201
|
Mokry M, Hatzis P, Schuijers J, Lansu N, Ruzius FP, Clevers H, Cuppen E. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes. Nucleic Acids Res 2012; 40:148-58. [PMID: 21914722 PMCID: PMC3245935 DOI: 10.1093/nar/gkr720] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 12/15/2022] Open
Abstract
Routine methods for assaying steady-state mRNA levels such as RNA-seq and micro-arrays are commonly used as readouts to study the role of transcription factors (TFs) in gene expression regulation. However, cellular RNA levels do not solely depend on activity of TFs and subsequent transcription by RNA polymerase II (Pol II), but are also affected by RNA turnover rate. Here, we demonstrate that integrated analysis of genome-wide TF occupancy, Pol II binding and steady-state RNA levels provide important insights in gene regulatory mechanisms. Pol II occupancy, as detected by Pol II ChIP-seq, was found to correlate better with TF occupancy compared to steady-state RNA levels and is thus a more precise readout for the primary transcriptional mechanisms that are triggered by signal transduction. Furthermore, analysis of differential Pol II occupancy and RNA-seq levels identified genes with high Pol II occupancy and relatively low RNA levels and vice versa. These categories are strongly enriched for genes from different functional classes. Our results demonstrate a complementary value in Pol II chip-seq and RNA-seq approaches for better understanding of gene expression regulation.
Collapse
Affiliation(s)
- Michal Mokry
- Hubrecht Institute KNAW and University Medical Center, 3584 CT Utrecht, The Netherlands and Department of Medical Genetics, University Medical Center Utrecht (UMCU), 3584 CG Utrecht, The Netherlands
| | - Pantelis Hatzis
- Hubrecht Institute KNAW and University Medical Center, 3584 CT Utrecht, The Netherlands and Department of Medical Genetics, University Medical Center Utrecht (UMCU), 3584 CG Utrecht, The Netherlands
| | - Jurian Schuijers
- Hubrecht Institute KNAW and University Medical Center, 3584 CT Utrecht, The Netherlands and Department of Medical Genetics, University Medical Center Utrecht (UMCU), 3584 CG Utrecht, The Netherlands
| | - Nico Lansu
- Hubrecht Institute KNAW and University Medical Center, 3584 CT Utrecht, The Netherlands and Department of Medical Genetics, University Medical Center Utrecht (UMCU), 3584 CG Utrecht, The Netherlands
| | - Frans-Paul Ruzius
- Hubrecht Institute KNAW and University Medical Center, 3584 CT Utrecht, The Netherlands and Department of Medical Genetics, University Medical Center Utrecht (UMCU), 3584 CG Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute KNAW and University Medical Center, 3584 CT Utrecht, The Netherlands and Department of Medical Genetics, University Medical Center Utrecht (UMCU), 3584 CG Utrecht, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute KNAW and University Medical Center, 3584 CT Utrecht, The Netherlands and Department of Medical Genetics, University Medical Center Utrecht (UMCU), 3584 CG Utrecht, The Netherlands
| |
Collapse
|
202
|
Simon RP, Meller R, Zhou A, Henshall D. Can genes modify stroke outcome and by what mechanisms? Stroke 2011; 43:286-91. [PMID: 22156698 DOI: 10.1161/strokeaha.111.622225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Roger P Simon
- The Neuroscience Institute, Morehouse Medical School, 720 Westview Dr, SW, Atlanta, GA, 30310-1495, USA.
| | | | | | | |
Collapse
|
203
|
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011; 301:E1051-64. [PMID: 21971522 DOI: 10.1152/ajpendo.00399.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulated cell metabolism involves acute and chronic regulation of gene expression by various nutritional and endocrine stimuli. To respond effectively to endogenous and exogenous signals, cells require rapid response mechanisms to modulate transcript expression and protein synthesis and cannot, in most cases, rely on control of transcriptional initiation that requires hours to take effect. Thus, co- and posttranslational mechanisms have been increasingly recognized as key modulators of metabolic function. This review highlights the critical role of mRNA translational control in modulation of global protein synthesis as well as specific protein factors that regulate metabolic function. First, the complex lifecycle of eukaryotic mRNAs will be reviewed, including our current understanding of translational control mechanisms, regulation by RNA binding proteins and microRNAs, and the role of RNA granules, including processing bodies and stress granules. Second, the current evidence linking regulation of mRNA translation with normal physiological and metabolic pathways and the associated disease states are reviewed. A growing body of evidence supports a key role of translational control in metabolic regulation and implicates translational mechanisms in the pathogenesis of metabolic disorders such as type 2 diabetes. The review also highlights translational control of apolipoprotein B (apoB) mRNA by insulin as a clear example of endocrine modulation of mRNA translation to bring about changes in specific metabolic pathways. Recent findings made on the role of 5'-untranslated regions (5'-UTR), 3'-UTR, RNA binding proteins, and RNA granules in mediating insulin regulation of apoB mRNA translation, apoB protein synthesis, and hepatic lipoprotein production are discussed.
Collapse
Affiliation(s)
- Khosrow Adeli
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Atrium 3653, 555 University Ave., Toronto, ON, M5G 1X8 Canada.
| |
Collapse
|
204
|
Morishita Y, Arima H, Hiroi M, Hayashi M, Hagiwara D, Asai N, Ozaki N, Sugimura Y, Nagasaki H, Shiota A, Takahashi M, Oiso Y. Poly(A) tail length of neurohypophysial hormones is shortened under endoplasmic reticulum stress. Endocrinology 2011; 152:4846-55. [PMID: 21971157 DOI: 10.1210/en.2011-1415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Familial neurohypophysial diabetes insipidus (FNDI) is caused by mutations in the gene locus of arginine vasopressin (AVP), an antidiuretic hormone. Although the carriers are normal at birth, polyuria and polydipsia appear several months or years later. Previously, we made mice possessing a mutation causing FNDI and reported that the mice manifested progressive polyuria as do the patients with FNDI. Here, we report that decreases in AVP mRNA expression in the supraoptic nucleus were accompanied by shortening of the AVP mRNA poly(A) tail length in the FNDI mice, a case in which aggregates accumulated in the endoplasmic reticulum (ER) of the hypothalamic AVP neurons. Expression levels of AVP heteronuclear RNA in the supraoptic nucleus, a sensitive indicator for gene transcription, were not significantly different between FNDI and wild-type mice. Incubation of hypothalamic explants of wild-type mice with ER stressors (thapsigargin and tunicamycin) caused shortening of the poly(A) tail length of AVP and oxytocin mRNA, accompanied by decreases in their expression. On the other hand, an ER stress-reducing molecule (tauroursodeoxycholate) increased the poly(A) tail length as well as the expression levels of AVP and oxytocin mRNA. These data reveal a novel mechanism by which ER stress decreases poly(A) tail length of neurohypophysial hormones, probably to reduce the load of unfolded proteins.
Collapse
Affiliation(s)
- Yoshiaki Morishita
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Dai L, Tsai-Morris CH, Sato H, Villar J, Kang JH, Zhang J, Dufau ML. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J Biol Chem 2011; 286:44306-18. [PMID: 22086916 DOI: 10.1074/jbc.m111.282756] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), a testis-specific member of the DEAD-box family, is an essential post-transcriptional regulator of spermatogenesis. Failure of expression of Transition protein 2 (TP2) and Protamine 2 (Prm2) proteins (chromatin remodelers, essential for spermatid elongation and completion of spermatogenesis) with preservation of their mRNA expression was observed in GRTH-null mice (azoospermic due to failure of spermatids to elongate). These were identified as target genes for the testis-specific miR-469, which is increased in the GRTH-null mice. Further analysis demonstrated that miR-469 repressed TP2 and Prm2 protein expression at the translation level with minor effect on mRNA degradation, through binding to the coding regions of TP2 and Prm2 mRNAs. The corresponding primary-microRNAs and the expression levels of Drosha and DGCR8 (both mRNA and protein) were increased significantly in the GRTH-null mice. miR-469 silencing of TP2 and Prm2 mRNA in pachytene spermatocytes and round spermatids is essential for their timely translation at later times of spermiogenesis, which is critical to attain mature sperm. Collectively, these studies indicate that GRTH, a multifunctional RNA helicase, acts as a negative regulator of miRNA-469 biogenesis and consequently their function during spermatogenesis.
Collapse
Affiliation(s)
- Lisheng Dai
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
Abstract
MicroRNAs (miRNAs) are highly conserved, tiny (∼22 nucleotides) non-coding RNAs that have emerged as potent regulators of mRNA translation. miRNAs exhibit fine-tuning of the control of proteins involved in cell signalling (AE) pathways and in vital cellular and developmental processes. miRNAs are expressed in cardiovascular tissues, and multiple functional aspects of miRNAs underscore their key role in cardiovascular (patho)physiology. The development and increasing use of novel molecular biology tools have contributed to the recent success in miRNA research. In the present review, we discuss current updates on important and novel miRNA techniques, including: (i) miRNA screening tools; (ii) bioanalytical target prediction tools; (iii) target validation tools; and (iv) manipulative miRNA expression tools. We also present an update about recently identified miRNA targets that play a key role in cardiovascular development and disorders.
