201
|
Wynn ML, Egbert M, Consul N, Chang J, Wu ZF, Meravjer SD, Schnell S. Inferring Intracellular Signal Transduction Circuitry from Molecular Perturbation Experiments. Bull Math Biol 2017; 80:1310-1344. [PMID: 28455685 DOI: 10.1007/s11538-017-0270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/15/2017] [Indexed: 12/28/2022]
Abstract
The development of network inference methodologies that accurately predict connectivity in dysregulated pathways may enable the rational selection of patient therapies. Accurately inferring an intracellular network from data remains a very challenging problem in molecular systems biology. Living cells integrate extremely robust circuits that exhibit significant heterogeneity, but still respond to external stimuli in predictable ways. This phenomenon allows us to introduce a network inference methodology that integrates measurements of protein activation from perturbation experiments. The methodology relies on logic-based networks to provide a predictive approximation of the transfer of signals in a network. The approach presented was validated in silico with a set of test networks and applied to investigate the epidermal growth factor receptor signaling of a breast epithelial cell line, MFC10A. In our analysis, we predict the potential signaling circuitry most likely responsible for the experimental readouts of several proteins in the mitogen-activated protein kinase and phosphatidylinositol-3 kinase pathways. The approach can also be used to identify additional necessary perturbation experiments to distinguish between a set of possible candidate networks.
Collapse
Affiliation(s)
- Michelle L Wynn
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Megan Egbert
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nikita Consul
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Jungsoo Chang
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhi-Fen Wu
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sofia D Meravjer
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Computational Medicine & Bioinformatics, and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
202
|
Li M, Jin R, Wang W, Zhang T, Sang J, Li N, Han Q, Zhao W, Li C, Liu Z. STAT3 regulates glycolysis via targeting hexokinase 2 in hepatocellular carcinoma cells. Oncotarget 2017; 8:24777-24784. [PMID: 28445971 PMCID: PMC5421887 DOI: 10.18632/oncotarget.15801] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) and hexokinase 2 (HK2) are involved in hepatocellular carcinoma (HCC). Deregulation of cellular energetics involving an increase in glycolysis is a characteristic of HCC. This study examined whether STAT3 regulates HCC glycolysis through the HK2 pathway in HCC cells. Human HCC cell lines HepG2 and Hep3B cells were transfected with pcDNA3.1(+)-EGFP-STAT3, STAT3 siRNA and HK2 siRNA, respectively, or treated with rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), and the effects on STAT3 and HK2 expression and cell glycolysis were determined. STAT3 and HK2 expressions were evaluated by real-time polymerase chain reaction and Western blotting. The level of glycolysis metabolism was assessed by the determination of glucose consumption and lactate production.The results showed that transfection of HepG2 and Hep3B cells with pcDNA3.1(+)-EGFP-STAT3 significantly increased STAT3 mRNA and protein expression, glucose consumption and lactate production, and HK2 mRNA and protein expression. However, transfection of HepG2 and Hep3B cells with STAT3 siRNA significantly decreased glucose consumption and lactate production and HK2 mRNA and protein expression. Transfection of HepG2 and Hep3B cells with HK2 siRNA significantly decreased glucose consumption and lactate production. Treatment of HepG2 and Hep3B cells with rapamycin significantly reduced HK2 mRNA and protein expression and glucose consumption and lactate production. These results suggest that mTOR-STAT3-HK2 pathway is involved in the glycolysis of HCC cells and STAT3 may regulate HCC glycolysis through HK2 pathway, providing potential multiple therapeutic targets through intervention of glycolysis for the treatment of HCC.
Collapse
Affiliation(s)
- Man Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
- Department of Internal Medicine, The Third Hospital of Xi'an, Xi'an 710021, Shaanxi, People's Republic of China
| | - Rui Jin
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, People's Republic of China
| | - Weihua Wang
- Department of Pharmacogenomics, The Fourth Military Medical University, Xi'an 710032, Shaanxi, People's Republic of China
| | - Tieying Zhang
- Department of Internal Medicine, The Third Hospital of Xi'an, Xi'an 710021, Shaanxi, People's Republic of China
| | - Jiao Sang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Wenxuan Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Chunyan Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| |
Collapse
|
203
|
Boutant M, Kulkarni SS, Joffraud M, Ratajczak J, Valera-Alberni M, Combe R, Zorzano A, Cantó C. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J 2017; 36:1543-1558. [PMID: 28348166 PMCID: PMC5452040 DOI: 10.15252/embj.201694914] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial fusion and fission events, collectively known as mitochondrial dynamics, act as quality control mechanisms to ensure mitochondrial function and fine‐tune cellular bioenergetics. Defective mitofusin 2 (Mfn2) expression and enhanced mitochondrial fission in skeletal muscle are hallmarks of insulin‐resistant states. Interestingly, Mfn2 is highly expressed in brown adipose tissue (BAT), yet its role remains unexplored. Using adipose‐specific Mfn2 knockout (Mfn2‐adKO) mice, we demonstrate that Mfn2, but not Mfn1, deficiency in BAT leads to a profound BAT dysfunction, associated with impaired respiratory capacity and a blunted response to adrenergic stimuli. Importantly, Mfn2 directly interacts with perilipin 1, facilitating the interaction between the mitochondria and the lipid droplet in response to adrenergic stimulation. Surprisingly, Mfn2‐adKO mice were protected from high‐fat diet‐induced insulin resistance and hepatic steatosis. Altogether, these results demonstrate that Mfn2 is a mediator of mitochondria to lipid droplet interactions, influencing lipolytic processes and whole‐body energy homeostasis.
Collapse
Affiliation(s)
- Marie Boutant
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | | | - Joanna Ratajczak
- Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miriam Valera-Alberni
- Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roy Combe
- Center of PhenoGenomics (CPG), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carles Cantó
- Nestlé Institute of Health Sciences, Lausanne, Switzerland .,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
204
|
Raffaghello L, Longo V. Metabolic Alterations at the Crossroad of Aging and Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:1-42. [PMID: 28526131 DOI: 10.1016/bs.ircmb.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aging represents the major risk factor for cancer. Cancer and aging are characterized by a similar dysregulated metabolism consisting in upregulation of glycolysis and downmodulation of oxidative phosphorylation. In this respect, metabolic interventions can be viewed as promising strategies to promote longevity and to prevent or delay age-related disorders including cancer. In this review, we discuss the most promising metabolic approaches including chronic calorie restriction, periodic fasting/fasting-mimicking diets, and pharmacological interventions mimicking calorie restriction. Metabolic interventions can also be viewed as adjuvant anticancer strategies to be combined to standard cancer therapy (chemotherapeutic agents, ionizing radiation, and drugs with specific molecular target), whose major limiting factors are represented by toxicity against healthy cells but also limited efficacy easily circumvented by tumor cells. In fact, conventional cancer therapy is unable to distinguish normal and cancerous cells and thus causes toxic side effects including secondary malignancies, cardiovascular and respiratory complications, endocrinopathies, and other chronic conditions, that resemble and, in some cases, accelerate the age-related disorders and profoundly affect the quality of life. In this scenario, geroscience contributes to the understanding of the mechanisms of protection of normal cells against a cytotoxic agent and finding strategies focused on the preserving healthy cells while enhancing the efficacy of the treatment against malignant cells.
Collapse
Affiliation(s)
- L Raffaghello
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - V Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States; IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
205
|
Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1. Cell Death Dis 2017; 8:e2625. [PMID: 28230856 PMCID: PMC5386487 DOI: 10.1038/cddis.2017.43] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/13/2016] [Accepted: 01/18/2017] [Indexed: 12/20/2022]
Abstract
Hexokinase-II (HK-II) and dynamin-related protein 1 (Drp1) regulate mitochondrial function differently. This study was designed to investigate the cardioprotective effect of ginsenoside Rg5 (Rg5) with emphasis on the regulation of mitochondrial HK-II and Drp1. Saturated acid palmitate (PA) stimulation increased lactate accumulation and induced cellular acidification by impairing the activity of pyruvate dehydrogenase (PDH) in cardiomyocytes, leading to HK-II dissociation from mitochondria. Rg5 improved PDH activity and prevented cellular acidification by combating fatty-acid oxidation, contributing to protecting mitochondrial HK-II. HK-II binding to mitochondria prevented mitochondrial Drp1 recruitment, whereas Drp1 activation decreased the content of mitochondrial HK-II, demonstrating the reciprocal control for binding to mitochondria. Rg5 promoted Akt translocation to mitochondria and increased HK-II binding to mitochondria while coordinately suppressing Drp1 recruitment and mitochondrial fission. Akt inhibitor triciribine or knockdown of Akt with small interfering RNA diminished the effects of Rg5, indicating that Rg5 inhibited Drp1 activation and promoted HK-II mitochondrial binding through Akt activation. Rg5 prevented the opening of mitochondrial permeability transition pore and increased ATP production, resultantly increasing cardiomyocyte resistance to hypoxia/reoxygenation injury. Meanwhile, Rg5 prevented cell apoptosis with increased HK-II binding and reduced Drp1 recruitment to mitochondria in isoproterenol-induced ischemic heart of mice. Taken together, these findings not only established a previously unrecognized role of ginsenosides in cardioprotection but also suggest that mitochondrial HK-II binding and Drp1 recruitment could be targeted therapeutically to prevent ischemic injury in the heart.
Collapse
|
206
|
Woldetsadik AD, Vogel MC, Rabeh WM, Magzoub M. Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells. FASEB J 2017; 31:2168-2184. [PMID: 28183803 PMCID: PMC5388548 DOI: 10.1096/fj.201601173r] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/23/2017] [Indexed: 01/21/2023]
Abstract
Overexpression of mitochondria-bound hexokinase II (HKII) in cancer cells plays an important role in their metabolic reprogramming and protects them against apoptosis, thereby facilitating their growth and proliferation. Here, we show that covalently coupling a peptide corresponding to the mitochondrial membrane–binding N-terminal 15 aa of HKII (pHK) to a short, penetration-accelerating sequence (PAS) enhances the cellular uptake, mitochondrial localization, and cytotoxicity of the peptide in HeLa cells. Further analysis revealed that pHK-PAS depolarized mitochondrial membrane potential, inhibited mitochondrial respiration and glycolysis, and depleted intracellular ATP levels. The effects of pHK-PAS were correlated with dissociation of endogenous full-length HKII from mitochondria and release of cytochrome c. Of significance, pHK-PAS treatment of noncancerous HEK293 cells resulted in substantially lower cytotoxicity. Thus, pHK-PAS effectively disrupted the mitochondria-HKII association in cancer cells, which led to mitochondrial dysfunction and, finally, apoptosis. Our results demonstrate the potential of the pHK-PAS cell-penetrating peptide as a novel therapeutic strategy in cancer.—Woldetsadik, A. D., Vogel, M. C., Rabeh, W. M., Magzoub, M. Hexokinase II–derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells.
