201
|
Abstract
PURPOSE OF REVIEW Adipose tissue is closely associated with systemic sclerosis (SSc)-pathology, both anatomically and functionally. This review focuses on local effects of adipocytes in the context of adipose to mesenchymal transdifferentiation (AMT), effects of the adipose stromal vascular fraction on SSc pathogenesis and systemic effects of adipose tissue secretome. RECENT FINDINGS Novel populations of fibroblasts evolving from adipose tissue were identified- for example COL11+ cancer-associated fibroblasts differentiated from adipose-derived stromal cells. Lipofibroblasts in human lungs were described using nonconventional markers that allow more effective population identification. These findings could make an important contribution to further clarification of adipocyte involvement in SSc.Recent studies confirmed that lipolysis contributes to fibrogenesis through AMT differentiation and release of fatty acids (FA). Unbalanced metabolism of FA has been reported in several studies in SSc. Other adipose tissue secretome molecules (e.g. lysophosphatidic acid), novel adipokines and extracellular vesicles from adipose mesenchymal stem cells make important contributions to the pro-/antifibrotic balance. SUMMARY There is a growing evidence of important contribution of adipose tissue and its secretome to SSc pathogenesis. Novel techniques such as single-cell RNA sequencing (scRNAseq) and metabolomics, albeit challenging to use in adipose tissue, will provide further evidence.
Collapse
|
202
|
Liu J, Li F, Liu B, Yao Z, Li L, Liu G, Peng L, Wang Y, Huang J. Adipose-derived mesenchymal stem cell exosomes inhibit transforming growth factor-β1-induced collagen synthesis in oral mucosal fibroblasts. Exp Ther Med 2021; 22:1419. [PMID: 34707701 PMCID: PMC8543178 DOI: 10.3892/etm.2021.10854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Oral submucosal fibrosis (OSF) is a potentially malignant oral disorder that requires the further development of advanced treatment strategies. TGF-β1 has been reported to be the main trigger for the increased collagen production and reduced activity of matrix degradation pathways in OSF. Exosomes are key mediators of paracrine signaling that have been proposed for direct use as therapeutic agents for tissue repair and regeneration. The present study aimed to investigate the effects of human adipose-derived mesenchymal stem cell (ADSC) exosomes (ADSC-Exos) on TGF-β1-treated oral fibroblasts in vitro and to unravel the potential underlying mechanism of action. Oral mucosal fibroblasts were obtained from the buccal tissues of patients without OSF during extraction of the third molar. ADSCs were obtained from three healthy female individuals during liposuction procedures. ADSC-Exos were isolated by ultracentrifugation and identified by electron microscopy, nanoparticle tracking and western blotting. Immunofluorescence and immunocytochemistry staining were performed to measure the expression levels of vimentin and α-smooth muscle actin in the fibroblasts. Reverse transcription-quantitative PCR and western blotting were used to determine the expression levels of mRNAs and proteins associated with collagen production. The p38 MAPK activator anisomycin was used to identify the underlying mechanisms of the effects of ADSC-Exos on TGF-β1-induced collagen synthesis in oral mucosal fibroblasts. The results of the present study revealed that ADSC-Exos exhibited a cup- or sphere-shaped morphology, with a mean diameter of 58.01±16.17 nm. ADSC-Exos were also found to be positive for CD63 and tumor susceptibility 101 expression. ADSC-Exos treatment reversed the TGF-β1-induced upregulation of collagen I and III protein expression. In addition, in the presence of TGF-β1, the expression levels of collagen type I α 1 chain and collagen type III α 1 chain mRNA were downregulated, whilst the expression levels of matrix metalloproteinase (MMP)1 and MMP3 were upregulated following ADSC-Exos treatment. The TGF-β1-induced upregulation in the phosphorylation of p38 in addition to the increased protein expression of collagens I and III were also reversed in fibroblasts following ADSC-Exos treatment. However, anisomycin treatment alleviated these ADSC-Exos-induced changes. In conclusion, findings from the present study suggest that ADSC-Exos may represent a promising strategy for OSF treatment by targeting the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Junjie Liu
- Hunan Key Laboratory of Oral Health Research, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China.,Hunan 3D Printing Engineering Research Center, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Fuxingzi Li
- Department of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Binjie Liu
- Hunan Key Laboratory of Oral Health Research, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Zhigang Yao
- Hunan Key Laboratory of Oral Health Research, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Long Li
- Hunan Key Laboratory of Oral Health Research, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Gui Liu
- Hunan Key Laboratory of Oral Health Research, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China.,Hunan 3D Printing Engineering Research Center, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Lei Peng
- Department of Urban Palliative Home Care, Grey Nuns Community Hospital, Edmonton, AB T5J3E4, Canada
| | - Yuxin Wang
- Department of Stomatology, Changsha Central Hospital, Changsha, Hunan 410018, P.R. China
| | - Junhui Huang
- Hunan Key Laboratory of Oral Health Research, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China.,Hunan 3D Printing Engineering Research Center, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
203
|
Skeletal Muscle Regeneration by the Exosomes of Adipose Tissue-Derived Mesenchymal Stem Cells. Curr Issues Mol Biol 2021; 43:1473-1488. [PMID: 34698065 PMCID: PMC8929094 DOI: 10.3390/cimb43030104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Profound skeletal muscle loss can lead to severe disability and cosmetic deformities. Mesenchymal stem cell (MSC)-derived exosomes have shown potential as an effective therapeutic tool for tissue regeneration. This study aimed to determine the regenerative capacity of MSC-derived exosomes for skeletal muscle regeneration. Exosomes were isolated from human adipose tissue-derived MSCs (AD-MSCs). The effects of MSC-derived exosomes on satellite cells were investigated using cell viability, relevant genes, and protein analyses. Moreover, NOD-SCID mice were used and randomly assigned to the healthy control (n = 4), muscle defect (n = 6), and muscle defect + exosome (n = 6) groups. Muscle defects were created using a biopsy punch on the quadriceps of the hind limb. Four weeks after the surgery, the quadriceps muscles were harvested, weighed, and histologically analyzed. MSC-derived exosome treatment increased the proliferation and expression of myocyte-related genes, and immunofluorescence analysis for myogenin revealed a similar trend. Histologically, MSC-derived exosome-treated mice showed relatively preserved shapes and sizes of the muscle bundles. Immunohistochemical staining revealed greater expression of myogenin and myoblast determination protein 1 in the MSC-derived exosome-treated group. These results indicate that exosomes extracted from AD-MSCs have the therapeutic potential for skeletal muscle regeneration.
Collapse
|
204
|
Geng Y, Yang J, Li S, Chen M. Chyloid Fat Carried Adipose-Derived Mesenchymal Stem Cells Accelerate Wound Healing Via Promoting Angiogenesis. Ann Plast Surg 2021; 87:472-477. [PMID: 34176892 DOI: 10.1097/sap.0000000000002778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Impaired wound healing is responsible for significant morbidity and mortality worldwide. It is necessary to find a stable, efficient, and safe method to promote soft tissue wound healing. Fat grafting has become increasingly popular in contouring procedures. However, more recently, there has been an emphasis on its regenerative potential. In this study, we established the wound healing model using nude mice. Hematoxylin and eosin and Masson stainings were performed to assess the effect of chyloid fat on the histology of wound healing. A laser Doppler perfusion imager was used to evaluate the blood perfusion of wounds. Immunohistochemistry was carried out to detect the expression of CD31 in wound tissues. The results suggested that after treatment with granule fat or chyloid fat, wound healing was accelerated and blood perfusion was promoted. In addition, granule fat or chyloid fat treatment promoted the angiogenesis of the wound. In addition, we evaluated the amount of adipose-derived mesenchymal stem cells in chyloid fat and granule fat. It was found that chyloid fat contained more adipose-derived mesenchymal stem cells than granule fat did. In conclusion, we proved that chyloid fat could significantly accelerate the wound healing process via promoting angiogenesis. The adipose-derived mesenchymal stem cell plays a critical role in this effect of chyloid fat.
Collapse
Affiliation(s)
| | - Jinxiu Yang
- Department of Burn and Plastic Surgery, The Fourth Medical Centre, Chinese People's Liberation Army of China General Hospital, Beijing, People's Republic of China
| | | | | |
Collapse
|
205
|
Stem Cell-Derived Nanovesicles: A Novel Cell-Free Therapy for Wound Healing. Stem Cells Int 2021; 2021:1285087. [PMID: 34567129 PMCID: PMC8457964 DOI: 10.1155/2021/1285087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Wound healing and regeneration are a dynamic and complex process that requires a collaborative effort between growth factors, epidermal cells, dermal cells, extracellular matrix, and vessels local to the wound area. Mesenchymal stem cells participate in the recruitment site, mainly by releasing secretory factors and matrix proteins to promote wound healing. Stem cell-derived nanovesicles (CDNs), including microvesicles, exosomes, and exosome mimetics, contain most of the biologically active substances of their parent cells and have similar effects. CDNs can shuttle various proteins, messenger RNAs, and microRNAs to regulate the activity of receptor cells, and they play important roles in skin wound healing. This article reviews recent research progress on CDNs for wound repair. We summarize current knowledge on how CDNs regulate immunity, fibroblast activity, angiogenesis, and scar formation in the wound healing process. This review can help researchers explore new treatment strategies to enhance the therapeutic efficacy of CDNs, which have a promising future as naturally cell-free therapies.