Collapse
Affiliation(s)
- S Dangwal
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
207
|
Predicting miRNA-mediated gene silencing mode based on miRNA-target duplex features. Comput Biol Med 2011; 42:1-7. [PMID: 22041293 DOI: 10.1016/j.compbiomed.2011.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 09/26/2011] [Accepted: 10/07/2011] [Indexed: 01/08/2023]
Abstract
There are two main mechanisms of miRNA-mediated gene silencing: either mRNA degradation or translational repression. However, the precise mechanism of target mRNAs regulated by miRNA remains unclear. As a complementary approach to experiment, a computational method was proposed to recognize the mechanism of miRNA-mediated gene silencing in human. We have analyzed extensive features correlated with miRNA-mediated silencing mechanism of mRNA. It is found that, the duplex structure, the number of binding sites and the structural accessibility of target site region are effective factors in determining whether a target mRNA is cleaved or only translationally inhibited. An SVM-based classifier was constructed to predict the regulation mode of miRNA based on these informative features. The results indicated that the approach proposed is effective in distinguishing whether a target mRNA is cleaved or translationally inhibited in human. Furthermore, the web server microDoR (http://reprod.njmu.edu.cn/microdor) has been developed and is freely available for users.
Collapse
|
208
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and fundamentally impact on cardiovascular function in health and disease. A tight control of miRNA expression is crucial for the maintenance of tissue homeostasis. However, a comprehensive understanding of the various levels of miRNA regulation is in its infancy. We here summarize the current knowledge about regulation of cardiovascular miRNAs at the transcriptional level by transcription factors, during processing by the Drosha and Dicer complexes and the importance of miRNA modification, editing, and decay mechanisms. As an example, miRNA regulation in diabetic and hypoxic cardiovascular disease conditions is discussed. Better knowledge about regulatory mechanisms of miRNAs in cardiovascular disease will probably lead to improved and novel miRNA-based therapeutic therapies.
Collapse
Affiliation(s)
- Johann Bauersachs
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Carl-Neuberg-Strasse 1, Hannover, Germany.
| | | |
Collapse
|
209
|
Fiesel FC, Kahle PJ. TDP-43 and FUS/TLS: cellular functions and implications for neurodegeneration. FEBS J 2011; 278:3550-68. [PMID: 21777389 DOI: 10.1111/j.1742-4658.2011.08258.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 (transactive response binding protein of 43 kDa) and FUS (fused in sarcoma) comprise the neuropathological protein aggregates of distinct subtypes of the neurodegenerative diseases frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Moreover, the genes encoding TDP-43 and FUS are linked to these diseases. Both TDP-43 and FUS contain RNA binding motifs, and specific targets are being identified. Potential actions of TDP-43 and FUS include transcriptional regulation, mRNA processing and micro RNA biogenesis. These activities are probably modulated by interacting proteins in cell type specific manners as well as distinctly within the nucleus and cytosol, as both proteins shuttle between these compartments. In this minireview the specific functions of TDP-43 and FUS are described and discussed in the context of how TDP-43 and FUS may contribute to the pathogenesis of frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Fabienne C Fiesel
- Department of Neurodegeneration, Faculty of Medicine, University of Tuebingen, Tuebingen, Germany.
| | | |
Collapse
|
210
|
Sharina IG, Cote GJ, Martin E, Doursout MF, Murad F. RNA splicing in regulation of nitric oxide receptor soluble guanylyl cyclase. Nitric Oxide 2011; 25:265-74. [PMID: 21867767 DOI: 10.1016/j.niox.2011.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/01/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a key protein in the nitric oxide (NO)/-cGMP signaling pathway. sGC activity is involved in a number of important physiological processes including smooth muscle relaxation, neurotransmission and platelet aggregation and adhesion. Regulation of sGC expression and activity emerges as a crucial factor in control of sGC function in normal and pathological conditions. Recently accumulated evidence strongly indicates that the regulation of sGC expression is a complex process modulated on several levels including transcription, post-transcriptional regulation, translation and protein stability. Presently our understanding of mechanisms governing regulation of sGC expression remains very limited and awaits systematic investigation. Among other ways, the expression of sGC subunits is modulated at the levels of mRNA abundance and transcript diversity. In this review we summarize available information on different mechanisms (including transcriptional activation, mRNA stability and alternative splicing) involved in the modulation of mRNA levels of sGC subunits in response to various environmental clues. We also summarize and cross-reference the information on human sGC splice forms available in the literature and in genomic databases. This review highlights the fact that the study of the biological role and regulation of sGC splicing will bring new insights to our understanding of NO/cGMP biology.
Collapse
Affiliation(s)
- Iraida G Sharina
- Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
211
|
Abstract
The human septins are part of a gene family, that is a group of genes with similar sequences and usually but not invariably share similar functions that are descended from a common ancestor. Here we review our current knowledge of the human septin gene family and highlight areas of uncertainty. Currently 13 human septin genes are known (SEPT1 to SEPT12 and SEPT14). What was known as SEPT13 is now defined as one of many SEPT7 related pseudogenes. The family is characterized by complex genomics and extensive (but not universal) splicing, giving rise to a plethora of septin isoforms. For only a few members of the family do we have a comprehensive insight into these transcripts and isoforms. Given the formation of countless septin homotypic and heterotypic interactions our understanding of the biology and pathobiology of the septin family will require a detailed understanding of the genomics, transcriptomics and regulation of all members of this diverse and complex family.
Collapse
Affiliation(s)
- S E Hilary Russell
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, Northern Ireland, UK.
| | | |
Collapse
|
212
|
Kojima S, Shingle DL, Green CB. Post-transcriptional control of circadian rhythms. J Cell Sci 2011; 124:311-20. [PMID: 21242310 DOI: 10.1242/jcs.065771] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circadian rhythms exist in most living organisms. The general molecular mechanisms that are used to generate 24-hour rhythms are conserved among organisms, although the details vary. These core clocks consist of multiple regulatory feedback loops, and must be coordinated and orchestrated appropriately for the fine-tuning of the 24-hour period. Many levels of regulation are important for the proper functioning of the circadian clock, including transcriptional, post-transcriptional and post-translational mechanisms. In recent years, new information about post-transcriptional regulation in the circadian system has been discovered. Such regulation has been shown to alter the phase and amplitude of rhythmic mRNA and protein expression in many organisms. Therefore, this Commentary will provide an overview of current knowledge of post-transcriptional regulation of the clock genes and clock-controlled genes in dinoflagellates, plants, fungi and animals. This article will also highlight how circadian gene expression is modulated by post-transcriptional mechanisms and how this is crucial for robust circadian rhythmicity.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Neuroscience, University of Texas Southwestern Medical Center, NB4.204G, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | |
Collapse
|
213
|
Karimian Pour N, Adeli K. Insulin silences apolipoprotein B mRNA translation by inducing intracellular traffic into cytoplasmic RNA granules. Biochemistry 2011; 50:6942-50. [PMID: 21721546 DOI: 10.1021/bi200711v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin is a potent inducer of global mRNA translation and protein synthesis, yet it negatively regulates apolipoprotein B (apoB) mRNA translation, via an unknown mechanism. ApoB mRNA has a long half-life of 16 h, suggesting intracellular storage as mRNPs likely in the form of RNA granules. The availability of apoB mRNA for translation may be regulated by the rate of release from translationally silenced mRNPs within cytoplasmic foci called processing bodies (P bodies). In this report, we directly imaged intracellular apoB mRNA traffic and determined whether insulin silences apoB mRNA translation by entering cytoplasmic P bodies. We assessed the colocalization of apoB mRNA and β-globin mRNA (as a control) with P body (PB) markers using a strong interaction between the bacteriophage capsid protein MS2 and a sequence specific RNA stem-loop structure. We observed statistically significant increases in the localization of apoB mRNA into P bodies 4-16 h after insulin treatment (by 72-89%). The movement of apoB mRNA into cytoplasmic P bodies correlated with reduced translational efficiency as assessed by polysomal profiling and measurement of apoB mRNA abundance. PB localization of β-globin mRNA was insensitive to insulin treatment, suggesting selective regulation of apoB mRNA by insulin. Overall, our data suggest that insulin may specifically silence apoB mRNA translation by reprogramming its mRNA into P bodies and reducing the size of translationally competent mRNA pools. Translational control via traffic into cytoplasmic RNA granules may be an important mechanism for controlling the rate of apoB synthesis and hepatic lipoprotein production.
