must overcome DNA lesions that interfere with processive DNA replication. These lesions may be removed and repaired, rather than just tolerated, to allow continuity of DNA replication on an undamaged DNA template. However, it is unclear how this is achieved at a molecular level. Here we identify a new replication-associated factor, ZRANB3 (zinc finger, RAN-binding domain containing 3), and propose its role in the repair of replication-blocking lesions. ZRANB3 has a unique structure-specific endonuclease activity, which is coupled to ATP hydrolysis. It cleaves branched DNA structures with unusual polarity, generating an accessible 3'-OH group in the template of the leading strand. Furthermore, ZRANB3 localizes to DNA replication sites and interacts with the components of the replication machinery. It is recruited to damaged replication forks via multiple mechanisms, which involve interactions with PCNA, K63-polyubiquitin chains, and branched DNA structures. Collectively, our data support a role for ZRANB3 in the replication stress response and suggest new insights into how DNA repair is coordinated with DNA replication to maintain genome stability.
Collapse
Affiliation(s)
- Ria Weston
- DNA Damage Response Group, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | | | | |
Collapse
|
230
|
Zhang H, Yu DS. One stone, two birds: CDK9-directed activation of UBE2A regulates monoubiquitination of both H2B and PCNA. Cell Cycle 2012; 11:2418. [PMID: 22722497 PMCID: PMC3404870 DOI: 10.4161/cc.21068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Comment on: Shchebet A, et al. Cell Cycle 2012; 11:2122-7.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
231
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
232
|
Lo YH, Ho PC, Wang SC. Epidermal growth factor receptor protects proliferating cell nuclear antigen from cullin 4A protein-mediated proteolysis. J Biol Chem 2012; 287:27148-57. [PMID: 22692198 DOI: 10.1074/jbc.m112.388843] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential component for DNA synthesis upon growth stimulation. It has been shown that phosphorylation of PCNA at Tyr-211 by the EGF receptor (EGFR) protects PCNA from polyubiquitylation and degradation, whereas blocking phosphorylation induces ubiquitylation-mediated degradation of the chromatin-bound, but not the -unbound, PCNA, and suppresses cell proliferation. However, the ubiquitin E3 ligase linking growth signaling to the proteolysis of PCNA and the underlying regulatory mechanism remain to be identified. Here we show that, in the absence of Tyr-211 phosphorylation, PCNA is subject to polyubiquitylation at Lys-164 by the CUL4A E3 ligase, resulting in the degradation of PCNA. Mutation of Lys-164 to arginine prevents PCNA ubiquitylation and rescues the degradation of the K164R/Y211F PCNA double mutant. Activation of EGFR inhibits the interaction of PCNA with CUL4A, whereas inhibition of EGFR leads to increased CUL4A-PCNA interaction and CUL4A-dependent ubiquitin-mediated degradation of PCNA. Substitution of endogenous PCNA with the Y211F mutant PCNA conveys enhanced sensitization to EGFR inhibition. Our findings identify CUL4A as the ubiquitin ligase linking the down-regulation of cell surface receptor tyrosine kinase to the nuclear DNA replication machinery in cancer cells.
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | |
Collapse
|
233
|
Janel-Bintz R, Wagner J, Haracska L, Mah-Becherel MCM, Bichara M, Fuchs RP, Cordonnier AM. Evidence for a Rad18-independent frameshift mutagenesis pathway in human cell-free extracts. PLoS One 2012; 7:e36004. [PMID: 22558303 PMCID: PMC3338768 DOI: 10.1371/journal.pone.0036004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/29/2012] [Indexed: 12/19/2022] Open
Abstract
Bypass of replication blocks by specialized DNA polymerases is crucial for cell survival but may promote mutagenesis and genome instability. To gain insight into mutagenic sub-pathways that coexist in mammalian cells, we examined N-2-acetylaminofluorene (AAF)-induced frameshift mutagenesis by means of SV40-based shuttle vectors containing a single adduct. We found that in mammalian cells, as previously observed in E. coli, modification of the third guanine of two target sequences, 5'-GGG-3' (3G) and 5'-GGCGCC-3' (NarI site), induces –1 and –2 frameshift mutations, respectively. Using an in vitro assay for translesion synthesis, we investigated the biochemical control of these events. We showed that Pol eta, but neither Pol iota nor Pol zeta, plays a major role in the frameshift bypass of the AAF adduct located in the 3G sequence. By complementing PCNA-depleted extracts with either a wild-type or a non-ubiquitinatable form of PCNA, we found that this Pol eta-mediated pathway requires Rad18 and ubiquitination of PCNA. In contrast, when the AAF adduct is located within the NarI site, TLS is only partially dependent upon Pol eta and Rad18, unravelling the existence of alternative pathways that concurrently bypass this lesion.