Collapse
Affiliation(s)
- Abiy D Woldetsadik
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria C Vogel
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wael M Rabeh
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
207
|
Martin PL, Yin JJ, Seng V, Casey O, Corey E, Morrissey C, Simpson RM, Kelly K. Androgen deprivation leads to increased carbohydrate metabolism and hexokinase 2-mediated survival in Pten/Tp53-deficient prostate cancer. Oncogene 2017; 36:525-533. [PMID: 27375016 PMCID: PMC6639059 DOI: 10.1038/onc.2016.223] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/22/2016] [Accepted: 05/15/2016] [Indexed: 01/11/2023]
Abstract
Prostate cancer is characterized by a dependence upon androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) is the accepted treatment for progressive prostate cancer. Although ADT is usually initially effective, acquired resistance termed castrate-resistant prostate cancer (CRPC) develops. PTEN and TP53 are two of the most commonly deleted or mutated genes in prostate cancer, the compound loss of which is enriched in CRPC. To interrogate the metabolic alterations associated with survival following ADT, we used an orthotopic model of Pten/Tp53 null prostate cancer. Metabolite profiles and associated regulators were compared in tumors from androgen-intact mice and in tumors surviving castration. AR inhibition led to changes in the levels of glycolysis and tricarboxylic acid (TCA) cycle pathway intermediates. As anticipated for inhibitory reciprocal feedback between AR and PI3K/AKT signaling pathways, pAKT levels were increased in androgen-deprived tumors. Elevated mitochondrial hexokinase 2 (HK2) levels and enzyme activities also were observed in androgen-deprived tumors, consistent with pAKT-dependent HK2 protein induction and mitochondrial association. Competitive inhibition of HK2-mitochondrial binding in prostate cancer cells led to decreased viability. These data argue for AKT-associated HK2-mediated metabolic reprogramming and mitochondrial association in PI3K-driven prostate cancer as one survival mechanism downstream of AR inhibition.
Collapse
Affiliation(s)
- Philip L. Martin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Juan-Juan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Victoria Seng
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Orla Casey
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA
| | - R. Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, NCI, NIH, Bethesda, MD
| |
Collapse
|
208
|
Arrázola MS, Ramos-Fernández E, Cisternas P, Ordenes D, Inestrosa NC. Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons. PLoS One 2017; 12:e0168840. [PMID: 28060833 PMCID: PMC5218554 DOI: 10.1371/journal.pone.0168840] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/05/2016] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder mainly known for synaptic impairment and neuronal cell loss, affecting memory processes. Beside these damages, mitochondria have been implicated in the pathogenesis of AD through the induction of the mitochondrial permeability transition pore (mPTP). The mPTP is a non-selective pore that is formed under apoptotic conditions, disturbing mitochondrial structure and thus, neuronal viability. In AD, Aβ oligomers (Aβos) favor the opening of the pore, activating mitochondria-dependent neuronal cell death cascades. The Wnt signaling activated through the ligand Wnt3a has been described as a neuroprotective signaling pathway against amyloid-β (Aβ) peptide toxicity in AD. However, the mechanisms by which Wnt signaling prevents Aβos-induced neuronal cell death are unclear. We proposed here to study whether Wnt signaling protects neurons earlier than the late damages in the progression of the disease, through the preservation of the mitochondrial structure by the mPTP inhibition. To study specific events related to mitochondrial permeabilization we performed live-cell imaging from primary rat hippocampal neurons, and electron microscopy to analyze the mitochondrial morphology and structure. We report here that Wnt3a prevents an Aβos-induced cascade of mitochondrial events that leads to neuronal cell death. This cascade involves (a) mPTP opening, (b) mitochondrial swelling, (c) mitochondrial membrane potential loss and (d) cytochrome c release, thus leading to neuronal cell death. Furthermore, our results suggest that the activation of the Wnt signaling prevents mPTP opening by two possible mechanisms, which involve the inhibition of mitochondrial GSK-3β and/or the modulation of mitochondrial hexokinase II levels and activity. This study suggests a possible new approach for the treatment of AD from a mitochondrial perspective, and will also open new lines of study in the field of Wnt signaling in neuroprotection.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eva Ramos-Fernández
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Universidad de Atacama, Facultad de Ciencias Naturales, Departamento de Química y Biología, Copiapó, Chile
| | - Daniela Ordenes
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
209
|
Kudryavtseva AV, Fedorova MS, Zhavoronkov A, Moskalev AA, Zasedatelev AS, Dmitriev AA, Sadritdinova AF, Karpova IY, Nyushko KM, Kalinin DV, Volchenko NN, Melnikova NV, Klimina KM, Sidorov DV, Popov AY, Nasedkina TV, Kaprin AD, Alekseev BY, Krasnov GS, Snezhkina AV. Effect of lentivirus-mediated shRNA inactivation of HK1, HK2, and HK3 genes in colorectal cancer and melanoma cells. BMC Genet 2016; 17:156. [PMID: 28105937 PMCID: PMC5249010 DOI: 10.1186/s12863-016-0459-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The switch from oxidative phosphorylation to glycolysis in proliferating cancer cells, even under aerobic conditions, has been shown first in 1926 by Otto Warburg. Today this phenomenon is known as the “Warburg effect” and recognized as a hallmark of cancer. The metabolic shift to glycolysis is associated with the alterations in signaling pathways involved in energy metabolism, including glucose uptake and fermentation, and regulation of mitochondrial functions. Hexokinases (HKs), which catalyze the first step of glycolysis, have been identified to play a role in tumorigenesis of human colorectal cancer (CRC) and melanoma. However, the mechanism of action of HKs in the promotion of tumor growth remains unclear. Results The purpose of the present study was to investigate the effect of silencing of hexokinase genes (HK1, HK2, and HK3) in colorectal cancer (HT-29, SW 480, HCT-15, RKO, and HCT 116) and melanoma (MDA-MB-435S and SK-MEL-28) cell lines using short hairpin RNA (shRNA) lentiviral vectors. shRNA lentiviral plasmid vectors pLSLP-HK1, pLSLP-HK2, and pLSLP-HK3 were constructed and then transfected separately or co-transfected into the cells. HK2 inactivation was associated with increased expression of HK1 in colorectal cancer cell lines pointing to the compensation effect. Simultaneous attenuation of HK1 and HK2 levels led to decreased cell viability. Co-transfection with shRNA vectors against HK1, HK2, and HK3 mRNAs resulted in a rapid cell death via apoptosis. Conclusions We have demonstrated that simultaneous inactivation of HK1 and HK2 was sufficient to decrease proliferation and viability of melanoma and colorectal cancer cells. Our results suggest that HK1 and HK2 could be the key therapeutic targets for reducing aerobic glycolysis in examined cancers.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University Eastern Campus, Baltimore, Maryland, USA
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander S Zasedatelev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Irina Y Karpova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill M Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Nadezhda N Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya M Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Tatiana V Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
210
|
Dubey AK, Godbole A, Mathew MK. Regulation of VDAC trafficking modulates cell death. Cell Death Discov 2016; 2:16085. [PMID: 28028442 PMCID: PMC5149589 DOI: 10.1038/cddiscovery.2016.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/04/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) and mitochondria-associated hexokinase (HxK) have crucial roles in both cell survival and death. Both the individual abundances and their ratio seem to influence the balance of survival and death and are thus critical in scenarios, such as neurodegeneration and cancer. Elevated levels of both VDAC and HxK have been reported in cancerous cells. Physical interaction is surmised and specific residues or regions involved have been identified, but details of the interaction and the mechanism by which it modulates survival are yet to be elucidated. We and others have shown that heterologous expression of VDAC can induce cell death, which can be mitigated by concomitant overexpression of HxK. We have also observed that upon overexpression, fluorescently tagged VDAC is distributed between the cytosol and mitochondria. In this study, we show that cell death ensues only when the protein, which is synthesized on cytoplasmic ribosomes, migrates to the mitochondrion. Further, coexpression of rat HxK II (rHxKII) can delay the translocation of human VDAC1 (hVDAC1) protein to mitochondria and thereby inhibit VDAC-induced cell death. Variation in the level of HxK protein as seen endogenously in different cell lines, or as experimentally manipulated by silencing and overexpression, can lead to differential VDAC translocation kinetics and related cell death. The N-terminal region of HxK and the Glu73 residue of hVDAC1, which have previously been implicated in a physical interaction, are required for cytosolic retention of VDAC. Finally, we show that, in otherwise unperturbed cells in culture, there is a small but significant amount of soluble VDAC in the cytosol present in a complex with HxK. This complex could well determine how a cell is poised with respect to incoming thanatopic signals, thereby tilting the survival/death balance in pharmacologically interesting situations, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Ashvini K Dubey
- Laboratory of Membrane Biophysics, National Centre for Biological Sciences, TIFR , Bangalore 560065, India
| | - Ashwini Godbole
- Laboratory of Membrane Biophysics, National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Department of Crop Physiology, GKVK, University of Agricultural Sciences, Bangalore 560065, India
| | - M K Mathew
- Laboratory of Membrane Biophysics, National Centre for Biological Sciences, TIFR , Bangalore 560065, India
| |
Collapse
|
211
|
Xie M, Ye H, Wang H, Charpin-El Hamri G, Lormeau C, Saxena P, Stelling J, Fussenegger M. -cell-mimetic designer cells provide closed-loop glycemic control. Science 2016; 354:1296-1301. [DOI: 10.1126/science.aaf4006] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022]
|
212
|
Shang RZ, Qu SB, Wang DS. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects. World J Gastroenterol 2016; 22:9933-9943. [PMID: 28018100 PMCID: PMC5143760 DOI: 10.3748/wjg.v22.i45.9933] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/30/2016] [Accepted: 11/13/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers, and its rate of incidence is rising annually. Despite the progress in diagnosis and treatment, the overall prognoses of HCC patients remain dismal due to the difficulties in early diagnosis and the high level of tumor invasion, metastasis and recurrence. It is urgent to explore the underlying mechanism of HCC carcinogenesis and progression to find out the specific biomarkers for HCC early diagnosis and the promising target for HCC chemotherapy. Recently, the reprogramming of cancer metabolism has been identified as a hallmark of cancer. The shift from the oxidative phosphorylation metabolic pathway to the glycolysis pathway in HCC meets the demands of rapid cell proliferation and offers a favorable microenvironment for tumor progression. Such metabolic reprogramming could be considered as a critical link between the different HCC genotypes and phenotypes. The regulation of metabolic reprogramming in cancer is complex and may occur via genetic mutations and epigenetic modulations including oncogenes, tumor suppressor genes, signaling pathways, noncoding RNAs, and glycolytic enzymes etc. Understanding the regulatory mechanisms of glycolysis in HCC may enrich our knowledge of hepatocellular carcinogenesis and provide important foundations in the search for novel diagnostic biomarkers and promising therapeutic targets for HCC.