Collapse
Affiliation(s)
- Navaz Karimian Pour
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
214
|
Lee KE, Lee SK, Jung SE, Lee Z, Kim JW. Functional splicing assay of DSPP mutations in hereditary dentin defects. Oral Dis 2011; 17:690-5. [PMID: 21736673 DOI: 10.1111/j.1601-0825.2011.01825.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Dentin sialophosphoprotein (DSPP) gene mutations have been identified in isolated hereditary dentin defects; however, the genotype-phenotype correlations are poorly understood. We performed in vitro splicing assays to test the hypothesis that DSPP mutations in splice junctions as well as proposed missense/nonsense mutations experimentally result in aberrant pre-mRNA splicing. MATERIALS AND METHODS The genomic fragment of the human DSPP gene was cloned into the pSPL3 splicing vector, and previously reported as well as informative de novo mutations were then introduced by PCR mutagenesis. The COS-7 cells were transfected with each plasmid vector, and total RNA was isolated. RT-PCR result was analyzed, and the band intensity of the product was calibrated using ImageJ. RESULTS The predictions by others of exon 3 skipping in specific DSPP mutations have been validated and a cryptic splicing donor site has been identified. However, the degree of mutational effect on pre-mRNA splicing varied considerably depending on the changed nucleotide. CONCLUSIONS The predictions of exon 3 skipping in specific DSPP mutations have been validated, and a cryptic splicing donor site has been identified. Our data may provide insight into the contribution of DSPP mutations in the pathogenesis and genotype-phenotype correlations of hereditary dentin defects.
Collapse
Affiliation(s)
- K-E Lee
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
215
|
Li P, Ham BK, Lucas WJ. CmRBP50 protein phosphorylation is essential for assembly of a stable phloem-mobile high-affinity ribonucleoprotein complex. J Biol Chem 2011; 286:23142-9. [PMID: 21572046 PMCID: PMC3123081 DOI: 10.1074/jbc.m111.244129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/29/2011] [Indexed: 01/30/2023] Open
Abstract
RNA-binding proteins (RBPs) form ribonucleoprotein (RNP) complexes that play crucial roles in RNA processing for gene regulation. The angiosperm sieve tube system contains a unique population of transcripts, some of which function as long-distance signaling agents involved in regulating organ development. These phloem-mobile mRNAs are translocated as RNP complexes. One such complex is based on a phloem RBP named Cucurbita maxima RNA-binding protein 50 (CmRBP50), a member of the polypyrimidine track binding protein family. The core of this RNP complex contains six additional phloem proteins. Here, requirements for assembly of this CmRBP50 RNP complex are reported. Phosphorylation sites on CmRBP50 were mapped, and then coimmunoprecipitation and protein overlay studies established that the phosphoserine residues, located at the C terminus of CmRBP50, are critical for RNP complex assembly. In vitro pull-down experiments revealed that three phloem proteins, C. maxima phloem protein 16, C. maxima GTP-binding protein, and C. maxima phosphoinositide-specific phospholipase-like protein, bind directly with CmRBP50. This interaction required CmRBP50 phosphorylation. Gel mobility-shift assays demonstrated that assembly of the CmRBP50-based protein complex results in a system having enhanced binding affinity for phloem-mobile mRNAs carrying polypyrimidine track binding motifs. This property would be essential for effective long-distance translocation of bound mRNA to the target tissues.
Collapse
Affiliation(s)
- Pingfang Li
- From the Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, 95616 and
- the Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou, 310029, China
| | - Byung-Kook Ham
- From the Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, 95616 and
| | - William J. Lucas
- From the Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, 95616 and
| |
Collapse
|
216
|
Roedder S, Vitalone M, Khatri P, Sarwal MM. Biomarkers in solid organ transplantation: establishing personalized transplantation medicine. Genome Med 2011; 3:37. [PMID: 21658299 PMCID: PMC3218811 DOI: 10.1186/gm253] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Technological advances in molecular and in silico research have enabled significant progress towards personalized transplantation medicine. It is now possible to conduct comprehensive biomarker development studies of transplant organ pathologies, correlating genomic, transcriptomic and proteomic information from donor and recipient with clinical and histological phenotypes. Translation of these advances to the clinical setting will allow assessment of an individual patient's risk of allograft damage or accommodation. Transplantation biomarkers are needed for active monitoring of immunosuppression, to reduce patient morbidity, and to improve long-term allograft function and life expectancy. Here, we highlight recent pre- and post-transplantation biomarkers of acute and chronic allograft damage or adaptation, focusing on peripheral blood-based methodologies for non-invasive application. We then critically discuss current findings with respect to their future application in routine clinical transplantation medicine. Complement-system-associated SNPs present potential biomarkers that may be used to indicate the baseline risk for allograft damage prior to transplantation. The detection of antibodies against novel, non-HLA, MICA antigens, and the expression of cytokine genes and proteins and cytotoxicity-related genes have been correlated with allograft damage and are potential post-transplantation biomarkers indicating allograft damage at the molecular level, although these do not have clinical relevance yet. Several multi-gene expression-based biomarker panels have been identified that accurately predicted graft accommodation in liver transplant recipients and may be developed into a predictive biomarker assay.
Collapse
Affiliation(s)
- Silke Roedder
- Department of Pediatrics and Immunology, Stanford University, G306 300 Pasteur Drive, Palo Alto, CA 94304, USA.
| | | | | | | |
Collapse
|
217
|
Neu-Yilik G, Amthor B, Gehring NH, Bahri S, Paidassi H, Hentze MW, Kulozik AE. Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA (NEW YORK, N.Y.) 2011; 17:843-854. [PMID: 21389146 PMCID: PMC3078734 DOI: 10.1261/rna.2401811] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
The degradation of nonsense-mutated β-globin mRNA by nonsense-mediated mRNA decay (NMD) limits the synthesis of C-terminally truncated dominant negative β-globin chains and thus protects the majority of heterozygotes from symptomatic β-thalassemia. β-globin mRNAs with nonsense mutations in the first exon are known to bypass NMD, although current mechanistic models predict that such mutations should activate NMD. A systematic analysis of this enigma reveals that (1) β-globin exon 1 is bisected by a sharp border that separates NMD-activating from NMD-bypassing nonsense mutations and (2) the ability to bypass NMD depends on the ability to reinitiate translation at a downstream start codon. The data presented here thus reconcile the current mechanistic understanding of NMD with the observed failure of a class of nonsense mutations to activate this important mRNA quality-control pathway. Furthermore, our data uncover a reason why the position of a nonsense mutation alone does not suffice to predict the fate of the affected mRNA and its effect on protein expression.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
218
|
Matsumoto K, Minami M, Shinozaki F, Suzuki Y, Abe K, Zenno S, Matsumoto S, Minami Y. Hsp90 is involved in the formation of P-bodies and stress granules. Biochem Biophys Res Commun 2011; 407:720-4. [DOI: 10.1016/j.bbrc.2011.03.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/19/2011] [Indexed: 01/29/2023]
|
219
|
MicroRNA gene dosage alterations and drug response in lung cancer. J Biomed Biotechnol 2011; 2011:474632. [PMID: 21541180 PMCID: PMC3085440 DOI: 10.1155/2011/474632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/27/2011] [Indexed: 12/26/2022] Open
Abstract
Chemotherapy resistance is a key contributor to the dismal prognoses for lung cancer patients. While the majority of studies have focused on sequence mutations and expression changes in protein-coding genes, recent reports have suggested that microRNA (miRNA) expression changes also play an influential role in chemotherapy response. However, the role of genetic alterations at miRNA loci in the context of chemotherapy response has yet to be investigated. In this study, we demonstrate the application of an integrative, multidimensional approach in order to identify miRNAs that are associated with chemotherapeutic resistance and sensitivity utilizing publicly available drug response, miRNA loci copy number, miRNA expression, and mRNA expression data from independent resources. By instigating a logical stepwise strategy, we have identified specific miRNAs that are associated with resistance to several chemotherapeutic agents and provide a proof of principle demonstration of how these various databases may be exploited to derive relevant pharmacogenomic results.
Collapse
|
220
|
Lecosnier S, Cordier C, Simon P, François JC, Saison-Behmoaras TE. A steric blocker of translation elongation inhibits IGF-1R expression and cell transformation. FASEB J 2011; 25:2201-10. [PMID: 21402719 DOI: 10.1096/fj.10-169540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is involved in transformation, survival, mitogenesis and differentiation. It is overexpressed in many tumors and a validated target for anticancer therapy. In cell-free systems, polypyrimidic peptide nucleic acids (PNAs) can form triplex-like structures with messenger RNAs and halt the ribosomal machinery during the translation elongation. A 17-mer PNA that formed a PNA(2):mRNA complex with a purine-rich sequence located in the coding region of IGF-1R mRNA induced the synthesis of a truncated IGF-1R in vitro. This PNA down-regulated expression of the receptor by 70-80% in prostate cancer cells without affecting insulin receptor expression that exhibits high homology with IGF-1R. Inhibition occurs at the translational level, since the IGF-1R mRNA level measured by quantitative RT-PCR was not affected by PNA treatment. In addition, IGF-1R knockdown by PNA led to an attenuation of phosphorylation of downstream signaling pathways, PI3K/AKT and MAPK, involved in survival and mitogenesis and also to a decrease in cell transformation. Of the steric blockers tested, which included phosphorodiamidate morpholino oligomers and locked nucleic acids, PNA was unique in its ability to form triplex structures with mRNA and to arrest translation elongation.
