201
|
Zhang W, Yang Y, Mao J, Zhang Q, Fan W, Chai G, Shi Q, Zhu C, Zhang S, Xie J. Quinoline Bridging Hyperconjugated Covalent Organic Framework as Solid-Phase Microextraction Coating for Ultrasensitive Determination of Phthalate Esters in Water Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17999-18009. [PMID: 37904272 DOI: 10.1021/acs.jafc.3c02859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity (R2 ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L-1, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L-1 were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.
Collapse
Affiliation(s)
- Wenfen Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Qingzhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shusheng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianping Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
202
|
Yu B, Li W, Wang X, Li JH, Lin RB, Wang H, Ding X, Jin Y, Yang X, Wu H, Zhou W, Zhang J, Jiang J. Observation of Interpenetrated Topology Isomerism for Covalent Organic Frameworks with Atom-Resolution Single Crystal Structures. J Am Chem Soc 2023; 145:25332-25340. [PMID: 37944150 DOI: 10.1021/jacs.3c09001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Rational control and understanding of isomerism are of significance but still remain a great challenge in reticular frameworks, in particular, for covalent organic frameworks (COFs) due to the complicated synthesis and energy factors. Herein, reaction of 3,3',5,5'-tetra(4-formylphenyl)-2,2',6,6'-tetramethoxy-1,1'-biphenyl (TFTB) with 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) under different reaction conditions affords single crystals of two 3D COF isomers, namely, USTB-20-dia and USTB-20-qtz. Their structures with resolutions up to 0.9-1.1 Å have been directly solved by three-dimensional electron diffraction (3D ED) and synchrotron single crystal X-ray diffraction, respectively. USTB-20-dia and USTB-20-qtz show rare 2 × 2-fold interpenetrated dia-b nets and 3-fold interpenetrated qtz-b frameworks. Comparative studies of the crystal structures of these COFs and theoretical simulation results indicate the crucial role of the flexible molecular configurations of building blocks in the present interpenetrated topology isomerism. This work not only presents the rare COF isomers but also gains an understanding of the formation of framework isomerism from both single crystal structures and theoretical simulation perspectives.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wenliang Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Xiao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
203
|
Li MH, Yang Z, Hui H, Yang B, Wang Y, Yang YW. Superstructure-Induced Hierarchical Assemblies for Nanoconfined Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202313358. [PMID: 37798254 DOI: 10.1002/anie.202313358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Most attempts to synthesize supramolecular nanosystems are limited to a single mechanism, often resulting in the formation of nanomaterials that lack diversity in properties. Herein, hierarchical assemblies with appropriate variety are fabricated in bulk via a superstructure-induced organic-inorganic hybrid strategy. The dynamic balance between substructures and superstructures is managed using covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as dual building blocks to regulate the performances of hierarchical assemblies. Significantly, the superstructures resulting from the controlled cascade between COFs and MOFs create highly active photocatalytic systems through multiple topologies. Our designed tandem photocatalysis can precisely and efficiently regulate the conversion rates of bioactive molecules (benzo[d]imidazoles) through competing redox pathways. Furthermore, benzo[d]imidazoles catalyzed by such supramolecular nanosystems can be isolated in yields ranging from 70 % to 93 % within tens of minutes. The multilayered structural states within the supramolecular systems demonstrate the importance of hierarchical assemblies in facilitating photocatalytic propagation and expanding the structural repertoire of supramolecular hybrids.
Collapse
Affiliation(s)
- Meng-Hao Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hui Hui
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
204
|
Ju T, Liu M, Shi X, Xiao A, Zhang Z, Wang J, Zhang Y, Wang Y. Chemically Asymmetric Polymers Manipulate the Crystallization of Two-Dimensional Covalent Organic Frameworks to Synthesize Processable Nanosheets. ACS NANO 2023. [PMID: 37976399 DOI: 10.1021/acsnano.3c07743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nanosheets derived from two-dimensional covalent organic frameworks (2D COFs) are increasingly desirable in various fields. While breakthroughs in the chemical and physical delamination of 2D COFs are rising, precisely regulating the growth of the COF nanosheets has not been realized yet. Herein, we report an effective strategy of polymer-manipulated crystallization to accurately control the growth of COF nanosheets. Chemically asymmetric polyvinylpyrrolidone (PVP) is developed as the manipulator that selectively interacts with the aldehydes and (100) facet to induce anisotropic growth of COFs. The number of PVP constitutional units determines this specific interaction, leading to molecularly thin but thickness-controllable nanosheets with excellent dispersity. We process these nanosheets into robust A4-sized membranes for ultraselective molecular separation. The membrane intercalated with long-chain PVP demonstrates largely improved performance, surpassing the reported COF membranes. This work reports a strategy for anisotropically crystallizing 2D COFs to yield processable nanosheets toward practical applications.
Collapse
Affiliation(s)
- Tong Ju
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
205
|
Shreeraj G, Sah A, Sarkar S, Giri A, Sahoo A, Patra A. Structural Modulation of Nitrogen-Rich Covalent Organic Frameworks for Iodine Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16069-16078. [PMID: 37847043 DOI: 10.1021/acs.langmuir.3c02215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developing efficient adsorbent materials for iodine scavenging is essential to mitigate the threat of radioactive iodine causing adverse effects on human health and the environment. In this context, we explored N-rich two-dimensional covalent organic frameworks (COFs) with diverse functionalities for iodine capture. The pyridyl-hydroxyl-functionalized triazine-based novel 5,5',5″-(1,3,5-triazine-2,4,6-triyl)tris(pyridine-2-amine) (TTPA)-COF possesses high crystallinity (crystalline domain size: 24.4 ± 0.6 nm) and high porosity (specific BET surface area: 1000 ± 90 m2 g-1). TTPA-COF exhibits superior vapor-phase iodine adsorption (4.43 ± 0.01 g g-1) compared to analogous COF devoid of pyridinic moieties, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT)-COF. The high iodine capture by TTPA-COF is due to the enhanced binding affinity conferred by the extra pyridinic active sites. Furthermore, the crucial role of long-range order in porous adsorbents has been experimentally evidenced by comparing the performance of iodine vapor capture of TTPA-COF with an amorphous network polymer having identical functionalities. We have also demonstrated the high iodine scavenging ability of TTPA-COF from the organic and aqueous phases. The mechanism of iodine adsorption by the heteroatom-rich framework is elucidated through FTIR, XPS, and Raman spectral analyses. The present study highlights the need for structural tweaking of the building blocks toward the rational construction of advanced functional porous materials for a task-specific application.