Collapse
|
213
|
Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells. Biochem Pharmacol 2016; 125:12-25. [PMID: 27818240 DOI: 10.1016/j.bcp.2016.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022]
Abstract
We have previously reported that Gen-27, a newly synthesized flavonoid, exhibits anticancer effects against human colorectal cancer cells. In this study, we investigated the anticancer effects in human breast cancer cell lines and its underlying mechanisms. We demonstrated that Gen-27 inhibited the growth and proliferation of human breast cancer cells in concentration and time-dependent manners. It was found that Gen-27 induced mitochondrial-mediated apoptosis, characterized by the dissipation of mitochondrial membrane potential (ΔΨm), cytochrome c (Cyt c) release from mitochondria to cytosol, activation of caspases and induction of poly (ADP-ribose) polymerase (PARP). In addition, Gen-27 inhibited the glycolysis in human breast cancer cells. After treatment with Gen-27, the expression of HKII was down-regulated, accompanied by weakened interaction of HKII and VDAC. Further research revealed that the induction of mitochondrial apoptosis was associated with the decrease of HKII expression by Gen-27. Finally, in vivo studies demonstrated that Gen-27 significantly suppressed the growth and promoted apoptosis of MDA-MB-231 breast cancer orthotopic tumors with low systemic toxicity. In conclusion, the results showed that Gen-27 had significant anticancer effects against human breast cancer and it may potentially be used as a novel anticancer agent for the treatment of breast cancer.
Collapse
|
214
|
Zou W, Al-Rubeai M. Understanding central carbon metabolism of rapidly proliferating mammalian cells based on analysis of key enzymatic activities in GS-CHO cell lines. Biotechnol Appl Biochem 2016; 63:642-651. [PMID: 26108557 DOI: 10.1002/bab.1409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
The central carbon metabolism (glycolysis, the pentose phosphate pathway [PPP], and the tricarboxylic acid [TCA] cycle) plays an essential role in the supply of biosynthetic precursors and energy. How the central carbon metabolism changes with the varying growth rates in the in vitro cultivation of rapidly proliferating mammalian cells, such as cancer cells and continuous cell lines for recombinant protein production, remains elusive. Based on relationships between the growth rate and the activity of seven key enzymes from six cell clones, this work reports finding an important metabolic characteristic in rapidly proliferating glutamine synthetase-Chinese hamster ovary cells. The key enzymatic activity involved in the TCA cycle that is responsible for the supply of energy became elevated as the growth rate exhibited increases, while the activity of key enzymes in metabolic pathways (glycolysis and the PPP), responsible for the supply of biosynthetic precursors, tended to decrease-suggesting that rapidly proliferating cells still depended predominantly on the TCA cycle rather than on aerobic glycolysis for their energetic demands. Meanwhile, the growth-limiting resource was most likely biosynthetic substrates rather than energy provision. In addition, the multifaceted role of glucose-6-phosphate isomerase (PGI) was confirmed, based on a significant correlation between PGI activity and the percentage of G2/M-phase cells.
Collapse
Affiliation(s)
- Wu Zou
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
215
|
Abstract
In recent years there has been a growing interest among cancer biologists in cancer metabolism. This Review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in cancer cells, which is mediated by oncogenic drivers and by the undifferentiated character of cancer cells. The reprogrammed glucose metabolism in cancer cells is required to fulfil anabolic demands. This Review discusses the possibility of exploiting the reprogrammed glucose metabolism for therapeutic approaches that selectively target cancer cells.
Collapse
Affiliation(s)
- Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607 and Research and Development Section, Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA
| |
Collapse
|
216
|
Miao Y, Zhang LF, Guo R, Liang S, Zhang M, Shi S, Shang-Guan CF, Liu MF, Li B. (18)F-FDG PET/CT for Monitoring the Response of Breast Cancer to miR-143-Based Therapeutics by Targeting Tumor Glycolysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e357. [PMID: 27574783 PMCID: PMC5023410 DOI: 10.1038/mtna.2016.72] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
Increased glucose utilization is a hallmark of cancer, and tumor metabolism is emerging as anticancer target for therapeutic intervention. Triple-negative breast cancers TNBC are highly glycolytic and show poor clinical outcomes. We previously identified hexokinase 2, the major glycolytic enzyme, as a target gene of miR-143 in TNBC. Here, we developed a therapeutic formulation using cholesterol-modified miR-143 agomir encapsulated in a neutral lipid-based delivery agent that blocked tumor growth and glucose metabolism in TNBC tumor-bearing mice when administered systemically. The antioncogenic effects were accompanied by a reduction in the direct target hexokinase 2 and [18F]-fluorodeoxyglucose (18F-FDG) uptake based on positron emission tomography/computed tomography. Treatment with miR-143 formulation has minimal toxic effects and mice tolerated it well. Thus, we demonstrated that miR-143 is a robust inhibitor of the Warburg effect and an effective therapeutic target for TNBC. In addition, 18F-FDG positron emission tomography/computed tomography can be used to specifically monitor the response of TNBC to miR-143-based therapeutics by targeting tumor glycolysis.
Collapse
Affiliation(s)
- Ying Miao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling-Fei Zhang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Liang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuo Shi
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng-Fang Shang-Guan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mo-Fang Liu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
217
|
Beltrán-Anaya FO, Cedro-Tanda A, Hidalgo-Miranda A, Romero-Cordoba SL. Insights into the Regulatory Role of Non-coding RNAs in Cancer Metabolism. Front Physiol 2016; 7:342. [PMID: 27551267 PMCID: PMC4976125 DOI: 10.3389/fphys.2016.00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer represents a complex disease originated from alterations in several genes leading to disturbances in important signaling pathways in tumor biology, favoring heterogeneity that promotes adaptability and pharmacological resistance of tumor cells. Metabolic reprogramming has emerged as an important hallmark of cancer characterized by the presence of aerobic glycolysis, increased glutaminolysis and fatty acid biosynthesis, as well as an altered mitochondrial energy production. The metabolic switches that support energetic requirements of cancer cells are closely related to either activation of oncogenes or down-modulation of tumor-suppressor genes, finally leading to dysregulation of cell proliferation, metastasis and drug resistance signals. Non-coding RNAs (ncRNAs) have emerged as one important kind of molecules that can regulate altered genes contributing, to the establishment of metabolic reprogramming. Moreover, diverse metabolic signals can regulate ncRNA expression and activity at genetic, transcriptional, or epigenetic levels. The regulatory landscape of ncRNAs may provide a new approach for understanding and treatment of different types of malignancies. In this review we discuss the regulatory role exerted by ncRNAs on metabolic enzymes and pathways involved in glucose, lipid, and amino acid metabolism. We also review how metabolic stress conditions and tumoral microenvironment influence ncRNA expression and activity. Furthermore, we comment on the therapeutic potential of metabolism-related ncRNAs in cancer.
Collapse
Affiliation(s)
- Fredy O Beltrán-Anaya
- Cancer Genomics Laboratory, National Institute of Genomic Medicine Mexico City, Mexico
| | - Alberto Cedro-Tanda
- Cancer Genomics Laboratory, National Institute of Genomic Medicine Mexico City, Mexico
| | | | | |
Collapse
|
218
|
Abstract
SIGNIFICANCE A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. RECENT ADVANCES Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. CRITICAL ISSUES The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. FUTURE DIRECTIONS Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119-146.
Collapse
Affiliation(s)
- Brian B Ratliff
- 1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York.,2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Wasan Abdulmahdi
- 2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Rahul Pawar
- 1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York
| | - Michael S Wolin
- 2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York
| |
Collapse
|
219
|
O'Farrell NJ, Feighery R, Picardo SL, Lynam-Lennon N, Biniecka M, McGarrigle SA, Phelan JJ, MacCarthy F, O'Toole D, Fox EJ, Ravi N, Reynolds JV, O'Sullivan J. Changes in mitochondrial stability during the progression of the Barrett's esophagus disease sequence. BMC Cancer 2016; 16:497. [PMID: 27431913 PMCID: PMC4950724 DOI: 10.1186/s12885-016-2544-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023] Open
Abstract
Background Barrett’s esophagus follows the classic step-wise progression of metaplasia-dysplasia-adenocarcinoma. While Barrett’s esophagus is a leading known risk factor for esophageal adenocarcinoma, the pathogenesis of this disease sequence is poorly understood. Mitochondria are highly susceptible to mutations due to high levels of reactive oxygen species (ROS) coupled with low levels of DNA repair. The timing and levels of mitochondria instability and dysfunction across the Barrett’s disease progression is under studied. Methods Using an in-vitro model representing the Barrett’s esophagus disease sequence of normal squamous epithelium (HET1A), metaplasia (QH), dysplasia (Go), and esophageal adenocarcinoma (OE33), random mitochondrial mutations, deletions and surrogate markers of mitochondrial function were assessed. In-vivo and ex-vivo tissues were also assessed for instability profiles. Results Barrett’s metaplastic cells demonstrated increased levels of ROS (p < 0.005) and increased levels of random mitochondrial mutations (p < 0.05) compared with all other stages of the Barrett’s disease sequence in-vitro. Using patient in-vivo samples, Barrett’s metaplasia tissue demonstrated significantly increased levels of random mitochondrial deletions (p = 0.043) compared with esophageal adenocarcinoma tissue, along with increased expression of cytoglobin (CYGB) (p < 0.05), a gene linked to oxidative stress, compared with all other points across the disease sequence. Using ex-vivo Barrett’s metaplastic and matched normal patient tissue explants, higher levels of cytochrome c (p = 0.003), SMAC/Diablo (p = 0.008) and four inflammatory cytokines (all p values <0.05) were secreted from Barrett’s metaplastic tissue compared with matched normal squamous epithelium. Conclusions We have demonstrated that increased mitochondrial instability and markers of cellular and mitochondrial stress are early events in the Barrett’s disease sequence.