Collapse
Affiliation(s)
- Sabine Lecosnier
- Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Unité Mixte de Recherche 7196, Paris, France
| | | | | | | | | |
Collapse
|
221
|
Parsons CJ, Stefanovic B, Seki E, Aoyama T, Latour AM, Marzluff WF, Rippe RA, Brenner DA. Mutation of the 5'-untranslated region stem-loop structure inhibits α1(I) collagen expression in vivo. J Biol Chem 2011; 286:8609-8619. [PMID: 21193410 PMCID: PMC3048743 DOI: 10.1074/jbc.m110.189118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/07/2010] [Indexed: 01/22/2023] Open
Abstract
Type I collagen is a heterotrimeric extracellular matrix protein consisting of two α1(I) chains and one α2(I) chain. During liver fibrosis, activated hepatic stellate cells (HSCs) are the major source of the type I collagen that accumulates in the damaged tissue. Expression of α1(I) and α2(I) collagen mRNA is increased 60-fold compared with quiescent stellate cells and is due predominantly to post-transcriptional message regulation. Specifically, a stem-loop structure in the 5'-untranslated region of α1(I) collagen mRNA may regulate mRNA expression in activated HSCs through its interaction with stem-loop binding proteins. The stem-loop may also be necessary for efficient production and folding of the type I collagen heterotrimer. To assess the role of the stem-loop in type I collagen expression in vivo, we generated a knock-in mouse harboring a mutation that abolished the stem-loop structure. Heterozygous and homozygous knock-in mice exhibited a normal phenotype. However, steady-state levels of α1(I) collagen mRNA decreased significantly in homozygous mutant MEFs as well as HSCs; intracellular and secreted type I collagen protein levels also decreased. Homozygous mutant mice developed less liver fibrosis. These results confirm an important role of the 5' stem-loop in regulating type I collagen mRNA and protein expression and provide a mouse model for further study of collagen-associated diseases.
Collapse
Affiliation(s)
| | - Branko Stefanovic
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300, and
| | - Ekihiro Seki
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Tomonori Aoyama
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | | | | | - Richard A Rippe
- the Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7080
| | - David A Brenner
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093.
| |
Collapse
|
222
|
Sempere RN, Gómez P, Truniger V, Aranda MA. Development of expression vectors based on pepino mosaic virus. PLANT METHODS 2011; 7:6. [PMID: 21396092 PMCID: PMC3065447 DOI: 10.1186/1746-4811-7-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/11/2011] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant viruses are useful expression vectors because they can mount systemic infections allowing large amounts of recombinant protein to be produced rapidly in differentiated plant tissues. Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae), a widespread plant virus, is a promising candidate expression vector for plants because of its high level of accumulation in its hosts and the absence of severe infection symptoms. We report here the construction of a stable and efficient expression vector for plants based on PepMV. RESULTS Agroinfectious clones were produced from two different PepMV genotypes (European and Chilean), and these were able to initiate typical PepMV infections. We explored several strategies for vector development including coat protein (CP) replacement, duplication of the CP subgenomic promoter (SGP) and the creation of a fusion protein using the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. We found that CP replacement vectors were unable to move systemically and that vectors with duplicated SGPs (even heterologous SGPs) suffered from significant transgene instability. The fusion protein incorporating the FMDV 2A catalytic peptide gave by far the best results, maintaining stability through serial passages and allowing the accumulation of GFP to 0.2-0.4 g per kg of leaf tissue. The possible use of PepMV as a virus-induced gene silencing vector to study gene function was also demonstrated. Protocols for the use of this vector are described. CONCLUSIONS A stable PepMV vector was generated by expressing the transgene as a CP fusion using the sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide to separate them. We have generated a novel tool for the expression of recombinant proteins in plants and for the functional analysis of virus and plant genes. Our experiments have also highlighted virus requirements for replication in single cells as well as intercellular and long-distance movement.
Collapse
Affiliation(s)
- Raquel N Sempere
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
- Bioprodin SL, Edificio CEEIM, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain
| | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
- Department of Zoology, Oxford University, Oxford OX1 3PS, UK
| | - Verónica Truniger
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)- CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
223
|
Mcgray AJR, Gingerich T, Petrik JJ, Lamarre J. Regulation of thrombospondin-1 expression through AU-rich elements in the 3'UTR of the mRNA. Cell Mol Biol Lett 2011; 16:55-68. [PMID: 21161418 PMCID: PMC6275769 DOI: 10.2478/s11658-010-0037-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/24/2010] [Indexed: 01/20/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular protein that participates in numerous normal and pathological tissue processes and is rapidly modulated by different stimuli. The presence of 8 highly-conserved AU rich elements (AREs) within the 3'-untranslated region (3'UTR) of the TSP-1 mRNA suggests that post-transcriptional regulation is likely to represent one mechanism by which TSP-1 gene expression is regulated. We investigated the roles of these AREs, and proteins which bind to them, in the control of TSP-1 mRNA stability. The endogenous TSP-1 mRNA half-life is approximately 2.0 hours in HEK293 cells. Luciferase reporter mRNAs containing the TSP-1 3'UTR show a similar rate of decay, suggesting that the 3'UTR influences the decay rate. Site-directed mutagenesis of individual and adjacent AREs prolonged reporter mRNA halflife to between 2.2 and 4.4 hours. Mutation of all AREs increased mRNA half life to 8.8 hours, suggesting that all AREs have some effect, but that specific AREs may have key roles in stability regulation. A labeled RNA oligonucleotide derived from the most influential ARE was utilized to purify TSP-1 ARE-binding proteins. The AU-binding protein AUF1 was shown to associate with this motif. These studies reveal that AREs in the 3'UTR control TSP-1 mRNA stability and that the RNA binding protein AUF1 participates in this control. These studies suggest that ARE-dependent control of TSP-1 mRNA stability may represent an important component in the control of TSP-1 gene expression.
Collapse
Affiliation(s)
- Asa J. Robert Mcgray
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Timothy Gingerich
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Jonathan Lamarre
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| |
Collapse
|
224
|
Arias-Palomo E, Yamashita A, Fernández IS, Núñez-Ramírez R, Bamba Y, Izumi N, Ohno S, Llorca O. The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8. Genes Dev 2011; 25:153-64. [PMID: 21245168 DOI: 10.1101/gad.606911] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that regulates the degradation of mRNAs harboring premature translation termination codons. NMD also influences the expression of many physiological transcripts. SMG-1 is a large kinase essential to NMD that phosphorylates Upf1, which seems to be the definitive signal triggering mRNA decay. However, the regulation of the kinase activity of SMG-1 remains poorly understood. Here, we reveal the three-dimensional architecture of SMG-1 in complex with SMG-8 and SMG-9, and the structural mechanisms regulating SMG-1 kinase. A bent arm comprising a long region of HEAT (huntington, elongation factor 3, a subunit of PP2A and TOR1) repeats at the N terminus of SMG-1 functions as a scaffold for SMG-8 and SMG-9, and projects from the C-terminal core containing the phosphatidylinositol 3-kinase domain. SMG-9 seems to control the activity of SMG-1 indirectly through the recruitment of SMG-8 to the N-terminal HEAT repeat region of SMG-1. Notably, SMG-8 binding to the SMG-1:SMG-9 complex specifically down-regulates the kinase activity of SMG-1 on Upf1 without contacting the catalytic domain. Assembly of the SMG-1:SMG-8:SMG-9 complex induces a significant motion of the HEAT repeats that is signaled to the kinase domain. Thus, large-scale conformational changes induced by SMG-8 after SMG-9-mediated recruitment tune SMG-1 kinase activity to modulate NMD.
Collapse
Affiliation(s)
- Ernesto Arias-Palomo
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Schoenberg DR. Mechanisms of endonuclease-mediated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:582-600. [PMID: 21957046 DOI: 10.1002/wrna.78] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endonuclease cleavage was one of the first identified mechanisms of mRNA decay but until recently it was thought to play a minor role to the better-known processes of deadenylation, decapping, and exonuclease-catalyzed decay. Most of the early examples of endonuclease decay came from studies of a particular mRNA whose turnover changed in response to hormone, cytokine, developmental, or nutritional stimuli. Only a few of these examples of endonuclease-mediated mRNA decay progressed to the point where the enzyme responsible for the initiating event was identified and studied in detail. The discovery of microRNAs and RISC-catalyzed endonuclease cleavage followed by the identification of PIN (pilT N-terminal) domains that impart endonuclease activity to a number of the proteins involved in mRNA decay has led to a resurgence of interest in endonuclease-mediated mRNA decay. PIN domains show no substrate selectivity and their involvement in a number of decay pathways highlights a recurring theme that the context in which an endonuclease function is a primary factor in determining whether any given mRNA will be targeted for decay by this or the default exonuclease-mediated decay processes.