Collapse
Affiliation(s)
- G Shreeraj
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Ajay Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Suprabhat Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
206
|
Meng QW, Wu D, Wang S, Sun Q. Function-Led Design of Covalent-Organic-Framework Membranes for Precise Ion Separation. Chemistry 2023; 29:e202302460. [PMID: 37605607 DOI: 10.1002/chem.202302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes. We first discuss the merits of using COF materials as a basis for fabricating membranes for ion separation. We then explore the development of COF membranes in areas such as desalination, acid recovery, and energy element extraction, with a particular emphasis on the fundamental principles of membrane design. Lastly, we address both theoretical and practical challenges, as well as potential opportunities in the targeted design of ion-selective membranes. The goal of this Review is to stimulate future investigative efforts in this field, which is of significant scientific and strategic importance.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
207
|
Fu JX, Liu Y, Chen LH, Han WK, Liu X, Shao JX, Yan X, Gu ZG. Positional Isomers of Covalent Organic Frameworks for Indoor Humidity Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303897. [PMID: 37533408 DOI: 10.1002/smll.202303897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Indexed: 08/04/2023]
Abstract
Humidity is one of the most important indicators affecting human health. Here, a pair of covalent organic frameworks (COFs) of positional isomers (p-COF and o-COF) for indoor humidity regulation is reported. Although p-COF and o-COF have the same sql topology and pore size, they exhibit different water adsorption behaviors due to the subtle differences in water adsorption sites. Particularly, o-COF exhibits a steep adsorption isotherm in the range of 45-65% RH with a hysteresis loop, which is perfectly suitable for indoor humidity regulation. In the laboratory experiment, when the humidity of the external environment is 20-75% RH, o-COF can control the humidity of the room in the range of 45-60% RH. o-COF has shown great potential as a dual humidification/dehumidification adsorbent for indoor humidity regulation.
Collapse
Affiliation(s)
- Jia-Xing Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Liang-Hui Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xin Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jun-Xiang Shao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
208
|
Wang T, Zhang Y, Wang Z, Chen Y, Cheng P, Zhang Z. Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Trans 2023; 52:15178-15192. [PMID: 37461388 DOI: 10.1039/d3dt01684f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Covalent organic frameworks (COFs) with high specific porosity, easy functionalization, and tailored structure are an emerging class of crystalline porous polymers that have been extensively exploited as ideal materials in various fields. Among them, sp2-carbon linked COFs with high chemical stability, porous backbone, and unique π-electron conjugated architectures structure have raised widespread attention. Specifically, the porous channels of olefin-linked COFs could be packed with active sites for catalysis and guest molecules, while π-π stacking interactions and conjugation systems pave the way for electron transfer. In recent years, many efforts have been devoted to the development of sp2-carbon linked COFs for applications in catalysis, energy storage, gas adsorption, and separation. In this review, we highlight the design principles, synthesis strategies, and impactful applications of olefin-linked COFs. We are looking forward to this review to deepen the understanding of the synthesis of olefin-linked COFs and motivate the further development of these novel conjugated organic materials with distinctive physicochemical properties, as well as their applications in a variety of fields.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Yushu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
209
|
Liu W, Sun J, Xie Y, Chen L, Xu J. The effective regulation of heterogeneous N-heterocyclic carbenes: structures, electronic properties and transition metal adsorption. Phys Chem Chem Phys 2023; 25:28382-28392. [PMID: 37842982 DOI: 10.1039/d3cp02777e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Heterogeneous N-heterocyclic carbene materials have attracted increasing interest in the fields of materials science and catalysis due to their unique properties and potential applications. However, current heterogeneous systems primarily focus on a single class of carbene. In this work, we simultaneously introduce two classes of typical five-membered carbenes into a graphene lattice, forming a series of novel two-dimensional heterogeneous N-heterocyclic carbene nanomaterials (2D-NCMs) composed of multiple carbenes. First-principles calculations demonstrate the thermodynamic stability of the designed 2D-NCMs, as well as their diverse electronic properties ranging from metallic to semiconducting. The incorporation of carbenes in the 2D-NCMs enables them to adsorb both acidic BCl3 and basic CO molecules, thus exhibiting unique amphoteric properties. Furthermore, the 2D-NCMs exhibit remarkable adsorption capacities for ten transition metals, highlighting their promising potential for future catalytic applications. By adjusting the proportions of the two classes of carbenes, we can effectively regulate the electronic properties and adsorption capacities of small molecules and transition metals in the 2D-NCMs. This study presents a novel strategy for designing and regulating the properties of heterogeneous N-heterocyclic carbenes, offering significant implications in the fields of catalysis and materials science.
Collapse
Affiliation(s)
- Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Jingchao Sun
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Yunhao Xie
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Jing Xu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| |
Collapse
|
210
|
Qin Y, Zhu X, Huang R. Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomater Sci 2023; 11:6942-6976. [PMID: 37750827 DOI: 10.1039/d3bm01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Covalent organic frameworks (COFs) are composed of small organic molecules linked via covalent bonds, which have tunable mesoporous structure, good biocompatibility and functional diversities. These excellent properties make COFs a promising candidate for constructing biomedical nanoplatforms and provide ample opportunities for nanomedicine development. A systematic review of the linkage types and synthesis methods of COFs is of indispensable value for their biomedical applications. In this review, we first summarize the types of various linkages of COFs and their corresponding properties. Then, we highlight the reaction temperature, solvent and reaction time required by different synthesis methods and show the most suitable synthesis method by comparing the merits and demerits of various methods. To appreciate the cutting-edge research on COFs in bioscience technology, we also summarize the bio-related applications of COFs, including drug delivery, tumor therapy, bioimaging, biosensing and antimicrobial applications. We hope to provide insight into the interdisciplinary research on COFs and promote the development of COF nanomaterials for biomedical applications and their future clinical translations.
Collapse
Affiliation(s)
- Yanhui Qin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Xinran Zhu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
211
|
Ghosh P, Banerjee P. Drug delivery using biocompatible covalent organic frameworks (COFs) towards a therapeutic approach. Chem Commun (Camb) 2023; 59:12527-12547. [PMID: 37724444 DOI: 10.1039/d3cc01829f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Covalent organic frameworks (COFs) are constructed exclusively with lightweight organic scaffolds, which can have a 2D or 3D architecture. The ease of synthesis, robust skeleton and tunable properties of COFs make them superior candidates among their counterparts for a wide range of uses including biomedical applications. In the biomedical field, drug delivery or photodynamic-photothermal (PDT-PTT) therapy can be individually considered a potential parameter to be investigated. Therefore, this comprehensive review is focused on drug delivery using COFs, highlighting the encapsulation and decapsulation of drugs by COF scaffolds and their delivery in biological media including live cells. Versatile COF scaffolds together with the delivery of several drug molecules are considered. We attempted to incorporate the status of drug encapsulation and decapsulation considering a wide range of recent publications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamilnadu, India.