Collapse
Affiliation(s)
- N J O'Farrell
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - R Feighery
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - S L Picardo
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - N Lynam-Lennon
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - M Biniecka
- Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - S A McGarrigle
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - J J Phelan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - F MacCarthy
- Trinity Translational Medicine Institute, Department of Clinical Medicine, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - D O'Toole
- Trinity Translational Medicine Institute, Department of Clinical Medicine, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - E J Fox
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - N Ravi
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - J V Reynolds
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | - J O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
220
|
Parajuli P, Tiwari RV, Sylvester PW. Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis. Biol Pharm Bull 2016; 38:1352-60. [PMID: 26328490 DOI: 10.1248/bpb.b15-00306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aerobic glycolysis is an established hallmark of cancer. Neoplastic cells display increased glucose consumption and a corresponding increase in lactate production compared to the normal cells. Aerobic glycolysis is regulated by the phosphatidylinositol-3-kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR) signaling pathway, as well as by oncogenic transcription factors such as c-Myc and hypoxia inducible factor 1α (HIF-1α). γ-Tocotrienol is a natural isoform within the vitamin E family of compounds that displays potent antiproliferative and apoptotic activity against a wide range of cancer cell types at treatment doses that have little or no effect on normal cell viability. Studies were conducted to determine the effects of γ-tocotrienol on aerobic glycolysis in mouse +SA and human MCF-7 breast cancer cells. Treatment with γ-tocotrienol resulted in a dose-responsive inhibition of both +SA and MCF-7 mammary tumor cell growth, and induced a relatively large reduction in glucose utilization, intracellular ATP production and extracellular lactate excretion. These effects were also associated with a large decrease in enzyme expression levels involved in regulating aerobic glycolysis, including hexokinase-II, phosphofructokinase, pyruvate kinase M2, and lactate dehydrogenase A. γ-Tocotrienol treatment was also associated with a corresponding reduction in the levels of phosphorylated (active) Akt, phosphorylated (active) mTOR, and c-Myc, but not HIF-1α or glucose transporter 1 (GLUT-1). In summary, these findings demonstrate that the antiproliferative effects of γ-tocotrienol are mediated, at least in the part, by the concurrent inhibition of Akt/mTOR signaling, c-Myc expression and aerobic glycolysis.
Collapse
|
221
|
Guma M, Tiziani S, Firestein GS. Metabolomics in rheumatic diseases: desperately seeking biomarkers. Nat Rev Rheumatol 2016; 12:269-81. [PMID: 26935283 PMCID: PMC4963238 DOI: 10.1038/nrrheum.2016.1] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolomics enables the profiling of large numbers of small molecules in cells, tissues and biological fluids. These molecules, which include amino acids, carbohydrates, lipids, nucleotides and their metabolites, can be detected quantitatively. Metabolomic methods, often focused on the information-rich analytical techniques of NMR spectroscopy and mass spectrometry, have potential for early diagnosis, monitoring therapy and defining disease pathogenesis in many therapeutic areas, including rheumatic diseases. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanisms are being revealed and are shaping our understanding of cell biology, physiology and medicine. These pathways can potentially be targeted to diagnose and treat patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Monica Guma
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0656, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, University of Texas at Austin, 1400 Barbara Jordan Boulevard, Austin, Texas 78723, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0656, USA
| |
Collapse
|
222
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
223
|
Sun Y, Shi Z, Lian H, Cai P. Energy metabolic dysfunction as a carcinogenic factor in cancer cells. Clin Transl Med 2016; 5:14. [PMID: 27053249 PMCID: PMC4823226 DOI: 10.1186/s40169-016-0094-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/29/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer, as a leading cause of death, has attracted enormous public attention. Reprogramming of cellular energy metabolism is deemed to be one of the principal hallmarks of cancer. In this article, we reviewed the mutual relationships among environmental pollution factors, energy metabolic dysfunction, and various cancers. We found that most environmental pollution factors could induce cancers mainly by disturbing the energy metabolism. By triggering microenvironment alteration, energy metabolic dysfunction can be treated as a factor in carcinogenesis. Thus, we put forward that energy metabolism might be as a key point for studying carcinogenesis and tumor development to propose new methods for cancer prevention and therapy.
Collapse
Affiliation(s)
- Yongyan Sun
- Physical Environment Laboratory, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Avenue, Xiamen, 361021, People's Republic of China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Zhenhua Shi
- Environmental Bioelectrochemistry Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Huiyong Lian
- Physical Environment Laboratory, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Avenue, Xiamen, 361021, People's Republic of China
| | - Peng Cai
- Physical Environment Laboratory, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Avenue, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
224
|
Novoderezhkina EA, Zhivotovsky BD, Gogvadze VG. Induction of unspecific permeabilization of mitochondrial membrane and its role in cell death. Mol Biol 2016. [DOI: 10.1134/s0026893316010167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
225
|
Bhutia SK, Behera B, Nandini Das D, Mukhopadhyay S, Sinha N, Panda PK, Naik PP, Patra SK, Mandal M, Sarkar S, Menezes ME, Talukdar S, Maiti TK, Das SK, Sarkar D, Fisher PB. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int J Cancer 2016; 139:457-66. [PMID: 26914517 DOI: 10.1002/ijc.30055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/11/2022]
Abstract
Abrus agglutinin (AGG), a plant lectin isolated from the seeds of Abrus precatorius, has documented antitumor and immunostimulatory effects in murine models. To examine possible antitumor activity against breast cancer, we established human breast tumor xenografts in athymic nude mice and intraperitoneally administered AGG. AGG inhibited tumor growth and angiogenesis as confirmed by monitoring the expression of Ki-67 and CD-31, respectively. In addition, TUNEL positive cells increased in breast tumors treated with AGG suggesting that AGG mediates anti-tumorigenic activity through induction of apoptosis and inhibition of angiogenesis. On a molecular level, AGG caused extrinsic apoptosis through ROS generation that was AKT-dependent in breast cancer cells, without affecting primary mammary epithelial cells, suggesting potential cancer specificity of this natural compound. In addition, using HUVECs, AGG inhibited expression of the pro-angiogenic factor IGFBP-2 in an AKT-dependent manner, reducing angiogenic phenotypes both in vitro and in vivo. Overall, the present results establish that AGG promotes both apoptosis and anti-angiogenic activities in human breast tumor cells, which might be exploited for treatment of breast and other cancers.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Birendra Behera
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | | | | - Samir K Patra
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
226
|
Jun YW, Park H, Lee YK, Kaang BK, Lee JA, Jang DJ. D-AKAP1a is a signal-anchored protein in the mitochondrial outer membrane. FEBS Lett 2016; 590:954-61. [PMID: 26950402 DOI: 10.1002/1873-3468.12123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 11/08/2022]
Abstract
Dual A-kinase anchoring protein 1a (D-AKAP1a, AKAP1) regulates cAMP signaling in mitochondria. However, it is not clear how D-AKAP1a is associated with mitochondria. In this study, we show that D-AKAP1a is a transmembrane protein in the mitochondrial outer membrane (MOM). We revealed that the N-terminus of D-AKAP1a is exposed to the intermembrane space of mitochondria and that its C-terminus is located on the cytoplasmic side of the MOM. Moderate hydrophobicity and the positively charged flanking residues of the transmembrane domain of D-AKAP1a were important for targeting. Taken together, D-AKAP1a can be classified as a signal-anchored protein in the MOM. Our topological study provides valuable information about the molecular and cellular mechanisms of mitochondrial targeting of AKAP1.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| | - Heeju Park
- Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| | - You-Kyung Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Jin-A Lee
- Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University, Yuseong-gu, Daejeon, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea.,Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju-si, Gyeongsangbuk-do, Korea
| |
Collapse
|
227
|
Bianchi G, Martella R, Ravera S, Marini C, Capitanio S, Orengo A, Emionite L, Lavarello C, Amaro A, Petretto A, Pfeffer U, Sambuceti G, Pistoia V, Raffaghello L, Longo VD. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget 2016; 6:11806-19. [PMID: 25909219 PMCID: PMC4494906 DOI: 10.18632/oncotarget.3688] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022] Open
Abstract
Tumor chemoresistance is associated with high aerobic glycolysis rates and reduced oxidative phosphorylation, a phenomenon called "Warburg effect" whose reversal could impair the ability of a wide range of cancer cells to survive in the presence or absence of chemotherapy. In previous studies, Short-term-starvation (STS) was shown to protect normal cells and organs but to sensitize different cancer cell types to chemotherapy but the mechanisms responsible for these effects are poorly understood. We tested the cytotoxicity of Oxaliplatin (OXP) combined with a 48hour STS on the progression of CT26 colorectal tumors. STS potentiated the effects of OXP on the suppression of colon carcinoma growth and glucose uptake in both in vitro and in vivo models. In CT26 cells, STS down-regulated aerobic glycolysis, and glutaminolysis, while increasing oxidative phosphorylation. The STS-dependent increase in both Complex I and Complex II-dependent O(2) consumption was associated with increased oxidative stress and reduced ATP synthesis. Chemotherapy caused additional toxicity, which was associated with increased succinate/Complex II-dependent O(2) consumption, elevated oxidative stress and apoptosis .These findings indicate that the glucose and amino acid deficiency conditions imposed by STS promote an anti-Warburg effect characterized by increased oxygen consumption but failure to generate ATP, resulting in oxidative damage and apoptosis.