Collapse
Affiliation(s)
- Régine Janel-Bintz
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Jérôme Wagner
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Lajos Haracska
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Marcia Chia Miao Mah-Becherel
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Marc Bichara
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Robert P. Fuchs
- Campus J. Aiguier, UPR3081 Genome Instability and Carcinogenesis, Marseille, France
| | - Agnès M. Cordonnier
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
234
|
Temviriyanukul P, van Hees-Stuivenberg S, Delbos F, Jacobs H, de Wind N, Jansen JG. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome. DNA Repair (Amst) 2012; 11:550-8. [PMID: 22521143 DOI: 10.1016/j.dnarep.2012.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Replicative polymerases (Pols) arrest at damaged DNA nucleotides, which induces ubiquitination of the DNA sliding clamp PCNA (PCNA-Ub) and DNA damage signaling. PCNA-Ub is associated with the recruitment or activation of translesion synthesis (TLS) DNA polymerases of the Y family that can bypass the lesions, thereby rescuing replication and preventing replication fork collapse and consequent formation of double-strand DNA breaks. Here, we have used gene-targeted mouse embryonic fibroblasts to perform a comprehensive study of the in vivo roles of PCNA-Ub and of the Y family TLS Pols η, ι, κ, Rev1 and the B family TLS Polζ in TLS and in the suppression of DNA damage signaling and genome instability after exposure to UV light. Our data indicate that TLS Pols ι and κ and the N-terminal BRCT domain of Rev1, that previously was implicated in the regulation of TLS, play minor roles in TLS of DNA photoproducts. PCNA-Ub is critical for an early TLS pathway that replicates both strongly helix-distorting (6-4) pyrimidine-pyrimidone ((6-4)PP) and mildly distorting cyclobutane pyrimidine dimer (CPD) photoproducts. The role of Polη is mainly restricted to early TLS of CPD photoproducts, whereas Rev1 and, in particular, Polζ are essential for the bypass of (6-4)PP photoproducts, both early and late after exposure. Thus, structurally distinct photoproducts at the mammalian genome are bypassed by different TLS Pols in temporally different, PCNA-Ub-dependent and independent fashions.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Department of Toxicogenetics, Leiden University Medical Center-LUMC, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
235
|
Kozhina TN, Korolev VG. RAD18 gene product of yeast Saccharomyces cerevisiae controls mutagenesis induced by hydrogen peroxide. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
236
|
Sale JE. Competition, collaboration and coordination--determining how cells bypass DNA damage. J Cell Sci 2012; 125:1633-43. [PMID: 22499669 DOI: 10.1242/jcs.094748] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells must overcome replication blocks that might otherwise lead to genomic instability or cell death. Classical genetic experiments have identified a series of mechanisms that cells use to replicate damaged DNA: translesion synthesis, template switching and homologous recombination. In translesion synthesis, DNA lesions are replicated directly by specialised DNA polymerases, a potentially error-prone approach. Template switching and homologous recombination use an alternative undamaged template to allow the replicative polymerases to bypass DNA lesions and, hence, are generally error free. Classically, these pathways have been viewed as alternatives, competing to ensure replication of damaged DNA templates is completed. However, this view of a series of static pathways has been blurred by recent work using a combination of genetic approaches and methodology for examining the physical intermediates of bypass reactions. These studies have revealed a much more dynamic interaction between the pathways than was initially appreciated. In this Commentary, I argue that it might be more helpful to start thinking of lesion-bypass mechanisms in terms of a series of dynamically assembled 'modules', often comprising factors from different classical pathways, whose deployment is crucially dependent on the context in which the bypass event takes place.