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad 201002, Uttarpradesh, India
| |
Collapse
|
212
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
213
|
Joseph V, Nagai A. Recent advancements of covalent organic frameworks (COFs) as proton conductors under anhydrous conditions for fuel cell applications. RSC Adv 2023; 13:30401-30419. [PMID: 37849707 PMCID: PMC10578502 DOI: 10.1039/d3ra04855a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Recent electrochemical energy conversion devices require more advanced proton conductors for their broad applications, especially, proton exchange membrane fuel cell (PEMFC) construction. Covalent organic frameworks (COFs) are an emerging class of organic porous crystalline materials that are composed of organic linkers and connected by strong covalent bonds. The unique characteristics including well-ordered and tailorable pore channels, permanent porosity, high degree of crystallinity, excellent chemical and thermal stability, enable COFs to be the potential proton conductors in fuel cell devices. Generally, proton conduction of COFs is dependent on the amount of water (extent of humidity). So, the constructed fuel cells accompanied complex water management system which requires large radiators and airflow for their operation at around 80 °C to avoid overheating and efficiency roll-off. To overcome such limitations, heavy-duty fuel cells require robust proton exchange membranes with stable proton conduction at elevated temperatures. Thus, proton conducting COFs under anhydrous conditions are in high demand. This review summarizes the recent progress in emerging COFs that exhibit proton conduction under anhydrous conditions, which may be prospective candidates for solid electrolytes in fuel cells.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- Ensemble3 - Centre of Excellence Wólczyńska 133 01-919 Warszawa Poland
| |
Collapse
|
214
|
Tripathi A, Supriya S. Photochemical and gas adsorption studies of Keggin polyoxometalate functionalized porous melamine terephthaldehyde material. Dalton Trans 2023; 52:13962-13970. [PMID: 37728736 DOI: 10.1039/d3dt02294c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A compound containing a microporous melamine-terephthaldehyde framework is protonated by grinding with acetic acid, resulting in a mesoporous protonated melamine-terephthaldehyde network. The Keggin polyanion [PMo12O40]3- is then immobilized into this protonated melamine-terephthaldehyde network through a solid-state reaction. The polyanion interacts with the protonated microporous organic network through electrostatic interaction. Three different Keggin-melamine-terephthaldehyde materials were synthesized by varying the Keggin anion loading of 10 wt%, 15 wt% and 20 wt%. The Keggin-melamine-terephthaldehyde materials exhibit photochromism on irradiation with sunlight. The photochromism of the POM-organic hybrid material is due to reduction of the Keggin anion. The resulting blue reduced Keggin-melamine-terephthaldehyde materials are oxidized back by treatment with hydrogen peroxide. The N2, CO2 and H2 adsorption properties of all the synthesized materials, including protonated melamine-terephthaldehyde materials, were studied. The materials were characterized by IR, PXRD, DRS, TGA, EPR spectroscopy, and FESEM electron microscopy. The elemental composition was analysed with a CHN analyser and ICP-OES analysis.
Collapse
Affiliation(s)
- Anjali Tripathi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Sabbani Supriya
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
215
|
Su LH, Qian HL, Yang C, Wang C, Wang Z, Yan XP. Surface imprinted-covalent organic frameworks for efficient solid-phase extraction of fluoroquinolones in food samples. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132031. [PMID: 37467605 DOI: 10.1016/j.jhazmat.2023.132031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Molecularly imprinting on covalent organic frameworks (MI-COF) is a promising way to prepare selective adsorbents for effective extraction of fluoroquinolones (FQs). However, the unstable framework structure and complex imprinting process are challenging for the construction of MI-COF. Here, we report a facile surface imprinting approach with dopamine to generate imprinted cavities on the surface of irreversible COF for highly efficient extraction of FQs in food samples. The irreversible-linked COF was fabricated from hexahydroxytriphenylene and tetrafluorophthalonitrile to ensure COF stability. Moreover, the introduction of dopamine surface imprinted polymer into COF provides abundant imprinted sites and endows excellent selectivity for FQs recognition against other antibiotics. Taking enrofloxacin as a template molecule, the prepared MI-COF gave an exceptional adsorption capacity of 581 mg g-1, a 2.2-fold enhancement of adsorption capacity compared with nonimprinted COF. The MI-COF was further explored as adsorbent to develop a novel solid-phase extraction method coupled with high-performance liquid chromatography for the simultaneous determination of enrofloxacin, norfloxacin and ciprofloxacin. The developed method gave the low limits of detection at 0.003-0.05 ng mL-1, high precision with relative standard deviations less than 3.5%. The recoveries of spiked FQs in food samples ranged from 80.4% to 110.7%.
Collapse
Affiliation(s)
- Li-Hong Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
216
|
Wang Z, Zhang Y, Lin E, Geng S, Wang M, Liu J, Chen Y, Cheng P, Zhang Z. Kilogram-Scale Fabrication of a Robust Olefin-Linked Covalent Organic Framework for Separating Ethylene from a Ternary C 2 Hydrocarbon Mixture. J Am Chem Soc 2023; 145:21483-21490. [PMID: 37736678 DOI: 10.1021/jacs.3c07224] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
One-step adsorptive purification of ethylene (C2H4) from a ternary mixture of acetylene (C2H2), C2H4, and ethane (C2H6) by a single material is of great importance but challenging in the petrochemical industry. Herein, a chemically robust olefin-linked covalent organic framework (COF), NKCOF-62, is designed and synthesized by a melt polymerization method employing tetramethylpyrazine and terephthalaldehyde as cheap monomers. This method avoids most of the disadvantages of classical solvothermal methods, which enable the cost-effective kilogram fabrication of olefin-linked COFs in one pot. Furthermore, NKCOF-62 shows remarkably selective adsorption of C2H2 and C2H6 over C2H4 thanks to its unique pore environments and suitable pore size. Breakthrough experiments demonstrate that polymer-grade C2H4 can be directly obtained from C2H2/C2H6/C2H4 (1/1/1) ternary mixtures through a single separation process. Notably, NKCOF-62 is the first demonstration of the potential to use COFs for C2H2/C2H6/C2H4 separation, which provides a blueprint for the design and construction of robust COFs for industrial gas separations.
Collapse
Affiliation(s)
- Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yushu Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - En Lin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Mengjin Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jinjin Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
217
|
Nagendra B, Cozzolino A, Acocella MR, Daniel C, Rizzo P, Guerra G. Hydrogen Bonded Dimer of an Alcohol with the Derived Carboxylic Acid Triggering their Sorption by Nanoporous-crystalline PPO Films. Chemistry 2023; 29:e202301441. [PMID: 37401565 DOI: 10.1002/chem.202301441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Films exhibiting nanoporous-crystalline (NC) phases of poly(2,6-dimethyl-1,4-phenylene) oxide (PPO), which are highly effective to absorb apolar organic guest molecules, are also able to absorb polar molecules (like alcohols and carboxylic acids) but only from concentrated organic solutions. NC PPO films, which do not absorb alcohols and carboxylic acids from diluted aqueous solutions, exhibits a huge uptake (even above 30 wt %) of benzyl alcohol (BAL) and benzoic acid (BA), if BA is obtained by spontaneous room temperature oxidation of BAL in aqueous solution. This phenomenon is rationalized by an easy uptake, mainly by the PPO intrahelical crystalline empty channels, of a BAL/BA 1/1 hydrogen-bonded dimer. This huge uptake of BAL/BA dimer by NC PPO films, which is also fast for films exhibiting the orientation of the crystalline helices perpendicular to the film plane (c⊥ orientation), can be exploited for purification of water from BAL, when present in traces. High and fast sorption of a hydrogen bonded dimer and negligible sorption of the two separate compounds is possibly unprecedented for absorbent materials.