Collapse
|
206
|
Bray ER, Oropallo AR, Grande DA, Kirsner RS, Badiavas EV. Extracellular Vesicles as Therapeutic Tools for the Treatment of Chronic Wounds. Pharmaceutics 2021; 13:1543. [PMID: 34683836 PMCID: PMC8541217 DOI: 10.3390/pharmaceutics13101543] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds develop when the orderly process of cutaneous wound healing is delayed or disrupted. Development of a chronic wound is associated with significant morbidity and financial burden to the individual and health-care system. Therefore, new therapeutic modalities are needed to address this serious condition. Mesenchymal stem cells (MSCs) promote skin repair, but their clinical use has been limited due to technical challenges. Extracellular vesicles (EVs) are particles released by cells that carry bioactive molecules (lipids, proteins, and nucleic acids) and regulate intercellular communication. EVs (exosomes, microvesicles, and apoptotic bodies) mediate key therapeutic effects of MSCs. In this review we examine the experimental data establishing a role for EVs in wound healing. Then, we explore techniques for designing EVs to function as a targeted drug delivery system and how EVs can be incorporated into biomaterials to produce a personalized wound dressing. Finally, we discuss the status of clinically deploying EVs as a therapeutic agent in wound care.
Collapse
Affiliation(s)
- Eric R. Bray
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alisha R. Oropallo
- Comprehensive Wound Healing Center and Hyperbarics, Department of Vascular Surgery, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell Health, Hempstead, NY 11549, USA; (A.R.O.); (D.A.G.)
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Daniel A. Grande
- Comprehensive Wound Healing Center and Hyperbarics, Department of Vascular Surgery, Donald and Barbara Zucker School of Medicine, Hofstra/Northwell Health, Hempstead, NY 11549, USA; (A.R.O.); (D.A.G.)
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Department of Orthopedic Surgery, Long Island Jewish Medical Center, Northwell Health, New Hyde Park, NY 11040, USA
| | - Robert S. Kirsner
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
| | - Evangelos V. Badiavas
- Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.R.B.); (R.S.K.)
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
207
|
Li Y, Xiao Q, Tang J, Xiong L, Li L. Extracellular Vesicles: Emerging Therapeutics in Cutaneous Lesions. Int J Nanomedicine 2021; 16:6183-6202. [PMID: 34522095 PMCID: PMC8434831 DOI: 10.2147/ijn.s322356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs), as nanoscale membranous vesicles containing DNAs, RNAs, lipids and proteins, have emerged as promising diagnostic and therapeutic agents for skin diseases. Here, we summarize the basic physiology of the skin and the biological characteristic of EVs. Further, we describe the applications of EVs in the treatment of dermatological conditions such as skin infection, inflammatory skin diseases, skin repair and rejuvenation and skin cancer. In particular, plant-derived EVs and clinical trials are discussed. In addition, challenges and perspectives related to the preclinical and clinical applications of EVs are highlighted.
Collapse
Affiliation(s)
- Yu Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China
| | - Qing Xiao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China
| | - Jie Tang
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| |
Collapse
|
208
|
Abdul Kareem N, Aijaz A, Jeschke MG. Stem Cell Therapy for Burns: Story so Far. Biologics 2021; 15:379-397. [PMID: 34511880 PMCID: PMC8418374 DOI: 10.2147/btt.s259124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Burn injuries affect approximately 11 million people annually, with fatalities amounting up to 180,000. Burn injuries constitute a global health issue associated with high morbidity and mortality. Recent years have seen advancements in regenerative medicine for burn wound healing encompassing stem cells and stem cell-derived products such as exosomes and conditioned media with promising results compared to current treatment approaches. Sources of stem cells used for treatment vary ranging from hair follicle stem cells, embryonic stem cells, umbilical cord stem cells, to mesenchymal stem cells, such as adipose-derived mesenchymal stem cells, bone marrow-derived mesenchymal stem cells, and even stem cells harvested from discarded burn tissue. Stem cells utilize various pathways for wound healing, such as PI3/AKT pathway, WNT-β catenin pathway, TGF-β pathway, Notch and Hedgehog signaling pathway. Due to the paracrine signaling mechanism of stem cells, exosomes and conditioned media derived from stem cells have also been utilized in burn wound therapy. As exosomes and conditioned media are cell-free therapy and contain various biomolecules that facilitate wound healing, they are gaining popularity as an alternative treatment strategy with significant improvement in outcomes. The treatment is provided either as direct injections or embedded in a natural/artificial scaffold. This paper reviews in detail the different sources of stem cells, stem cell-derived products, their efficacy in burn wound repair, associated signaling pathways and modes of delivery for wound healing.
Collapse
Affiliation(s)
| | - Ayesha Aijaz
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
209
|
Abstract
Scar is a common way of healing after tissue injury. The poor scar healing will not only cause dysfunction of tissues and organs but also affect the appearance of the patients’ body surface, which causes the pressure of life and spirit to the patients. However, the formation of scar tissue is an extremely complex process and its mechanism is not fully understood. At present, there is no treatment method to eliminate scars completely. Fibroblasts are the most abundant cells in the dermis, which have the ability to synthesize and remodel extracellular matrix (ECM). Myofibroblasts actively participate in the wound healing process and influence the outcome. Therefore, both of them play important roles in wound healing and scar formation. Adipose tissue-derived stem cells (ADSCs) are pluripotent stem cells that can act on target cells by paracrine. Adipose tissue stem cell-derived exosomes (ADSC-Exos) are important secretory substances of ADSCs. They are nanomembrane vesicles that can transport a variety of cellular components and fuse with target cells. In this review, we will discuss the effects of ADSCs and ADSC-Exos on the behavior of fibroblasts and myofibroblasts during wound healing and scarring stage in combination with recent studies.
Collapse
|
210
|
Girón J, Maurmann N, Pranke P. The role of stem cell-derived exosomes in the repair of cutaneous and bone tissue. J Cell Biochem 2021; 123:183-201. [PMID: 34514621 DOI: 10.1002/jcb.30144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Exosomes are extracellular vesicles secreted by various cell types, which play important roles in physiological processes. In particular, stem cell-derived exosomes have been shown to play crucial functions in intercellular communication during the tissue healing process. This review summarizes the effects of exosomes derived from different stem cell sources on the repair of cutaneous and bone tissue, focusing on the different pathways that could be involved in the regeneration process. The biogenesis, isolation, and content of exosomes have also been discussed. The effectiveness of exosomes is broadly demonstrated for skin and bone regeneration in animal models, supporting the basis for clinical translation of exosomes as a ready-to-use cell-free therapeutic for skin and bone regeneration.
Collapse
Affiliation(s)
- Juliana Girón
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natasha Maurmann
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Pranke
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Stem Cell Research Institute, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
211
|
Yuan R, Dai X, Li Y, Li C, Liu L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol Med Rep 2021; 24:758. [PMID: 34476508 PMCID: PMC8436211 DOI: 10.3892/mmr.2021.12398] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Pathological scars mainly refer to hypertrophic scars and keloids, and have a high incidence. Moreover, these scars seriously affect the patient's appearance and are associated with significant pain. The present study aimed to investigate the inhibitory effect of microRNA (miR)-29a from human adipose-derived mesenchymal stem cells (hADSCs) exosomes on scar formation. Firstly, the expression of miR-29a in thermal skin tissues of mice and human hypertrophic scar fibroblasts (HSFBs) was detected via reverse transcription-quantitative PCR. Exosomes derived from miR-29a-modified hADSCs were extracted and the influence of miR-29a-modified hADSCs-exo on the proliferation and function of HSFBs was determined. Lastly, the effect of miR-29a-modified hADSCs-exo on scar formation was determined using a thermal mouse model. The results demonstrated that miR-29a was downregulated in scar tissues after scalding and in HSFBs. After treating HSFBs with miR-29a-modified hADSC exosomes, miR-29a-overexpressing hADSC exosomes inhibited the proliferation and migration of HSFBs. Moreover, it was found that TGF-β2 was the target of miR-29a, and that hADSC exosome-derived miR-29a inhibited the fibrosis of HSFBs and scar hyperplasia after scalding in mice by targeting the TGF-β2/Smad3 signaling pathway. In summary, the current data indicated that miR-29a-modified hADSC exosome therapy can decrease scar formation by inhibiting the TGF-β2/Smad3 signaling pathway via its derived exogenous miR-29a, and this may be useful for the future treatment of pathological scars by providing a potential molecular basis.
Collapse
Affiliation(s)
- Ruihong Yuan
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiaoming Dai
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yisong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chunshan Li
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liu Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
212
|
Ajit A, Ambika Gopalankutty I. Adipose-derived stem cell secretome as a cell-free product for cutaneous wound healing. 3 Biotech 2021; 11:413. [PMID: 34476171 DOI: 10.1007/s13205-021-02958-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds continue to be a substantial public health concern contributing to both humanistic and economic burden worldwide. The magnitude of chronic wounds as a global healthcare crisis is likely to increase due to the rising geriatric and diabetic population, demanding novel therapeutic approaches that can restore the functionality of the skin at a reduced cost. Stem cell therapy has been widely acknowledged as a promising strategy for the repair of damaged tissues due to its regenerative potential. This potential attributes to a concoction of bioactive molecules secreted by the stem cells, collectively called the secretome, that mediates paracrine and autocrine functions. Among the stem cell types, adipose tissue-derived mesenchymal stem cells (ADMSCs) have been receiving increased attention for its ease of isolation, abundance in tissue and notable impact on improving chronic wound healing. Owing to the reported advantages of cell-free preparations like the secretome over cellular products, developing secretome as a ready-to-use product for wound healing applications seems promising. In this review, we discuss the functional benefits of adipose stem cell secretome in wound healing, the techniques to enrich the secretome and the recommendations for the scale-up and commercialization of secretome products.