Collapse
Affiliation(s)
- Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
237
|
Barkley LR, Palle K, Durando M, Day TA, Gurkar A, Kakusho N, Li J, Masai H, Vaziri C. c-Jun N-terminal kinase-mediated Rad18 phosphorylation facilitates Polη recruitment to stalled replication forks. Mol Biol Cell 2012; 23:1943-54. [PMID: 22456510 PMCID: PMC3350557 DOI: 10.1091/mbc.e11-10-0829] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The E3 ubiquitin ligase Rad18 chaperones DNA polymerase η (Polη) to sites of UV-induced DNA damage and monoubiquitinates proliferating cell nuclear antigen (PCNA), facilitating engagement of Polη with stalled replication forks and promoting translesion synthesis (TLS). It is unclear how Rad18 activities are coordinated with other elements of the DNA damage response. We show here that Ser-409 residing in the Polη-binding motif of Rad18 is phosphorylated in a checkpoint kinase 1-dependent manner in genotoxin-treated cells. Recombinant Rad18 was phosphorylated specifically at S409 by c-Jun N-terminal kinase (JNK) in vitro. In UV-treated cells, Rad18 S409 phosphorylation was inhibited by a pharmacological JNK inhibitor. Conversely, ectopic expression of JNK and its upstream kinase mitogen-activated protein kinase kinase 4 led to DNA damage-independent Rad18 S409 phosphorylation. These results identify Rad18 as a novel JNK substrate. A Rad18 mutant harboring a Ser → Ala substitution at S409 was compromised for Polη association and did not redistribute Polη to nuclear foci or promote Polη-PCNA interaction efficiently relative to wild-type Rad18. Rad18 S409A also failed to fully complement the UV sensitivity of Rad18-depleted cells. Taken together, these results show that Rad18 phosphorylation by JNK represents a novel mechanism for promoting TLS and DNA damage tolerance.
Collapse
Affiliation(s)
- Laura R Barkley
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Wigan M, Pinder A, Giles N, Pavey S, Burgess A, Wong S, Sturm RA, Gabrielli B. A UVR-induced G2-phase checkpoint response to ssDNA gaps produced by replication fork bypass of unrepaired lesions is defective in melanoma. J Invest Dermatol 2012; 132:1681-8. [PMID: 22402442 DOI: 10.1038/jid.2012.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UVR is a major environmental risk factor for the development of melanoma. Here we describe a coupled DNA-damage tolerance (DDT) mechanism and G2-phase cell cycle checkpoint induced in response to suberythemal doses of UVR that is commonly defective in melanomas. This coupled response is triggered by a small number of UVR-induced DNA lesions incurred during G1 phase that are not repaired by nucleotide excision repair (NER). These lesions are detected during S phase, but rather than stalling replication, they trigger the DDT-dependent formation of single-stranded DNA (ssDNA) gaps. The ssDNA attracts replication protein A (RPA), which initiates ATR-Chk1 (ataxia telangiectasia and Rad3-related/checkpoint kinase 1) G2-phase checkpoint signaling, and colocalizes with components of the RAD18 and RAD51 postreplication repair pathways. We demonstrate that depletion of RAD18 delays both the resolution of RPA foci and exit from the G2-phase arrest, indicating the involvement of RAD18-dependent postreplication repair in ssDNA gap repair during G2 phase. Moreover, the presence of RAD51 and BRCA1 suggests that an error-free mechanism may also contribute to repair. Loss of the UVR-induced G2-phase checkpoint results in increased UVR signature mutations after exposure to suberythemal UVR. We propose that defects in the UVR-induced G2-phase checkpoint and repair mechanism are likely to contribute to melanoma development.
Collapse
Affiliation(s)
- Matthew Wigan
- University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Ghosh S, Saha T. Central Role of Ubiquitination in Genome Maintenance: DNA Replication and Damage Repair. ISRN MOLECULAR BIOLOGY 2012; 2012:146748. [PMID: 27398234 PMCID: PMC4908256 DOI: 10.5402/2012/146748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/16/2011] [Indexed: 11/23/2022]
Abstract
Faithful transmission of genetic information through generations ensures genomic stability and integrity. However, genetic alterations occur every now and then during the course of genome duplication. In order to repair these genetic defects and lesions, nature has devised several repair pathways which function promptly to prevent the cell from accumulating permanent mutations. These repair mechanisms seem to be significantly impacted by posttranslational modifications of proteins like phosphorylation and ubiquitination. Protein ubiquitination is emerging as a critical regulatory mechanism of DNA damage response. Non-proteolytic, proteasome-independent functions of ubiquitin involving monoubiquitination and polyubiquitination of DNA repair proteins contribute significantly to the signaling of DNA repair pathways. In this paper, we will particularly highlight the work on ubiquitin-mediated signaling in the repair processes involving the Fanconi anemia pathway, translesional synthesis, nucleotide excision repair, and repair of double-strand breaks. We will also discuss the role of ubiquitin ligases in regulating checkpoint mechanisms, the role of deubiquitinating enzymes, and the growing possibilities of therapeutic intervention in this ubiquitin-conjugation system.