Collapse
Affiliation(s)
- Baku Nagendra
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonietta Cozzolino
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Maria Rosaria Acocella
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Christophe Daniel
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Paola Rizzo
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gaetano Guerra
- Dipartimento di Chimica e Biologia "A.Zambelli", INSTM Research Unit, Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
218
|
Karimi D, Khajeh M, Oveisi AR, Bohlooli M, Khatibi A, Neyband RS, Luque R. Sulfur-functionalized porphyrin-based covalent organic framework as a metal-free dual-functional catalyst for photodegradation of organophosphorus pesticides under visible-LED-light. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122109. [PMID: 37379874 DOI: 10.1016/j.envpol.2023.122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Parathion and diazinon are two significant organophosphorus pesticides broadly used in agriculture. However, these compounds are toxic and can enter into the environment and atmosphere via various processes. Herein, we synthesized and post-functionalized a porphyrinic covalent organic framework (COF), COF-366, with elemental sulfur under solvent-free conditions to give polysulfide-functionalized COF-366, namely PS@COF. The resulting material consisting of porphyrin sensitizer and sulfur nucleophilic sites was used as a dual-functional heterogeneous catalyst for the degradation of these organic compounds using visible-LED-light. Accordingly, the effects of several pertinent parameters such as pH (3-9), the catalyst dosage (5-30 mg), time (up to 80 min), and substrate concentration (10-50 mg L-1) were studied in detail and optimized. The post-modified COF showed excellent photocatalytic activity (>97%) in the detoxification of diazinon and parathion for 60 min at pH 5.5. Kinetic studies indicated a fast degradation rate with pseudo-second order model for 20 mg L-1 of diazinon and parathion. The total organic carbon detection and gas chromatography-mass spectrometry (GC-MS) confirmed the organic intermediates and byproducts formed during the process. PS@COF displayed good recyclability and high reusable efficiency for six cycles without a noteworthy lose in its catalytic activity, owing to its robust structure.
Collapse
Affiliation(s)
- Danial Karimi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Mousa Bohlooli
- Department of Cell & Molecular Sciences, Kharazmi University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Razieh Sadat Neyband
- Department of Physical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
219
|
Khan NA, Luo M, Zha X, Azad CS, Lu J, Chen J, Fan C, Rahman AU, Olson MA, Jiang Z, Wang D. Water/Vapor Assisted Fabrication of Large-Area Superprotonic Conductive Covalent Organic Framework Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303131. [PMID: 37344349 DOI: 10.1002/smll.202303131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Fabrication of large-area ionic covalent organic framework membranes (iCOMs) remains a grand challenge. Herein, the authors report the liquid water and water vapor-assisted fabrication of large-area superprotonic conductive iCOMs. A mixed monomer solution containing 1,3,5-triformylphloroglucinol (TFP) in 1,4-dioxane and p-diaminobenzenesulfonic acid (DABA) in water is first polymerized to obtain a pristine membrane which subsequently underwent crystallization process in mixed vapors containing water vapor. During the polymerization stage, water played a role of a diluting agent, weakening the Coulombic repulsion between sulfonic acid groups. During the crystallization stage, water vapor played a role of a structure-directing agent to facilitate the formation of highly crystalline, large-area iCOMs. The resulting membranes achieved a proton conductivity value of 0.76 S cm-1 at 90 °C under 100% relative humidity, which is among the highest ever reported. Using liquid water and water vapor as versatile additives open a novel avenue to the fabrication of large-area membranes from covalent organic frameworks and other kinds of crystalline organic framework materials.
Collapse
Affiliation(s)
- Niaz Ali Khan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Mengying Luo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xinlin Zha
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Jing Lu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiahui Chen
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ata Ur Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25000, Pakistan
| | - Mark A Olson
- Department of Physical & Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
220
|
Kim YH, Jeon JP, Kim Y, Noh HJ, Seo JM, Kim J, Lee G, Baek JB. Cobalt-Porphyrin-Based Covalent Organic Frameworks with Donor-Acceptor Units as Photocatalysts for Carbon Dioxide Reduction. Angew Chem Int Ed Engl 2023; 62:e202307991. [PMID: 37448236 DOI: 10.1002/anie.202307991] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as a promising platform for photocatalysts. Their crystalline porous nature allows comprehensive mechanistic studies of photocatalysis, which have revealed that their general photophysical parameters, such as light absorption ability, electronic band structure, and charge separation efficiency, can be conveniently tailored by structural modifications. However, further understanding of the relationship between structure-property-activity is required from the viewpoint of charge-carrier transport, because the charge-carrier property is closely related to alleviation of the excitonic effect. In the present study, COFs composed of a fixed cobalt (Co) porphyrin (Por) centered tetraamine as an acceptor unit with differently conjugated di-carbaldehyde based donor units, such as benzodithiophene (BDT), thienothiophene (TT), or phenyl (TA), were synthesized to form Co-Por-BDT, Co-Por-TT, or Co-Por-TA, respectively. Their photocatalytic activity for reducing carbon dioxide into carbon monoxide was in the order of Co-Por-BDT>Co-Por-TT>Co-Por-TA. The results indicated that the excitonic effect, associated with their charge-carrier densities and π-conjugation lengths, was a significant factor in photocatalysis performance.