Collapse
Affiliation(s)
- Amita Ajit
- Scientific Consultant and Life Member, Kerala Academy of Sciences, Sasthra Bhavan, Pattom, Thiruvananthapuram, 695004 Kerala India
| | | |
Collapse
|
213
|
Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals (Basel) 2021; 14:ph14080811. [PMID: 34451909 PMCID: PMC8400229 DOI: 10.3390/ph14080811] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Each year, millions of individuals suffer from a non-healing wound, abnormal scarring, or injuries accompanied by an infection. For these cases, scientists are searching for new therapeutic interventions, from which one of the most promising is the use of extracellular vesicles (EVs). Naturally, EV-based signaling takes part in all four wound healing phases: hemostasis, inflammation, proliferation, and remodeling. Such an extensive involvement of EVs suggests exploiting their action to modulate the impaired healing phase. Furthermore, next to their natural wound healing capacity, EVs can be engineered for better defined pharmaceutical purposes, such as carrying specific cargo or targeting specific destinations by labelling them with certain surface proteins. This review aims to promote scientific awareness in basic and translational research of EVs by summarizing the current knowledge about their natural role in each stage of skin repair and the most recent findings in application areas, such as wound healing, skin regeneration, and treatment of dermal diseases, including the stem cell-derived, plant-derived, and engineered EVs.
Collapse
|
214
|
Zhao B, Zhang X, Zhang Y, Lu Y, Zhang W, Lu S, Fu Y, Zhou Y, Zhang J, Zhang J. Human Exosomes Accelerate Cutaneous Wound Healing by Promoting Collagen Synthesis in a Diabetic Mice Model. Stem Cells Dev 2021; 30:922-933. [PMID: 34167333 DOI: 10.1089/scd.2021.0100] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic wounds including diabetic foot ulcers are clinical emergencies that need careful management. Exosomes from human adipose-derived mesenchymal stem cells (hADSCs-Ex) are a new promising cell-free therapy for the regeneration of dermal wounds. We established a delayed wound healing model using diabetic female mice. A 1.5 cm2 full-thickness cutaneous wound was made ventrally in 6-week-old db/db mice. After treatment with phosphate-buffered saline, recombinant human epidermal growth factor, hADSCs-CM, or hADSCs-Ex three times a day for 2 weeks, we measured wound healing closure rates and performed histological analysis. Human dermal fibroblasts (WS1) were evaluated by PKH26-Exo co-localization test, CCK-8 test, cell scratch test, and the transwell test, while the expression of matrix metalloproteinase-1 (MMP1), MMP3, Collagen I, and Collagen III were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Wound closure and re-epithelialization were accelerated by hADSCs-Ex. Besides, hADSCs-Ex enhanced skin collagen production, angiogenesis, cell proliferation, inhibited apoptosis, promoted skin barrier function repair, and reduced inflammation in skin lesions. Furthermore, negative regulation of MMP1 and MMP3 enhanced collagen synthesis wound healing-promoting effects of hADSCs-Ex. hADSCs-Ex treatment for diabetic wounds provided a novel cell-free therapeutic strategy.
Collapse
Affiliation(s)
- Bo Zhao
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology Tongji University, Shanghai, People's Republic of China
| | - Xingliao Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuanlin Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yijun Lu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wanting Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology Tongji University, Shanghai, People's Republic of China
| | - Shoutao Lu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology Tongji University, Shanghai, People's Republic of China
| | - Yang Zhou
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jun Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology Tongji University, Shanghai, People's Republic of China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
215
|
Lim KM, Dayem AA, Choi Y, Lee Y, An J, Gil M, Lee S, Kwak HJ, Vellingirl B, Shin HJ, Cho SG. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel) 2021; 10:antiox10081292. [PMID: 34439540 PMCID: PMC8389225 DOI: 10.3390/antiox10081292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are paracrine factors that mediate stem cell therapeutics. We aimed at evaluating the possible therapeutic and esthetic applications of EVs prepared from the waste human facial tissue-derived orbicularis oculi muscle stem cells (OOM-SCs). OOM-SCs were isolated from the ocular tissues (from elders and youngsters) after upper eyelid blepharoplasty or epiblepharon surgeries. EVs were prepared from the OOM-SCs (OOM-SC-EVs) and their three-dimensional spheroids. OOM-SCs showed a spindle-like morphology with trilineage differentiation capacity, positive expression of CD105, CD 90, and CD73, and negative expression of CD45 and CD34, and their stem cell properties were compared with other adult mesenchymal stem cells. OOM-SC-EVs showed a high inhibitory effect on melanin synthesis in B16F10 cells by blocking tyrosinase activity. OOM-SC-EVs treatment led to a significant attenuation of senescence-associated changes, a decrease in reactive oxygen species generation, and an upregulation of antioxidant genes. We demonstrated the regeneration activity of OOM-SC-EVs in in vitro wound healing of normal human dermal fibroblasts and upregulation of anti-wrinkle-related genes and confirmed the therapeutic potential of OOM-SC-EVs in the healing of the in vivo wound model. Our study provides promising therapeutic and esthetic applications of OOM-SC-EVs, which can be obtained from the ocular surgery-derived waste human facial tissues.
Collapse
Affiliation(s)
- Kyung Min Lim
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yujin Choi
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yoonjoo Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Jongyub An
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Minchan Gil
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Soobin Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Hee Jeong Kwak
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Balachandar Vellingirl
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India;
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (H.J.S.); (S.-G.C.)
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
- Correspondence: (H.J.S.); (S.-G.C.)
| |
Collapse
|
216
|
Poudel BK, Robert MC, Simpson FC, Malhotra K, Jacques L, LaBarre P, Griffith M. In situ Tissue Regeneration in the Cornea from Bench to Bedside. Cells Tissues Organs 2021; 211:506-526. [PMID: 34380144 DOI: 10.1159/000514690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Corneal blindness accounts for 5.1% of visual deficiency and is the fourth leading cause of blindness globally. An additional 1.5-2 million people develop corneal blindness each year, including many children born with or who later develop corneal infections. Over 90% of corneal blind people globally live in low- and middle-income regions (LMIRs), where corneal ulcers are approximately 10-fold higher compared to high-income countries. While corneal transplantation is an effective option for patients in high-income countries, there is a considerable global shortage of corneal graft tissue and limited corneal transplant programs in many LMIRs. In situ tissue regeneration aims to restore diseases or damaged tissues by inducing organ regeneration. This can be achieved in the cornea using biomaterials based on extracellular matrix (ECM) components like collagen, hyaluronic acid, and silk. Solid corneal implants based on recombinant human collagen type III were successfully implanted into patients resulting in regeneration of the corneal epithelium, stroma, and sub-basal nerve plexus. As ECM crosslinking and manufacturing methods improve, the focus of biomaterial development has shifted to injectable, in situ gelling formulations. Collagen, collagen-mimetic, and gelatin-based in situ gelling formulas have shown the ability to repair corneal wounds, surgical incisions, and perforations in in-vivo models. Biomaterial approaches may not be sufficient to treat inflammatory conditions, so other cell-free therapies such as treatment with tolerogenic exosomes and extracellular vesicles may improve treatment outcomes. Overall, many of the technologies described here show promise as future medical devices or combination products with cell or drug-based therapies. In situ tissue regeneration, particularly with liquid formulas, offers the ability to triage and treat corneal injuries and disease with a single regenerative solution, providing alternatives to organ transplantation and improving patient outcomes.
Collapse
Affiliation(s)
- Bijay K Poudel
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Marie-Claude Robert
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Fiona C Simpson
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| | - Kamal Malhotra
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Ludovic Jacques
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - May Griffith
- Département d'Ophtalmologie, Université de Montréal, Montréal, Québec, Canada.,Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département d'Opthalmologie, Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Institut du Génie Biomédicale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
217
|
Zeng QL, Liu DW. Mesenchymal stem cell-derived exosomes: An emerging therapeutic strategy for normal and chronic wound healing. World J Clin Cases 2021; 9:6218-6233. [PMID: 34434989 PMCID: PMC8362559 DOI: 10.12998/wjcc.v9.i22.6218] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Skin wound healing is a complex biological process. Mesenchymal stem cells (MSCs) play an important role in skin wound repair due to their multidirectional differentiation potential, hematopoietic support, promotion of stem cell implantation, self-replication, and immune regulation. Exosomes are vesicles with diameters of 40-100 nm that contain nucleic acids, proteins, and lipids and often act as mediators of cell-to-cell communication. Currently, many clinical scientists have carried out cell-free therapy for skin wounds, especially chronic wounds, using exosomes derived from MSCs. This review focuses on the latest research progress on the mechanisms of action associated with the treatment of wound healing with exosomes derived from different MSCs, the latest research progress on the combination of exosomes and other biological or nonbiological factors for the treatment of chronic skin wounds, and the new prospects and development goals of cell-free therapy.
Collapse
Affiliation(s)
- Qin-Lu Zeng
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - De-Wu Liu
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
218
|
Hamdan Y, Mazini L, Malka G. Exosomes and Micro-RNAs in Aging Process. Biomedicines 2021; 9:968. [PMID: 34440172 PMCID: PMC8393989 DOI: 10.3390/biomedicines9080968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are the main actors of intercellular communications and have gained great interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-coding RNA, especially micro-RNAs (mi-RNAs). Exosomes' cargo is released in the neighboring microenvironment but is also expected to act on distant tissues or organs. Different biological processes such as cell development, growth and repair, senescence, migration, immunomodulation, and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs. Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate tissue functionality and regeneration by targeting different tissues and involving different pathways but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related to the biological fluids that are reported differently between young and old individuals. However, their underlying mechanisms modulating cell senescence and aging are still not fully understood, and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes' cargo. Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA regulation in the different aging processes.