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Tapas Saha
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
240
|
Hashimoto K, Cho Y, Yang IY, Akagi JI, Ohashi E, Tateishi S, de Wind N, Hanaoka F, Ohmori H, Moriya M. The vital role of polymerase ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[a]pyrene-dG and recruitment of polymerase ζ by REV1 to replication-stalled site. J Biol Chem 2012; 287:9613-22. [PMID: 22303021 DOI: 10.1074/jbc.m111.331728] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The DNA synthesis across DNA lesions, termed translesion synthesis (TLS), is a complex process influenced by various factors. To investigate this process in mammalian cells, we examined TLS across a benzo[a]pyrene dihydrodiol epoxide-derived dG adduct (BPDE-dG) using a plasmid bearing a single BPDE-dG and genetically engineered mouse embryonic fibroblasts (MEFs). In wild-type MEFs, TLS was extremely miscoding (>90%) with G → T transversions being predominant. Knockout of the Rev1 gene decreased both the TLS efficiency and the miscoding frequency. Knockout of the Rev3L gene, coding for the catalytic subunit of pol ζ, caused even greater decreases in these two TLS parameters; almost all residual TLS were error-free. Thus, REV1 and pol ζ are critical to mutagenic, but not accurate, TLS across BPDE-dG. The introduction of human REV1 cDNA into Rev1(-/-) MEFs restored the mutagenic TLS, but a REV1 mutant lacking the C terminus did not. Yeast and mammalian three-hybrid assays revealed that the REV7 subunit of pol ζ mediated the interaction between REV3 and the REV1 C terminus. These results support the hypothesis that REV1 recruits pol ζ through the interaction with REV7. Our results also predict the existence of a minor REV1-independent pol ζ recruitment pathway. Finally, although mutagenic TLS across BPDE-dG largely depends on RAD18, experiments using Polk(-/-) Polh(-/-) Poli(-/-) triple-gene knockout MEFs unexpectedly revealed that another polymerase(s) could insert a nucleotide opposite BPDE-dG. This indicates that a non-Y family polymerase(s) can insert a nucleotide opposite BPDE-dG, but the subsequent extension from miscoding termini depends on REV1-polζ in a RAD18-dependent manner.
Collapse
Affiliation(s)
- Keiji Hashimoto
- Department of Pharmacological Sciences, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Wong RP, Aguissa-Touré AH, Wani AA, Khosravi S, Martinka M, Martinka M, Li G. Elevated expression of Rad18 regulates melanoma cell proliferation. Pigment Cell Melanoma Res 2012; 25:213-8. [DOI: 10.1111/j.1755-148x.2011.00948.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
242
|
Yamashita T, Oda T, Sekimoto T. Translesion DNA Synthesis and Hsp90. Genes Environ 2012. [DOI: 10.3123/jemsge.34.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
243
|
Masuda Y. In Vitro Studies of Exchanges between Replicative and Translesion DNA Polymerases in the Eukaryotic Post-replication Repair Pathway. Genes Environ 2012. [DOI: 10.3123/jemsge.34.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
244
|
|
245
|
Masutani C. Human DNA Polymerase η and Its Regulatory Mechanisms. Genes Environ 2012. [DOI: 10.3123/jemsge.34.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
246
|
Abstract
PCNA modifications by members of the ubiquitin family are associated with a range of different transactions during replication of damaged and undamaged DNA. This chapter describes detailed protocols for the detection and isolation of ubiquitin and SUMO conjugates of PCNA from total budding yeast cell lysates, using Ni-NTA affinity chromatography under denaturing conditions. We describe approaches based on the purification of PCNA itself and on the isolation of total ubiquitin or SUMO conjugates. The chapter covers the construction of the appropriate strains, methods for the detection of modified PCNA, and the use of various DNA-damaging agents as well as mutants of PCNA and relevant conjugation enzymes to examine the cellular response to replication stress.