Collapse
Affiliation(s)
- Young Hyun Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Jong-Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Yongchul Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Jiwon Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Geunsik Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, Republic of Korea
| |
Collapse
|
221
|
Yang J, Huang L, You J, Yamauchi Y. Magnetic Covalent Organic Framework Composites for Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301044. [PMID: 37156746 DOI: 10.1002/smll.202301044] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Covalent organic frameworks (COFs) with high specific surface area, tailored structure, easy functionalization, and excellent chemical stability have been extensively exploited as fantastic materials in various fields. However, in most cases, COFs prepared in powder form suffer from the disadvantages of tedious operation, strong tendency to agglomerate, and poor recyclability, greatly limiting their practical application in environmental remediation. To tackle these issues, the fabrication of magnetic COFs (MCOFs) has attracted tremendous attention. In this review, several reliable strategies for the fabrication of MCOFs are summarized. In addition, the recent application of MCOFs as outstanding adsorbents for the removal of contaminants including toxic metal ions, dyes, pharmaceuticals and personal care products, and other organic pollutants is discussed. Moreover, in-depth discussions regarding the structural parameters affecting the practical potential of MCOFs are highlighted in detail. Finally, the current challenges and future prospects of MCOFs in this field are provided with the expectation to boost their practical application.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, LiuFang Campus, No. 206, Donghu New & High Technology Development Zone Wuhan, Guanggu 1st Road, Wuhan, Hubei, 430205, P. R. China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
222
|
Shen R, Qin C, Hao L, Li X, Zhang P, Li X. Realizing Photocatalytic Overall Water Splitting by Modulating the Thickness-Induced Reaction Energy Barrier of Fluorenone-Based Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305397. [PMID: 37487243 DOI: 10.1002/adma.202305397] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Direct photocatalytic hydrogen and oxygen evolution from water splitting is an attractive approach for producing chemical fuels. In this work, a novel fluorenone-based covalent organic framework (COF-SCAU-2) is successfully exfoliated into ultrathin three-layer nanosheets (UCOF-SCAU-2) for photocatalytic overall water splitting (OWS) under visible light. The ultrathin structures of UCOF-SCAU-2 greatly enhance carrier separation, utilization efficiency, and the exposure of active surface sites. Surprisingly, UCOF-SCAU-2 exhibits efficient photocatalytic OWS performance, with hydrogen and oxygen evolution rates reaching 0.046 and 0.021 mmol h-1 g-1 , respectively, under visible-light irradiation, whereas bulk COF-SCAU-2 shows no activity for photocatalytic OWS. Charge-carrier kinetic analysis and DFT calculations confirm that reducing the thickness of the COF nanosheets increases the number of accessible active sites, reduces the distance for charge migration, prolongs the lifetimes of photogenerated carriers, and decreases the Gibbs free energy of the rate-limiting step compared to nonexfoliated COFs. This work offers new insights into the effect of the layer thickness of COFs on photocatalytic OWS.
Collapse
Affiliation(s)
- Rongchen Shen
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Chaochao Qin
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Hao
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuzhi Li
- Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Peng Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Xin Li
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
223
|
Liu X, Li Y, Chen Z, Yang H, Wang S, Tang Z, Wang X. Recent progress of covalent organic frameworks membranes: Design, synthesis, and application in water treatment. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:117-130. [PMID: 38074995 PMCID: PMC10702902 DOI: 10.1016/j.eehl.2023.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 01/19/2024]
Abstract
To date, significant efforts have been devoted to eliminating hazardous components to purify wastewater through the development of various nanomaterials. Covalent organic frameworks (COFs), an important branch of the porous crystalline family, possess the peculiarity of ultrahigh surface area, adjustable pore size, and facile functionality. Exciting studies from design fabrication to potential applications in water treatment by COF-based membranes (COMs) have emerged. This review summarizes various preparation strategies and synthesis mechanisms for COMs, including layer-by-layer stacking, in situ growth, interfacial polymerization, and electrochemical synthesis, and briefly describes the advanced characterization techniques for COMs. Moreover, the application of COMs in heavy metal removal, dye separation, purification of radionuclides, pollutant detection, sea water desalination, and so on, is described and discussed. Finally, the perspectives on future opportunities for designing COMs in water purification have been proposed.
Collapse
Affiliation(s)
- Xiaolu Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yang Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
224
|
Yuan C, Wang Z, Xiong W, Huang Z, Lai Y, Fu S, Dong J, Duan A, Hou X, Yuan LM, Cui Y. Cyclodextrin Incorporation into Covalent Organic Frameworks Enables Extensive Liquid and Gas Chromatographic Enantioseparations. J Am Chem Soc 2023; 145:18956-18967. [PMID: 37596711 DOI: 10.1021/jacs.3c05973] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The separation of enantiomers using high-performance chromatography technologies represents great importance and interest. In this aspect, β-cyclodextrin (β-CD) and its derivatives have been extensively studied as chiral stationary phases (CSPs). Nevertheless, β-CD that was immobilized on a traditional matrix often exhibited low stabilities and limited operating ranges. Recently, covalent organic frameworks (COFs) with highly ordered nanopores are emerging as promising CSPs for enantioseparations, but their practical applications are still hampered by the difficulty of monomer and COF synthesis. Herein, two β-CD-driven COFs are synthesized via a fast and facile plasma-induced polymerization combined postsynthesis modification strategy. The precisely defined COF channels enhanced the accessibility of the accommodated β-CD to the analytes and acted as robust protective barriers to safeguard the β-CD from harsh environments. Therefore, the β-CD-modified COFs can be potentially general CSPs for extensive enantioseparation in both gas chromatography and high-performance liquid chromatography, and a wide range of racemates were separated. Compared to the commonly employed commercial chiral columns, these COF-based columns exhibited comparable resolution capability and superior application versatility. This work integrates the advantages and overcomes the defects of COFs and β-CD, thus advancing COFs as platforms for chiral selector modification and giving great promise for practical chromatographic enantioseparation.
Collapse
Affiliation(s)
- Chen Yuan
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China
| | - Zhen Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Wanqi Xiong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Zhifeng Huang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Yalin Lai
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Shiguo Fu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China
| | - Aihong Duan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China
| |
Collapse
|
225
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
226
|
Woo H, Devlin AM, Matzger AJ. In Situ Observation of Solvent Exchange Kinetics in a MOF with Coordinatively Unsaturated Sites. J Am Chem Soc 2023; 145:18634-18641. [PMID: 37552873 DOI: 10.1021/jacs.3c06396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Solvent exchange of synthesis solvent within metal-organic frameworks (MOFs) is an essential process for the activation of coordinatively unsaturated sites (CUS) to achieve an optimal surface area; activation of the CUS is required to exploit the versatile applications of MOFs. However, it is challenging to replace CUS-bound synthesis solvent prior to MOF activation, which can lead to a structural collapse and reduced surface area post-evacuation. Herein, we quantify the exchange behavior of a copper paddlewheel-based CUS-MOF (HKUST-1) in the presence of three different solvents: ethanol (EtOH), dichloromethane (DCM), and N,N-dimethylformamide (DMF). The DMF release profiles are monitored via in situ observation of the exchange solvent composition via 1H NMR and Raman spectroscopy at the macroscopic scale. Furthermore, the change in solvent within a single crystal is measured to directly elucidate the exchange behavior. We demonstrate the DMF release profile from HKUST-1 exhibits different rate laws depending on whether the solvent exchange occurs at the CUS or is purely diffusive through the pores. This contribution represents the first characterization of release from a CUS-MOF as a function exchange solvent and reveals that solvent exchange in a CUS-MOF is not diffusion-limited, but rather is limited by the solvent exchange kinetics at the metal center. Insights from this study can be generalized to the variety of copper-paddlewheel-based MOFs, informing best practices for solvent exchange.