Collapse
Affiliation(s)
- Daniel R Schoenberg
- Center for RNA Biology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
226
|
Zheng PP, Romme E, van der Spek PJ, Dirven CMF, Willemsen R, Kros JM. Glut1/SLC2A1 is crucial for the development of the blood-brain barrier in vivo. Ann Neurol 2011; 68:835-44. [PMID: 21194153 DOI: 10.1002/ana.22318] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The overall permeability of the blood-brain barrier (BBB) is regulated by specialized cerebral endothelial cells and their junctional complexes, consisting of adherens junctions (AJs) and tight junctions (TJs). Among the members of the glucose transporters (Glut), Glut1 is a unique molecule expressed in the cerebral endothelial cells. Glut1 and the junctional proteins are concomitantly downregulated in situations in which breakdown of the BBB has taken place. We hypothesized that the expression of Glut1 may play a significant role in the development of the cerebral microvasculature with BBB properties. To date, there is no information on the role of Glut1 during the development of BBB. In the present study, the in vivo effects of Glut1 knockdown on the cerebral vascular development were investigated. METHODS Zebrafish was used as a model organism. We confirmed that the structure of the zebrafish homologue of Glut1 is highly similar to the human Glut1 and that the function of the Glut1-mediated cerebral uptake of glucose is evolutionally conserved. RESULTS In the Glut1 knockdown model, we observed loss of the cerebral endothelial cells, with concomitant downregulation of the junctional proteins important for intactness of the AJs/TJs and impaired cerebral circulation. The resulting leaky BBB caused vasogenic brain edema. INTERPRETATION The data suggest a crucial role of Glut1 in the development of the cerebral endothelial cells with BBB properties in vivo. The findings suggest that modulation of Glut1 expression and function may open new directions of research for therapeutic strategies to prevent vasogenic brain edema.
Collapse
Affiliation(s)
- Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
227
|
APM/CD13 and FOS in the hypothalamus of monosodium glutamate obese and food deprived rats. ACTA ACUST UNITED AC 2011; 166:98-104. [DOI: 10.1016/j.regpep.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/22/2010] [Accepted: 09/13/2010] [Indexed: 12/17/2022]
|
228
|
Park JH, Ahn J, Kim S, Kwon DY, Ha TY. Murine hepatic miRNAs expression and regulation of gene expression in diet-induced obese mice. Mol Cells 2011; 31:33-8. [PMID: 21120623 PMCID: PMC3906876 DOI: 10.1007/s10059-011-0009-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/20/2010] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules that regulate gene expression primarily by translational repression or by messenger RNA degradation. MicroRNAs play crucial roles in various biological processes. However, little is known regarding their role in obesity. We investigated differences of microRNA (miRNA) expression in liver tissue from diet-induced obese mice and potential effects of them on gene and protein expression. We used a miRNA microarray and quantitative RT-PCR to determine miRNA expression in murine liver tissue. Gene and protein expression were determined by qRT-PCR and Western blot analysis. Effects of miRNA by knock-down using RNAi or overexpression on putative target genes and/or proteins in a murine hepatic cell line were also investigated. MicroRNA array and qRT-PCR analsysis revealed that > 50 miRNAs were down- or upregulated more than 2-fold in the liver of diet-induced obese mice. While changes in expression of many genes were observed at the mRNA level, some were only altered at the protein level. Overexpression or knock-down of miR-107 in murine hepatic cells revealed that the expression of its putative target, fatty acid synthase, was dramatically decreased or increased, respectively. In conclusion, more than 50 hepatic miRNAs were dysregulated in diet-induced obese mice. Some of them regulate protein expression at translation level and others regulate mRNA expression at transcriptional level. MiR-107 is downregulated while FASN, a putative target of miR-107, was increased in diet-induced obese mice. These findings provide the evidence of the correlation of miRNAs and their targets in diet-induced obese mice.
Collapse
Affiliation(s)
| | | | | | | | - Tae Youl Ha
- Korea Food Research Institute, Sungnam 463-746, Korea
| |
Collapse
|
229
|
|
230
|
Karali M, Peluso I, Gennarino VA, Bilio M, Verde R, Lago G, Dollé P, Banfi S. miRNeye: a microRNA expression atlas of the mouse eye. BMC Genomics 2010; 11:715. [PMID: 21171988 PMCID: PMC3018480 DOI: 10.1186/1471-2164-11-715] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/20/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution. RESULTS In this report, we present the first comprehensive survey of miRNA expression in ocular tissues, using both microarray and RNA in situ hybridization (ISH) procedures. We initially determined the expression profiles of miRNAs in the retina, lens, cornea and retinal pigment epithelium of the adult mouse eye by microarray. Each tissue exhibited notably distinct miRNA enrichment patterns and cluster analysis identified groups of miRNAs that showed predominant expression in specific ocular tissues or combinations of them. Next, we performed RNA ISH for over 220 miRNAs, including those showing the highest expression levels by microarray, and generated a high-resolution expression atlas of miRNAs in the developing and adult wild-type mouse eye, which is accessible in the form of a publicly available web database. We found that 122 miRNAs displayed restricted expression domains in the eye at different developmental stages, with the majority of them expressed in one or more cell layers of the neural retina. CONCLUSIONS This analysis revealed miRNAs with differential expression in ocular tissues and provided a detailed atlas of their tissue-specific distribution during development of the murine eye. The combination of the two approaches offers a valuable resource to decipher the contributions of specific miRNAs and miRNA clusters to the development of distinct ocular structures.
Collapse
Affiliation(s)
- Marianthi Karali
- Telethon Institute for Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Ivana Peluso
- Telethon Institute for Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Vincenzo A Gennarino
- Telethon Institute for Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marchesa Bilio
- Telethon Institute for Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Roberta Verde
- Telethon Institute for Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
- ICB (Istituto di Chimica Biomolecolare), CNR, Via Campi Flegrei 34, 80078 Naples, Italy
| | - Giampiero Lago
- Telethon Institute for Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Pascal Dollé
- IGBMC (Institute de Génétique et de Biologie Moléculaire et Cellulaire); UMR 7104 CNRS; U 964 INSERM; BP 10142, 67404 Illkirch, France
| | - Sandro Banfi
- Telethon Institute for Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
231
|
Luo G, Costanzo M, Boone C, Dickson RC. Nutrients and the Pkh1/2 and Pkc1 protein kinases control mRNA decay and P-body assembly in yeast. J Biol Chem 2010; 286:8759-70. [PMID: 21163942 DOI: 10.1074/jbc.m110.196030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Regulated mRNA decay is essential for eukaryotic survival but the mechanisms for regulating global decay and coordinating it with growth, nutrient, and environmental cues are not known. Here we show that a signal transduction pathway containing the Pkh1/Pkh2 protein kinases and one of their effector kinases, Pkc1, is required for and regulates global mRNA decay at the deadenylation step in Saccharomyces cerevisiae. Additionally, many stresses disrupt protein synthesis and release mRNAs from polysomes for incorporation into P-bodies for degradation or storage. We find that the Pkh1/2-Pkc1 pathway is also required for stress-induced P-body assembly. Control of mRNA decay and P-body assembly by the Pkh-Pkc1 pathway only occurs in nutrient-poor medium, suggesting a novel role for these processes in evolution. Our identification of a signaling pathway for regulating global mRNA decay and P-body assembly provides a means to coordinate mRNA decay with other cellular processes essential for growth and long-term survival. Mammals may use similar regulatory mechanisms because components of the decay apparatus and signaling pathways are conserved.
Collapse
Affiliation(s)
- Guangzuo Luo
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
232
|
Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 2010; 468:834-8. [PMID: 21107324 DOI: 10.1038/nature09583] [Citation(s) in RCA: 735] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 10/13/2010] [Indexed: 01/28/2023]
Abstract
In all animal cells, phospholipids are asymmetrically distributed between the outer and inner leaflets of the plasma membrane. This asymmetrical phospholipid distribution is disrupted in various biological systems. For example, when blood platelets are activated, they expose phosphatidylserine (PtdSer) to trigger the clotting system. The PtdSer exposure is believed to be mediated by Ca(2+)-dependent phospholipid scramblases that transport phospholipids bidirectionally, but its molecular mechanism is still unknown. Here we show that TMEM16F (transmembrane protein 16F) is an essential component for the Ca(2+)-dependent exposure of PtdSer on the cell surface. When a mouse B-cell line, Ba/F3, was treated with a Ca(2+) ionophore under low-Ca(2+) conditions, it reversibly exposed PtdSer. Using this property, we established a Ba/F3 subline that strongly exposed PtdSer by repetitive fluorescence-activated cell sorting. A complementary DNA library was constructed from the subline, and a cDNA that caused Ba/F3 to expose PtdSer spontaneously was identified by expression cloning. The cDNA encoded a constitutively active mutant of TMEM16F, a protein with eight transmembrane segments. Wild-type TMEM16F was localized on the plasma membrane and conferred Ca(2+)-dependent scrambling of phospholipids. A patient with Scott syndrome, which results from a defect in phospholipid scrambling activity, was found to carry a mutation at a splice-acceptor site of the gene encoding TMEM16F, causing the premature termination of the protein.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
233
|
Lee SK, Lee KE, Jeong TS, Hwang YH, Kim S, Hu JCC, Simmer JP, Kim JW. FAM83H mutations cause ADHCAI and alter intracellular protein localization. J Dent Res 2010; 90:377-81. [PMID: 21118793 DOI: 10.1177/0022034510389177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mutations in a family with sequence similarity 83 member H (FAM83H) cause autosomal-dominant hypocalcification amelogenesis imperfecta (ADH CAI). All FAM83H ADHCAI-causing mutations terminate translation or shift the reading frame within the specific exon 5 segment that encodes from Ser(287) to Glu(694). Mutations near Glu(694) cause a milder, more localized phenotype. We identified disease-causing FAM83H mutations in two families with ADHCAI: family 1 (g.3115C>T, c.1993 C>T, p.Q665X) and family 2 (g.3151C>T, c.2029 C>T, p.Q677X). We also tested the hypothesis that truncation mutations alter the intracellular localization of FAM83H. Wild-type FAM83H and p.E694X mutant FAM83H fused to green fluorescent protein (GFP) localized in the cytoplasm of HEK293T cells, but the mutant FAM83H proteins (p.R325X, p.W460X, and p.Q677X) fused to GFP localized mainly in the nucleus with slight expression in the cytoplasm. We conclude that nuclear targeting of the truncated FAM83H protein contributes to the severe, generalized enamel phenotype.