Collapse
Affiliation(s)
| | - Loubna Mazini
- Institute of Biological Sciences, Université Mohammed VI Polytechnique, Lot 660 Hay Moulay Rachid, Ben Guerir 3150, Morocco; (Y.H.); (G.M.)
| | | |
Collapse
|
219
|
Zhang Y, Pan Y, Liu Y, Li X, Tang L, Duan M, Li J, Zhang G. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res Ther 2021; 12:434. [PMID: 34344478 PMCID: PMC8336384 DOI: 10.1186/s13287-021-02517-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Scar formation is a common consequence of skin wound healing, and no effective treatment exists. Umbilical cord blood mesenchymal stem cells (UCB-MSCs) can improve wound healing; however, the role of UCB-MSCs remains unclear and whether they can ameliorate scar formation has not been fully elucidated. METHODS To determine the function of UCB-MSCs, we examined and compared the therapeutic effects of UCB-MSCs and UCB-MSC-derived exosomes (UCB-MSC-exo) on skin healing in rats. Moreover, UCB-MSC-exo-specific miRNAs were identified and their effects in inhibiting the human dermal fibroblast (HDF) differentiation into myofibroblasts were investigated. RESULTS Both UCB-MSCs and UCB-MSC-exo accelerated wound closure; reduced scar formation; improved the regeneration of skin appendages, nerves, and vessels; and regulated the natural distribution of collagen fibers in wound healing. Additionally, UCB-MSC-exo suppressed the excessive formation of myofibroblasts and collagen I and increased the proliferation and migration of skin cells in vivo and in vitro. Functional analysis showed that UCB-MSC-derived miRNAs were closely related to the transforming growth factor-β (TGF-β) signaling pathway, which could induce myofibroblast differentiation. We identified abundant miRNAs that were highly expressed in UCB-MSC-exo. miR-21-5p and miR-125b-5p were predicted to contribute to TGF-β receptor type II (TGFBR2) and TGF-β receptor type I (TGFBR1) inhibition, respectively. Using miRNA mimics, we found that miR-21-5p and miR-125b-5p were critical for anti-myofibroblast differentiation in the TGF-β1-induced HDF. CONCLUSION The effect of UCB-MSCs in stimulating regenerative wound healing might be achieved through exosomes, which can be, in part, through miR-21-5p- and miR-125b-5p-mediated TGF-β receptor inhibition, suggesting that UCB-MSC-exo might represent a novel strategy to prevent scar formation during wound healing.
Collapse
Affiliation(s)
- Yan Zhang
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Yingjin Pan
- Center of Prosthodontics and Oral Implantology, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, 528000, China
| | - Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Xiheng Li
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Liang Tang
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Mengna Duan
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China.
| | - Jiang Li
- Hospital of Stomatology, Jilin University, 1500 Qinghua Rd., Changchun, Jilin, 130021, China.
- Affiliated Stomatology Hospital of Guangzhou Medical University, 39 Huangsha Ave., Guangzhou, 510080, Guangdong, China.
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 1345 Pudong Rd., Changchun, Jilin, 130600, China.
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (CAAS), 4899 Juye St., Changchun, Jilin, 130112, China.
| |
Collapse
|
220
|
Li Y, Yu Y, Xie Z, Ye X, Liu X, Xu B, Mao J. Serum-derived exosomes accelerate scald wound healing in mice by optimizing cellular functions and promoting Akt phosphorylation. Biotechnol Lett 2021; 43:1675-1684. [PMID: 34014413 DOI: 10.1007/s10529-021-03148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Wound exudate holds great clinical and research potential in wound repair via paracrine signaling. In essence, exudate is modified serum that contains a high concentration of exosomes. The aim of this study was to investigate the role of serum-derived exosomes in scald wound healing of NIH mice skin and to explore the underlying mechanisms. Hence, we constructed a deep second-degree scald model in NIH mice, testing the benefits of exosomes in the scald wound healing. The scratch wound assay, apoptosis assay and MTT assay were conducted to assess the effects of serum-derived exosomes on migration, apoptosis and proliferation of HaCaT cells and fibroblasts. Our results showed that serum-derived exosomes injected subcutaneously entered cells and effectively accelerated wound healing processes in mice. Additionally, serum-derived exosomes optimized functions of cells related to skin injury repair by stimulating fibroblast proliferation, promoting HaCaT cell migration, and suppressing apoptosis of HaCaT cells induced by heat stress. Further study revealed that serum-derived exosomes enhanced phosphorylation of the serine-threonine kinase Akt in scalded skin tissue. These results suggest a potential clinical use of serum-derived exosomes for treating skin scald.
Collapse
Affiliation(s)
- Yanwen Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yang Yu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Zheng Xie
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaomin Ye
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiaoyong Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Xu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jianwen Mao
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
221
|
Weiliang Z, Lili G. Research Advances in the Application of Adipose-Derived Stem Cells Derived Exosomes in Cutaneous Wound Healing. Ann Dermatol 2021; 33:309-317. [PMID: 34341631 PMCID: PMC8273313 DOI: 10.5021/ad.2021.33.4.309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cutaneous wound healing has always been an intractable medical problem for both clinicians and researchers, with an urgent need for more efficacious methods to achieve optimal outcomes morphologically and functionally. Stem cells, the body's rapid response 'road repair crew,' being on standby to combat tissue injuries, are an essential part of regenerative medicine. Currently, the use of adipose-derived stem cells (ADSCs), a kind of mesenchymal stem cells with multipotent differentiation and self-renewal capacity, is surging in the field of cutaneous wound healing. ADSCs may exert influences either by releasing paracrine signalling factors or differentiating into mature adipose cells to provide the 'building blocks' for engineered tissue. As an important paracrine substance released from ADSCs, exosomes are a kind of extracellular vesicles and carrying various bioactive molecules mediating adjacent or distant intercellular communication. Previous studies have indicated that ADSCs derived exosomes (ADSCs-Exos) promoted skin wound healing by affecting all stages of wound healing, including regulating inflammatory response, promoting proliferation and migration of fibroblasts or keratinocytes, facilitating angiogenesis, and regulating remodeling of extracellular matrix, which have provided new opportunities for understanding how ADSCs-Exos mediate intercellular communication in pathological processes of the skin and therapeutic strategies for cutaneous wound repair. In this review, we focus on elucidating the role of ADSCs-Exos at various stages of cutaneous wound healing, detailing the latest developments, and presenting some challenges necessary to be addressed in this field, with the expectation of providing a new perspective on how to best utilize this powerful cell-free therapy in the future.
Collapse
Affiliation(s)
- Zeng Weiliang
- Department of Cosmetic and Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo Lili
- Department of Cosmetic and Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
222
|
Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:1959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA; (M.D.H.); (C.N.S.)
| |
Collapse
|
223
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
224
|
Dinescu S, Dobranici A, Tecucianu R, Selaru A, Balahura R, Ignat S, Costache M. Exosomes as Part of the Human Adipose-Derived Stem Cells Secretome- Opening New Perspectives for Cell-Free Regenerative Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1312:139-163. [PMID: 32986128 DOI: 10.1007/5584_2020_588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human adipose-derived stem cells (hASCs) represent a great resource for regenerative medicine based on their accessibility, self-renewal potential, low immunogenicity, high proliferative rate and potential to differentiate on multiple lineages. Their secretome is rich in chemokines, cytokines and protein growth factors that are actively involved in regeneration processes. In addition, part of this secretome are also the exosomes (hASC-exos), which display high content in proteins, messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). Due to their content, exosomes promote tissue regeneration by different mechanisms, either by activating or inhibiting several signaling pathways involved in wound healing, extracellular matrix remodeling, immunomodulation, angiogenesis, anti-apoptotic activity and cell migration, proliferation and differentiation. The use of hASC-exos may provide an improved alternative to standard therapies used in regenerative medicine, as a cell-free new approach with multiple possibilities to be modulated according to the patient needs. This review offers an updated overview on the functions and applications of hASC-exos in all areas of tissue regeneration, aiming to highlight to the reader the benefits of using hASCs in modern tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania. .,The Research Institute of the University of Bucharest, Bucharest, Romania.
| | - Alexandra Dobranici
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Ramona Tecucianu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Aida Selaru
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania.,Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Roxana Balahura
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania.,Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Simona Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania.,The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
225
|
He J, Ping S, Yu F, Yuan X, Wang J, Qi J. Mesenchymal stem cell-derived exosomes: therapeutic implications for rotator cuff injury. Regen Med 2021; 16:803-815. [PMID: 34261369 DOI: 10.2217/rme-2020-0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rotator cuff injuries are a common clinical condition of the shoulder joint. Surgery that involves reattaching the torn tendon to its humeral head bony attachment has a somewhat lower success rate. The scar tissue formed during healing of the rotator cuff leads to poor tendon-related mechanical properties. To promote healing, a range of genetic interventions, as well as cell transplantation, and many other techniques have been explored. In recent years, the therapeutic promise of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies. Some data have suggested that MSCs can promote angiogenesis, reduce inflammation and cell proliferation and increase collagen deposition. These functions are likely paracrine effects of MSCs, particularly mediated through exosomes. Here, we review the use of MSCs-related exosomes in tissues and organs. We also discuss their potential utility for treating rotator cuff injuries, and explore the underlying mechanisms of their effects.