Collapse
Affiliation(s)
- Hochul Woo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Angela M Devlin
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Adam J Matzger
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
227
|
Chi H, Liu Y, Li Z, Chen W, He Y. Direct visual observation of pedal motion-dependent flexibility of single covalent organic frameworks. Nat Commun 2023; 14:5061. [PMID: 37604822 PMCID: PMC10442449 DOI: 10.1038/s41467-023-40831-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Flexible covalent organic frameworks (COFs) have been studied for applications containing sorption, selective separation, and catalysis. How to correlate the microscopic structure with flexibility in COFs is a great challenge. Herein, we visually track the flexible deformation behaviors of single COF-300 and COF-300-AR particles in response to solvent vapour guests with dark-field microscopy (DFM) in an in operando manner. COF-300-AR with freely-rotating C-N single bonds are synthesized by the reduction of imine-based COF-300 consisting of rigid C=N double bonds without changing topological structure and crystallinity. Unexpectedly, we observe that the flexible deformation of COF-300 is extremely higher than that of COF-300-AR despite it bears many C-N single bonds, clearly illustrating the apparent flexibility decrease of COF-300 after reduction. The high spatiotemporal resolution of DFM enables the finding of inter-particle variations of the flexibility among COF-300 crystals. Experimental characterizations by variable-temperature X-ray diffraction and infrared spectroscopy as well as theoretical calculations demonstrate that the flexible deformation of COF-300 is ascribed to the pedal motion around rigid C=N double bonds. These observations provide new insights into COF flexibility.
Collapse
Affiliation(s)
- Hongbin Chi
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China
| | - Yang Liu
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China
- Sichuan College of Architectural Technology, 618000, Deyang, Sichuan, P. R. China
| | - Ziyi Li
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China
| | - Wanxin Chen
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China
| | - Yi He
- School of Nuclear Science & Technology, Southwest University of Science and Technology, 621010, Mianyang, P. R. China.
| |
Collapse
|
228
|
Zhou K, Jia Z, Zhou Y, Ding G, Ma XQ, Niu W, Han ST, Zhao J, Zhou Y. Covalent Organic Frameworks for Neuromorphic Devices. J Phys Chem Lett 2023; 14:7173-7192. [PMID: 37540588 DOI: 10.1021/acs.jpclett.3c01711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Neuromorphic computing could enable the potential to break the inherent limitations of conventional von Neumann architectures, which has led to widespread research interest in developing novel neuromorphic memory devices, such as memristors and bioinspired artificial synaptic devices. Covalent organic frameworks (COFs), as crystalline porous polymers, have tailorable skeletons and pores, providing unique platforms for the interplay with photons, excitons, electrons, holes, ions, spins, and molecules. Such features encourage the rising research interest in COF materials in neuromorphic electronics. To develop high-performance COF-based neuromorphic memory devices, it is necessary to comprehensively understand materials, devices, and applications. Therefore, this Perspective focuses on discussing the use of COF materials for neuromorphic memory devices in terms of molecular design, thin-film processing, and neuromorphic applications. Finally, we provide an outlook for future directions and potential applications of COF-based neuromorphic electronics.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Ziqi Jia
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Yao Zhou
- College of Materials Science and Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Guanglong Ding
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Xin-Qi Ma
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Wenbiao Niu
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Jiyu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| |
Collapse
|
229
|
Zhang J, Liu L, Zheng C, Li W, Wang C, Wang T. Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks. Nat Commun 2023; 14:4922. [PMID: 37582960 PMCID: PMC10427628 DOI: 10.1038/s41467-023-40683-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Spin-based sensors have attracted considerable attention owing to their high sensitivities. Herein, we developed a metallofullerene-based nano spin sensor to probe gas adsorption within porous organic frameworks. For this, spin-active metallofullerene, Sc3C2@C80, was selected and embedded into a nanopore of a pyrene-based covalent organic framework (Py-COF). Electron paramagnetic resonance (EPR) spectroscopy recorded the EPR signals of Sc3C2@C80 within Py-COF after adsorbing N2, CO, CH4, CO2, C3H6, and C3H8. Results indicated that the regularly changing EPR signals of embedded Sc3C2@C80 were associated with the gas adsorption performance of Py-COF. In contrast to traditional adsorption isotherm measurements, this implantable nano spin sensor could probe gas adsorption and desorption with in situ, real-time monitoring. The proposed nano spin sensor was also employed to probe the gas adsorption performance of a metal-organic framework (MOF-177), demonstrating its versatility. The nano spin sensor is thus applicable for quantum sensing and precision measurements.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linshan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Chaofeng Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Taishan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China.
| |
Collapse
|
230
|
Yan B. Lanthanide Functionalized Covalent Organic Frameworks Hybrid Materials for Luminescence Responsive Chemical Sensing. Chemistry 2023; 29:e202301108. [PMID: 37254951 DOI: 10.1002/chem.202301108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023]
Abstract
Covalent organic frameworks (COFs) possess several unique features of structural and functional chemistry, together with other modular photophysical performance, which make them candidates for luminescence responsive chemical sensing. Lanthanide (Ln3+ ) functionalized COFs hybrid materials still keep the parent COFs' virtues and also embody the abundant multiple luminescence response with both COFs and Ln3+ ions or other guest species. In this review, the summary is highlighted on the lanthanide functionalized COFs hybrid materials and their relevant systems for luminescence responsive chemical sensing. It is subdivided into five sections involving the three main topics. Firstly, the basic knowledges of COFs materials related to the luminescence responsive chemical sensing are introduced (including three sections), involving the chemistry, application and post-synthetic modification (PSM) of COFs, the luminescence and luminescence responsive chemical sensing, and the luminescence responsive chemical sensing of non-lanthanide functionalized COFs hybrids materials. Secondly, the systematic progresses are outlined on the lanthanide functionalized COFs hybrid materials in luminescence responsive chemical sensing, which is the emphasis for this review. Finally, the conclusion and prospect are given.
