201
|
Phan-Xuan T, Schweidler S, Hirte S, Schüller M, Lin L, Khandelwal A, Wang K, Schützke J, Reischl M, Kübel C, Hahn H, Bello G, Kirchmair J, Aghassi-Hagmann J, Brezesinski T, Breitung B, Dailey LA. Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure-Activity, and Immunoassay Performance. ACS NANO 2024; 18:19024-19037. [PMID: 38985736 PMCID: PMC11271659 DOI: 10.1021/acsnano.4c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
High-entropy nanomaterials exhibit exceptional mechanical, physical, and chemical properties, finding applications in many industries. Peroxidases are metalloenzymes that accelerate the decomposition of hydrogen peroxide. This study uses the high-entropy approach to generate multimetal oxide-based nanozymes with peroxidase-like activity and explores their application as sensors in ex vivo bioassays. A library of 81 materials was produced using a coprecipitation method for rapid synthesis of up to 100 variants in a single plate. The A and B sites of the magnetite structure, (AA')(BB'B'')2O4, were substituted with up to six different cations (Cu/Fe/Zn/Mg/Mn/Cr). Increasing the compositional complexity improved the catalytic performance; however, substitutions of single elements also caused drastic reductions in the peroxidase-like activity. A generalized linear model was developed describing the relationship between material composition and catalytic activity. Binary interactions between elements that acted synergistically or antagonistically were identified, and a single parameter, the mean interaction effect, was observed to correlate highly with catalytic activity, providing a valuable tool for the design of high-entropy-inspired nanozymes.
Collapse
Affiliation(s)
- Thuong Phan-Xuan
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Simon Schweidler
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| | - Steffen Hirte
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Moritz Schüller
- Institute
of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany
| | - Ling Lin
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| | - Anurag Khandelwal
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
- Light
Technology Institute, Karlsruhe Institute
of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Kai Wang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
- Department
of Materials and Earth Sciences, Technical
University Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany
| | - Jan Schützke
- Institute
for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Markus Reischl
- Institute
for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Christian Kübel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
- Karlsruhe
Nano Micro Facility (KNMFi), Karlsruhe Institute
of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Helmholtz
Institute Ulm for Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany
- Department
of Materials and Earth Sciences, Technical
University Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany
| | - Horst Hahn
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
- School
of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, 201 Stephenson Pkwy, Norman, 73019 Oklahoma, United States
- Helmholtz
Institute Ulm for Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany
| | - Gianluca Bello
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Johannes Kirchmair
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jasmin Aghassi-Hagmann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| | - Torsten Brezesinski
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| | - Ben Breitung
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| | - Lea Ann Dailey
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
202
|
Liu Y, Li N, Su K, Du J, Guo R. Arginine-Rich Peptide-Rhodium Nanocluster@Reduced Graphene Oxide Composite as a Highly Selective and Active Uricase-like Nanozyme for the Degradation of Uric Acid and Inhibition of Urate Crystal. Inorg Chem 2024; 63:13602-13612. [PMID: 38973094 DOI: 10.1021/acs.inorgchem.4c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Metal nanozymes have offered attractive opportunities for biocatalysis and biomedicine. However, fabricating nanozymes simultaneously possessing highly catalytic selectivity and activity remains a great challenge due to the lack of three-dimensional (3D) architecture of the catalytic pocket in natural enzymes. Here, we integrate rhodium nanocluster (RhNC), reduced graphene oxide (rGO), and protamine (PRTM, a typical arginine-rich peptide) into a composite facilely based on the single peptide. Remarkably, the PRTM-RhNC@rGO composite displays outstanding selectivity, activity, and stability for the catalytic degradation of uric acid. The reaction rate constant of the uric acid oxidation catalyzed by the PRTM-RhNC@rGO composite is about 1.88 × 10-3 s-1 (4 μg/mL), which is 37.6 times higher than that of reported RhNP (k = 5 × 10-5 s-1, 20 μg/mL). Enzyme kinetic studies reveal that the PRTM-RhNC@rGO composite exhibits a similar affinity for uric acid as natural uricase. Furthermore, the uricase-like activity of PRTM-RhNC@rGO nanozymes remains in the presence of sulfur substances and halide ions, displaying incredibly well antipoisoning abilities. The analysis of the structure-function relationship indicates the PRTM-RhNC@rGO composite features the substrate binding site near the catalytic site in a confined space contributed by 2D rGO and PRTM, resulting in the high-performance of the composite nanozyme. Based on the outstanding uricase-like activity and the interaction of PRTM and uric acid, the PRTM-RhNC@rGO composite can retard the urate crystallization significantly. The present work provides new insights into the design of metal nanozymes with suitable binding sites near catalytic sites by mimicking pocket-like structures in natural enzymes based on simple peptides, conducing to broadening the practical application of high-performance nanozymes in biomedical fields.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Ning Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Kang Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Jiamei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
203
|
Dai JJ, Chen GY, Xu L, Zhu H, Yang FQ. Applications of Nanozymes in Chiral-Molecule Recognition through Electrochemical and Ultraviolet-Visible Analysis. Molecules 2024; 29:3376. [PMID: 39064954 PMCID: PMC11280305 DOI: 10.3390/molecules29143376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Chiral molecules have similar physicochemical properties, which are different in terms of physiological activities and toxicities, rendering their differentiation and recognition highly significant. Nanozymes, which are nanomaterials with inherent enzyme-like activities, have garnered significant interest owing to their high cost-effectiveness, enhanced stability, and straightforward synthesis. However, constructing nanozymes with high activity and enantioselectivity remains a significant challenge. This review briefly introduces the synthesis methods of chiral nanozymes and systematically summarizes the latest research progress in enantioselective recognition of chiral molecules based on electrochemical methods and ultraviolet-visible absorption spectroscopy. Moreover, the challenges and development trends in developing enantioselective nanozymes are discussed. It is expected that this review will provide new ideas for the design of multifunctional chiral nanozymes and broaden the application field of nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (J.-J.D.); (G.-Y.C.); (L.X.); (H.Z.)
| |
Collapse
|
204
|
Luo S, Yang J, Fan Y, Gao X, Xue J, Ma Y, Gao J, Fu Z. Hybrid Mn Atomic Clusters/Single-Dispersed Atoms with Dual Antioxidant Activities for a Chemiluminescent Immunoassay. Anal Chem 2024. [PMID: 39023129 DOI: 10.1021/acs.analchem.4c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Single-dispersed atoms (SDAs) as catalysts have drawn extensive attention due to their ultimate atom utilization efficiency and desirable catalytic capability. Atomic clusters (ACs) with potential multiple enzyme-like activities also display great practicability in catalysis-based biosensing. In this work, hybrid Mn ACs/SDAs were implanted in the frameworks of defect-engineered MIL 101(Cr) modulated by excess acetic acid, with a high loading capability of 13.9 wt %. Distinctively, Mn SDAs display weak superoxide dismutase (SOD)-like activity for specifically eliminating superoxide anion (O2•-), while Mn ACs/SDAs display both catalase-like and SOD-like activities for remarkable elimination of total reactive oxygen species (ROS) due to the cooperative effect of the two atom-scale catalytic sites. Thus, Mn ACs/SDAs can efficiently inhibit the chemiluminescent (CL) emission of multiple ROS-mediated luminol systems with a superior quenching rate of 85.5%. To validate the practicability of Mn ACs/SDAs for a sensitive CL assay, an immunoassay method was established to detect acetamiprid by using Mn ACs/SDAs as signal quenchers, which displayed a quantification range of 10 pg mL-1-25 ng mL-1 and a detection limit of 3.3 pg mL-1. This study paves an avenue for developing ACs/SDAs with multiple antioxidant activities that are suitable for application in biosensing.