Collapse
Affiliation(s)
- Jinbing He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shuai Ping
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, PR China
| | - Fangyang Yu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, PR China
| | - Xi Yuan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jun Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
226
|
Gong JH, Dong JY, Xie T, Zhao Q, Lu SL. Different therapeutic effects between diabetic and non-diabetic adipose stem cells in diabetic wound healing. J Wound Care 2021; 30:S14-S23. [PMID: 33856928 DOI: 10.12968/jowc.2021.30.sup4.s14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study aimed to investigate how adipose tissue-derived stem cells (ASCs) from diabetic and from non-diabetic rats affect wound healing in different microenvironments. METHOD The two types of ASC-rich cells were distinguished by characteristic surface antigen detection. The ASC-rich cells were transplanted into the wounds of diabetic and non-diabetic rats. Wound healing rates were compared and the healing process in the wound margin sections was used to determine how ASC-rich cells affect wound healing in different microenvironments. RESULTS ASC density was decreased in diabetic rats. The generation time of ASC-rich cells from diabetic rats (d-ASC-rich cells) was longer than that of ASC-rich cells from non-diabetic rats. The number of pre-apoptotic cells in the third generation (passage 3) of d-ASC-rich cells was higher than that among the ASC-rich cells from non-diabetic rats. CD31 and CD34 expression was higher in d-ASC-rich cells than in ASC-rich cells from non-diabetic rats, whereas CD44 and CD105 expression was lower than that in ASC-rich cells from non-diabetic rats. Transplantation of ASC-rich cells from non-diabetic rats promoted wound healing in both non-diabetic and diabetic rats. In contrast, d-ASC-rich cells and enriched nuclear cells only promoted wound healing in non-diabetic rats. ASC-rich cell transplantation promoted greater tissue regeneration than d-ASC-rich cell transplantation. CONCLUSION ASC-rich cells promoted wound healing in diabetic and non-diabetic rats. ASC density was lower in the adipose tissue of diabetic rats compared with non-diabetic rats. d-ASC-rich cells did not promote wound healing in diabetic rats, suggesting that caution is warranted regarding the clinical use of diabetic adipose stem cell transplantation for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jia-Hong Gong
- Shanghai Burn Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Yun Dong
- Shanghai Burn Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xie
- Shanghai 9th people's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingnan Zhao
- University of Texas MD Anderson Cancer Center, Houston, Texas 77054, US
| | - Shu-Liang Lu
- Shanghai Burn Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
227
|
Chen H, Wang X, Wang J, Shi X, Li X, Wang J, Li D, Zhu Y, Tan W, Tan Z. In vitroadipogenesis and long-term adipocyte culture in adipose tissue-derived cell banks. Biofabrication 2021; 13. [PMID: 34044385 DOI: 10.1088/1758-5090/ac0610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/27/2021] [Indexed: 11/12/2022]
Abstract
There is a critical need to developin vitroculture systems appropriate for the expansion of adipose tissue, in order to gain new insights into metabolic diseases and to assist in the restoration of tissue defects. Conventional two- or three-dimensional (2D or 3D)in vitromodels of adipocytes require a combination of supplements to induce adipocyte maturation that greatly increases the cost of large-scale industrial production. In the present study, a microporous, perforated bacterial cellulose (BC)-assisted culture system was developed that promoted the adhesion, proliferation, and adipogenic differentiation of preadipocytes. Additionally, the system maintained the cells as mature unilocular adipocytesex vivoin normal cell culture medium in long-term culture. All cells were derived from isolated adipose tissue without the use of expensive enzymes for tissue digestion. In contrast to culture in hard tissue culture plates, preadipocytes in the soft 3D environments formed multidimensional interlaced cell contacts, undergoing significant spontaneous lipid accumulation and could be cultured for up to threemonths in maintenance medium. More importantly, the cultured adipose tissue-derived cell bank created here was able to produce injury repair activators that promoted the proliferation of fibroblasts with little fibrosis and the functional differentiation of myoblasts, displaying the potential for use in adipose reconstruction. Thus, the present study demonstrates the potential of a mechanically flexible BC scaffold to generate volume tunable adipose constructs and provides a low-cost and user-friendly strategy for large-scale industrial production of adipose tissue.
Collapse
Affiliation(s)
- Haoxiang Chen
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiaocheng Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jian Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xuelei Shi
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xinghuan Li
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jianlong Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Dan Li
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yonghua Zhu
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
228
|
Yang GH, Lee YB, Kang D, Choi E, Nam Y, Lee KH, You HJ, Kang HJ, An SH, Jeon H. Overcome the barriers of the skin: exosome therapy. Biomater Res 2021; 25:22. [PMID: 34217362 PMCID: PMC8254055 DOI: 10.1186/s40824-021-00224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Exosomes are nano-sized cargos with a lipid bilayer structure carrying diverse biomolecules including lipids, proteins, and nucleic acids. These small vesicles are secreted by most types of cells to communicate with each other. Since exosomes circulate through bodily fluids, they can transfer information not only to local cells but also to remote cells. Therefore, exosomes are considered potential biomarkers for various treatments. Recently, studies have shown the efficacy of exosomes in skin defects such as aging, atopic dermatitis, and wounds. Also, exosomes are being studied to be used as ingredients in commercialized skin treatment products. In this review, we discussed the need for exosomes in skin therapy together with the current challenges. Moreover, the functional roles of exosomes in terms of skin treatment and regeneration are overviewed. Finally, we highlighted the major limitations and the future perspective in exosome engineering.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea
| | - Yoon Bum Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea
| | - Eunjeong Choi
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea
| | - Yoonju Nam
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea
| | - Kyoung Ho Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea
| | - Hi-Jin You
- Department of Plastic Surgery, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-Do, 15355, South Korea
| | - Hyo Jin Kang
- Biomedical Research Center, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-Do, 15355, South Korea
| | - Sang Hyun An
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea.
| | - Hojun Jeon
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea.
| |
Collapse
|
229
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
230
|
Shi X, Jiang N, Mao J, Luo D, Liu Y. Mesenchymal stem cell‐derived exosomes for organ development and cell‐free therapy. NANO SELECT 2021. [DOI: 10.1002/nano.202000286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xin Shi
- Center and School of Stomatology Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan P.R. China
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| | - Nan Jiang
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
- Central Laboratory National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| | - Jing Mao
- Center and School of Stomatology Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan P.R. China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing P.R. China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| |
Collapse
|
231
|
Abolgheit S, Abdelkader S, Aboushelib M, Omar E, Mehanna R. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl 2021; 36:128-139. [PMID: 33019853 DOI: 10.1177/0885328220963920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Over the past ten years, regenerative medicine has focused on the regeneration and the reconstruction of damaged, diseased, or lost tissues and organs. Skin, being the largest organ in the human body, had attained a good attraction in this field. Delayed wound healing is one of the most challenging clinical medicine complications. This study aimed to evaluate the collagen chitosan scaffold's effect alone, or enriched with either bone marrow-derived mesenchymal stem cells (BM-MSCs) or their secreted extracellular vesicles (EVs) on the duration and quality of skin wound healing. METHODS A full-thickness skin wound was induced on the back of 32 adult male Sprague-Dawley rats. The wounds were either covered with collagen chitosan scaffolds alone, scaffolds enriched with stem cells, or extracellular vesicles. Unprotected wounds were used as control. Healing duration, collagen deposition and alignment, CD 68+ macrophage count, and functional tensile strength of healed skin were assessed (α = 0.05, n = 8). RESULTS The rate of skin healing was significantly accelerated in all treated groups compared to the control. Immuno-histochemical assessment of CD68+ macrophages showed enhanced macrophages count, in addition to higher collagen deposition and better collagen alignment in EVs and BM-MSCs treated groups compared to the control group. Higher tensile strength values reflected the better collagen deposition and alignment for these groups. EVs showed higher amounts of collagen deposition and better alignment compared to MSCs treated group. CONCLUSION The collagen chitosan scaffolds enriched with MSCs or their EVs improved wound healing and improved the quantity and remodeling of collagen with a better assignment to EVs.
Collapse
Affiliation(s)
- Salma Abolgheit
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | | | | - Enas Omar
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Radwa Mehanna
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
232
|
Shariati Najafabadi S, Amirpour N, Amini S, Zare N, Kazemi M, Salehi H. Human adipose derived stem cell exosomes enhance the neural differentiation of PC12 cells. Mol Biol Rep 2021; 48:5033-5043. [PMID: 34185223 DOI: 10.1007/s11033-021-06497-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Human adipose stem cells (hADSCs) are proper cell sources for tissue regeneration. They mainly mediate their therapeutic effects through paracrine factors as exosomes. The exosomes contents are protein, lipid and RNA. Exosomes are effective in restoring the function of neurons and astrocytes in neurodegenerative diseases, and improve the therapeutic outcomes. We investigated the effect of hADSCs derived exosomes on survival and neural differentiation of PC12 cells in vitro. The isolated hADSCs, were characterized by flow cytometry. Exosomes were separated from hADSC-condition medium using Exo-spinTM kit and characterized by DLS and TEM. Then acridine orange staining was performed to confirm entrance of exosomes into PC12 cells. PC12 cells were treated with culture medium containing NGF and exosome. Cell viability was assessed by MTT assay, and neural differentiation by ICC technique and qRT-PCR. TEM and DLS data confirmed the isolation of exosomes according to their size (30-100 nm) and acridine orange staining indicated entrance of exosomes to target cells. MTT assay showed that cell viability was significantly increased in exosome treated group. ICC technique revealed that the expression of Map2 was superior in the exosome treated group. Based on qRT-PCR data, Map2 and β-tub III gene expression was increased in the exosome treated group. Significant expression of Gfap was seen in the NGF and NGF/EXO treated groups. Present study indicated that hADSCs derived exosomes might enhance cell viability and promote neuronal differentiation and expression of mature neural marker in PC12 cells.