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
231
|
Xu L, Hu W, Luo X, Zhang J. Covalent organic framework in situ grown on the metal-organic framework as fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons in tea. Mikrochim Acta 2023; 190:344. [PMID: 37542665 DOI: 10.1007/s00604-023-05915-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 08/07/2023]
Abstract
A novel MIL-88-NH2@COF composite was produced by in situ growth of covalent organic framework (COF) on the metal-organic framework (MOF) surface. To obtain a coating fiber for solid-phase microextraction (SPME), the MIL-88-NH2@COF composite physically adhered to the stainless steel wire. Combined with gas chromatography-flame ionization detection (GC-FID), various analytes such as chlorophenols (CPs), phthalates (PAEs), and polycyclic aromatic hydrocarbons (PAHs) were extracted and determined to evaluate the extraction performance of MIL-88-NH2@COF coated fibers and explore their extraction mechanism. This composite exhibit excellent extraction performance and adsorption capacity for various analytes, especially for PAHs with enrichment factor up to 9858. The SPME-GC-FID method based on MIL-88-NH2@COF fiber was established for the determination of five PAHs after the main extraction conditions were optimized. Under optimal conditions, the proposed technique showed a wide linear range (1-150 ng mL-1) with a low limit of detection (0.019 ng mL-1) and a high coefficient of determination (R2 > 0.99). The developed SPME-GC-FID method was used to determine PAHs in green tea and black tea samples, with good recoveries of 51.70-103.64% and 68.56-103.64%, respectively. It is worth mentioning that this is the first time MIL-88-NH2@COF composites have been prepared and applied to SPME. The preparation method of the composite provides a new idea in adsorbent preparation, which will contribute to the field of SPME.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Wei Hu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| |
Collapse
|
232
|
Wang Z, Zhang Y, Wang T, Lin E, Wang T, Chen Y, Cheng P, Zhang Z. Modulating the Interlayer Stacking of Covalent Organic Frameworks for Efficient Acetylene Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303684. [PMID: 37191288 DOI: 10.1002/smll.202303684] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Controllable modulation of the stacking modes of 2D (two-dimensional) materials can significantly influence their properties and functionalities but remains a formidable synthetic challenge. Here, an effective strategy is proposed to control the layer stacking of imide-linked 2D covalent organic frameworks (COFs) by altering the synthetic methods. Specifically, a modulator-assisted method can afford a COF with rare ABC stacking without the need for any additives, while solvothermal synthesis leads to AA stacking. The variation of interlayer stacking significantly influences their chemical and physical properties, including morphology, porosity, and gas adsorption performance. The resultant COF with ABC stacking shows much higher C2 H2 capacity and selectivity over CO2 and C2 H4 than the COF with AA stacking, which is not demonstrated in the COF field yet. Furthermore, the outstanding practical separation ability of ABC stacking COF is confirmed by breakthrough experiments of C2 H2 /CO2 (50/50, v/v) and C2 H2 /C2 H4 (1/99, v/v), which can selectively remove C2 H2 with good recyclability. This work provides a new direction to produce COFs with controllable interlayer stacking modes.
Collapse
Affiliation(s)
- Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yushu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - En Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
233
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
234
|
Yang H, Hao M, Xie Y, Liu X, Liu Y, Chen Z, Wang X, Waterhouse GIN, Ma S. Tuning Local Charge Distribution in Multicomponent Covalent Organic Frameworks for Dramatically Enhanced Photocatalytic Uranium Extraction. Angew Chem Int Ed Engl 2023; 135. [DOI: doi.org/10.1002/ange.202303129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/25/2023]
Abstract
AbstractOptimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron‐donating or withdrawing groups in the pores. Intramolecular donor‐acceptor (D‐A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro‐functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high‐activity COF photocatalysts with intramolecular D‐A structures not easily accessible using traditional synthetic approaches.
Collapse
Affiliation(s)
- Hui Yang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Mengjie Hao
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Yanfang Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | | | - Shengqian Ma
- Department of Chemistry University of North Texas Denton TX-76201 USA
| |
Collapse
|
235
|
Ezazi M, Quazi MM. Recent Developments in Two-Dimensional Materials-Based Membranes for Oil-Water Separation. MEMBRANES 2023; 13:677. [PMID: 37505043 PMCID: PMC10386624 DOI: 10.3390/membranes13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The industrialization witnessed in the last century has resulted in an unprecedented increase in water pollution. In particular, the water pollution induced by oil contaminants from oil spill accidents, as well as discharges from pharmaceutical, oil/gas, and metal processing industries, have raised concerns due to their potential to pose irreversible threats to the ecosystems. Therefore, the effective treating of these large volumes of oily wastewater is an inevitable challenge to address. Separating oil-water mixtures by membranes has been an attractive technology due to the high oil removal efficiency and low energy consumption. However, conventional oil-water separation membranes may not meet the complex requirements for the sustainable treatment of wastewater due to their relatively shorter life cycle, lower chemical and thermal stability, and permeability/selectivity trade-off. Recent advancements in two-dimensional (2D) materials have provided opportunities to address these challenges. In this article, we provide a brief review of the most recent advancements in oil-water separation membranes modified with 2D materials, with a focus on MXenes, graphenes, metal-organic frameworks, and covalent organic frameworks. The review briefly covers the backgrounds, concepts, fabrication methods, and the most recent representative studies. Finally, the review concludes by describing the challenges and future research directions.
Collapse
Affiliation(s)
- Mohammadamin Ezazi
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA
| | - M M Quazi
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia
| |
Collapse
|
236
|
Shan Z, Wu M, Liu T, Wang J, Chen C, Li S, Su J, Zhang G. Adjusting the Stacking Model of Two-Dimensional Covalent Organic Frameworks for Volatile Acid Sensing via Spatial Effects. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433068 DOI: 10.1021/acsami.3c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Covalent organic frameworks (COFs) are polymer networks with a precise structure and permanent porosity, making them an attractive platform for the detection of volatile analytes due to their chemical stability and accessible active sites. In this study, based on electron-rich N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine moiety, two 2D COFs with different topological structures and stacking models were designed by the strategy of spatial effect. The conductivity of the AB-stacked COF-NUST-20 was an order of magnitude higher than that of the AA-stacked COF-NUST-30. With the protonation of the imine bond, both COFs exhibited a strong, rapid, and reversible visible color change in response to corrosive HCl vapor. In addition, the AB-stacked COF-NUST-20, which facilitates both interlayer and intralayer charge transfer, shows better sensing performance. These findings demonstrate the usefulness of all-aromatic 2D COFs as real-time responsive chemosensors and provide insight into the design of sensing materials with high sensitivity.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Tongtong Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Congjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Shufan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
237
|
Xia C, Joo SW, Hojjati-Najafabadi A, Xie H, Wu Y, Mashifana T, Vasseghian Y. Latest advances in layered covalent organic frameworks for water and wastewater treatment. CHEMOSPHERE 2023; 329:138580. [PMID: 37019401 DOI: 10.1016/j.chemosphere.2023.138580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
This review provides an overview of recent progress in the development of layered covalent organic frameworks (LCOFs) for the adsorption and degradation of pollutants in water and wastewater treatment. LCOFs have unique properties such as high surface area, porosity, and tunability, which make them attractive adsorbents and catalysts for water and wastewater treatment. The review covers the different synthesis methods for LCOFs, including self-assembly, co-crystallization, template-directed synthesis, covalent organic polymerization (COP), and solvothermal synthesis. It also covers the structural and chemical characteristics of LCOFs, their adsorption and degradation capacity for different pollutants, and their comparison with other adsorbents and catalysts. Additionally, it discussed the mechanism of adsorption and degradation by LCOFs, the potential applications of LCOFs in water and wastewater treatment, case studies and pilot-scale experiments, challenges, and limitations of using LCOFs, and future research directions. The current state of research on LCOFs for water and wastewater treatment is promising, however, more research is needed to improve their performance and practicality. The review highlights that LCOFs have the potential to significantly improve the efficiency and effectiveness of current water and wastewater treatment methods and can also have implications for policy and practice.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Akbar Hojjati-Najafabadi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, PR China
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tebogo Mashifana
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
238
|
Ma TT, Yang C, Qian HL, Ma P, Liu T, Yan XP. Trifluoromethyl-Functionalized 2D Covalent Organic Framework for High-Resolution Separation of Isomers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37367939 DOI: 10.1021/acsami.3c05369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Development of novel functional materials for effective isomer separation is of great significance in environmental science, chemical industry, and life science due to the different functions of isomers. However, the similar physicochemical properties of isomers make their separation greatly challenging. Here, we report the fabrication of trifluoromethyl-functionalized 2D covalent organic framework (COF) TpTFMB with 2,2'-bis(trifluoromethyl)benzidine (TFMB) and 1,3,5-triformylphloroglucinol (Tp) for the separation of isomers. TpTFMB was in situ-grown on the inner surface of a capillary for the high-resolution separation of isomers. The introduction of hydroxyl and trifluoromethyl functional groups with uniform distribution in 2D COFs is a powerful tactic to endow TpTFMB with various functions such as hydrogen bonding, dipole interaction, and steric effect. The prepared TpTFMB capillary column enabled the baseline separation of positional isomers such as ethylbenzene and xylene, chlorotoluene, carbon chain isomers such as butylbenzene and ethyl butanoate, and cis-trans isomers 1,3-dichloropropene. The hydrogen-bonding, dipole, and π-π interactions as well as the structure of COF significantly contribute to the isomer separation. This work provides a new strategy for designing functional 2D COFs for the efficient separation of isomers.