Collapse
Affiliation(s)
- Shuai Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yehan Fan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinyue Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuchan Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
205
|
Morajkar RV, Fatrekar AP, Vernekar AA. Approach of a small protein to the biomimetic bis-(μ-oxo) dicopper active-site installed in MOF-808 pores with restricted access perturbs substrate selectivity of oxidase nanozyme. Chem Sci 2024; 15:10810-10822. [PMID: 39027301 PMCID: PMC11253172 DOI: 10.1039/d4sc02136c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Advances in nanozymes have taken shape over the past few years in several domains. However, persisting challenging limitations of selectivity, specificity, and efficiency necessitate careful attention to aid in the development of next-generation artificial enzymes. Despite nanozymes having significant therapeutic and biotechnological prospects, the multienzyme mimetic activities can compromise their intended applications. Furthermore, the lack of substrate selectivity can hamper crucial biological pathways. While working on addressing the challenges of nanozymes, in this work, we aim to highlight the interplay between the substrates and bis-(μ-oxo) dicopper active site-installed MOF-808 for selectively mimicking oxidase. This oxidase mimetic with a small pore-aperture (1.4 nm), similar to the opening of enzyme binding pockets, projects a tight control over the dynamics and the reactivity of substrates, making it distinct from the general oxidase nanozymes. Interestingly, the design and the well-regulated activity of this nanozyme effectively thwart DNA from approaching the active site, thereby preventing its oxidative damage. Crucially, we also show that despite these merits, the oxidase selectivity is compromised by small proteins such as cytochrome c (Cyt c), having dimensions larger than the pore aperture of MOF-808. This reaction lucidly produces water molecules as a result of four electron transfer to an oxygen molecule. Such unintended side reactivities warrant special attention as they can perturb redox processes and several cellular energy pathways. Through this study, we provide a close look at designing next-generation artificial enzymes that can address the complex challenges for their utility in advanced applications.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai 600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai 600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai 600020 Tamil Nadu India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
206
|
Hu J, Chen CH, Wang L, Zhang MR, Li Z, Tang M, Liu C. Multi-functional nanozyme-based colorimetric, fluorescence dual-mode assay for Salmonella typhimurium detection in milk. Mikrochim Acta 2024; 191:464. [PMID: 39007936 DOI: 10.1007/s00604-024-06539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
Rapid and high-sensitive Salmonella detection in milk is important for preventing foodborne disease eruption. To overcome the influence of the complex ingredients in milk on the sensitive detection of Salmonella, a dual-signal reporter red fluorescence nanosphere (RNs)-Pt was designed by combining RNs and Pt nanoparticles. After being equipped with antibodies, the immune RNs-Pt (IRNs-Pt) provide an ultra-strong fluorescence signal when excited by UV light. With the assistance of the H2O2/TMB system, a visible color change appeared that was attributed to the strong peroxidase-like catalytic activity derived from Pt nanoparticles. The IRNs-Pt in conjunction with immune magnetic beads can realize that Salmonella typhimurium (S. typhi) was captured, labeled, and separated effectively from untreated reduced-fat pure milk samples. Under the optimal experimental conditions, with the assay, as low as 50 CFU S. typhi can be converted to detectable fluorescence and absorbance signals within 2 h, suggesting the feasibility of practical application of the assay. Meanwhile, dual-signal modes of quantitative detection were realized. For fluorescence signal detection (emission at 615 nm), the linear correlation between signal intensity and the concentration of S. typhi was Y = 83C-3321 (R2 = 0.9941), ranging from 103 to 105 CFU/mL, while for colorimetric detection (absorbamce at 450 nm), the relationship between signal intensity and the concentration of S. typhi was Y = 2.9logC-10.2 (R2 = 0.9875), ranging from 5 × 103 to 105 CFU/mL. For suspect food contamination by foodborne pathogens, this dual-mode signal readout assay is promising for achieving the aim of convenient preliminary screening and accurate quantification simultaneously.
Collapse
Affiliation(s)
- Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Chao-Hui Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Mao-Rong Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhunjie Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Man Tang
- School of Electronic and Electrical Engineering, Hubei Engineering and Technology Research Centre for Functional Fibre Fabrication and Testing, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
207
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|
208
|
Wang Y, Guo M, Xu X. Nanoproteases: Alternatives to Natural Protease for Biotechnological Applications. Chemistry 2024; 30:e202401178. [PMID: 38705854 DOI: 10.1002/chem.202401178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Some nanomaterials with intrinsic protease-like activity have the advantages of good stability, biosafety, low price, large-scale preparation and unique property of nanomaterials, which are promising alternatives for natural proteases in various applications. An especial term, "nanoprotease", has been coined to stress the intrinsic proteolytic property of these nanomaterials. As a new generation of artificial proteases, they have become a burgeoning field, attracting many researchers to design and synthesize high performance nanoproteases. In this review, we summarize recent progress on all types of nanoproteases with regard of their activity, mechanism and application and introduce a new and effective strategy for engineering high-performance nanoproteases. In addition, we discuss the challenges and opportunities of nanoprotease research in the future.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mingxiu Guo
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaolong Xu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
209
|
Chen JY, Huang S, Liu SJ, Liu ZJ, Xu XY, He MY, Yao CJ, Zhang T, Yang HQ, Huang XS, Liu J, Zhang XD, Xie X, Chen HJ. Au 24Cd Nanoenzyme Coating for Enhancing Electrochemical Sensing Performance of Metal Wire Microelectrodes. BIOSENSORS 2024; 14:328. [PMID: 39056604 PMCID: PMC11274932 DOI: 10.3390/bios14070328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.
Collapse
Affiliation(s)
- Jia-Yi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Shuang Huang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China;
| | - Shuang-Jie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (S.-J.L.); (X.-D.Z.)
| | - Zheng-Jie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Xing-Yuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Meng-Yi He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Chuan-Jie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Tao Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Han-Qi Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Xin-Shuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China;
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (S.-J.L.); (X.-D.Z.)
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China;
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.-Y.C.); (Z.-J.L.); (X.-Y.X.); (M.-Y.H.); (C.-J.Y.); (T.Z.); (H.-Q.Y.); (X.-S.H.)
| |
Collapse
|
210
|
Cuoghi S, Caraffi R, Anderlini A, Baraldi C, Enzo E, Vandelli MA, Tosi G, Ruozi B, Duskey JT, Ottonelli I. Challenges of enzyme therapy: Why two players are better than one. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1979. [PMID: 38955512 DOI: 10.1002/wnan.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Enzyme-based therapy has garnered significant attention for its current applications in various diseases. Despite the notable advantages associated with the use of enzymes as therapeutic agents, that could have high selectivity, affinity, and specificity for the target, their application faces challenges linked to physico-chemical and pharmacological properties. These limitations can be addressed through the encapsulation of enzymes in nanoplatforms as a comprehensive solution to mitigate their degradation, loss of activity, off-target accumulation, and immunogenicity, thus enhancing bioavailability, therapeutic efficacy, and circulation time, thereby reducing the number of administrations, and ameliorating patient compliance. The exploration of novel nanomedicine-based enzyme therapeutics for the treatment of challenging diseases stands as a paramount goal in the contemporary scientific landscape, but even then it is often not enough. Combining an enzyme with another therapeutic (e.g., a small molecule, another enzyme or protein, a monoclonal antibody, or a nucleic acid) within a single nanocarrier provides innovative multidrug-integrated therapy and ensures that both the actives arrive at the target site and exert their therapeutic effect, leading to synergistic action and superior therapeutic efficacy. Moreover, this strategic approach could be extended to gene therapy, a field that nowadays has gained increasing attention, as enzymes acting at genomic level and nucleic acids may be combined for synergistic therapy. This multicomponent therapeutic approach opens opportunities for promising future developments. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Sabrina Cuoghi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Anderlini
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
211
|
Wang J, Wu H, Wang Y, Ye W, Kong X, Yin Z. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1274-1294. [PMID: 38578151 DOI: 10.1111/jipb.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.
Collapse
Affiliation(s)
- Jie Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wang
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
212
|
Zhang L, Zhao L, Su H, Chen Y, Wang W, Gao M, Zhao J, Hu J, Zou R. A narrow-bandgap RuI 3 nanoplatform to synergize radiotherapy, photothermal therapy, and thermoelectric dynamic therapy for tumor eradication. Acta Biomater 2024; 182:188-198. [PMID: 38734285 DOI: 10.1016/j.actbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Therapeutic resistance is an essential challenge for nanotherapeutics. Herein, a narrow bandgap RuI3 nanoplatform has been constructed firstly to synergize radiotherapy (RT), photothermal therapy (PTT), and thermoelectric dynamic therapy (TEDT) for tumor eradication. Specifically, the photothermal performance of RuI3 can ablate tumor cells while inducing TEDT. Noteworthy, the thermoelectric effect is found firstly in RuI3, which can spontaneously generate an electric field under the temperature gradient, prompting carrier separation and triggering massive ROS generation, thus aggravating oxidative stress level and effectively inhibiting HSP-90 expression. Moreover, RuI3 greatly enhances X-ray deposition owing to its high X-ray attenuation capacity, resulting in a pronounced computed tomography imaging contrast and DNA damage. In addition, RuI3 possesses both catalase-like and glutathione peroxidase-like properties, which alleviate tumor hypoxia and reduce antioxidant resistance, further exacerbating 1O2 production during RT and TEDT. This integrated therapy platform combining PTT, TEDT, and RT significantly inhibits tumor growth. STATEMENT OF SIGNIFICANCE: RuI3 nanoparticles were synthesized for the first time. RuI3 exhibited the highest photothermal properties among iodides, and the photothermal conversion efficiency was 53.38 %. RuI3 was found to have a thermoelectric effect, and the power factor could be comparable to that of most conventional thermoelectric materials. RuI3 possessed both catalase-like and glutathione peroxidase-like properties, which contributed to enhancing the effect of radiotherapy.
Collapse
Affiliation(s)
- Lingjian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongxing Su
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yusheng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenqing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengluan Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
213
|
Qiu J, Ahmad F, Ma J, Sun Y, Liu Y, Xiao Y, Xu L, Shu T, Zhang X. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem 2024; 416:3923-3944. [PMID: 38705905 DOI: 10.1007/s00216-024-05303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.
Collapse
Affiliation(s)
- Jiafeng Qiu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxin Ma
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Sun
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Long Xu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
214
|
Zhi X, Yang Q, Zhang X, Zhang H, Gao Y, Zhang L, Tong Y, He W. Copper regulation of PtRhRuCu nanozyme targeted boosting peroxidase-like activity for ultrasensitive smartphone-assisted colorimetric sensing of glucose. Food Chem 2024; 445:138788. [PMID: 38394910 DOI: 10.1016/j.foodchem.2024.138788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Point-of-care testing (POCT) is promising for biodetection in home healthcare due to advantages of simplicity, rapidity, low cost, portability, high sensitivity and accuracy, and object-oriented POCT platform can be developed by nanozyme-based biosensing. However, designing high-performance nanozymes with targeted regulated catalytic activity remains challenging. Herein, advanced PtRhRuCu quaternary alloy nanozymes (QANs) were rationally designed and successfully synthesized. Cu atoms induced mechanisms of hydrogen peroxide (H2O2) activation and d-band center regulation, achieving high enhancement of peroxide (POD)-like activity and inhibition of oxidase (OXD)-like activity. Inspired by this, a smartphone-assisted colorimetric platform integrated with test strips was established for glucose detection of soft drinks, with a detection limit of 0.021 mM and a recovery rate of 97.87 to 103.36 %. This work not only provides a novel path for tuning specific enzyme-like activities of metal nanozymes, but also shows the potential feasibility for rational design of POCT sensors in actual samples.