Collapse
Affiliation(s)
- S-K Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Su RW, Lei W, Liu JL, Zhang ZR, Jia B, Feng XH, Ren G, Hu SJ, Yang ZM. The integrative analysis of microRNA and mRNA expression in mouse uterus under delayed implantation and activation. PLoS One 2010; 5:e15513. [PMID: 21124741 PMCID: PMC2993968 DOI: 10.1371/journal.pone.0015513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/09/2010] [Indexed: 12/18/2022] Open
Abstract
Background Delayed implantation is a developmental arrest at the blastocyst stage and a good model for embryo implantation. MicroRNAs (miRNAs) have been shown to be involved in mouse embryo implantation through regulating uterine gene expression. This study was to have an integrative analysis on global miRNA and mRNA expression in mouse uterus under delayed implantation and activation through Illumina sequencing. Methodology/Principal Findings By deep sequencing and analysis, we found that there are 20 miRNAs up-regulated and 42 miRNAs down-regulated at least 1.2 folds, and 268 genes up-regulated and 295 genes down-regulated at least 2 folds under activation compared to delayed implantation, respectively. Many different forms of editing in mature miRNAs are detected. The percentage of editing at positions 4 and 5 of mature miRNAs is significantly higher under delayed implantation than under activation. Although the number of miR-21 reference sequence under activation is slightly lower than that under delayed implantation, the total level of miR-21 under activation is higher than that under delayed implantation. Six novel miRNAs are predicted and confirmed. The target genes of significantly up-regulated miRNAs under activation are significantly enriched. Conclusions miRNA and mRNA expression patterns are closely related. The target genes of up-regulated miRNAs are significantly enriched. A high level of editing at positions 4 and 5 of mature miRNAs is detected under delayed implantation than under activation. Our data should be valuable for future study on delayed implantation.
Collapse
Affiliation(s)
- Ren-Wei Su
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Wei Lei
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Ji-Long Liu
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhi-Rong Zhang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
| | - Bo Jia
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
| | - Xu-Hui Feng
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
| | - Gang Ren
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Shi-Jun Hu
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Zeng-Ming Yang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
235
|
Hofmann BT, Hoxha E, Mohr E, Schulz K, Jücker M. Posttranscriptional regulation of the p85α adapter subunit of phosphatidylinositol 3-kinase in human leukemia cells. Leuk Lymphoma 2010; 52:467-77. [PMID: 21077741 DOI: 10.3109/10428194.2010.530360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Constitutive activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling has been observed in up to 70% of acute myeloid leukemia. Class I(A) PI3K consists of a catalytic subunit (p110α, p110β, p110δ) and an adapter subunit (p85α, p55α, p50α, p85β, p55γ). The p85α adapter subunit stabilizes the catalytic p110 subunit and recruits p110 to the plasma membrane. In addition, p85α inhibits the basal activity of p110α and can negatively regulate signal transduction, as shown for insulin and GM-CSF receptor signaling. Here, we describe that the expression of p85α is posttranscriptionally regulated in several human and murine leukemia cell lines and in a Hodgkin lymphoma cell line (CO) by translational repression. A detailed analysis of CO cells revealed that both wild type and a mutated p85α mRNA are detectable at similar ratios in the nucleus and polysomes. However, while the mutated p85α protein is expressed in CO cells, translation of the wild type p85α mRNA is completely inhibited. Ectopic expression of wild type p85α from a retroviral vector is suppressed in CO cells and in five out of six leukemia cell lines. Our data indicate that leukemia cells can regulate the expression of p85α by posttranscriptional regulation.
Collapse
Affiliation(s)
- Bianca T Hofmann
- Center of Experimental Medicine, Institute of Biochemistry and Molecular Biology I, Cellular Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
236
|
Zhu QY, Liu Q, Chen JX, Lan K, Ge BX. MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 185:7435-42. [PMID: 21068409 DOI: 10.4049/jimmunol.1000798] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MAPK phosphatase-1 (MKP-1) is an archetypical member of the dual-specificity phosphatase family that deactivates MAPKs. Induction of MKP-1 has been implicated in attenuating the LPS- or peptidoglycan-induced biosynthesis of proinflammatory cytokines, but the role of noncoding RNA in the expression of the MKP-1 is still poorly understood. In this study, we show that MKP-1 is a direct target of microRNA-101 (miR-101). Transfection of miR-101 attenuates induction of MKP-1 by LPS as well as prolonged activation of p38 and JNK/stress-activated protein kinase, whereas inhibition of miR-101 enhances the expression of MKP-1 and shortens p38 and JNK activation. We also found that expression of miR-101 is induced by multiple TLR ligands, including LPS, peptidoglycan, or polyinosinic-polycytidylic acid, and that inhibition of PI3K/Akt by LY294002 or Akt RNA interference blocks the induction of miR-101 by LPS in RAW264.7 macrophage cells. Moreover, treatment of cells with dexamethasone, a widely used anti-inflammatory agent, markedly inhibits miR-101 expression and enhances the expression of MKP-1 in LPS-stimulated macrophages. Together, these results indicate that miR-101 regulates the innate immune responses of macrophages to LPS through targeting MKP-1.
Collapse
Affiliation(s)
- Qing-Yuan Zhu
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
237
|
Saitsu H, Hoshino H, Kato M, Nishiyama K, Okada I, Yoneda Y, Tsurusaki Y, Doi H, Miyake N, Kubota M, Hayasaka K, Matsumoto N. Paternal mosaicism of an STXBP1 mutation in OS. Clin Genet 2010; 80:484-8. [PMID: 21062273 DOI: 10.1111/j.1399-0004.2010.01575.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ohtahara syndrome (OS) is one of the most severe and earliest forms of epilepsy. We have recently identified that the de novo mutations of STXBP1 are important causes for OS. Here we report a paternal somatic mosaicism of an STXBP1 mutation. The affected daughter had onset of spasms at 1 month of age, and interictal electroencephalogram showed suppression-burst pattern, leading to the diagnosis of OS. She had a heterozygous c.902+5G>A mutation of STXBP1, which affects donor splicing of exon 10, resulting in 138-bp insertion of intron 10 sequences in the transcript. The mutant transcript had a premature stop codon, and was degraded by nonsense-mediated mRNA decay in lymphoblastoid cells derived from the patient. High-resolution melting analysis of clinically unaffected parental DNAs suggested that the father was somatic mosaic for the mutation, which was also suggested by sequencing. Cloning of PCR products amplified with the paternal DNA samples extracted from blood, saliva, buccal cells, and nails suggested that 5.3%, 8.7%, 11.9%, and 16.9% of alleles harbored the mutation, respectively. This is a first report of somatic mosaicism of an STXBP1 mutation, which has implications in genetic counseling of OS.
Collapse
Affiliation(s)
- H Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
Interstitial and perivascular fibrosis is a hallmark of adverse cardiac remodeling in response to stress such as hypertension, valve disease, or myocardial infarction. The cross talk between fibroblasts and cardiomyocytes seems to be a major determinant of the hypertrophic response, and fibroblasts may prove to be essential regulators of cardiac remodeling. The present review summarizes current knowledge on the modulation of myocardial fibrosis by microRNAs (miRNAs), single-stranded molecules consisting of approximately 22 noncoding nucleotides that regulate a variety of target genes involved in cardiovascular (patho)physiology. Dissection of miRNA-mediated mechanisms on myocardial and cellular and subcellular levels will provide insights into the impact of miRNAs for cardiac structural changes induced by different stressors and also expand our understanding of the interdependence of different cell types in the heart with regard to extracellular matrix formation during healing and remodeling after myocardial infarction or in response to pressure overload. The first successful treatment of fibrosis and failure in a murine pressure overload model by application of miRNA antagonists such as antagomirs in vivo raises the hope that manipulating miRNAs may emerge as a novel treatment strategy for fibrotic changes not only in the heart but also in other organs.