Collapse
Affiliation(s)
- Samira Shariati Najafabadi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharhram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Zare
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
233
|
Zhang Y, Yan J, Liu Y, Chen Z, Li X, Tang L, Li J, Duan M, Zhang G. Human Amniotic Fluid Stem Cell-Derived Exosomes as a Novel Cell-Free Therapy for Cutaneous Regeneration. Front Cell Dev Biol 2021; 9:685873. [PMID: 34235150 PMCID: PMC8255501 DOI: 10.3389/fcell.2021.685873] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Adult wound healing often results in fibrotic scarring that is caused by myofibroblast aggregation. Human amniotic fluid stem cells (hAFSCs) exhibit significantly anti-fibrotic scarring properties during wound healing. However, it is little known whether hAFSCs directly or indirectly (paracrine) contribute to this process. Using the full-thickness skin-wounded rats, we investigated the therapeutic potential of hAFSC-derived exosomes (hAFSC-exo). Our results showed that hAFSC-exo accelerated the wound healing rate and improved the regeneration of hair follicles, nerves, and vessels, as well as increased proliferation of cutaneous cells and the natural distribution of collagen during wound healing. Additionally, hAFSC-exo suppressed the excessive aggregation of myofibroblasts and the extracellular matrix. We identified several miRNAs, including let-7-5p, miR-22-3p, miR-27a-3p, miR-21-5p, and miR-23a-3p, that were presented in hAFSC-exo. The functional analysis demonstrated that these hAFSC-exo-miRNAs contribute to the inhibition of the transforming growth factor-β (TGF-β) signaling pathway by targeting the TGF-β receptor type I (TGF-βR1) and TGF-β receptor type II (TGF-βR2). The reduction of TGF-βR1 and TGF-βR2 expression induced by hAFSC-exo was also confirmed in the healing tissue. Finally, using mimics of miRNAs, we found that hAFSC-exo-miRNAs were essential for myofibroblast suppression during the TGF-β1-induced human dermal fibroblast-to-myofibroblast transition in vitro. In summary, this study is the first to show that exosomal miRNAs used in hAFSC-based therapy inhibit myofibroblast differentiation. Our study suggests that hAFSC-exo may represent a strategic tool for suppressing fibrotic scarring during wound healing.
Collapse
Affiliation(s)
- Yan Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Jiaqing Yan
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Chen
- Chengnan Branch, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Xiheng Li
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Liang Tang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Laboratory of Biomedical Engineering, Jilin University, Changchun, China
| | - Jiang Li
- Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengna Duan
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
234
|
Dermal white adipose tissue: Much more than a metabolic, lipid-storage organ? Tissue Cell 2021; 71:101583. [PMID: 34171520 DOI: 10.1016/j.tice.2021.101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The role of dermal white adipose tissue (dWAT) has emerged in the biomedical science as an ancillary fat district in the derma without a defined and distinct function respect to the subcutaneous adipose tissue (sWAT). Despite some evidence describing dWAT as an immune-competent compartment, particularly engaged in wound repair, very few reports dealing with dWAT has elucidated its major modulatory role within the skin biology. Whereas an increasing bulk of evidence allows researcher to describe the main activity of sWAT, in humans dWAT is not properly a separated fat compartment and therefore scarcely considered in the scientific debate. Due to its strategic position between epidermis and sWAT, dermal fat might play a much more intriguing role than expected. This review tries to shed light on this issue, by expanding the debate about a possible role of dWAT in skin physiology.
Collapse
|
235
|
Burns AB, Doris C, Vehar K, Saxena V, Bardliving C, Shamlou PA, Phillips MI. Novel low shear 3D bioreactor for high purity mesenchymal stem cell production. PLoS One 2021; 16:e0252575. [PMID: 34133442 PMCID: PMC8208585 DOI: 10.1371/journal.pone.0252575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 05/18/2021] [Indexed: 01/24/2023] Open
Abstract
Bone marrow derived human Mesenchymal Stem Cells (hMSCs) are an attractive candidate for regenerative medicine. However, their harvest can be invasive, painful, and expensive, making it difficult to supply the enormous amount of pure hMSCs needed for future allogeneic therapies. Because of this, a robust method of scaled bioreactor culture must be designed to supply the need for high purity, high density hMSC yields. Here we test a scaled down model of a novel bioreactor consisting of an unsubmerged 3D printed Polylactic Acid (PLA) lattice matrix wetted by culture media. The growth matrix is uniform, replicable, and biocompatible, enabling homogenous cell culture in three dimensions. The goal of this study was to prove that hMSCs would culture well in this novel bioreactor design. The system tested resulted in comparable stem cell yields to other cell culture systems using bone marrow derived hMSCs, while maintaining viability (96.54% ±2.82), high purity (>98% expression of combined positive markers), and differentiation potential.
Collapse
Affiliation(s)
- Andrew B. Burns
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Corinna Doris
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Kevin Vehar
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Vinit Saxena
- Sepragen Corporation, Hayward, California, United States of America
| | - Cameron Bardliving
- Jefferson Institute for Bioprocessing, Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Parviz A. Shamlou
- Jefferson Institute for Bioprocessing, Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - M. Ian Phillips
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| |
Collapse
|
236
|
Zhang B, Tian X, Hao J, Xu G, Zhang W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tissue Regeneration. Cell Transplant 2021; 29:963689720908500. [PMID: 32207341 PMCID: PMC7444208 DOI: 10.1177/0963689720908500] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that have attracted
increasing interest in the field of regenerative medicine. Previously, the
differentiation ability of MSCs was believed to be primarily responsible for
tissue repair. Recent studies have shown that paracrine mechanisms play an
important role in this process. MSCs can secrete soluble molecules and
extracellular vesicles (EVs), which mediate paracrine communication. EVs contain
large amounts of proteins and nucleic acids, such as mRNAs and microRNAs
(miRNAs), and can transfer the cargo between cells. The cargoes are similar to
those in MSCs and are not susceptible to degradation due to the protection of
the EV bimolecular membrane structure. MSC-EVs can mimic the biological
characteristics of MSCs, such as differentiation, maturation, and self-renewal.
Due to their broad biological functions and their ability to transfer molecules
between cells, EVs have been intensively studied by an increasing number of
researchers with a focus on therapeutic applications, especially those of EVs
secreted by MSCs. In this review, we discuss MSC-derived EVs and their
therapeutic potential in tissue regeneration.
Collapse
Affiliation(s)
- Bocheng Zhang
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, Chin.,Dalian Medical University, Dalian, Liaoning, China
| | | | - Jun Hao
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, Chin
| | - Gang Xu
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning, China
| | - Weiguo Zhang
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, Chin
| |
Collapse
|
237
|
Kim JY, Rhim WK, Seo HJ, Lee JY, Park CG, Han DK. Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity. Tissue Eng Regen Med 2021; 18:355-367. [PMID: 34047999 DOI: 10.1007/s13770-021-00352-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In order to produce and isolate the exosome derived from the cell of interests, a serum free environment (starvation) has been essential for excluding the unknown effect from serum-derived exosomes. Recently, serum-free culture media have been developed as a substitute for serum supplemented media so that MSC proliferates with maintaining the original characteristics of the cells in a serum free condition. Due to the different properties of the exosomes representing the states and characteristics of the origin cells, a study is needed to compare the properties of the cell-derived exosomes according to the cell culture media. METHODS To compare the cell culture condition on exosomes, human umbilical cord mesenchymal stem cells (UCMSCs) were cultured with two different media, serum containing media, 10% FBS supplemented DMEM (NM) and serum-free chemically defined media, CellCor™ CD MSC (CDM). To remove FBS-derived exosomes from UCMSC cultured with NM, the medium was replaced with FBS-free DMEM for starvation during exosome isolation. The production yield and expression levels of angiogenic and pro-inflammatory factors were compared. And, the subpopulations of exosome were classified depending on the surface properties and loaded cytokines. Finally, the wound healing and angiogenic effects have been evaluated using in vitro assays. RESULTS The UCMSC-derived exosomes under two different cell culture media could be classified into subpopulations according to the surface composition and loaded cytokines. Especially, exosome derived from UCMSC cultured with CDM showed higher expression levels of cytokines related to regenerative bioactivities which resulted in enhanced wound healing and angiogenesis. CONCLUSION CDM has the advantages to maintain cell proliferation even during the period of exosome isolations and eliminate unknown side effects caused by serum-derived exosomes. Additionally, exosomes derived from UCMSC cultured with CDM show better wound healing and angiogenic effects due to a lot of regeneration-related cytokines and less pro-inflammatory cytokines compared to with NM.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.,Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.,ntelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyo Jeong Seo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Joo Youn Lee
- Xcell Therapeutics, Hanhwa Biz metro Building, 242 Digital-ro, Guro-gu, Seoul, 08394, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.,ntelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
238
|
Lee MH, Kang BY, Wong CC, Li AW, Naseer N, Ibrahim SA, Keimig EL, Poon E, Alam M. A systematic review of autologous adipose-derived stromal vascular fraction (SVF) for the treatment of acute cutaneous wounds. Arch Dermatol Res 2021; 314:417-425. [PMID: 34047823 DOI: 10.1007/s00403-021-02242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stromal vascular fraction (SVF), derived enzymatically or mechanically from adipose tissue, contains a heterogenous population of cells and stroma, including multipotent stem cells. The regenerative capacity of SVF may potentially be adapted for a broad range of clinical applications, including the healing of acute cutaneous wounds. OBJECTIVE To evaluate the available literature on the efficacy and safety of autologous adipose-derived stromal vascular fraction (SVF) for the treatment of acute cutaneous wounds in humans. METHODS A systematic review of the literature utilizing MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials was performed to identify published clinical trials of autologous adipose-derived SVF or similar ADSC-containing derivatives for patients with acute cutaneous wounds. This was supplemented by searches for ongoing clinical trials through ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform. RESULTS 872 records were initially retrieved. Application of inclusion and exclusion criteria yielded 10 relevant studies: two completed non-randomized controlled trials and eight ongoing clinical trials. Both completed studies reported a statistically significant benefit in percentage re-epithelialization and time to healing for the SVF treatment arms. Safety information for SVF was not provided. Ongoing clinical trials were assessing outcomes such as safety, patient and observer reported scar appearance, wound healing rate, and wound epithelization. CONCLUSION In the context of substantial limitations in the quantity and quality of available evidence, the existing literature suggests that SVF may be a useful treatment for acute cutaneous wounds in humans. More clinical trials with improved outcome measures and safety assessment are needed.