Collapse
Affiliation(s)
- Xinpeng Zhi
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, PR China; Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Qi Yang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China.
| | - Xinghao Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Hanbo Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Ya Gao
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Lulu Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Yuping Tong
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, PR China.
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China.
| |
Collapse
|
215
|
Pang Y, Tao X, Qin Z, Jiang M, Song E, Song Y. Chiral silver nanoparticles with surface-anchored L(D)-Cys exhibit dissimilar biological characteristics in vitro but not in vivo. Toxicol Lett 2024; 398:28-37. [PMID: 38851367 DOI: 10.1016/j.toxlet.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
This work investigated the influence of surface chirality on cellular internalization, cytotoxicity, and tissue distribution of silver nanoparticles (AgNPs). D-cysteine and L-cysteine are chiral forms of the amino acid cysteine. These enantiomers exhibit distinct spatial arrangements, with D-cysteine having a different configuration from L-cysteine. This structural dissimilarity can lead to variations in how these forms interact with biological systems, potentially impacting their cytotoxic responses. Four distinct types of AgNPs were synthesized, each possessing a unique surface coating: pristine AgNPs (pAgNPs), L-cysteine coated AgNPs (AgNPs@L-Cys), D-cysteine coated AgNPs (AgNPs@D-Cys), and racemic AgNPs coated with both L-Cys and D-Cys (AgNPs@L/D-Cys). We found chiral-dependent cytotoxicity of AgNPs on J774A.1 cells. Specifically, AgNPs@L-Cys exhibited the highest toxicity, and AgNPs@D-Cys exhibited the lowest toxicity. Meanwhile, the cellular uptake of the AgNPs correlated nicely with their cytotoxicity, with AgNPs@L-Cys being internalized to the greatest extent while AgNPs@D-Cys displays the least internalization. Scavenger receptors and clathrin predominantly mediate the cellular internalization of these AgNPs. Strikingly, the dissimilar cellular internalization and cytotoxicity of AgNPs with different chirality were eliminated upon protein corona coverage. Notably, following intravenous injection in mice, these four types of AgNPs showed similar patterns among various organs due to the inevitable protein adsorption in the bloodstream. These findings underscored the pivotal role of surface chirality in governing the biological interactions and toxicity of AgNPs.
Collapse
Affiliation(s)
- Yingxin Pang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China; Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, China.
| | - Zongmin Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Muran Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
| |
Collapse
|
216
|
Song G, Li C, Fauconnier ML, Zhang D, Gu M, Chen L, Lin Y, Wang S, Zheng X. Research progress of chilled meat freshness detection based on nanozyme sensing systems. Food Chem X 2024; 22:101364. [PMID: 38623515 PMCID: PMC11016872 DOI: 10.1016/j.fochx.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
It is important to develop rapid, accurate, and portable technologies for detecting the freshness of chilled meat to meet the current demands of meat industry. This report introduces freshness indicators for monitoring the freshness changes of chilled meat, and systematically analyzes the current status of existing detection technologies which focus on the feasibility of using nanozyme for meat freshness sensing detection. Furthermore, it examines the limitations and foresees the future development trends of utilizing current nanozyme sensing systems in evaluating chilled meat freshness. Harmful chemicals are produced by food spoilage degradation, including biogenic amines, volatile amines, hydrogen sulfide, and xanthine, which have become new freshness indicators to evaluate the freshness of chilled meat. The recognition mechanisms are clarified based on the special chemical reaction with nanozyme or directly inducting the enzyme-like catalytic activity of nanozyme.
Collapse
Affiliation(s)
- Guangchun Song
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liege, Passage des déportés 2, B-5030 Gembloux, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yaoxin Lin
- National Center for Nanoscience and Technology, Beijing, 100081, China
| | - Songlei Wang
- Department of Food Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
217
|
Xu Z, Chen L, Luo Y, Wei YM, Wu NY, Luo LF, Wei YB, Huang J. Advances in metal-organic framework-based nanozymes in ROS scavenging medicine. NANOTECHNOLOGY 2024; 35:362006. [PMID: 38865988 DOI: 10.1088/1361-6528/ad572a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Reactive oxygen species (ROS) play important roles in regulating various physiological functions in the human body, however, excessive ROS can cause serious damage to the human body, considering the various limitations of natural enzymes as scavengers of ROS in the body, the development of better materials for the scavenging of ROS is of great significance to the biomedical field, and nanozymes, as a kind of nanomaterials which can show the activity of natural enzymes. Have a good potential for the development in the area of ROS scavenging. Metal-organic frameworks (MOFs), which are porous crystalline materials with a periodic network structure composed of metal nodes and organic ligands, have been developed with a variety of active nanozymes including catalase-like, superoxide dismutase-like, and glutathione peroxidase-like enzymes due to the adjustability of active sites, structural diversity, excellent biocompatibility, and they have shown a wide range of applications and prospects. In the present review, we first introduce three representative natural enzymes for ROS scavenging in the human body, methods for the detection of relevant enzyme-like activities and mechanisms of enzyme-like clearance are discussed, meanwhile, we systematically summarize the progress of the research on MOF-based nanozymes, including the design strategy, mechanism of action, and medical application, etc. Finally, the current challenges of MOF-based nanozymes are summarized, and the future development direction is anticipated. We hope that this review can contribute to the research of MOF-based nanozymes in the medical field related to the scavenging of ROS.
Collapse
Affiliation(s)
- Zhong Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Liang Chen
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan-Mei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Ning-Yuan Wu
- Guangxi Medical University Life Sciences Institute, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lan-Fang Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yong-Biao Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
218
|
Cao H, Yuan Y, Zhao R, Shi W, Jiang J, Gao Y, Chen L, Gao L. Deciphering the Catalytic Mechanism of Peroxidase-like Activity of Iron Sulfide Nanozymes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30958-30966. [PMID: 38833280 DOI: 10.1021/acsami.4c06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Iron sulfide nanomaterials represented by FeS2 and Fe3S4 nanozymes have attracted increasing attention due to their biocompatibility and peroxidase-like (POD-like) catalytic activity in disease diagnosis and treatments. However, the mechanism responsible for their POD-like activities remains unclear. Herein, taking the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 on FeS2(100) and Fe3S4(001) surfaces, the catalytic mechanism was investigated in detail using density functional theory (DFT) calculations and experimental characterizations. Our experimental results showed that the catalytic activity of FeS2 nanozymes was significantly higher than that of Fe3S4 nanozymes. Our DFT calculations indicated that the surface iron ions of iron sulfide nanozymes could effectively catalyze the production of HO• radicals via the interactions between Fe 3d electrons and the frontier orbitals of H2O2 in the range of -10 to 5 eV. However, FeS2 nanozymes exhibited higher POD-like activity due to the surface Fe(II) binding to H2O2, forming inner-orbital complexes, which results in a larger binding energy and a smaller energy barrier for the base-like decomposition of H2O2. In contrast, the surface iron ions of Fe3S4 nanozymes bind to H2O2, forming outer-orbital complexes, which results in a smaller binding energy and a larger energy barrier for the base-like decomposition of H2O2. The charge transfer analysis showed that FeS2 nanozymes transferred 0.12 e and Fe3S4 nanozymes transferred 0.05 e from their surface iron ions to H2O2, respectively. The simulations were consistent with the experimental observations that the FeS2 nanozymes had a greater affinity for H2O2 compared to that of Fe3S4 nanozymes. This work provides a theoretical foundation for the rational design and accurate preparation of iron sulfide functional nanozymes.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Yuan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Runze Zhao
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Shi
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450052, China
| |
Collapse
|
219
|
Xie X, Zhao Y, Fan Y, Jiang L, Liu W, Yang X. Multifunctional Fe/Cu Dual-Single Atom Nanozymes with Enhanced Peroxidase Activity for Isoniazid Detection and Levofloxacin Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12671-12680. [PMID: 38853520 DOI: 10.1021/acs.langmuir.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The design of single-atom nanozymes with dual active sites to increase their activity and for the detection and degradation of contaminants is rare and challenging. In this work, a single-atom nanozyme (FeCu-NC) based on a three-dimensional porous Fe/Cu dual active site was developed as a colorimetric sensor for both the quantitative analysis of isoniazid (INH) and the efficient degradation of levofloxacin (LEV). FeCu-NC was synthesized using a salt template and freeze-drying method with a three-dimensional hollow porous structure and dual active sites (Fe-Nx and Cu-Nx). In terms of morphology and structure, FeCu-NC exhibits excellent peroxidase-like activity and catalytic properties. Therefore, a colorimetric sensor was constructed around FeCu-NC for sensitive and rapid quantitative analysis of INH with a linear range of 0.9-10 μM and a detection limit as low as 0.3 μM, and the sensor was successfully applied to the analysis of INH in human urine. In addition, FeCu-NC promoted the efficient degradation of LEV by peroxymonosulfate activation, with a degradation rate of 90.4% for LEV at 30 min. This work sheds new light on the application of single-atom nanozymes to antibiotics for colorimetric sensing and degradation.