Collapse
Affiliation(s)
- Johann Bauersachs
- Medizinische Klinik und Poliklinik I, Universitätsklinikum, Julius-Maximilians-Universität, Würzburg, Germany.
| |
Collapse
|
239
|
Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:543-51. [PMID: 21035425 DOI: 10.1016/j.bbabio.2010.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022]
Abstract
A distinctive metabolic trait of tumors is their enforced aerobic glycolysis. This phenotype was first reported by Otto Warburg, who suggested that the increased glucose consumption of cancer cells under aerobic conditions might result from an impaired bioenergetic activity of their mitochondria. A central player in defining the bioenergetic activity of the cell is the mitochondrial H(+)-ATP synthase. The expression of its catalytic subunit β-F1-ATPase is tightly regulated at post-transcriptional levels during mammalian development and in the cell cycle. Moreover, the down-regulation of β-F1-ATPase is a hallmark of most human carcinomas. In this review we summarize our present understanding of the molecular mechanisms that participate in promoting the "abnormal" aerobic glycolysis of prevalent human carcinomas. The role of the ATPase Inhibitor Factor 1 (IF1) and of Ras-GAP SH3 binding protein 1 (G3BP1), controlling the activity of the H(+)-ATP synthase and the translation of β-F1-ATPase mRNA respectively in cancer cells is emphasized. Furthermore, we underline the role of mitochondrial dysfunction as a pivotal player of tumorigenesis.
Collapse
|
240
|
Posttranscriptional suppression of proto-oncogene c-fms expression by vigilin in breast cancer. Mol Cell Biol 2010; 31:215-25. [PMID: 20974809 DOI: 10.1128/mcb.01031-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
cis-acting elements found in 3'-untranslated regions (UTRs) are regulatory signals determining mRNA stability and translational efficiency. By binding a novel non-AU-rich 69-nucleotide (nt) c-fms 3' UTR sequence, we previously identified HuR as a promoter of c-fms proto-oncogene mRNA. We now identify the 69-nt c-fms mRNA 3' UTR sequence as a cellular vigilin target through which vigilin inhibits the expression of c-fms mRNA and protein. Altering association of either vigilin or HuR with c-fms mRNA in vivo reciprocally affected mRNA association with the other protein. Mechanistic studies show that vigilin decreased c-fms mRNA stability. Furthermore, vigilin inhibited c-fms translation. Vigilin suppresses while HuR encourages cellular motility and invasion of breast cancer cells. In summary, we identified a competition for binding the 69-nt sequence, through which vigilin and HuR exert opposing effects on c-fms expression, suggesting a role for vigilin in suppression of breast cancer progression.
Collapse
|
241
|
Familial glucocorticoid receptor haploinsufficiency by non-sense mediated mRNA decay, adrenal hyperplasia and apparent mineralocorticoid excess. PLoS One 2010; 5:e13563. [PMID: 21042587 PMCID: PMC2962642 DOI: 10.1371/journal.pone.0013563] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/29/2010] [Indexed: 12/24/2022] Open
Abstract
Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.R469[R,X] reported to date for the GR, replacing an arginine (CGA) by a stop (TGA) at amino-acid 469 in the second zinc finger of the DNA-binding domain of the receptor. In vitro, this mutation leads to a truncated 50-kDa GR lacking hormone and DNA binding capacity, devoid of hormone-dependent nuclear translocation and transactivation properties. In the proband's fibroblasts, we provided evidence for the lack of expression of the defective allele in vivo. The absence of detectable mutated GR mRNA was accompanied by a 50% reduction in wild type GR transcript and protein. This reduced GR expression leads to a significantly below-normal induction of glucocorticoid-induced target genes, FKBP5 in fibroblasts. We demonstrated that the molecular mechanisms of glucocorticoid signaling dysfunction involved GR haploinsufficiency due to the selective degradation of the mutated GR transcript through a nonsense-mediated mRNA Decay that was experimentally validated on emetine-treated propositus' fibroblasts. GR haploinsufficiency leads to hypertension due to illicit occupation of renal mineralocorticoid receptor by elevated cortisol rather than to increased mineralocorticoid production reported in primary glucocorticoid resistance. Indeed, apparent mineralocorticoid excess was demonstrated by a decrease in urinary tetrahydrocortisone-tetrahydrocortisol ratio in affected patients, revealing reduced glucocorticoid degradation by renal activity of the 11β-hydroxysteroid dehydrogenase type 2, a GR regulated gene. We propose thus that GR haploinsufficiency compromises glucocorticoid sensitivity and may represent a novel genetic cause of subclinical hypercortisolism, incidentally revealed bilateral adrenal hyperplasia and mineralocorticoid-independent hypertension.
Collapse
|
242
|
McGlincy NJ, Tan LY, Paul N, Zavolan M, Lilley KS, Smith CWJ. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay. BMC Genomics 2010; 11:565. [PMID: 20946641 PMCID: PMC3091714 DOI: 10.1186/1471-2164-11-565] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.
Collapse
Affiliation(s)
- Nicholas J McGlincy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
243
|
Shabalina SA, Spiridonov AN, Spiridonov NA, Koonin EV. Connections between alternative transcription and alternative splicing in mammals. Genome Biol Evol 2010; 2:791-9. [PMID: 20889654 PMCID: PMC2975443 DOI: 10.1093/gbe/evq058] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The majority of mammalian genes produce multiple transcripts resulting from alternative splicing (AS) and/or alternative transcription initiation (ATI) and alternative transcription termination (ATT). Comparative analysis of the number of alternative nucleotides, isoforms, and introns per locus in genes with different types of alternative events suggests that ATI and ATT contribute to the diversity of human and mouse transcriptome even more than AS. There is a strong negative correlation between AS and ATI in 5′ untranslated regions (UTRs) and AS in coding sequences (CDSs) but an even stronger positive correlation between AS in CDSs and ATT in 3′ UTRs. These observations could reflect preferential regulation of distinct, large groups of genes by different mechanisms: 1) regulation at the level of transcription initiation and initiation of translation resulting from ATI and AS in 5′ UTRs and 2) posttranslational regulation by different protein isoforms. The tight linkage between AS in CDSs and ATT in 3′ UTRs suggests that variability of 3′ UTRs mediates differential translational regulation of alternative protein forms. Together, the results imply coordinate evolution of AS and alternative transcription, processes that occur concomitantly within gene expression factories.
Collapse
Affiliation(s)
- Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
244
|
Saitsu H, Kato M, Okada I, Orii KE, Higuchi T, Hoshino H, Kubota M, Arai H, Tagawa T, Kimura S, Sudo A, Miyama S, Takami Y, Watanabe T, Nishimura A, Nishiyama K, Miyake N, Wada T, Osaka H, Kondo N, Hayasaka K, Matsumoto N. STXBP1 mutations in early infantile epileptic encephalopathy with suppression-burst pattern. Epilepsia 2010; 51:2397-405. [DOI: 10.1111/j.1528-1167.2010.02728.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
245
|
Chen CYA, Shyu AB. Mechanisms of deadenylation-dependent decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:167-83. [PMID: 21957004 DOI: 10.1002/wrna.40] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Degradation of messenger RNAs (mRNAs) plays an essential role in modulation of gene expression and in quality control of mRNA biogenesis. Nearly all major mRNA decay pathways characterized thus far in eukaryotes are initiated by deadenylation, i.e., shortening of the mRNA 3(') poly(A) tail. Deadenylation is often a rate-limiting step for mRNA degradation and translational silencing, making it an important control point for both processes. In this review, we discuss the fundamental principles that govern mRNA deadenylation in eukaryotes. We use several major mRNA decay pathways in mammalian cells to illustrate mechanisms and regulation of deadenylation-dependent mRNA decay, including decay directed by adenine/uridine-rich elements (AREs) in the 3(') -untranslated region (UTR), the rapid decay mediated by destabilizing elements in protein-coding regions, the surveillance mechanism that detects and degrades nonsense-containing mRNA [i.e., nonsense-mediated decay (NMD)], the decay directed by miRNAs, and the default decay pathway for stable messages. Mammalian mRNA deadenylation involves two consecutive phases mediated by the PAN2-PAN3 and the CCR4-CAF1 complexes, respectively. Decapping takes place after deadenylation and may serve as a backup mechanism to trigger mRNA decay if initial deadenylation is compromised. In addition, we discuss how deadenylation impacts the dynamics of RNA processing bodies (P-bodies), where nontranslatable mRNAs can be degraded or stored. Possible models for mechanisms of various deadenylation-dependent mRNA decay pathways are also discussed.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas-Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
246
|
Robert C. Microarray analysis of gene expression during early development: a cautionary overview. Reproduction 2010; 140:787-801. [PMID: 20833752 DOI: 10.1530/rep-10-0191] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rise of the 'omics' technologies started nearly a decade ago and, among them, transcriptomics has been used successfully to contrast gene expression in mammalian oocytes and early embryos. The scarcity of biological material that early developmental stages provide is the prime reason why the field of transcriptomics is becoming more and more popular with reproductive biologists. The potential to amplify scarce mRNA samples and generate the necessary amounts of starting material enables the relative measurement of RNA abundance of thousands of candidates simultaneously. So far, microarrays have been the most commonly used high-throughput method in this field. Microarray platforms can be found in a wide variety of formats, from cDNA collections to long or short oligo probe sets. These platforms generate large amounts of data that require the integration of comparative RNA abundance values in the physiological context of early development for their full benefit to be appreciated. Unfortunately, significant discrepancies between datasets suggest that direct comparison between studies is difficult and often not possible. We have investigated the sample-handling steps leading to the generation of microarray data produced from prehatching embryo samples and have identified key steps that significantly impact the downstream results. This review provides a discussion on the best methods for the preparation of samples from early embryos for microarray analysis and focuses on the challenges that impede dataset comparisons from different platforms and the reasons why methodological benchmarking performed using somatic cells may not apply to the atypical nature of prehatching development.