Collapse
Affiliation(s)
- M H Lee
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - B Y Kang
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - C C Wong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - A W Li
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - N Naseer
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - Sarah A Ibrahim
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - E L Keimig
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - E Poon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA
| | - M Alam
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 676 N Saint Clair Street, Suite 1600, Chicago, IL, 60611, USA.
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
239
|
Sun J, Shi CS, Wang DL. [Research advances on the roles of exosomes derived from mesenchymal stem cells in wound healing and prevention and treatment of hypertrophic scars]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:495-500. [PMID: 34044531 PMCID: PMC11917257 DOI: 10.3760/cma.j.cn501120-20200410-00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Skin is an important defense barrier of human body and one of the most vulnerable organs. Wounds are the result of damage to the integrity of skin. Chronic wounds and hypertrophic scar formation are the results of abnormal wound healing, and are also the clinical problems those need to be resolved urgently in the field of wound repair. In recent years, researchers have found that mesenchymal stem cells (MSCs) can promote wound healing, improve wound healing quality, and reduce scar formation. The therapeutic effect of MSCs may be derived from the exosomes derived from them. This paper reviews the research advances of exosomes derived from MSCs in wound healing and prevention and treatment of hypertrophic scars in recent years and looks up to the prospect for the clinical application.
Collapse
Affiliation(s)
- J Sun
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - C S Shi
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - D L Wang
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
240
|
Kim H, Lee JW, Han G, Kim K, Yang Y, Kim SH. Extracellular Vesicles as Potential Theranostic Platforms for Skin Diseases and Aging. Pharmaceutics 2021; 13:pharmaceutics13050760. [PMID: 34065468 PMCID: PMC8161370 DOI: 10.3390/pharmaceutics13050760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), naturally secreted by cells, act as mediators for communication between cells. They are transported to the recipient cells along with cargoes such as nucleic acids, proteins, and lipids that reflect the changes occurring within the parent cells. Thus, EVs have been recognized as potential theranostic agents for diagnosis, treatment, and prognosis. In particular, the evidence accumulated to date suggests an important role of EVs in the initiation and progression of skin aging and various skin diseases, including psoriasis, systemic lupus erythematosus, vitiligo, and chronic wounds. This review highlights recent research that investigates the role of EVs and their potential as biomarkers and therapeutic agents for skin diseases and aging.
Collapse
Affiliation(s)
- Hyosuk Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jong Won Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
241
|
Li Q, Gong S, Yao W, Yang Z, Wang R, Yu Z, Wei M. Exosome loaded genipin crosslinked hydrogel facilitates full thickness cutaneous wound healing in rat animal model. Drug Deliv 2021; 28:884-893. [PMID: 33960253 PMCID: PMC8118534 DOI: 10.1080/10717544.2021.1912210] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Full thickness cutaneous wound therapy and regeneration remains a critical challenge in clinical therapeutics. Recent reports have suggested that mesenchymal stem cells exosomes therapy is a promising technology with great potential to efficiently promote tissue regeneration. Multifunctional hydrogel composed of both synthetic materials and natural materials is an effective carrier for exosomes loading. Herein, we constructed a biodegradable, dual-sensitive hydrogel encapsulated human umbilical cord-mesenchymal stem cells (hUCMSCs) derived exosomes to facilitate wound healing and skin regeneration process. The materials characterization, exosomes identification, and in vivo full-thickness cutaneous wound healing effect of the hydrogels were performed and evaluated. The in vivo results demonstrated the exosomes loaded hydrogel had significantly improved wound closure, re-epithelialization rates, collagen deposition in the wound sites. More skin appendages were observed in exosomes loaded hydrogel treated wound, indicating the potential to achieve complete skin regeneration. This study provides a new access for complete cutaneous wound regeneration via a genipin crosslinked dual-sensitive hydrogel loading hUCMSCs derived exosomes.
Collapse
Affiliation(s)
- Qijun Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, PR China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, PR China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, PR China
| | - Ziting Yang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, PR China
| | - Renjun Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, PR China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, PR China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, PR China
| |
Collapse
|
242
|
Go YY, Chae SW, Song JJ. Osteogenic effects of exosomes derived from human chorion membrane extracts. Biomater Res 2021; 25:16. [PMID: 33957991 PMCID: PMC8101178 DOI: 10.1186/s40824-021-00218-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023] Open
Abstract
Objective Human chorion membrane extracts (CME) are known to exhibit osteogenic effects when used for treating human osteoblast-like cells (MG63 cells), but the active compound in CME remains unknown. The aim of this study was to identify the presence of exosomes in CME and to determine the osteogenic effect of CME exosomes on MG63 cells. Methods Exosomes were isolated from human placenta CME using the ExoQuick-TC solution and were characterized. The activity and deposition of alkaline phosphatase (ALP) on MG63 cells cultured with or without exosomes in osteogenic induction medium (OIM) were determined. Human amniotic membrane extracts (AME) were used as controls as they had not affected the osteogenic differentiation of MG63 cells in our previous study. Results Transmission electron microscopy (TEM) revealed that exosomes isolated from CME and AME (CME-Exo and AME-Exo, respectively) had a cup-shaped structure. NanoSight™ particle tracking analysis (NTA) confirmed that the size of these exosomes was 100–150 nm. In vitro osteogenic experiments demonstrated that the exosomes from CME, but not those from AME, presented increased alkaline phosphatase (ALP) activity and resulted in the mineralization of MG63 cells in a dose-dependent manner. Conclusion Exosomes were identified in CME and AME from the human placenta. Further, the exosomes from CME were found to be capable of promoting osteogenic differentiation, suggesting that exosomes are a key component of CME that stimulate the osteogenesis of human osteoblast-like cells. CME exosomes can be developed as promising therapeutic candidates for bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-021-00218-6.
Collapse
Affiliation(s)
- Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea.,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea. .,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
243
|
Chen A, Tang S, He J, Li X, Peng G, Zhang H, Chen J, Chen L, Chen X. Small extracellular vesicles from human adipose-derived mesenchymal stromal cells: a potential promoter of fat graft survival. Stem Cell Res Ther 2021; 12:263. [PMID: 33941279 PMCID: PMC8091529 DOI: 10.1186/s13287-021-02319-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) with genetic information secreted by cells play a crucial role in the cellular microenvironment. In this study, our purpose is to explore the characteristics of the small extracellular vesicles of human adipose-derived mesenchymal stromal cells (hADMSC-sEVs) and studied the role of hADMSC-sEVs in improving the survival rate of grafted fat. METHODS In the present study, we used the transmission electron microscopy, nano-tracking analysis, nanoflow surface protein analysis, and zeta potential value to identify sEVs. SEVs' trajectory was traced dynamically to verify whether hADMSC-sEVs can be internalized into human umbilical vein endothelial cells (HUVECs) in vitro at different times. The angiogenic property of hADMSC-sEVs was observed by measuring the volume, weight, and histological analysis of the grafted fats in nude mouse models. RESULTS Our research showed that the hADMSC-sEVs were sEVs with double-layer membrane structure and the diameter of which is within 30-150 nm. hADMSC-sEVs exert biological influence mainly through internalization into cells. Compared with the control group, the hADMSC-sEVs group had a significantly higher survival rate of grafted fat, morphological integrity, and a lower degree of inflammation and fibrosis. And immunohistochemistry showed that hADMSC-sEVs significantly increased the neovascularisation and the expression of CD34, VEGFR2, and Ki-67 in the graft tissue. CONCLUSIONS As a potential nanomaterial, hADMSC-sEVs have been explored in the field of cell-free application of stem cell technology. hADMSC-sEVs promoted the survival of grafted fats by promoting the formation of new blood vessels, which is another promising progress in the field of regenerative medicine. We believe that hADMSC-sEVs will have a broad application prospect in the field of regenerative medicine in the future.
Collapse
Affiliation(s)
- Aizhen Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Shijie Tang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Jiawei He
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
| | - Xiangyu Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Guohao Peng
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Haoruo Zhang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.,Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou, China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, the School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, China. .,Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
244
|
Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. BURNS & TRAUMA 2021; 9:tkab002. [PMID: 34212055 PMCID: PMC8240555 DOI: 10.1093/burnst/tkab002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Burns, with their high incidence and mortality rates, have a devastating effect on patients. There are still huge challenges in the management of burns. Mesenchymal stem cells (MSCs), which have multidirectional differentiation potential, have aroused interest in exploring the capacity for treating different intractable diseases due to their strong proliferation, tissue repair, immune tolerance and paracrine abilities, among other features. Currently, several animal studies have shown that MSCs play various roles and have beneficial effects in promoting wound healing, inhibiting burn inflammation and preventing the formation of pathological scars during burn healing process. The substances MSCs secrete can act on peripheral cells and promote burn repair. According to preclinical research, MSC-based treatments can effectively improve burn wound healing and reduce pain. However, due to the small number of patients and the lack of controls, treatment plans and evaluation criteria vary widely, thus limiting the value of these clinical studies. Therefore, to better evaluate the safety and effectiveness of MSC-based burn treatments, standardization of the application scheme and evaluation criteria of MSC therapy in burn treatment is required in the future. In addition, the combination of MSC pretreatment and dressing materials are also conducive to improving the therapeutic effect of MSCs on burns. In this article, we review current animal research and clinical trials based on the use of stem cell therapy for treating burns and discuss the main challenges and coping strategies facing future clinical applications.