Collapse
Affiliation(s)
- Xiaoyi Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Yuxiu Fan
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Ling Jiang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Wei Liu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China
| |
Collapse
|
220
|
Avila Y, Rebolledo LP, Skelly E, de Freitas Saito R, Wei H, Lilley D, Stanley RE, Hou YM, Yang H, Sztuba-Solinska J, Chen SJ, Dokholyan NV, Tan C, Li SK, He X, Zhang X, Miles W, Franco E, Binzel DW, Guo P, Afonin KA. Cracking the Code: Enhancing Molecular Tools for Progress in Nanobiotechnology. ACS APPLIED BIO MATERIALS 2024; 7:3587-3604. [PMID: 38833534 PMCID: PMC11190997 DOI: 10.1021/acsabm.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.
Collapse
Affiliation(s)
- Yelixza
I. Avila
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Laura P. Rebolledo
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Renata de Freitas Saito
- Comprehensive
Center for Precision Oncology, Centro de Investigação
Translacional em Oncologia (LIM24), Departamento
de Radiologia e Oncologia, Faculdade de Medicina da Universidade de
São Paulo and Instituto do Câncer do Estado de São
Paulo, São Paulo, São Paulo 01246-903, Brazil
| | - Hui Wei
- College
of Engineering and Applied Sciences, Nanjing
University, Nanjing, Jiangsu 210023, P. R. China
| | - David Lilley
- School
of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Robin E. Stanley
- Signal
Transduction Laboratory, National Institute of Environmental Health
Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States
| | - Ya-Ming Hou
- Thomas
Jefferson
University, Department of Biochemistry
and Molecular Biology, 233 South 10th Street, BLSB 220 Philadelphia, Pennsylvania 19107, United States
| | - Haoyun Yang
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Joanna Sztuba-Solinska
- Vaccine
Research and Development, Early Bioprocess Development, Pfizer Inc., 401 N Middletown Road, Pearl
River, New York 10965, United States
| | - Shi-Jie Chen
- Department
of Physics and Astronomy, Department of Biochemistry, Institute of
Data Sciences and Informatics, University
of Missouri at Columbia, Columbia, Missouri 65211, United States
| | - Nikolay V. Dokholyan
- Departments
of Pharmacology and Biochemistry & Molecular Biology Penn State College of Medicine; Hershey, Pennsylvania 17033, United States
- Departments
of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Cheemeng Tan
- University of California, Davis, California 95616, United States
| | - S. Kevin Li
- Division
of Pharmaceutical Sciences, James L Winkle
College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Xiaoming He
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Xiaoting Zhang
- Department
of Cancer Biology, Breast Cancer Research Program, and University
of Cincinnati Cancer Center, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Wayne Miles
- Department
of Cancer Biology and Genetics, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Elisa Franco
- Department
of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Daniel W. Binzel
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- Center
for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy, James
Comprehensive Cancer Center, The Ohio State
University, Columbus, Ohio 43210, United States
- Dorothy
M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry
University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
221
|
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, Kanwal Q, Choi JR. Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers. Int J Nanomedicine 2024; 19:5813-5835. [PMID: 38895143 PMCID: PMC11184228 DOI: 10.2147/ijn.s460712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Breast and ovarian cancers, despite having chemotherapy and surgical treatment, still have the lowest survival rate. Experimental stages using nanoenzymes/nanozymes for ovarian cancer diagnosis and treatment are being carried out, and correspondingly the current treatment approaches to treat breast cancer have a lot of adverse side effects, which is the reason why researchers and scientists are looking for new strategies with less side effects. Nanoenzymes have intrinsic enzyme-like activities and can reduce the shortcomings of naturally occurring enzymes due to the ease of storage, high stability, less expensive, and enhanced efficiency. In this review, we have discussed various ways in which nanoenzymes are being used to diagnose and treat breast and ovarian cancer. For breast cancer, nanoenzymes and their multi-enzymatic properties can control the level of reactive oxygen species (ROS) in cells or tissues, for example, oxidase (OXD) and peroxidase (POD) activity can be used to generate ROS, while catalase (CAT) or superoxide dismutase (SOD) activity can scavenge ROS. In the case of ovarian cancer, most commonly nanoceria is being investigated, and also when folic acid is combined with nanoceria there are additional advantages like inhibition of beta galactosidase. Nanocarriers are also used to deliver small interfering RNA that are effective in cancer treatment. Studies have shown that iron oxide nanoparticles are actively being used for drug delivery, similarly ferritin carriers are used for the delivery of nanozymes. Hypoxia is a major factor in ovarian cancer, therefore MnO2-based nanozymes are being used as a therapy. For cancer diagnosis and screening, nanozymes are being used in sonodynamic cancer therapy for cancer diagnosis and screening, whereas biomedical imaging and folic acid gold particles are also being used for image guided treatments. Nanozyme biosensors have been developed to detect ovarian cancer. This review article summarizes a detailed insight into breast and ovarian cancers in light of nanozymes-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Samiah Shahid
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Ayesha Khan
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Mehvesh Rehan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Roha Asif
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Haseeb Nisar
- School of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Kyeonggi-do, 16227, Republic of Korea
| |
Collapse
|
222
|
Xia N, Gao F, Zhang J, Wang J, Huang Y. Overview on the Development of Electrochemical Immunosensors by the Signal Amplification of Enzyme- or Nanozyme-Based Catalysis Plus Redox Cycling. Molecules 2024; 29:2796. [PMID: 38930860 PMCID: PMC11206384 DOI: 10.3390/molecules29122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Enzyme-linked electrochemical immunosensors have attracted considerable attention for the sensitive and selective detection of various targets in clinical diagnosis, food quality control, and environmental analysis. In order to improve the performances of conventional immunoassays, significant efforts have been made to couple enzyme-linked or nanozyme-based catalysis and redox cycling for signal amplification. The current review summarizes the recent advances in the development of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling for signal amplification. The special features of redox cycling reactions and their synergistic functions in signal amplification are discussed. Additionally, the current challenges and future directions of enzyme- or nanozyme-based electrochemical immunosensors with redox cycling are addressed.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
223
|
Tian J, Dong X, Sabola EE, Wang Y, Chen K, Zhu M, Dai B, Zhang S, Guo F, Shi K, Chi J, Xu P. Sequential Regulation of Local Reactive Oxygen Species by Ir@Cu/Zn-MOF Nanoparticles for Promoting Infected Wound Healing. ACS Biomater Sci Eng 2024; 10:3792-3805. [PMID: 38814749 DOI: 10.1021/acsbiomaterials.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Most antimicrobials treat wound infections by an oxidation effect, which is induced by the generation of reactive oxygen species (ROS). However, the potential harm of the prolonged high level of ROS should not be ignored. In this study, we presented a novel cascade-reaction nanoparticle, Ir@Cu/Zn-MOF, to effectively regulate the ROS level throughout the healing progress of the infected wound. The nanoparticles consisted of a copper/zinc-modified metal-organic framework (Cu/Zn-MOF) serving as the external structure and an inner core composed of Ir-PVP NPs, which were achieved through a process known as "bionic mineralization". The released Cu2+ and Zn2+ from the shell structure contributed to the production of ROS, which acted as antimicrobial agents during the initial stage. With the disintegration of the shell, the Ir-PVP NP core was gradually released, exhibiting the property of multiple antioxidant enzyme activities, thereby playing an important role in clearing excessive ROS and alleviating oxidative stress. In a full-layer infected rat wound model, Ir@Cu/Zn-MOF nanoparticles presented exciting performance in promoting wound healing by clearing the bacteria and accelerating neovascularization as well as collagen deposition. This study provided a promising alternative for the repair of infected wounds.
Collapse
Affiliation(s)
- Jinrong Tian
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xing Dong
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Eluby Esmie Sabola
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqi Wang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Kai Chen
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325025, China
| | - Meng Zhu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Bichun Dai
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Shanshan Zhang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Feixia Guo
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Junjie Chi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Pingwei Xu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
224
|
Ali S, Sikdar S, Basak S, Mondal M, Tudu A, Roy D, Haydar MS, Ghosh S, Rahaman H, Sil S, Roy MN. Multienzyme Mimicking Cascade Mn 3O 4 Catalyst to Augment Reactive Oxygen Species Elimination and Colorimetric Detection: A Study of Phase Variation upon Calcination Temperature. Inorg Chem 2024; 63:10542-10556. [PMID: 38805686 DOI: 10.1021/acs.inorgchem.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Over decades, nanozyme has served as a better replacement of bioenzymes and fulfills most of the shortcomings and intrinsic disadvantages of bioenzymes. Recently, manganese-based nanomaterials have been highly noticed for redox-modulated multienzyme mimicking activity and wide applications in biosensing and biomedical science. The redox-modulated multienzyme mimicking activity was highly in tune with their size, surface functionalization, and charge on the surface and phases. On the subject of calcination temperature to Mn3O4 nanoparticles (NPs), its phase has been transformed to Mn2O3 NPs and Mn5O8 NPs upon different calcination temperatures. Assigning precise structure-property connections is made easier by preparing the various manganese oxides in a single step. The present study has focused on the variation of multienzyme mimicking activity with different phases of Mn3O4 NPs, so that they can be equipped for multifunctional activity with greater potential. Herein, spherical Mn3O4 NPs have been synthesized via a one-step coprecipitation method, and other phases are obtained by direct calcination. The calcination temperature varies to 100, 200, 400, and 600 °C and the corresponding manganese oxide NPs are named M-100, M-200, M-400, and M-600, respectively. The phase transformation and crystalline structure are evaluated by powder X-ray diffraction and selected-area electron diffraction analysis. The different surface morphologies are easily navigated by Fourier transform infrared, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy analysis. Fortunately, for the mixed valence state of Mn3O4 NPs, all phases of manganese oxide NPs showed multienzyme mimicking activity including superoxide dismutase (SOD), catalase, oxidase (OD), and peroxidase; therefore, it offers a synergistic antioxidant ability to overexpose reactive oxygen species. Mn3O4 NPs exhibited good SOD-like enzyme activity, which allowed it to effectively remove the active oxygen (O2•-) from cigarette smoke. A sensitive colorimetric sensor with a low detection limit and a promising linear range has been designed to detect two isomeric phenolic pollutants, hydroquinone (H2Q) and catechol (CA), by utilizing optimized OD activity. The current probe has outstanding sensitivity and selectivity as well as the ability to visually detect two isomers with the unaided eye.