Collapse
Affiliation(s)
| | | | - Silvia Ravera
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Milan, Section of Genoa, Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Annamaria Orengo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Laura Emionite
- Animal facility, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | - Adriana Amaro
- Functional Genomics, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | - Ulrich Pfeffer
- Functional Genomics, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia Istituto G. Gaslini, Genoa, Italy
| | | | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
228
|
Tewari D, Mukhopadhyay M, Nekkanti MS, Vallabhaneni S, Sahu G, Jetti SK, Preethidan D, Bera AK. Cytoprotective effect of Centella asiatica is mediated through the modulation of mitochondrial voltage-dependent anion channel (VDAC) and scavenging of free radicals. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
229
|
Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci Rep 2016; 6:19569. [PMID: 26794854 PMCID: PMC4726140 DOI: 10.1038/srep19569] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/11/2015] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence demonstrates that targeting energy metabolism is a promising strategy to fight cancer. Here we show that combining metformin and short-term starvation markedly impairs metabolism and growth of colon and breast cancer. The impairment in glycolytic flux caused by starvation is enhanced by metformin through its interference with hexokinase II activity, as documented by measurement of 18F-fluorodeoxyglycose uptake. Oxidative phosphorylation is additively compromised by combined treatment: metformin virtually abolishes Complex I function; starvation determines an uncoupled status of OXPHOS and amplifies the activity of respiratory Complexes II and IV thus combining a massive ATP depletion with a significant increase in reactive oxygen species. More importantly, the combined treatment profoundly impairs cancer glucose metabolism and virtually abolishes lesion growth in experimental models of breast and colon carcinoma. Our results strongly suggest that energy metabolism is a promising target to reduce cancer progression.
Collapse
|
230
|
Tan VP, Miyamoto S. Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. J Mol Cell Cardiol 2016; 95:31-41. [PMID: 26773603 DOI: 10.1016/j.yjmcc.2016.01.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022]
Abstract
The ability of adult cardiomyocytes to regenerate is limited, and irreversible loss by cell death plays a crucial role in heart diseases. Autophagy is an evolutionarily conserved cellular catabolic process through which long-lived proteins and damaged organelles are targeted for lysosomal degradation. Autophagy is important in cardiac homeostasis and can serve as a protective mechanism by providing an energy source, especially in the face of sustained starvation. Cellular metabolism is closely associated with cell survival, and recent evidence suggests that metabolic and autophagic signaling pathways exhibit a high degree of crosstalk and are functionally interdependent. In this review, we discuss recent progress in our understanding of regulation of autophagy and its crosstalk with metabolic signaling, with a focus on the nutrient-sensing mTOR complex 1 (mTORC1) pathway.
Collapse
Affiliation(s)
- Valerie P Tan
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
231
|
Chandrashekaran V, Das S, Seth RK, Dattaroy D, Alhasson F, Michelotti G, Nagarkatti M, Nagarkatti P, Diehl AM, Chatterjee S. Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:32-45. [PMID: 26474534 PMCID: PMC4988689 DOI: 10.1016/j.bbadis.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022]
Abstract
Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused an increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression.
Collapse
Affiliation(s)
- Varun Chandrashekaran
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Suvarthi Das
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Ratanesh Kumar Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Diptadip Dattaroy
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Firas Alhasson
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, NC 27707, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
232
|
Sen S, Kaminiski R, Deshmane S, Langford D, Khalili K, Amini S, Datta PK. Role of hexokinase-1 in the survival of HIV-1-infected macrophages. Cell Cycle 2015; 14:980-9. [PMID: 25602755 DOI: 10.1080/15384101.2015.1006971] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viruses have developed various strategies to protect infected cells from apoptosis. HIV-1 infected macrophages are long-lived and considered reservoirs for HIV-1. One significant deciding factor between cell survival and cell death is glucose metabolism. We hypothesized that HIV-1 protects infected macrophages from apoptosis in part by modulating the host glycolytic pathway specifically by regulating hexokinase-1 (HK-1) an enzyme that converts glucose to glucose-6-phosphate. Therefore, we analyzed the regulation of HK-1 in HIV-1 infected PBMCs, and in a chronically HIV-1 infected monocyte-like cell line, U1. Our results demonstrate that HIV-1 induces a robust increase in HK-1 expression. Surprisingly, hexokinase enzymatic activity was significantly inhibited in HIV-1 infected PBMCs and in PMA differentiated U1 cells. Interestingly, we observed increased levels of mitochondria-bound HK-1 in PMA induced U1 cells and in the HIV-1 accessory protein, viral protein R (Vpr) transduced U937 cell derived macrophages. Dissociation of HK-1 from mitochondria in U1 cells using a pharmacological agent, clotrimazole (CTZ) induced mitochondrial membrane depolarization and caspase-3/7 mediated apoptosis. Dissociation of HK-1 from mitochondria in Vpr transduced U937 also activated caspase-3/7 activity. These observations indicate that HK-1 plays a non-metabolic role in HIV-1 infected macrophages by binding to mitochondria thereby maintaining mitochondrial integrity. These results suggest that targeting the interaction of HK-1 with the mitochondria to induce apoptosis in persistently infected macrophages may prove beneficial in purging the macrophage HIV reservoir.
Collapse
Key Words
- COXIV, Cytochrome c oxidase subunit IV
- CTZ, Clotrimazole
- G-6-P, glucose-6-phosphate
- G6PD, glucose-6-phosphate dehydrogenase
- HIV-1
- HK-1, Hexokinase-1
- M-CSF, macrophage colony-stimulating factor
- OMM, outer mitochondrial membrane
- VDAC, voltage-dependent anion channel
- Vpr, viral protein R
- apoptosis, glucose metabolism
- cART, combination antiretroviral therapy
- hexokinase
- macrophage
- mitochondria
Collapse
Affiliation(s)
- Satarupa Sen
- a Department of Biology ; College of Science and Technology ; Temple University ; Philadelphia , PA USA
| | | | | | | | | | | | | |
Collapse
|
233
|
Golshani-Hebroni S. Mg(++) requirement for MtHK binding, and Mg(++) stabilization of mitochondrial membranes via activation of MtHK & MtCK and promotion of mitochondrial permeability transition pore closure: A hypothesis on mechanisms underlying Mg(++)'s antioxidant and cytoprotective effects. Gene 2015; 581:1-13. [PMID: 26732303 DOI: 10.1016/j.gene.2015.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022]
Abstract
Evidence points to magnesium's antioxidant, anti-necrotic, and anti-apoptotic effects in cardio- and neuroprotection. With magnesium being involved in over 300 biochemical reactions, the mechanisms underlying its cytoprotective and antioxidant effects have remained elusive. The profound anti-apoptotic, anabolic, and antioxidant effects of mitochondrion bound hexokinase (MtHk), and the anti-apoptotic, anti-necrotic, and antioxidant functions of mitochondrial creatine kinase (MtCK) have been established over the past few decades. As powerful regulators of the mitochondrial permeability transition pore (PTP), MtHK and MtCK promote anti-apoptosis and anti-necrosis by stabilizing mitochondrial outer and inner membranes. In this article, it is proposed that magnesium is essentially and directly involved in mitochondrial membrane stabilization via (i) Mg(++) ion requirement for the binding of mitochondrial hexokinase (ii) Mg(++)'s allosteric activation of mitochondrial bound hexokinase, and stimulation of mitochondrial bound creatine kinase activities, and (iii) Mg(++) inhibition of PTP opening by Ca(++) ions. These effects of Mg(++) ions are indirectly supplanted by the stimulatory effect of magnesium on the Akt kinase survival pathway. The "Magnesium/Calcium Yin Yang Hypothesis" proposes here that because of the antagonistic effects of Ca(++) and Mg(++) ions in the presence of high Ca(++) ion concentration at MtHK, MtCK, and PTP, magnesium supplementation may provide cytoprotective effects in the treatment of some degenerative diseases and cytopathies with high intracellular [Ca(++)]/ [Mg(++)] ratio at these sites, whether of genetic, developmental, drug induced, ischemic, immune based, toxic, or infectious etiology.
Collapse
|
234
|
Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, Green MF, Jones LW, Ko YH, Le A, Lea MA, Locasale JW, Longo VD, Lyssiotis CA, McDonnell E, Mehrmohamadi M, Michelotti G, Muralidhar V, Murphy MP, Pedersen PL, Poore B, Raffaghello L, Rathmell JC, Sivanand S, Vander Heiden MG, Wellen KE. Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 2015; 35 Suppl:S129-S150. [PMID: 26454069 PMCID: PMC4656121 DOI: 10.1016/j.semcancer.2015.10.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review "Hallmarks of Cancer", where dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results demonstrate that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it.
Collapse
Affiliation(s)
- Matthew D Hirschey
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas - Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Mae E Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Janice E Drew
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Michelle F Green
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Lee W Jones
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Young H Ko
- University of Maryland BioPark, KoDiscovery, Baltimore, MD 20201, USA
| | - Anne Le
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael A Lea
- New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jason W Locasale
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14850, USA
| | - Valter D Longo
- Andrus Gerontology Center, Division of Biogerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA
| | - Eoin McDonnell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Mahya Mehrmohamadi
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14850, USA
| | - Gregory Michelotti
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Vinayak Muralidhar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Peter L Pedersen
- Department of Biological Chemistry and Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brad Poore
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Jeffrey C Rathmell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sharanya Sivanand
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
235
|
Poly(ADP-ribose) polymerase 1 is a novel target to promote axonal regeneration. Proc Natl Acad Sci U S A 2015; 112:15220-5. [PMID: 26598704 DOI: 10.1073/pnas.1509754112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Therapeutic options for the restoration of neurological functions after acute axonal injury are severely limited. In addition to limiting neuronal loss, effective treatments face the challenge of restoring axonal growth within an injury environment where inhibitory molecules from damaged myelin and activated astrocytes act as molecular and physical barriers. Overcoming these barriers to permit axon growth is critical for the development of any repair strategy in the central nervous system. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a previously unidentified and critical mediator of multiple growth-inhibitory signals. We show that exposure of neurons to growth-limiting molecules--such as myelin-derived Nogo and myelin-associated glycoprotein--or reactive astrocyte-produced chondroitin sulfate proteoglycans activates PARP1, resulting in the accumulation of poly(ADP-ribose) in the cell body and axon and limited axonal growth. Accordingly, we find that pharmacological inhibition or genetic loss of PARP1 markedly facilitates axon regeneration over nonpermissive substrates. Together, our findings provide critical insights into the molecular mechanisms of axon growth inhibition and identify PARP1 as an effective target to promote axon regeneration.