Collapse
Affiliation(s)
- Mingyao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xinxuan Xu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiongxin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
245
|
Su N, Hao Y, Wang F, Hou W, Chen H, Luo Y. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair. SCIENCE ADVANCES 2021; 7:7/20/eabf7207. [PMID: 33980490 PMCID: PMC8115917 DOI: 10.1126/sciadv.abf7207] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/22/2021] [Indexed: 05/08/2023]
Abstract
Designing scaffolds capable of inducing and guiding appropriate immune responses holds promise for tissue repair/regeneration. Biofunctional scaffolds were here prepared by immobilizing mesenchymal stromal exosomes onto fibrous polyester materials and allowed cell-mediated delivery of membrane-bound vesicles. Quantitative cell-level analyses revealed that immune cells dominated the uptake of exosomes from scaffolds in vivo, with materials and exosomes acting as the recruiter and trainer for immune cells, respectively, to synergistically promote beneficial macrophage and regulatory T cell responses in skin wounds in mice. Adaptive T helper cell responses were found active in remote immune organs, and exosome-laden scaffolds facilitated tissue repair in large skin injury models. This study demonstrated important mechanisms involved in local and systemic immune responses to biological implants, and understanding tissue-reparative immunomodulation may guide the design of new biofunctional scaffolds.
Collapse
Affiliation(s)
- Ni Su
- Department of Biomedical Engineering, College of Engineering, Peking University, Haidian District, Beijing 100871, China
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yaoyao Hao
- Department of Biomedical Engineering, College of Engineering, Peking University, Haidian District, Beijing 100871, China
| | - Fang Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Haidian District, Beijing 100871, China
| | - Wenda Hou
- Department of Biomedical Engineering, College of Engineering, Peking University, Haidian District, Beijing 100871, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Haidian District, Beijing 100871, China
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, Haidian District, Beijing 100871, China.
| |
Collapse
|
246
|
Shi A, Li J, Qiu X, Sabbah M, Boroumand S, Huang TCT, Zhao C, Terzic A, Behfar A, Moran SL. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics 2021; 11:6616-6631. [PMID: 33995680 PMCID: PMC8120220 DOI: 10.7150/thno.57701] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Rationale: With over seven million infections and $25 billion treatment cost, chronic ischemic wounds are one of the most serious complications in the United States. The controlled release of bioactive factor enriched exosome from finbrin gel was a promising strategy to promote wound healing. Methods: To address this unsolved problem, we developed clinical-grade platelets exosome product (PEP), which was incorporate with injectable surgical fibrin sealant (TISSEEL), to promote chronic wound healing and complete skin regeneration. The PEP characterization stimulated cellular activities and in vivo rabbit ischemic wound healing capacity of TISSEEL-PEP were performed and analyzed. Results: PEP, enriched with transforming growth factor beta (TGF-β), possessed exosomal characteristics including exosome size, morphology, and typical markers including CD63, CD9, and ALG-2-interacting protein X (Alix). In vitro, PEP significantly promoted cell proliferation, migration, tube formation, as well as skin organoid formation. Topical treatment of ischemic wounds with TISSEEL-PEP promoted full-thickness healing with the reacquisition of hair follicles and sebaceous glands. Superior to untreated and TISSEEL-only treated controls, TISSEEL-PEP drove cutaneous healing associated with collagen synthesis and restoration of dermal architecture. Furthermore, PEP promoted epithelial and vascular cell activity enhancing angiogenesis to restore blood flow and mature skin function. Transcriptome deconvolution of TISSEEL-PEP versus TISSEEL-only treated wounds prioritized regenerative pathways encompassing neovascularization, matrix remodeling and tissue growth. Conclusion: This room-temperature stable, lyophilized exosome product is thus capable of delivering a bioactive transforming growth factor beta to drive regenerative events.
Collapse
Affiliation(s)
- Ao Shi
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN, USA
| | - Jialun Li
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Michael Sabbah
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Soulmaz Boroumand
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Steven L Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
247
|
Liu Y, Wang C, Wei M, Yang G, Yuan L. Multifaceted Roles of Adipose Tissue-Derived Exosomes in Physiological and Pathological Conditions. Front Physiol 2021; 12:669429. [PMID: 33959041 PMCID: PMC8093393 DOI: 10.3389/fphys.2021.669429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue functions importantly in the bodily homeostasis and systemic metabolism, while obesity links to multiple disorders. Beyond the canonical hormones, growth factors and cytokines, exosomes have been identified to play important roles in transmission of information from adipose tissue to other organs. Exosomes are nanoscale membrane vesicles secreted by donor cells, and transfer the genetic information to the recipient cells where the encapsulated nucleic acids and proteins are released. In this review, we elaborate the recent advances in the biogenesis and profiling of adipose tissue derived exosomes, and their physiological and pathological effects on different organs. Moreover, the potential significance of the exosomes as therapeutic vehicles or drugs is also discussed.
Collapse
Affiliation(s)
- Yunnan Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengying Wei
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Guodong Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
248
|
Kim JY, Rhim WK, Yoo YI, Kim DS, Ko KW, Heo Y, Park CG, Han DK. Defined MSC exosome with high yield and purity to improve regenerative activity. J Tissue Eng 2021; 12:20417314211008626. [PMID: 33959246 PMCID: PMC8060739 DOI: 10.1177/20417314211008626] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been studied as vital
components of regenerative medicine. Typically, various isolation methods of
exosomes from cell culture medium have been developed to increase the isolation
yield of exosomes. Moreover, the exosome-depletion process of serum has been
considered to result in clinically active and highly purified exosomes from the
cell culture medium. Our aim was to compare isolation methods, ultracentrifuge
(UC)-based conventional method, and tangential flow filtration (TFF)
system-based method for separation with high yield, and the bioactivity of the
exosome according to the purity of MSC-derived exosome was determined by the
ratio of Fetal bovine serum (FBS)-derived exosome to MSC-derived exosome
depending on exosome depletion processes of FBS. The TFF-based isolation yield
of exosome derived from human umbilical cord MSC (UCMSC) increased two orders
(92.5 times) compared to UC-based isolation method. Moreover, by optimizing the
process of depleting FBS-derived exosome, the purity of UCMSC-derived exosome,
evaluated using the expression level of MSC exosome surface marker (CD73), was
about 15.6 times enhanced and the concentration of low-density
lipoprotein-cholesterol (LDL-c), known as impurities resulting from FBS, proved
to be negligibly detected. The wound healing and angiogenic effects of highly
purified UCMSC-derived exosomes were improved about 23.1% and 71.4%,
respectively, with human coronary artery endothelial cells (HCAEC). It suggests
that the defined MSC exosome with high yield and purity could increase
regenerative activity.
Collapse
Affiliation(s)
- Jun Yong Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea.,Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea.,Department of Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Yong-In Yoo
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea.,School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Yun Heo
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea.,Department of Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| |
Collapse
|
249
|
Qian Z, Bai Y, Zhou J, Li L, Na J, Fan Y, Guo X, Liu H. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J Mater Chem B 2021; 8:7197-7212. [PMID: 32633312 DOI: 10.1039/d0tb01100b] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Refractory wounds caused by microbial infection impede wound healing, vascular regeneration, nerve system repair and the regeneration of other skin appendages. In addition, large-area infected wounds cause the appearance of multidrug-resistant (MDR) bacterial strains, which pose a major challenge both in clinical and scientific research. Although many stem cell-derived exosomes have been demonstrated to promote skin repair and regeneration, exosomes are seldom applied in the treatment of infective wounds due to the lack of antimicrobial function. In this study, we fabricated an asymmetric wettable dressing with a composite of exosomes and silver nanoparticles (CTS-SF/SA/Ag-Exo dressing) for promoting angiogenesis, nerve repair and infected wound healing. The CTS-SF/SA/Ag-Exo dressing possesses multifunctional properties including broad-spectrum antimicrobial activity, promoting wound healing, retaining moisture and maintaining electrolyte balance. It can effectively inhibit the growth of bacterial and promote the proliferation of human fibroblasts in vitro. Moreover, the in vivo results show that the CTS-SF/SA/Ag-Exo dressing enhanced wound healing by accelerating collagen deposition, angiogenesis and nerve repair in a P. aeruginosa infected mouse skin wound defect model. We hope that this dressing will provide a solution for the repair of infected wounds for treatments in the clinic.
Collapse
Affiliation(s)
- Zhiyong Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Yating Bai
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Jin Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Jing Na
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| | - Ximin Guo
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, People's Republic of China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, People's Republic of China.
| |
Collapse
|
250
|
Differential Therapeutic Effect of Extracellular Vesicles Derived by Bone Marrow and Adipose Mesenchymal Stem Cells on Wound Healing of Diabetic Ulcers and Correlation to Their Cargoes. Int J Mol Sci 2021; 22:ijms22083851. [PMID: 33917759 PMCID: PMC8068154 DOI: 10.3390/ijms22083851] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells isolated from both bone marrow (BMSCs) and adipose tissue (ADSCs) show potential therapeutic effects. These vesicles often show a similar beneficial effect on tissue regeneration, but in some contexts, they exert different biological properties. To date, a comparison of their molecular cargo that could explain the different biological effect is not available. Here, we demonstrated that ADSC-EVs, and not BMSC-EVs, promote wound healing on a murine model of diabetic wounds. Besides a general similarity, the bioinformatic analysis of their protein and miRNA cargo highlighted important differences between these two types of EVs. Molecules present exclusively in ADSC-EVs were highly correlated to angiogenesis, whereas those expressed in BMSC-EVs were preferentially involved in cellular proliferation. Finally, in vitro analysis confirmed that both ADSC and BMSC-EVs exploited beneficial effect on cells involved in skin wound healing such as fibroblasts, keratinocytes and endothelial cells, but through different cellular processes. Consistent with the bioinformatic analyses, BMSC-EVs were shown to mainly promote proliferation, whereas ADSC-EVs demonstrated a major effect on angiogenesis. Taken together, these results provide deeper comparative information on the cargo of ADSC-EVs and BMSC-EVs and the impact on regenerative processes essential for diabetic wound healing.
Collapse
|