Collapse
Affiliation(s)
- Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Suranjan Sikdar
- Department of Chemistry, Government General Degree College at Kushmandi, Dakshin Dinajpur 733125, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Ajit Tudu
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Md Salman Haydar
- Department of Botany, University of North Bengal, Darjeeling 734013, India
| | - Shibaji Ghosh
- CSIR Central Salt and Marine Chemical Research Institute, G. B. Marg Bhavnagar, Gujrat 364002, India
| | - Habibur Rahaman
- A. P. C. Roy Government College Matigara, Siliguri, Darjeeling 734010, India
| | - Sanchita Sil
- Defence Bioengineering and Electromedical Laboratory, C. V. Raman Nagar, Bangalore 560093, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India
| |
Collapse
|
225
|
Wang M, Shi F, Li J, Min L, Yang Z, Li J. An Au bipyramids@CuZn MOF core-shell nanozyme enables universal SERS and a colorimetric dual-model bioassay. Chem Commun (Camb) 2024; 60:6019-6022. [PMID: 38774998 DOI: 10.1039/d4cc01602e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In this study, a new type of gold nano-bipyramids@CuZn bimetallic organic framework (AuNBPs@CuZn MOF) nanozyme with high peroxidase (POD)-like activity and surface enhanced Raman scattering (SERS) activity was constructed with a special core-shell structure, which can catalyze the oxidation of TMB (colourless and Raman-inactive) into ox-TMB (blue and Raman-active). An AuNBPs@CuZn MOF-enabling universal SERS and colorimetric dual-model bioassay was thus developed for biomolecules with excellent performance, and has promising application prospects in the biosensing fields.
Collapse
Affiliation(s)
- Mengdi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Feng Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Jiayin Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Lingfeng Min
- Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, P. R. China.
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Juan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| |
Collapse
|
226
|
Chigozie AE, Ravikumar A, Yang X, Tamilselvan G, Deng Y, Arunjegan A, Li X, Hu Z, Zhang Z. A metal-phenolic coordination framework nanozyme exhibits dual enzyme mimicking activity and its application is effective for colorimetric detection of biomolecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3530-3538. [PMID: 38779841 DOI: 10.1039/d4ay00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Biomolecules play vital roles in many biological processes and diseases, making their identification crucial. Herein, we present a colorimetric sensing method for detecting biomolecules like cysteine (Cys), homocysteine (Hcy), and glutathione (GSH). This approach is based on a reaction system whereby colorless 3,3',5,5'-tetramethylbenzidine (TMB) undergoes catalytic oxidation to form blue-colored oxidized TMB (ox-TMB) in the presence of hydrogen peroxide (H2O2), utilizing the peroxidase and catalase-mimicking activities of metal-phenolic coordination frameworks (MPNs) of Cu-TA, Co-TA, and Fe-TA nanospheres. The Fe-TA nanospheres demonstrated superior activity, more active sites and enhanced electron transport. Under optimal conditions, the Fe-TA nanospheres were used for the detection of biomolecules. When present, biomolecules inhibit the reaction between TMB and H2O2, causing various colorimetric responses at low detection limits of 0.382, 0.776 and 0.750 μM for Cys, Hcy and GSH. Furthermore, it was successfully applied to real water samples with good recovery results. The developed sensor not only offers a rapid, portable, and user-friendly technique for multi-target analysis of biomolecules at low concentrations but also expands the potential uses of MPNs for other targets in the environmental field.
Collapse
Affiliation(s)
- Aham Emmanuel Chigozie
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - A Ravikumar
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaofeng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - G Tamilselvan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yibin Deng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
- Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China
| | - A Arunjegan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhang Hu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
- Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China
| |
Collapse
|
227
|
Qiu M, Yuan Z, Li N, Yang X, Zhang X, Jiang Y, Zhao Q, Man C. Self-assembled bifunctional nanoflower-enabled CRISPR/Cas biosensing platform for dual-readout detection of Salmonella enterica. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134323. [PMID: 38640680 DOI: 10.1016/j.jhazmat.2024.134323] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Sensitive detection and point-of-care test of bacterial pathogens is of great significance in safeguarding the public health worldwide. Inspired by the characteristics of horseradish peroxidase (HRP), we synthesized a hybrid nanoflower with peroxidase-like activity via a three-component self-assembled strategy. Interestingly, the prepared nanozyme not only could act as an alternative to HRP for colorimetric biosensing, but also function as a unique signal probe that could be recognized by a pregnancy test strip. By combining the bifunctional properties of hybrid nanoflower, isothermal amplification of LAMP, and the specific recognition and non-specific cleavage properties of CRISPR/Cas12a system, the dual-readout CRISPR/Cas12a biosensor was developed for sensitive and rapid detection of Salmonella enterica. Moreover, this platform in the detection of Salmonella enterica had limits of detection of 1 cfu/mL (colorimetric assay) in the linear range of 101-108 cfu/mL and 102 cfu/mL (lateral flow assay) in the linear range of 102-108 cfu/mL, respectively. Furthermore, the developed biosensor exhibited good recoveries in the spiked samples (lake water and milk) with varying concentrations of Salmonella enterica. This work provides new insights for the design of multifunctional nanozyme and the development of innovative dual-readout CRISPR/Cas system-based biosensing platform for the detection of pathogens.
Collapse
Affiliation(s)
- Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyu Yuan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Nan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xianlong Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
228
|
Liu T, Zhu L, Li C, Yu Y, Zhang Z, Liu H, Wang L, Li Y. Fe-CP-based Catalytic Oxidation and Dissipative Self-Assembly of a Ferrocenyl Surfactant Applied in DNA Capture and Release. ACS OMEGA 2024; 9:23772-23781. [PMID: 38854516 PMCID: PMC11154932 DOI: 10.1021/acsomega.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Dissipative self-assembly plays a vital role in fabricating intelligent and transient materials. The selection and design of the molecular structure is critical, and the introduction of valuable stimuli-responsive motifs into building blocks would bring about a novel perspective on the fuel driven nonequilibrium assemblies. For redox-responsive surfactants, novel methods of catalytic oxidation are very important for their activation/deactivation process through designing fuel input/energy dissipation. As an enzyme with a fast catalytic rate, Fe-based coordination polymers (Fe-CPs) are found to be highly effective oxidase-like enzymes to induce a reversible switch of a ferrocene-based surfactant over a wide range of temperatures and pH. This builds a bridge between the CPs materials and surfactants. Furthermore, glucose oxidase can also induce a switchable transition of a ferrocene-based surfactant. The GOX-catalyzed, glucose-fueled transient surfactant assemblies have been fabricated for many cycles, which has a successful application in a time-controlled and autonomous DNA capture and release process. The intelligent use of enzymes including CPs and GOX in ferrocene-based surfactants will pave the way for the oxidation of redox surfactants, which extends the application of stable or transient ferrocenyl self-assemblies.
Collapse
Affiliation(s)
- Ting Liu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Liwei Zhu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Chencan Li
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Yang Yu
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Zhuo Zhang
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Huizhong Liu
- School
of Mechatronics and Automobile Engineering, Yantai University, Yantai 264005, Shandong Province, China
| | - Ling Wang
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| | - Yawen Li
- School
of Chemistry and Chemical Engineering, Center of Cosmetics, Qilu Normal University, Jinan 250200, Shandong Province, China
| |
Collapse
|
229
|
Selva Sharma A, Lee NY. Advancements in visualizing loop-mediated isothermal amplification (LAMP) reactions: A comprehensive review of colorimetric and fluorometric detection strategies for precise diagnosis of infectious diseases. Coord Chem Rev 2024; 509:215769. [DOI: 10.1016/j.ccr.2024.215769] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
230
|
Hussain A, Parveen F, Saxena A, Ashfaque M. A review of nanotechnology in enzyme cascade to address challenges in pre-treating biomass. Int J Biol Macromol 2024; 270:132466. [PMID: 38761904 DOI: 10.1016/j.ijbiomac.2024.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Nanotechnology has become a revolutionary technique for improving the preliminary treatment of lignocellulosic biomass in the production of biofuels. Traditional methods of pre-treatment have encountered difficulties in effectively degrading the intricate lignocellulosic composition, thereby impeding the conversion of biomass into fermentable sugars. Nanotechnology has enabled the development of enzyme cascade processes that present a potential solution for addressing the limitations. The focus of this review article is to delve into the utilization of nanotechnology in the pretreatment of lignocellulosic biomass through enzyme cascade processes. The review commences with an analysis of the composition and structure of lignocellulosic biomass, followed by a discussion on the drawbacks associated with conventional pre-treatment techniques. The subsequent analysis explores the importance of efficient pre-treatment methods in the context of biofuel production. We thoroughly investigate the utilization of nanotechnology in the pre-treatment of enzyme cascades across three distinct sections. Nanomaterials for enzyme immobilization, enhanced enzyme stability and activity through nanotechnology, and nanocarriers for controlled enzyme delivery. Moreover, the techniques used to analyse nanomaterials and the interactions between enzymes and nanomaterials are introduced. This review emphasizes the significance of comprehending the mechanisms underlying the synergy between nanotechnology and enzymes establishing sustainable and environmentally friendly nanotechnology applications.