Collapse
Affiliation(s)
- Claude Robert
- Laboratory of Functional Genomics of Early Embryonic Development, Laval University, Pavillon Comtois, Local 4221 Université Laval, Québec, Québec, Canada.
| |
Collapse
|
247
|
Fernández IS, Yamashita A, Arias-Palomo E, Bamba Y, Bartolomé RA, Canales MA, Teixidó J, Ohno S, Llorca O. Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex. Nucleic Acids Res 2010; 39:347-58. [PMID: 20817927 PMCID: PMC3017601 DOI: 10.1093/nar/gkq749] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SMG-9 is part of a protein kinase complex, SMG1C, which consists of the SMG-1 kinase, SMG-8 and SMG-9. SMG1C mediated phosphorylation of Upf1 triggers nonsense-mediated mRNA decay (NMD), a eukaryotic surveillance pathway that detects and targets for degradation mRNAs harboring premature translation termination codons. Here, we have characterized SMG-9, showing that it comprises an N-terminal 180 residue intrinsically disordered region (IDR) followed by a well-folded C-terminal domain. Both domains are required for SMG-1 binding and the integrity of the SMG1C complex, whereas the C-terminus is sufficient to interact with SMG-8. In addition, we have found that SMG-9 assembles in vivo into SMG-9:SMG-9 and, most likely, SMG-8:SMG-9 complexes that are not constituents of SMG1C. SMG-9 self-association is driven by interactions between the C-terminal domains and surprisingly, some SMG-9 oligomers are completely devoid of SMG-1 and SMG-8. We propose that SMG-9 has biological functions beyond SMG1C, as part of distinct SMG-9-containing complexes. Some of these complexes may function as intermediates potentially regulating SMG1C assembly, tuning the activity of SMG-1 with the NMD machinery. The structural malleability of IDRs could facilitate the transit of SMG-9 through several macromolecular complexes.
Collapse
Affiliation(s)
- Israel S Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maetzu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Down syndrome and GATA1 mutations in transient abnormal myeloproliferative disorder: mutation classes correlate with progression to myeloid leukemia. Blood 2010; 116:4631-8. [PMID: 20729467 DOI: 10.1182/blood-2010-05-282426] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Twenty percent to 30% of transient abnormal myelopoiesis (TAM) observed in newborns with Down syndrome (DS) develop myeloid leukemia of DS (ML-DS). Most cases of TAM carry somatic GATA1 mutations resulting in the exclusive expression of a truncated protein (GATA1s). However, there are no reports on the expression levels of GATA1s in TAM blasts, and the risk factors for the progression to ML-DS are unidentified. To test whether the spectrum of transcripts derived from the mutant GATA1 genes affects the expression levels, we classified the mutations according to the types of transcripts, and investigated the modalities of expression by in vitro transfection experiments using GATA1 expression constructs harboring mutations. We show here that the mutations affected the amount of mutant protein. Based on our estimates of GATA1s protein expression, the mutations were classified into GATA1s high and low groups. Phenotypic analyses of 66 TAM patients with GATA1 mutations revealed that GATA1s low mutations were significantly associated with a risk of progression to ML-DS (P < .001) and lower white blood cell counts (P = .004). Our study indicates that quantitative differences in mutant protein levels have significant effects on the phenotype of TAM and warrants further investigation in a prospective study.
Collapse
|
249
|
Arana-Argáez VE, Delgado-Rizo V, Pizano-Martínez OE, Martínez-Garcia EA, Martín-Márquez BT, Muñoz-Gómez A, Petri MH, Armendáriz-Borunda J, Espinosa-Ramírez G, Zúñiga-Tamayo DA, Herrera-Esparza R, Vázquez-Del Mercado M. Inhibitors of MAPK pathway ERK1/2 or p38 prevent the IL-1{beta}-induced up-regulation of SRP72 autoantigen in Jurkat cells. J Biol Chem 2010; 285:32824-32833. [PMID: 20729213 PMCID: PMC2963399 DOI: 10.1074/jbc.m110.121087] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphorylation is the most important post-translational event at a cellular level that is regulated by protein kinases. MAPK is a key player in the important cellular signaling pathway. It has been hypothesized that phosphorylation might have a role in the induction of break tolerance against some autoantigens such as SRP72. The aim of this study was to explore the pathways of phosphorylation and overexpression of the SRP72 polypeptide, using an in vitro model of Jurkat cells stimulated by recombinant human (rh)IL-1β in the presence of MAPK inhibitors. We used Jurkat cells as a substrate stimulated with rhIL-1β in the presence of MAPK inhibitors at different concentrations in a time course in vitro experiment by immunoprecipitation, immunoprecipitation-Western blotting, and real time PCR. Our results showed that rhIL-1β causes up-regulation of protein expression and phosphorylation of SRP72 in Jurkat cells. Inhibitors of the MAPK pathway ERK1/2 or p38α/β down-regulate the expression of SRP72 autoantigen in Jurkat cells stimulated by rhIL-1β. Our results highlight the importance of studying the pathways of activation and overexpression of autoantigens. It will be necessary to perform careful research on various kinases pathways, including MAPK in dermatomyositis and other rheumatic diseases, to help to explain the routes of activation and inhibition of autoantigens. The understanding of this process may help to develop new therapies to prevent and control the loss of tolerance toward own normal proteins.
Collapse
Affiliation(s)
- Victor E Arana-Argáez
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Vidal Delgado-Rizo
- Laboratorio de Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco CP 44340
| | - Oscar E Pizano-Martínez
- Laboratorio de Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco CP 44340
| | - Erika A Martínez-Garcia
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Beatriz T Martín-Márquez
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Andrea Muñoz-Gómez
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340; Pasante de Servicio Social en Medicina, Universidad Autónoma de Guadalajara, Guadalajara, Jalisco CP 45129
| | - Marcelo H Petri
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Juan Armendáriz-Borunda
- Instituto de Biología Molecular en Medicina, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco CP 44340
| | - Guillermo Espinosa-Ramírez
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | - Diego A Zúñiga-Tamayo
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340
| | | | - Mónica Vázquez-Del Mercado
- From the Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Guadalajara, Jalisco CP 44340; División de Medicina Interna, Departamento de Reumatología, Hospital Civil "Dr. Juan I. Menchaca," Guadalajara, Jalisco CP 44340, México.
| |
Collapse
|
250
|
Li D, Wang D, Wang Y, Ling W, Feng X, Xia M. Adenosine monophosphate-activated protein kinase induces cholesterol efflux from macrophage-derived foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem 2010; 285:33499-33509. [PMID: 20713354 DOI: 10.1074/jbc.m110.159772] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence suggests that adenosine monophosphate-activated protein kinase (AMPK) exerts protective effects for cardiovascular diseases apart from the regulation of energy homeostasis. However, the role of AMPK and its underlying mechanism on macrophage foam cell formation are poorly understood. In this study, we sought to investigate the potential effects of AMPK in modulating cholesterol deposition by using murine macrophage-derived foam cells. Incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) markedly attenuated the cholesterol ester accumulation in oxidized low density lipoprotein-loaded macrophages. Notably, AICAR treatment significantly increased ATP-binding cassette transporters G1 (Abcg1) mRNA and protein levels without affecting mRNA and protein expression of ABCA1, scavenger receptors, including scavenger receptor-A, CD36, and scavenger receptor-BI (SR-BI), and cholesterol synthesis-related genes. The up-regulation of Abcg1 by AICAR was independent of the liver X receptor/retinoid X receptor pathway but dependent on ERK activation. AICAR elevates Abcg1 expression through a post-transcriptional mechanism that stabilizes the mRNA. Using a heterologous system with luciferase as a reporter, we further identify the Abcg1 mRNA 3'-UTR responsible for the regulatory effect of AICAR. Prevention of ABCG1 expression by small interfering RNA abolished the AICAR-mediated attenuation on foam cell formation. Furthermore, increased ABCG1 expression and reduced lipid accumulation were demonstrated in AICAR-treated macrophages isolated from apolipoprotein E-deficient mice (apoE(-/-) mice). AICAR treatment also inhibited atherosclerotic plaque formation in apoE(-/-) mice. Our findings elucidate a precise mechanism involved in the prevention of atherogenesis by AMPK.
Collapse
Affiliation(s)
- Dan Li
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province 510080, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Duan Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Yun Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Wenhua Ling
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province 510080, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Xiang Feng
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province 510080, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China
| | - Min Xia
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province 510080, China; Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province 510080, China.
| |
Collapse
|