Collapse
Affiliation(s)
- Adelina A Davies
- Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, UK
| | | |
Collapse
|
247
|
Dysregulation of DNA polymerase κ recruitment to replication forks results in genomic instability. EMBO J 2011; 31:908-18. [PMID: 22157819 DOI: 10.1038/emboj.2011.457] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/18/2011] [Indexed: 11/08/2022] Open
Abstract
Translesion synthesis polymerases (TLS Pols) are required to tolerate DNA lesions that would otherwise cause replication arrest and cell death. Aberrant expression of these specialized Pols may be responsible for increased mutagenesis and loss of genome integrity in human cancers. The molecular events that control the usage of TLS Pols in non-pathological conditions remain largely unknown. Here, we show that aberrant recruitment of TLS Polκ to replication forks results in genomic instability and can be mediated through the loss of the deubiquitinase USP1. Moreover, artificial tethering of Polκ to proliferating cell nuclear antigen (PCNA) circumvents the need for its ubiquitin-binding domain in the promotion of genomic instability. Finally, we show that the loss of USP1 leads to a dramatic reduction of replication fork speed in a Polκ-dependent manner. We propose a mechanism whereby reversible ubiquitination of PCNA can prevent spurious TLS Pol recruitment and regulate replication fork speed to ensure the maintenance of genome integrity.
Collapse
|
248
|
Kato D, Waki M, Umezawa M, Aoki Y, Utsugi T, Ohtsu M, Murakami Y. Phosphorylation of human INO80 is involved in DNA damage tolerance. Biochem Biophys Res Commun 2011; 417:433-8. [PMID: 22166198 DOI: 10.1016/j.bbrc.2011.11.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 01/04/2023]
Abstract
Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in the DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.
Collapse
Affiliation(s)
- Dai Kato
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
249
|
Knobel PA, Marti TM. Translesion DNA synthesis in the context of cancer research. Cancer Cell Int 2011; 11:39. [PMID: 22047021 PMCID: PMC3224763 DOI: 10.1186/1475-2867-11-39] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy.
Collapse
Affiliation(s)
- Philip A Knobel
- Laboratory of Molecular Oncology, Clinic and Polyclinic of Oncology, University Hospital Zürich, Häldeliweg 4, CH-8044 Zürich, Switzerland.
| | | |
Collapse
|
250
|
Zlatanou A, Despras E, Braz-Petta T, Boubakour-Azzouz I, Pouvelle C, Stewart GS, Nakajima S, Yasui A, Ishchenko AA, Kannouche PL. The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol η in response to oxidative DNA damage in human cells. Mol Cell 2011; 43:649-62. [PMID: 21855803 DOI: 10.1016/j.molcel.2011.06.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/01/2011] [Accepted: 06/08/2011] [Indexed: 11/29/2022]
Abstract
Posttranslational modification of PCNA by ubiquitin plays an important role in coordinating the processes of DNA damage tolerance during DNA replication. The monoubiquitination of PCNA was shown to facilitate the switch between the replicative DNA polymerase with the low-fidelity polymerase eta (η) to bypass UV-induced DNA lesions during replication. Here, we show that in response to oxidative stress, PCNA becomes transiently monoubiquitinated in an S phase- and USP1-independent manner. Moreover, Polη interacts with mUb-PCNA at sites of oxidative DNA damage via its PCNA-binding and ubiquitin-binding motifs. Strikingly, while functional base excision repair is not required for this modification of PCNA or Polη recruitment to chromatin, the presence of hMsh2-hMsh6 is indispensable. Our findings highlight an alternative pathway in response to oxidative DNA damage that may coordinate the removal of oxidatively induced clustered DNA lesions and could explain the high levels of oxidized DNA lesions in MSH2-deficient cells.
Collapse
Affiliation(s)
- Anastasia Zlatanou
- Group TLS Polymerases and Cancer, Université Paris-Sud, CNRS-UMR8200, Institut Gustave Roussy, 94800 Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|