Collapse
|
236
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
237
|
Bao J, Huang B, Zou L, Chen S, Zhang C, Zhang Y, Chen M, Wan JB, Su H, Wang Y, He C. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents. PLoS One 2015; 10:e0139298. [PMID: 26421434 PMCID: PMC4589364 DOI: 10.1371/journal.pone.0139298] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022] Open
Abstract
Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.
Collapse
Affiliation(s)
- Jiaolin Bao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Borong Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Lidi Zou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shenghui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Chao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yulin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- * E-mail:
| |
Collapse
|
238
|
Lantier L, Williams AS, Williams IM, Yang KK, Bracy DP, Goelzer M, James FD, Gius D, Wasserman DH. SIRT3 Is Crucial for Maintaining Skeletal Muscle Insulin Action and Protects Against Severe Insulin Resistance in High-Fat-Fed Mice. Diabetes 2015; 64:3081-92. [PMID: 25948682 PMCID: PMC4542443 DOI: 10.2337/db14-1810] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/14/2015] [Indexed: 12/11/2022]
Abstract
Protein hyperacetylation is associated with glucose intolerance and insulin resistance, suggesting that the enzymes regulating the acetylome play a role in this pathological process. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has been linked to energy homeostasis. Thus, it is hypothesized that the dysregulation of the mitochondrial acetylation state, via genetic deletion of SIRT3, will amplify the deleterious effects of a high-fat diet (HFD). Hyperinsulinemic-euglycemic clamp experiments show, for the first time, that mice lacking SIRT3 exhibit increased insulin resistance due to defects in skeletal muscle glucose uptake. Permeabilized muscle fibers from HFD-fed SIRT3 knockout (KO) mice showed that tricarboxylic acid cycle substrate-based respiration is decreased while fatty acid-based respiration is increased, reflecting a fuel switch from glucose to fatty acids. Consistent with reduced muscle glucose uptake, hexokinase II (HKII) binding to the mitochondria is decreased in muscle from HFD-fed SIRT3 KO mice, suggesting decreased HKII activity. These results show that the absence of SIRT3 in HFD-fed mice causes profound impairments in insulin-stimulated muscle glucose uptake, creating an increased reliance on fatty acids. Insulin action was not impaired in the lean SIRT3 KO mice. This suggests that SIRT3 protects against dietary insulin resistance by facilitating glucose disposal and mitochondrial function.
Collapse
Affiliation(s)
- Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| | - Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Karen K Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mickael Goelzer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Freyja D James
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David Gius
- Departments of Radiation Oncology and Pharmacology and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
239
|
Abstract
Short p63 isoform, ΔNp63, is crucial for epidermis formation, and it plays a pivotal role in controlling the turnover of basal keratinocytes by regulating the expression of a subset of genes involved in cell cycle and cell adhesion programs. The glycolytic enzyme hexokinase 2 (HK2) represents the first step of glucose utilization in cells. The family of HKs has four isoforms that differ mainly in their tissue and subcellular distribution. The preferential mitochondrial localization of HK2 at voltage-dependent anion channels provides access to ATP generated by oxidative phosphorylation and generates an ADP/ATP recycling mechanism to maintain high respiration rates and low electron leak. Here, we report that ΔNp63 depletion in human keratinocytes impairs mitochondrial basal respiration and increases mitochondrial membrane polarization and intracellular reactive oxygen species. We show ΔNp63-dependent regulation of HK2 expression, and we use ChIP, validated by p63-Chip sequencing genomewide profiling analysis, and luciferase assays to demonstrate the presence of one p63-specific responsive element within the 15th intronic region of the HK2 gene, providing evidence of a direct interaction. Our data support the notion of ΔNp63 as a master regulator in epithelial cells of a combined subset of molecular mechanisms, including cellular energy metabolism and respiration. The ΔNp63-HK2 axis is also present in epithelial cancer cells, suggesting that ΔNp63 could participate in cancer metabolic reprogramming.
Collapse
|
240
|
Abstract
Metabolic processes are altered in cancer cells, which obtain advantages from this metabolic reprogramming in terms of energy production and synthesis of biomolecules that sustain their uncontrolled proliferation. Due to the conceptual progresses in the last decade, metabolic reprogramming was recently included as one of the new hallmarks of cancer. The advent of high-throughput technologies to amass an abundance of omic data, together with the development of new computational methods that allow the integration and analysis of omic data by using genome-scale reconstructions of human metabolism, have increased and accelerated the discovery and development of anticancer drugs and tumor-specific metabolic biomarkers. Here we review and discuss the latest advances in the context of metabolic reprogramming and the future in cancer research.
Collapse
|
241
|
Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci AM, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams GP, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi A, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D’Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, et alGoodson WH, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, Lasfar A, Carnero A, Azqueta A, Amedei A, Charles AK, Collins AR, Ward A, Salzberg AC, Colacci AM, Olsen AK, Berg A, Barclay BJ, Zhou BP, Blanco-Aparicio C, Baglole CJ, Dong C, Mondello C, Hsu CW, Naus CC, Yedjou C, Curran CS, Laird DW, Koch DC, Carlin DJ, Felsher DW, Roy D, Brown DG, Ratovitski E, Ryan EP, Corsini E, Rojas E, Moon EY, Laconi E, Marongiu F, Al-Mulla F, Chiaradonna F, Darroudi F, Martin FL, Van Schooten FJ, Goldberg GS, Wagemaker G, Nangami GN, Calaf GM, Williams GP, Wolf GT, Koppen G, Brunborg G, Lyerly HK, Krishnan H, Ab Hamid H, Yasaei H, Sone H, Kondoh H, Salem HK, Hsu HY, Park HH, Koturbash I, Miousse IR, Scovassi A, Klaunig JE, Vondráček J, Raju J, Roman J, Wise JP, Whitfield JR, Woodrick J, Christopher JA, Ochieng J, Martinez-Leal JF, Weisz J, Kravchenko J, Sun J, Prudhomme KR, Narayanan KB, Cohen-Solal KA, Moorwood K, Gonzalez L, Soucek L, Jian L, D’Abronzo LS, Lin LT, Li L, Gulliver L, McCawley LJ, Memeo L, Vermeulen L, Leyns L, Zhang L, Valverde M, Khatami M, Romano MF, Chapellier M, Williams MA, Wade M, Manjili MH, Lleonart ME, Xia M, Gonzalez Guzman MJ, Karamouzis MV, Kirsch-Volders M, Vaccari M, Kuemmerle NB, Singh N, Cruickshanks N, Kleinstreuer N, van Larebeke N, Ahmed N, Ogunkua O, Krishnakumar P, Vadgama P, Marignani PA, Ghosh PM, Ostrosky-Wegman P, Thompson PA, Dent P, Heneberg P, Darbre P, Leung PS, Nangia-Makker P, Cheng Q(S, Robey R, Al-Temaimi R, Roy R, Andrade-Vieira R, Sinha RK, Mehta R, Vento R, Di Fiore R, Ponce-Cusi R, Dornetshuber-Fleiss R, Nahta R, Castellino RC, Palorini R, Hamid RA, Langie SA, Eltom SE, Brooks SA, Ryeom S, Wise SS, Bay SN, Harris SA, Papagerakis S, Romano S, Pavanello S, Eriksson S, Forte S, Casey SC, Luanpitpong S, Lee TJ, Otsuki T, Chen T, Massfelder T, Sanderson T, Guarnieri T, Hultman T, Dormoy V, Odero-Marah V, Sabbisetti V, Maguer-Satta V, Rathmell W, Engström W, Decker WK, Bisson WH, Rojanasakul Y, Luqmani Y, Chen Z, Hu Z. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015; 36 Suppl 1:S254-S296. [PMID: 26106142 PMCID: PMC4480130 DOI: 10.1093/carcin/bgv039] [Show More Authors] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/23/2015] [Accepted: 01/31/2015] [Indexed: 02/07/2023] Open
Abstract
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
Collapse
Affiliation(s)
- William H. Goodson
- *To whom correspondence should be addressed. William H.Goodson III, California Pacific Medical Center Research Institute, 2100 Webster Street #401, San Francisco, CA 94115, USA. Tel: +41 59 233925; Fax: +41 57 761977;
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur Street, Truro, Nova Scotia B2N 1X5, Canada
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - David O. Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Pl., Rensselaer, NY 12144, USA
| | | | - Abdul Manaf Ali
- School of Biotechnology, Faculty of Agriculture Biotechnology and Food Sciences, Sultan Zainal Abidin University, Tembila Campus, 22200 Besut, Terengganu, Malaysia
| | | | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, Consejo Superior de Investigaciones Cientificas. Hospital Universitario Virgen del Rocio, Univ. de Sevilla., Avda Manuel Siurot sn. 41013 Sevilla, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31008, Spain
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amelia K. Charles
- School of Biological Sciences, University of Reading, Hopkins Building, Reading, Berkshire RG6 6UB, UK
| | | | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Anna C. Salzberg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Arthur Berg
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Carmen Blanco-Aparicio
- Spanish National Cancer Research Centre, CNIO, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Carolyn J. Baglole
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Chenfang Dong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508, USA
| | - Chiara Mondello
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Chia-Wen Hsu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892–3375, USA
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Colleen S. Curran
- Department of Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Daniel C. Koch
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Danielle J. Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560, USA
| | - Dean W. Felsher
- Department of Medicine, Oncology and Pathology, Stanford University,Stanford, CA 94305, USA
| | - Debasish Roy
- Department of Natural Science, The City University of New York at Hostos Campus, Bronx, NY 10451, USA
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523–1680, USA
| | - Edward Ratovitski
- Department of Head and Neck Surgery/Head and Neck Cancer Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523–1680, USA
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Emilio Rojas
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143–747, Korea
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Firouz Darroudi
- Human Safety and Environmental Research, Department of Health Sciences, College of North Atlantic, Doha 24449, State of Qatar
| | - Francis L. Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4AP, UK
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht 6200, The Netherlands
| | - Gary S. Goldberg
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gerard Wagemaker
- Hacettepe University, Center for Stem Cell Research and Development, Ankara 06640, Turkey
| | - Gladys N. Nangami
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Gloria M. Calaf
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, Chile
| | - Graeme P. Williams
- School of Biological Sciences, University of Reading, Reading, RG6 6UB, UK
| | - Gregory T. Wolf
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - H. Kim Lyerly
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Harini Krishnan
- Department of Molecular Biology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Hasiah Ab Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hemad Yasaei
- Department of Life Sciences, College of Health and Life Sciences and the Health and Environment Theme, Institute of Environment, Health and Societies, Brunel University Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK
| | - Hideko Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Kyoto University Hospital 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto, 606–8507, Japan
| | - Hosni K. Salem
- Department of Urology, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 11559, Egypt
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Hyun Ho Park
- School of Biotechnology, Yeungnam University, Gyeongbuk 712-749, South Korea
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A.Ivana Scovassi
- Istituto di Genetica Molecolare, CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - James E. Klaunig
- Department of Environmental Health, Indiana University, School of Public Health, Bloomington, IN 47405, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40202, USA
| | - John Pierce Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Jonathan R. Whitfield
- Mouse Models of Cancer Therapies Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Joseph A. Christopher
- Cancer Research UK. Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | | - Judith Weisz
- Departments of Obstetrics and Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Julia Kravchenko
- Department of Surgery, Pathology, Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Karine A. Cohen-Solal
- Department of Medicine/Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Laura Soucek
- Mouse Models of Cancer Therapies Group, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Le Jian
- School of Public Health, Curtin University, Bentley, WA 6102, Australia
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Leandro S. D’Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lin Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People’s Republic of China
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Lisa J. McCawley
- Department of Biomedical Engineering and Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Louis Vermeulen
- Center for Experimental Molecular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Mahara Valverde
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Marion Chapellier
- Centre De Recherche En Cancerologie,De Lyon, Lyon, U1052-UMR5286, France
| | - Marc A. Williams
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milano, Italy
| | - Masoud H. Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA 23298, USA
| | - Matilde E. Lleonart
- Institut De Recerca Hospital Vall D’Hebron, Passeig Vall d’Hebron, 119–129, 08035 Barcelona, Spain
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892–3375, USA
| | - Michael J. Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan 00921, Puerto Rico
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Institute of Molecular Medicine and Biomedical Research, 10676 Athens, Greece
| | | | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George’s Medical University, Lucknow, Uttar Pradesh 226 003, India
| | - Nichola Cruickshanks
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, RTP, NC 27709, USA
| | - Nik van Larebeke
- Analytische, Milieu en Geochemie, Vrije Universiteit Brussel, Brussel B1050, Belgium
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynecology, University of Melbourne, Victoria 3052, Australia
| | - Olugbemiga Ogunkua
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - P.K. Krishnakumar
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 3126, Saudi Arabia
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Paola A. Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paramita M. Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, México
| | - Patricia A. Thompson
- Department of Pathology, Stony Brook School of Medicine, Stony Brook University, The State University of New York, Stony Brook, NY 11794-8691, USA
| | - Paul Dent
- Departments of Neurosurgery and Biochemistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, CZ-100 00 Prague 10, Czech Republic
| | - Philippa Darbre
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6UB, England
| | - Po Sing Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, The People’s Republic of China
| | | | - Qiang (Shawn) Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - R.Brooks Robey
- White River Junction Veterans Affairs Medical Center, White River Junction, VT 05009, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Rabeah Al-Temaimi
- Human Genetics Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya 13110, Kuwait
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Rafaela Andrade-Vieira
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ranjeet K. Sinha
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Renza Vento
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Riccardo Di Fiore
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, Polyclinic Plexus, University of Palermo, Palermo 90127, Italy
| | | | - Rita Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Vienna A-1090, Austria
- Institute of Cancer Research, Department of Medicine, Medical University of Vienna, Wien 1090, Austria
| | - Rita Nahta
- Departments of Pharmacology and Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Robert C. Castellino
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Healthcare of Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO Centre of Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Roslida A. Hamid
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sakina E. Eltom
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra S. Wise
- Department of Applied Medical Sciences, University of Southern Maine, 96 Falmouth St., Portland, ME 04104, USA
| | - Sarah N. Bay
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Shelley A. Harris
- Population Health and Prevention, Research, Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, M5G 2L7, Canada
- Departments of Epidemiology and Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, M5T 3M7, Canada
| | - Silvana Papagerakis
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, PO Box 7011, VHC, Almas Allé 4, SE-756 51, Uppsala, Sweden
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Via Penninazzo 7, Viagrande (CT) 95029, Italy
| | - Stephanie C. Casey
- Stanford University Department of Medicine, Division of Oncology, Stanford, CA 94305, USA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705–717, South Korea,
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Matsushima Kurashiki, Okayama 701-0192, Japan,
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Thierry Massfelder
- INSERM U1113, team 3 ‘Cell Signalling and Communication in Kidney and Prostate Cancer’, University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada,
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale Medaglie d’ Oro, 305, 00136 Roma, Italy
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | - Valérian Dormoy
- INSERM U1113, team 3 ‘Cell Signalling and Communication in Kidney and Prostate Cancer’, University of Strasbourg, Faculté de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Valerie Odero-Marah
- Department of Biology/Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Venkata Sabbisetti
- Harvard Medical School/Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Veronique Maguer-Satta
- United States Army Institute of Public Health, Toxicology Portfolio-Health Effects Research Program, Aberdeen Proving Ground, Edgewood, MD 21010-5403, USA
| | - W.Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden
| | | | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown,WV, 26506,USA
| | - Yunus Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, PO Box 24923, Safat 13110, Kuwait and
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhiwei Hu
- Department of Surgery, The Ohio State University College of Medicine, The James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
242
|
Robey RB, Weisz J, Kuemmerle NB, Salzberg AC, Berg A, Brown DG, Kubik L, Palorini R, Al-Mulla F, Al-Temaimi R, Colacci A, Mondello C, Raju J, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Williams GP, Lowe L, Meyer J, Martin FL, Bisson WH, Chiaradonna F, Ryan EP. Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis? Carcinogenesis 2015; 36 Suppl 1:S203-S231. [PMID: 26106140 PMCID: PMC4565609 DOI: 10.1093/carcin/bgv037] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.
Collapse
Affiliation(s)
- R Brooks Robey
- Research and Development Service, Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Departments of Medicine and of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03756, USA,
| | - Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nancy B Kuemmerle
- Research and Development Service, Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Departments of Medicine and of
| | - Anna C Salzberg
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Arthur Berg
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Laura Kubik
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy, SYSBIO Center for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Graeme P Williams
- Department of Molecular Medicine, University of Reading, Reading RG6 6UB, UK
| | - Leroy Lowe
- Centre for Biophotonics, LEC, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK, Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada, and
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Francis L Martin
- Centre for Biophotonics, LEC, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy, SYSBIO Center for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| |
Collapse
|
243
|
Arrázola MS, Silva-Alvarez C, Inestrosa NC. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front Cell Neurosci 2015; 9:166. [PMID: 25999816 PMCID: PMC4419851 DOI: 10.3389/fncel.2015.00166] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/14/2015] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as “mitochondrial dynamics” is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile
| | - Carmen Silva-Alvarez
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile ; Center for Healthy Brain Aging, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes Punta Arenas, Chile ; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
244
|
Hagopian K, Tomilov AA, Kim K, Cortopassi GA, Ramsey JJ. Key glycolytic enzyme activities of skeletal muscle are decreased under fed and fasted states in mice with knocked down levels of Shc proteins. PLoS One 2015; 10:e0124204. [PMID: 25880638 PMCID: PMC4400099 DOI: 10.1371/journal.pone.0124204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/10/2015] [Indexed: 11/18/2022] Open
Abstract
Shc proteins interact with the insulin receptor, indicating a role in regulating glycolysis. To investigate this idea, the activities of key glycolytic regulatory enzymes and metabolites levels were measured in skeletal muscle from mice with low levels of Shc proteins (ShcKO) and wild-type (WT) controls. The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase were decreased in ShcKO versus WT mice under both fed and fasted conditions. Increased alanine transaminase and branched-chain amino acid transaminase activities were also observed in ShcKO mice under both fed and fasting conditions. Protein expression of glycolytic enzymes was unchanged in the ShcKO and WT mice, indicating that decreased activities were not due to changes in their transcription. Changes in metabolite levels were consistent with the observed changes in enzyme activities. In particular, the levels of fructose-2,6-bisphosphate, a potent activator of phosphofructokinase-1, were consistently decreased in the ShcKO mice. Furthermore, the levels of lactate (inhibitor of hexokinase and phosphofructokinase-1) and citrate (inhibitor of phosphofructokinase-1 and pyruvate kinase) were increased in fed and fasted ShcKO versus WT mice. Pyruvate dehydrogenase activity was lower in ShcKO versus WT mice under fed conditions, and showed inhibition under fasting conditions in both ShcKO and WT mice, with ShcKO mice showing less inhibition than the WT mice. Pyruvate dehydrogenase kinase 4 levels were unchanged under fed conditions but were lower in the ShcKO mice under fasting conditions. These studies indicate that decreased levels of Shc proteins in skeletal muscle lead to a decreased glycolytic capacity in both fed and fasted states.