Collapse
Affiliation(s)
- Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
231
|
He S, Lin M, Zheng Q, Liang B, He X, Zhang Y, Xu Q, Deng H, Fan K, Chen W. Glucose Oxidase Energized Osmium with Dual-Active Centers and Triple Enzyme Activities for Infected Diabetic Wound Management. Adv Healthc Mater 2024; 13:e2303548. [PMID: 38507709 DOI: 10.1002/adhm.202303548] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Diabetic wounds are susceptible to bacterial infections, largely linked to high blood glucose levels (hyperglycemia). To treat such wounds, enzymes like glucose oxidase (GOx) can be combined with nanozymes (nanomaterials mimic enzymes) to use glucose effectively for purposes. However, there is still room for improvement in these systems, particularly in terms of process simplification, enzyme activity regulation, and treatment effects. Herein, the approach utilizes GOx to directly facilitate the biomineralized growth of osmium (Os) nanozyme (GOx-OsNCs), leading to dual-active centers and remarkable triple enzyme activities. Initially, GOx-OsNCs use vicinal dual-active centers, enabling a self-cascaded mechanism that significantly enhances glucose sensing performance compared to step-by-step reactions, surpassing the capabilities of other metal sources such as gold and platinum. In addition, GOx-OsNCs are integrated into a glucose-sensing gel, enabling instantaneous visual feedback. In the treatment of infected diabetic wounds, GOx-OsNCs exhibit multifaceted benefits by lowering blood glucose levels and exhibiting antibacterial properties through the generation of hydroxyl free radicals, thereby expediting healing by fostering a favorable microenvironment. Furthermore, the catalase-like activity of GOx-OsNCs aids in reducing oxidative stress, inflammation, and hypoxia, culminating in improved healing outcomes. Overall, this synergistic enzyme-nanozyme blend is user-friendly and holds considerable promise for diverse applications.
Collapse
Affiliation(s)
- Shaobin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Mengting Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Qionghua Zheng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Bo Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xinjie He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qiuxia Xu
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Haohua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| |
Collapse
|
232
|
Pathak A, Verma N, Tripathi S, Mishra A, Poluri KM. Nanosensor based approaches for quantitative detection of heparin. Talanta 2024; 273:125873. [PMID: 38460425 DOI: 10.1016/j.talanta.2024.125873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Heparin, being a widely employed anticoagulant in numerus clinical complications, requires strict quantification and qualitative screening to ensure the safety of patients from potential threat of thrombocytopenia. However, the intricacy of heparin's chemical structures and low abundance hinders the precise monitoring of its level and quality in clinical settings. Conventional laboratory assays have limitations in sensitivity and specificity, necessitating the development of innovative approaches. In this context, nanosensors emerged as a promising solution due to enhanced sensitivity, selectivity, and ability to detect heparin even at low concentrations. This review delves into a range of sensing approaches including colorimetric, fluorometric, surface-enhanced Raman spectroscopy, and electrochemical techniques using different types of nanomaterials, thus providing insights of its principles, capabilities, and limitations. Moreover, integration of smart-phone with nanosensors for point of care diagnostics has also been explored. Additionally, recent advances in nanopore technologies, artificial intelligence (AI) and machine learning (ML) have been discussed offering specificity against contaminants present in heparin to ensure its quality. By consolidating current knowledge and highlighting the potential of nanosensors, this review aims to contribute to the advancement of efficient, reliable, and economical heparin detection methods providing improved patient care.
Collapse
Affiliation(s)
- Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nishchay Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
233
|
Li X, Lin G, Zhou L, Prosser O, Malakooti MH, Zhang M. Green synthesis of iron-doped graphene quantum dots: an efficient nanozyme for glucose sensing. NANOSCALE HORIZONS 2024; 9:976-989. [PMID: 38568029 DOI: 10.1039/d4nh00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Single-atom nanozymes with well-defined atomic structures and electronic coordination environments can effectively mimic the functions of natural enzymes. However, the costly and intricate preparation processes have hindered further exploration and application of these single-atom nanozymes. In this study, we presented a synthesis technique for creating Fe-N central single-atom doped graphene quantum dot (FeN/GQDs) nanozymes using a one-step solvothermal process, where individual iron atoms form strong bonds with graphene quantum dots through nitrogen coordination. Unlike previous studies, this method significantly simplifies the synthesis conditions for single-atom nanozymes, eliminating the need for high temperatures and employing environmentally friendly precursors derived from pineapple (ananas comosus) leaves. The resulting FeN/GQDs exhibited peroxidase-like catalytic activity and kinetics comparable to that of natural enzymes, efficiently converting H2O2 into hydroxyl radical species. Leveraging their excellent peroxide-like activity, FeN/GQDs nanozymes have been successfully applied to construct a colorimetric biosensor system characterized by remarkably high sensitivity for glucose detection. This achievement demonstrated a promising approach to designing single-atom nanozymes with both facile synthesis procedures and high catalytic activity, offering potential applications in wearable sensors and personalized health monitoring.
Collapse
Affiliation(s)
- Xinqi Li
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Lijun Zhou
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Octavia Prosser
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Mohammad H Malakooti
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
234
|
Ding Z, Song Q, Wang G, Zhong Z, Zhong G, Li H, Chen Y, Zhou X, Liu L, Yang S. Synthesis of organic-inorganic hybrid nanocomposites modified by catalase-like catalytic sites for the controlling of kiwifruit bacterial canker. RSC Adv 2024; 14:17571-17582. [PMID: 38828279 PMCID: PMC11140456 DOI: 10.1039/d4ra02006e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. Actinidiae (Psa), is one of the most important diseases in kiwifruit, creating huge economic losses to kiwifruit-growing countries around the world. Metal-based nanomaterials offer a promising alternative strategy to combat plant diseases induced by bacterial infection. However, it is still challenging to design highly active nanomaterials for controlling kiwifruit bacterial canker. Here, a novel multifunctional nanocomposite (ZnO@PDA-Mn) is designed that integrates the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) with the plant reactive oxygen species scavenging ability of catalase (CAT) enzyme-like active sites through introducing manganese modified polydopamine (PDA) coating. The results reveal that ZnO@PDA-Mn nanocomposites can efficiently catalyze the conversion of H2O2 to O2 and H2O to achieve excellent CAT-like activity. In vitro experiments demonstrate that ZnO@PDA-Mn nanocomposites maintain the antibacterial activity of ZnO NPs and induce significant damage to bacterial cell membranes. Importantly, ZnO@PDA-Mn nanocomposites display outstanding curative and protective efficiencies of 47.7% and 53.8% at a dose of 200 μg mL-1 against Psa in vivo, which are superior to those of zinc thiozole (20.6% and 8.8%) and ZnO (38.7% and 33.8%). The nanocomposites offer improved in vivo control efficacy through direct bactericidal effects and decreasing oxidative damage in plants induced by bacterial infection. Our research underscores the potential of nanocomposites containing CAT-like active sites in plant protection, offering a promising strategy for sustainable disease management in agriculture.
Collapse
Affiliation(s)
- Zhenghao Ding
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Qingqing Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Guangdi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Zhuojun Zhong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Guoyong Zhong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Yuexin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Liwei Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China
| |
Collapse
|
235
|
Xia J, Li Z, Ding Y, Shah LA, Zhao H, Ye D, Zhang J. Construction and Application of Nanozyme Sensor Arrays. Anal Chem 2024; 96:8221-8233. [PMID: 38740384 DOI: 10.1021/acs.analchem.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Compared with traditional "lock-key mode" biosensors, a sensor array consists of a series of sensing elements based on intermolecular interactions (typically hydrogen bonds, van der Waals forces, and electrostatic interactions). At the same time, sensor arrays also have the advantages of fast response, high sensitivity, low energy consumption, low cost, rich output signals, and imageability, which have attracted widespread attention from researchers. Nanozymes are nanomaterials which own enzyme-like properties. Because of the adjustable activity, high stability, and cost effectiveness of nanozymes, they are potential candidates for construction of sensor arrays to output different signals from analytes through the chemoresponse of colorants, which solves the shortcomings of traditional sensors that they cannot support multiple detection and lack universality. Recently, a sensor array based on nanozymes as nonspecific recognition receptors has attracted much more attention from researchers and has been applied to precise recognition of proteins, bacteria, and heavy metals. In this perspective, attention is given to nanozymes and the regulation of their enzyme-like activity. Particularly, the building principles and methods for sensor arrays based on nanozymes are analyzed, and the applications are summarized. Finally, the approaches to overcome the challenges and perspectives are also presented and analyzed for facilitating further research and development of nanozyme sensor arrays. This perspective should be helpful for gaining insight into research ideas within the field of nanozyme sensor arrays.