Collapse
Affiliation(s)
- Kevork Hagopian
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States of America
- * E-mail:
| | - Alexey A. Tomilov
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States of America
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis, Davis, CA 95616, United States of America
| | - Gino A. Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States of America
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States of America
| |
Collapse
|
245
|
Rasola A, Bernardi P. Reprint of "The mitochondrial permeability transition pore and its adaptive responses in tumor cells". Cell Calcium 2015; 58:18-26. [PMID: 25828565 DOI: 10.1016/j.ceca.2015.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/07/2023]
Abstract
This review covers recent progress on the nature of the mitochondrial permeability transition pore (PTP) – a key effector in the mitochondrial pathways to cell death – and on the adaptive responses of tumor cells that desensitize the PTP to Ca(2+) and reactive oxygen species (ROS), thereby playing an important role in the resistance of tumors to cell death. The discovery that the PTP forms from dimers of F-ATP synthase; and the definition of the Ca(2+)- and ROS-dependent signaling pathways affecting the transition of the F-ATP synthase from an energy-conserving to an energy-dissipating device open new perspectives for therapeutic intervention in cancer cells.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, Italy.
| |
Collapse
|
246
|
Mulukutla BC, Yongky A, Grimm S, Daoutidis P, Hu WS. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One 2015; 10:e0121561. [PMID: 25806512 PMCID: PMC4373774 DOI: 10.1371/journal.pone.0121561] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/11/2015] [Indexed: 01/23/2023] Open
Abstract
Cultured mammalian cells exhibit elevated glycolysis flux and high lactate production. In the industrial bioprocesses for biotherapeutic protein production, glucose is supplemented to the culture medium to sustain continued cell growth resulting in the accumulation of lactate to high levels. In such fed-batch cultures, sometimes a metabolic shift from a state of high glycolysis flux and high lactate production to a state of low glycolysis flux and low lactate production or even lactate consumption is observed. While in other cases with very similar culture conditions, the same cell line and medium, cells continue to produce lactate. A metabolic shift to lactate consumption has been correlated to the productivity of the process. Cultures that exhibited the metabolic shift to lactate consumption had higher titers than those which didn't. However, the cues that trigger the metabolic shift to lactate consumption state (or low lactate production state) are yet to be identified. Metabolic control of cells is tightly linked to growth control through signaling pathways such as the AKT pathway. We have previously shown that the glycolysis of proliferating cells can exhibit bistability with well-segregated high flux and low flux states. Low lactate production (or lactate consumption) is possible only at a low glycolysis flux state. In this study, we use mathematical modeling to demonstrate that lactate inhibition together with AKT regulation on glycolysis enzymes can profoundly influence the bistable behavior, resulting in a complex steady-state topology. The transition from the high flux state to the low flux state can only occur in certain regions of the steady state topology, and therefore the metabolic fate of the cells depends on their metabolic trajectory encountering the region that allows such a metabolic state switch. Insights from such switch behavior present us with new means to control the metabolism of mammalian cells in fed-batch cultures.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Simon Grimm
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
247
|
Spate LD, Brown A, Redel BK, Whitworth KM, Prather RS. PS48 can replace bovine serum albumin in pig embryo culture medium, and improve in vitro embryo development by phosphorylating AKT. Mol Reprod Dev 2015; 82:315-20. [PMID: 25776657 DOI: 10.1002/mrd.22474] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/20/2015] [Indexed: 01/22/2023]
Abstract
The application of embryo-related technology is dependent on in vitro culture systems. Unfortunately, most culture media are suboptimal and result in developmentally compromised embryos. Since embryo development is partially dependent upon Warburg Effect-like metabolism, our goal was to test the response of embryos treated with compounds that are known to stimulate or enhance this Effect. One such compound is 5-(4-chloro-phenyl)-3-phenyl-pent-2-enoic acid (PS48). When added during oocyte maturation, the quality of the resultant embryos was compromised, whereas when added to the culture medium after fertilization, PS48 improved both the percentage of embryos that reach the blastocyst stage and the number of nuclei in those blastocysts. Embryonic PS48 treatment resulted in more phosphorylated v-akt murine thymoma viral oncogene homolog (AKT) in blastocyst-stage embryos as compared to the controls. Further, PS48 could replace bovine serum albumin in embryo culture medium, as demonstrated by high-quality embryos that were developmentally competent. The action of PS48 appears to be via stimulation of phosphoinositide-3 kinase and phosphorylation of AKT, which is consistent with stimulation of the Warburg Effect.
Collapse
Affiliation(s)
- Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, Missouri
| | | | | | | | | |
Collapse
|
248
|
Mims J, Bansal N, Bharadwaj MS, Chen X, Molina AJ, Tsang AW, Furdui CM. Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer. Radiat Res 2015; 183:291-304. [PMID: 25738895 DOI: 10.1667/rr13828.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While radiation therapy is commonly used for treating cancer, radiation resistance can limit long-term control of the disease. In this study, we investigated the reprogramming of the energy metabolism in radiosensitive and radioresistant head and neck squamous cell carcinomas (HNSCC) using a preclinical matched model of radiation resistance. Our investigation found that radioresistant rSCC-61 cells: 1. They display increased glucose uptake and decreased fatty acid uptake; 2. They deviate from the classical Warburg effect by diverting the glycolytic flux into the pentose phosphate pathway; 3. They are more dependent on glucose than glutamine metabolism to support growth; 4. They have decreased mitochondrial oxidative phosphorylation; 5. They have enhanced fatty acid biosynthesis by increasing the expression of fatty acid synthase; and 6. They utilize endogenous fatty acids to meet the energy demands for proliferation. Inhibition of fatty acid synthase with orlistat or FASN siRNA resulted in increased cytotoxicity and sensitivity to radiation in rSCC-61 cells. These results demonstrate the potential of combination therapy using radiation and orlistat or other inhibitors of lipid and energy metabolism for treating radiation resistance in HNSCC.
Collapse
Affiliation(s)
- Jade Mims
- Sections on a Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | | | |
Collapse
|
249
|
Lu W, Zhang Y, McDonald DO, Jing H, Carroll B, Robertson N, Zhang Q, Griffin H, Sanderson S, Lakey JH, Morgan NV, Reynard LN, Zheng L, Murdock HM, Turvey SE, Hackett SJ, Prestidge T, Hall JM, Cant AJ, Matthews HF, Koref MFS, Simon AK, Korolchuk VI, Lenardo MJ, Hambleton S, Su HC. Dual proteolytic pathways govern glycolysis and immune competence. Cell 2015; 159:1578-90. [PMID: 25525876 DOI: 10.1016/j.cell.2014.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/17/2014] [Accepted: 11/30/2014] [Indexed: 11/26/2022]
Abstract
Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1β. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health.
Collapse
Affiliation(s)
- Wei Lu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Zhang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - David O McDonald
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Huie Jing
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernadette Carroll
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nic Robertson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Qian Zhang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Griffin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Sharon Sanderson
- NIHR BRC Translational Immunology Lab, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jeremy H Lakey
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Neil V Morgan
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Louise N Reynard
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heardley M Murdock
- NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stuart E Turvey
- Department of Pediatrics, Child & Family Research Institute and BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Scott J Hackett
- Paediatric Immunology Department, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK
| | - Tim Prestidge
- Blood and Cancer Center, Starship Children's Hospital, Auckland 1142, New Zealand
| | - Julie M Hall
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Andrew J Cant
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen F Matthews
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Anna Katharina Simon
- NIHR BRC Translational Immunology Lab, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; MRC Unit Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Viktor I Korolchuk
- Institute of Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Michael J Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
250
|
Guzman G, Chennuri R, Chan A, Rea B, Quintana A, Patel R, Xu PZ, Xie H, Hay N. Evidence for heightened hexokinase II immunoexpression in hepatocyte dysplasia and hepatocellular carcinoma. Dig Dis Sci 2015; 60:420-6. [PMID: 25381201 PMCID: PMC4323170 DOI: 10.1007/s10620-014-3364-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Normal hepatocytes exhibit low-affinity hexokinase (glucokinase [HKIV]), but during oncogenesis, there is a switch from HKIV to HKII expression. The aims of this study were to compare the immunoexpression of HKII in non-dysplastic cirrhosis (NDC), liver cell change/dysplasia in cirrhosis (LCD), HCC, and normal liver control tissues, and to correlate HKII expression with clinical and histopathological parameters. DESIGN Immunohistochemistry was performed on a liver cancer progression tissue array consisting of specimens from explants with cirrhosis, including 45 tissue samples with HCC, 108 without HCC, 143 with LCD, and 8 normal liver control tissues. HKII expression was quantified as positive pixel counts/square millimeter (ppc/mm(2)) by image analysis. RESULTS There was a stepwise increase in HKII level from normal liver tissue to NDC, to LCD, and to HCC (p = 0.001). HKII levels were significantly higher in areas of LCD versus NDC (p ≤ 0.001), and in LCD and HCC versus NDC (p = 0.007). HKII levels were similar in LCD and HCC (p = 0.124). HKII levels were higher in grade 2-4 versus grade 1 HCCs (p = 0.044), and in pleomorphic versus non-pleomorphic HCC variants (p = 0.041). Higher levels of HKII expression in LCD and HCC versus NDC and in higher tumor grade remained significant in multivariate analysis. CONCLUSIONS Higher levels of HKII immunoexpression in LDC and HCC compared with NDC suggest that upregulation of HKII occurs during the process of hepatocarcinogenesis in humans. In HCC, higher levels of HKII are associated with more aggressive histological features.
Collapse
Affiliation(s)
- Grace Guzman
- Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science System, 840 South Wood Street Room 130M/C 847, Chicago, IL 60612, USA
| | - Rohini Chennuri
- Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science System, 840 South Wood Street Room 130M/C 847, Chicago, IL 60612, USA
| | - Alexander Chan
- Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science System, 840 South Wood Street Room 130M/C 847, Chicago, IL 60612, USA
| | - Bryan Rea
- Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science System, 840 South Wood Street Room 130M/C 847, Chicago, IL 60612, USA
| | - Ada Quintana
- Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science System, 840 South Wood Street Room 130M/C 847, Chicago, IL 60612, USA
| | - Roshan Patel
- Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science System, 840 South Wood Street Room 130M/C 847, Chicago, IL 60612, USA
| | - Pei-Zhang Xu
- Biochemistry and Molecular Genetics, College of Medicine, University of Illinois Hospital and Health Science System, Chicago, IL 60612, USA
| | - Hui Xie
- Epidemiology and Biostatistics, School of Public Health, University of Illinois Hospital and Health Science System, Chicago, IL 60612, USA
| | - Nissim Hay
- Biochemistry and Molecular Genetics, College of Medicine, University of Illinois Hospital and Health Science System, Chicago, IL 60612, USA
| |
Collapse
|