Collapse
Affiliation(s)
- Jianing Xia
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhen Li
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yaping Ding
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Luqman Ali Shah
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Hongbin Zhao
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Daixin Ye
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jiujun Zhang
- Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
236
|
Chen M, Qin Y, Peng Y, Mai R, Teng H, Qi Z, Mo J. Advancing stroke therapy: the potential of MOF-based nanozymes in biomedical applications. Front Bioeng Biotechnol 2024; 12:1363227. [PMID: 38798955 PMCID: PMC11119330 DOI: 10.3389/fbioe.2024.1363227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
In this study, we explored the growing use of metal-organic framework (MOF)-based Nanozymes in biomedical research, with a specific emphasis on their applications in stroke therapy. We have discussed the complex nature of stroke pathophysiology, highlighting the crucial role of reactive oxygen species (ROS), and acknowledging the limitations of natural enzymes in addressing these challenges. We have also discussed the role of nanozymes, particularly those based on MOFs, their structural similarities to natural enzymes, and their potential to improve reactivity in various biomedical applications. The categorization of MOF nanozymes based on enzyme-mimicking activities is discussed, and their applications in stroke therapy are explored. We have reported the potential of MOF in treating stroke by regulating ROS levels, alleviation inflammation, and reducing neuron apoptosis. Additionally, we have addressed the challenges in developing efficient antioxidant nanozyme systems for stroke treatment. The review concludes with the promise of addressing these challenges and highlights the promising future of MOF nanozymes in diverse medical applications, particularly in the field of stroke treatment.
Collapse
Affiliation(s)
- Meirong Chen
- The Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Medical College of Guangxi University, Nanning, China
| | - Yang Qin
- Department of Graduate and Postgraduate Education Management, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yongmei Peng
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Ruyu Mai
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Huanyao Teng
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Zhongquan Qi
- Medical College of Guangxi University, Nanning, China
| | - Jingxin Mo
- The Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
237
|
Xu X, Shen Y, Xing R, Kong J, Su R, Huang R, Qi W. Galvanic Replacement Synthesis of VO x@EGaIn-PEG Core-Shell Nanohybrids for Peroxidase Mimics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21975-21986. [PMID: 38626357 DOI: 10.1021/acsami.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The development of high-performance biosensors is a key focus in the nanozyme field, but the current limitations in biocompatibility and recyclability hinder their broader applications. Herein, we address these challenges by constructing core-shell nanohybrids with biocompatible poly(ethylene glycol) (PEG) modification using a galvanic replacement reaction between orthovanadate ions and liquid metal (LM) (VOx@EGaIn-PEG). By leveraging the excellent charge transfer properties and the low band gap of the LM surface oxide, the VOx@EGaIn-PEG heterojunction can effectively convert hydrogen peroxide into hydroxyl radicals, demonstrating excellent peroxidase-like activity and stability (Km = 490 μM, vmax = 1.206 μM/s). The unique self-healing characteristics of LM further enable the recovery and regeneration of VOx@EGaIn-PEG nanozymes, thereby significantly reducing the cost of biological detection. Building upon this, we developed a nanozyme colorimetric sensor suitable for biological systems and integrated it with a smartphone to create an efficient quantitative detection platform. This platform allows for the convenient and sensitive detection of glucose in serum samples, exhibiting a good linear relationship in the range of 10-500 μM and a detection limit of 2.35 μM. The remarkable catalytic potential of LM, combined with its biocompatibility and regenerative properties, offers valuable insights for applications in catalysis and biomedical fields.
Collapse
Affiliation(s)
- Xiaojian Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ruizhe Xing
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
238
|
Guo Y, Li X, Shen P, Li X, Cheng Y, Chu K. Dendritic-like MXene quantum dots@CuNi as an efficient peroxidase candidate for colorimetric determination of glyphosate. J Colloid Interface Sci 2024; 661:533-543. [PMID: 38308893 DOI: 10.1016/j.jcis.2024.01.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Oxidized MXene quantum dots@CuNi bimetal (MQDs@CuNi) were firstly prepared through a simple hydrothermal method. Compared to the controlled samples, MQDs@CuNi1:1 showed the highest peroxidase-like activity. The catalytic mechanism of MQDs@CuNi1:1 was investigated using a steady-state fluorescence analysis, which showed that MQDs@CuNi1:1 efficiently decomposes H2O2 and produces highly reactive hydroxyl radicals (OH). Furthermore, theoretical calculations showed that the remarkable catalytic activity of MQDs@CuNi1:1 originates from the interaction between CuNi bimetal and MQDs to promote the activation and decomposition of H2O2, making it easier to combine with the hydrogen at the end of 3,3',5,5'-Tetramethylbenzidine (TMB). Accordingly, a sensitive colorimetric sensor is proposed to detect glyphosate (Glyp), displaying a low detection limit of 1.13 µM. The work will provide a new way for the development of high-performance nanozyme and demonstrate potential applicability for the determination of pesticide residues in environment.
Collapse
Affiliation(s)
- Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China.
| | - Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Yonghua Cheng
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
239
|
Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric Oxide Releasing Nanomaterials for Cardiovascular Applications. JACC Basic Transl Sci 2024; 9:691-709. [PMID: 38984042 PMCID: PMC11228123 DOI: 10.1016/j.jacbts.2023.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/11/2024]
Abstract
A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action. However, safe, and therapeutic levels of NO require delivery of the right amount to a precise location at the right time. To achieve these aims, several recent strategies aimed at therapeutically generating or releasing NO in living systems have shown that polymeric and inorganic (silica, gold) nanoparticles and nanoscale metal-organic frameworks could either generate NO endogenously by the catalytic decomposition of endogenous NO substrates or can store and release therapeutically relevant amounts of NO gas. NO-releasing nanomaterials have been developed for vascular implants (such as stents and grafts) to target atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and cardiac tissue engineering. In this review, we discuss the advances in design and development of novel NO-releasing nanomaterials for cardiovascular therapeutics and critically examine the therapeutic potential of these nanoplatforms to modulate cellular metabolism, to regulate vascular tone, inhibit platelet aggregation, and limit proliferation of vascular smooth muscle with minimal toxic effects.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Mark J. Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- Department of Biochemical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Helen E. Townley
- Nuffield Department of Women’s and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Paul G. Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
240
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
241
|
Li X, Jin Z, Bai Y, Svensson B. Progress in cyclodextrins as important molecules regulating catalytic processes of glycoside hydrolases. Biotechnol Adv 2024; 72:108326. [PMID: 38382582 DOI: 10.1016/j.biotechadv.2024.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cyclodextrins (CDs) are important starch derivatives and commonly comprise α-, β-, and γ-CDs. Their hydrophilic surface and hydrophobic inner cavity enable regulation of enzyme catalysis through direct or indirect interactions. Clarifying interactions between CDs and enzyme is of great value for enzyme screening, mechanism exploration, regulation of catalysis, and applications. We summarize the interactions between CDs and glycoside hydrolases (GHs) according to two aspects: 1) CD as products, substrates, inhibitors and activators of enzymes, directly affecting the reaction process; 2) CDs indirectly affecting the enzymatic reaction by solubilizing substrates, relieving substrate/product inhibition, increasing recombinant enzyme production and storage stability, isolating and purifying enzymes, and serving as ligands in crystal structure to identify functional amino acid residues. Additionally, CD enzyme mimetics are developed and used as catalysts in traditional artificial enzymes as well as nanozymes, making the application of CDs no longer limited to GHs. This review concerns the regulation of GHs catalysis by CDs, and gives insights into research on interactions between enzymes and ligands.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
242
|
Li H, Jin Z, Lu N, Pan J, Xu J, Yin XB, Zhang M. Fe 3O 4 nanoparticles entrapped in the inner surfaces of N-doped carbon microtubes with enhanced biomimetic activity. Dalton Trans 2024; 53:6974-6982. [PMID: 38563069 DOI: 10.1039/d3dt04310j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 μM and 0.49 μM, respectively, which has potential application value in biological sciences and biotechnology.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ziqi Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Na Lu
- College of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Jianmin Pan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
243
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
244
|
Wen X, Ni J, Zeng S, Song Z, Qiu W. One-Pot Synthesis of Nanoflower-Like Zn 2SnS 4 as Nanozymes for Highly Sensitive Electrochemical Detection of H 2O 2 Released by Living Cells. Chemistry 2024:e202400700. [PMID: 38625164 DOI: 10.1002/chem.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
The sensitive and reliable nanozyme-based sensor enables the detection of low concentrations of H2O2 in biological microenvironments, it has potential applications as an in-situ monitoring platform for cellular H2O2 release. The uniformly dispersed bimetallic sulfide (Zn2SnS4) nanoflowers were synthesized via a one-pot hydrothermal method and the two kinds of metal ions can serve as morphology and structure directing agents for each other in the synthetic process. The nanoparticles were utilized as nanozyme materials to fabricate a novel electrochemical sensor, and it exhibits a distinct electrochemical response towards H2O2 with excellent stability and detection capability (with a minimum detection limit of 1.79 nM (S/N=3)), the excellent characteristics facilitate the precise detection of low concentrations of H2O2 in biological microenvironments. Use the macrophages differentiated from leukemia THP-1 cells as a representative sensing model, the sensor was successfully utilized for real-time monitoring of the release of H2O2 induced by living cells, which has significant potential applications in clinical diagnosis and cancer treatment.
Collapse
Affiliation(s)
- Xia Wen
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Jiancong Ni
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Shunmu Zeng
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Zhiping Song
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Weiwei Qiu
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| |
Collapse
|
245
|
Hu H, Tian J, Shu R, Liu H, Wang S, Yin X, Wang J, Zhang D. A cheaper substitute for HRP: ultra-small Cu-Au bimetallic enzyme mimics with infinitesimal steric hindrance to promote catalytic lateral flow immunodetection of clenbuterol. LAB ON A CHIP 2024; 24:2272-2279. [PMID: 38504660 DOI: 10.1039/d3lc01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A highly sensitive lateral flow immunoassay (LFIA) is developed for the enzyme-catalyzed and double-reading determination of clenbuterol (CLE), in which a new type of probe was adopted through the direct electrostatic adsorption of ultra-small copper-gold bimetallic enzyme mimics (USCGs) and monoclonal antibodies. In the assay, based on the peroxidase activity of USCG, the chromogenic substrate TMB-H2O2 was introduced to trigger its color development, and the results were compared with those before catalysis. The detection sensitivity after catalysis is 0.03 ng mL-1 under optimal circumstances, which is 6-fold better than that of the traditional Au NPs-based LFIA and 2-fold greater than that before catalysis. This approach was successfully applied to the detection of CLE in milk, pork and mutton samples with an optimum assay time of 7 min and best catalytic time of 80 s, after which satisfactory recoveries of 98.53-117.79% were obtained. Cu-Au nanoparticles as a signal tag and the use of their nanozyme properties are the first applications in the field of LFIA. This work can be a promising exhibition for the application of a cheaper substitute for HRP, ultra-small bimetallic enzyme mimics, in LFIAs.
Collapse
Affiliation(s)
- Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Jiaqi Tian
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Huihui Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Economic and Technological Development Zone, 264006, Yantai, Shandong, China.
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China.
| |
Collapse
|
246
|
Liu X, Wan Z, Chen K, Yan Y, Li X, Wang Y, Wang M, Zhao R, Pei J, Zhang L, Sun S, Li J, Chen X, Xin Q, Zhang S, Liu S, Wang H, Liu C, Mu X, Zhang XD. Mated-Atom Nanozymes with Efficient Assisted NAD + Replenishment for Skin Regeneration. NANO LETTERS 2024. [PMID: 38619329 DOI: 10.1021/acs.nanolett.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Excessive accumulation of reduced nicotinamide adenine dinucleotide (NADH) within biological organisms is closely associated with many diseases. It remains a challenge to efficiently convert superfluous and detrimental NADH to NAD+. NADH oxidase (NOX) is a crucial oxidoreductase that catalyzes the oxidation of NADH to NAD+. Herein, M1M2 (Mi=V/Mn/Fe/Co/Cu/Mo/Rh/Ru/Pd, i = 1 or 2) mated-atom nanozymes (MANs) are designed by mimicking natural enzymes with polymetallic active centers. Excitingly, RhCo MAN possesses excellent and sustainable NOX-like activity, with Km-NADH (16.11 μM) being lower than that of NOX-mimics reported so far. Thus, RhCo MAN can significantly promote the regeneration of NAD+ and regulate macrophage polarization toward the M2 phenotype through down-regulation of TLR4 expression, which may help to recover skin regeneration. However, RhRu MAN with peroxidase-like activity and RhMn MAN with superoxide dismutase-like activity exhibit little modulating effects on eczema. This work provides a new strategy to inhibit skin inflammation and promote skin regeneration.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Zhen Wan
- Haihe Hospital, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiahui Pei
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiarong Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xinzhu Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
247
|
Lee SM, Kim H, Li P, Park HG. A label-free and washing-free method to detect biological thiols on a personal glucose meter utilizing glucose oxidase-mimicking activity of gold nanoparticles. Biosens Bioelectron 2024; 250:116019. [PMID: 38278122 DOI: 10.1016/j.bios.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
We herein developed a label-free and washing-free method to detect biological thiols (biothiols) on a personal glucose meter (PGM) utilizing the intrinsic glucose oxidase (GOx)-mimicking activity of gold nanoparticles (AuNPs). By focusing on the fact that this activity could be diminished by target biothiols through their binding onto the AuNP surface, we correlated the concentration of biothiols with that of glucose readily measurable on a PGM and successfully determined cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) down to 0.116, 0.059, and 0.133 μM, respectively, with high specificity against non-target biomolecules. We further demonstrated its practical applicability by reliably detecting target biothiol in heterogeneous human serum. Due to the meritorious features of PGM such as simplicity, portability, and cost-effectiveness, we believe that this work could serve as a powerful platform for biothiol detection in point-of-care settings.
Collapse
Affiliation(s)
- Sang Mo Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyoyong Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Pei Li
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
248
|
Declerck K, Savić ND, Moussawi MA, Seno C, Pokratath R, De Roo J, Parac-Vogt TN. Molecular Insights into Sequence-Specific Protein Hydrolysis by a Soluble Zirconium-Oxo Cluster Catalyst. J Am Chem Soc 2024. [PMID: 38621177 DOI: 10.1021/jacs.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The development of catalysts for controlled fragmentation of proteins is a critical undertaking in modern proteomics and biotechnology. {Zr6O8}-based metal-organic frameworks (MOFs) have emerged as promising candidates for catalysis of peptide bond hydrolysis due to their high reactivity, stability, and recyclability. However, emerging evidence suggests that protein hydrolysis mainly occurs on the MOF surface, thereby questioning the need for their highly porous 3D nature. In this work, we show that the discrete and water-soluble [Zr6O4(OH)4(CH3CO2)8(H2O)2Cl3]+ (Zr6) metal-oxo cluster (MOC), which is based on the same hexamer motif found in various {Zr6O8}-based MOFs, shows excellent activity toward selective hydrolysis of equine skeletal muscle myoglobin. Compared to related Zr-MOFs, Zr6 exhibits superior reactivity, with near-complete protein hydrolysis after 24 h of incubation at 60 °C, producing seven selective fragments with a molecular weight in the range of 3-15 kDa, which are of ideal size for middle-down proteomics. The high solubility and molecular nature of Zr6 allow detailed solution-based mechanistic/interaction studies, which revealed that cluster-induced protein unfolding is a key step that facilitates hydrolysis. A combination of multinuclear nuclear magnetic resonance spectroscopy and pair distribution function analysis provided insight into the speciation of Zr6 and the ligand exchange processes occurring on the surface of the cluster, which results in the dimerization of two Zr6 clusters via bridging oxygen atoms. Considering the relevance of discrete Zr-oxo clusters as building blocks of MOFs, the molecular-level understanding reported in this work contributes to the further development of novel catalysts based on Zr-MOFs.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | | | - Carlotta Seno
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Rohan Pokratath
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, 4058 Basel, Switzerland
| | | |
Collapse
|
249
|
Adampourezare M, Nikzad B, Amini M, Sheibani N. Fluorimetric detection of DNA methylation by cerium oxide nanoparticles for early cancer diagnosis. Heliyon 2024; 10:e28695. [PMID: 38586346 PMCID: PMC10998132 DOI: 10.1016/j.heliyon.2024.e28695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
In this study, a very sensitive fluorescence nano-biosensor was developed using CeO2 nanoparticles for the rapid detection of DNA methylation. The characteristics of CeO2 nanoparticles were determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) spectroscopy, UV-visible spectroscopy, and fluorescence spectroscopy. The CeO2 nanoparticles were reacted with a single-stranded DNA (ssDNA) probe, and then methylated and unmethylated target DNAs hybridized with an ssDNA probe, and the fluorescence emission was measured. Upon adding the target unmethylated and methylated ssDNA, the fluorescence intensity increased in the linear range of concentration from 2 × 10-13 - 10-18 M. The limit of detection (LOD) was 1.597 × 10-6 M for methylated DNA and 1.043 × 10-6 M for unmethylated DNA. The fluorescence emission intensity of methylated sequences was higher than of that unmethylated sequences. The fabricated DNA nanobiosensor showed a fluorescence emission at 420 nm with an excitation wavelength of 280 nm. The impact of CeO2 binding on methylated and unmethylated DNA was further demonstrated by agarose gel electrophoresis. Finally, the actual sample analysis suggested that the nanobiosensor could have practical applications for detecting methylation in the human plasma samples.
Collapse
Affiliation(s)
- Mina Adampourezare
- Research Center of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Behzad Nikzad
- Research Center of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI 53705, USA
| |
Collapse
|
250
|
Shao L, Wang X, Du X, Yin S, Qian Y, Yao Y, Yang L. Application of Multifunctional Nanozymes in Tumor Therapy. ACS OMEGA 2024; 9:15753-15767. [PMID: 38617672 PMCID: PMC11007812 DOI: 10.1021/acsomega.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
Tumors are one of the main diseases threatening human life and health. The emergence of nanotechnology in recent years has introduced a novel therapeutic avenue for addressing tumors. Through the amalgamation of nanotechnology's inherent attributes with those of natural enzymes, nanozymes have demonstrated the ability to initiate catalytic reactions, modulate the biological microenvironment, and facilitate the adoption of multifaceted therapeutic approaches, thereby exhibiting considerable promise in the realm of cancer treatment. In this Review, the application of nanozymes in chemodynamic therapy, radiotherapy, photodynamic therapy, photothermal therapy, and starvation therapy are summarized. Moreover, a detailed discussion regarding the mechanism of conferring physiotherapeutic functionality upon catalytic nanosystems is provided. It is posited that this innovative catalytic treatment holds significant potential to play a crucial role within the domain of nanomedicine.
Collapse
Affiliation(s)
- Lihua Shao
- Department
of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xueyuan Wang
- College of
Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Xiao Du
- Department
of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing
Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Shaoping Yin
- School of
Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210023, China
| | - Yun Qian
- Dermatologic
Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | - Yawen Yao
- Department
of Pharmaceutics, School of Pharmacy, China
Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Lin Yang
- College of
Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|