Collapse
Affiliation(s)
- Tian-Tian Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
239
|
Chandran A, Abhirami N, Sudhina S, Chandran M, Janeesh PA. 2D Nano Covalent Organic Frameworks – A Porous Polymeric Promising Material Exploring New Prospects of Drug Delivery in Cancer Therapeutics. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202301145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 01/06/2025]
Abstract
AbstractCancer is one of the leading causes of death worldwide. Despite there are numerous treatments available for cancer therapy, early detection and efficient treatment with least side effects is still challenging. Covalent organic frameworks (COFs) are emerging crystalline porous polymeric material comprised of light weight atoms like H, B, C, N and O. The Unique characteristics of COFs is its porosity, large surface area and bio‐compatibility which makes them a suitable candidate for potential biomedical applications especially in cancer therapeutics, through targeted drug delivery. This review focused on general introduction of porous materials, history of COFs, an overview on cancer, brief discussion on the various synthetic strategies, dynamic linkages in COFs and potential biomedical application of COFs such as targeted drug delivery, photo thermal therapy (PTT) and photodynamic therapy (PDT). This review aims to provide in‐depth knowledge about COFs and its application in cancer therapeutics.
Collapse
Affiliation(s)
- Akash Chandran
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Nanoscience and Nanotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695581 Kerala India
| | - N. Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - S. Sudhina
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - Mahesh Chandran
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Biotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - P. A. Janeesh
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Nanoscience and Nanotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695581 Kerala India
- Department of Biotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| |
Collapse
|
240
|
Yang Y, Guo Y, Jia X, Zhang Q, Mao J, Feng Y, Yin D, Zhao W, Zhang Y, Ouyang G, Zhang W. An ultrastable 2D covalent organic framework coating for headspace solid-phase microextraction of organochlorine pesticides in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131228. [PMID: 36963192 DOI: 10.1016/j.jhazmat.2023.131228] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Herein, a quinoline-linked ultrastable 2D covalent organic framework (COF-CN) coated fiber was successfully prepared and used for highly-sensitive headspace solid-phase microextraction (HS-SPME) of organochlorine pesticides (OCPs) in environmental water. The extraction efficiency of the COF-CN coating for all 14 OCPs was higher than that of four commercial SPME fiber coatings and most of the published works, with enrichment factors ranging from 540 to 5065. In combination with gas chromatography-tandem mass spectrometry (GC-MS/MS), a wide linear range (0.05-200 ng/L), low detection limits (LODs, 0.0010-13.54 ng/L) and satisfactory reproducibility and repeatability were obtained under optimal conditions. Compared with the published works, the LODs of the developed technique were improved 2-5.9 times, and the enrichment factors (EFs) of the developed method were enhanced at least 2 times. The COF-CN coated fiber can be easily recycled and reused at least 70 times without any washing step. The adsorption mechanism was first characterized by density functional theory calculations and X-ray photoelectron spectroscopy analysis. Besides, the established method was successfully applied to the analysis of the distribution of trace OCPs in real water samples from Henan Province. All these results proved the promising application of the developed HS-SPME-GC-MS/MS method for organic pollutants analysis in water samples.
Collapse
Affiliation(s)
- Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yun Guo
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qidong Zhang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Jian Mao
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Yumin Feng
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Gangfeng Ouyang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
241
|
Zhou G, Yang T, Huang Z. Structure determination of a low-crystallinity covalent organic framework by three-dimensional electron diffraction. Commun Chem 2023; 6:116. [PMID: 37286771 DOI: 10.1038/s42004-023-00915-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Covalent organic frameworks (COFs) have been attracting intense research due to their permanent porosity, designable architecture, and high stability. However, COFs are challenging to crystallize and their synthesis often results in tiny crystal sizes and low crystallinities, which hinders an unambiguous structure determination. Herein, we demonstrate that the structure of low-crystallinity COF Py-1P nanocrystals can be solved by coupling three-dimensional electron diffraction (3DED) with simulated annealing (SA). The resulting model is comparable to that obtained from high-crystallinity samples by dual-space method. Moreover, for low-resolution 3DED data, the model obtained by SA shows a better framework than those provided by classic direct method, dual-space method, and charge flipping. We further simulate data with different resolutions to understand the reliability of SA under different crystal quality conditions. The successful determination of Py-1P structure by SA compared to other methods provides new knowledge for using 3DED to analyze low-crystallinity and nanosized materials.
Collapse
Affiliation(s)
- Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Taimin Yang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| |
Collapse
|
242
|
Interfacial synthesis: a scalable fabrication method of two-dimensional membranes. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
243
|
Qian Y, Han Y, Zhang X, Yang G, Zhang G, Jiang HL. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nat Commun 2023; 14:3083. [PMID: 37248231 DOI: 10.1038/s41467-023-38884-w] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The strong excitonic effects widely exist in polymer-semiconductors and the large exciton binding energy (Eb) seriously limits their photocatalysis. Herein, density functional theory (DFT) calculations are conducted to assess band alignment and charge transfer feature of potential donor-acceptor (D-A) covalent organic frameworks (COFs), using 1,3,5-tris(4-aminophenyl)triazine (TAPT) or 1,3,5-tris(4-aminophenyl)benzene (TAPB) as acceptors and tereph-thaldehydes functionalized diverse groups as donors. Given the discernable D-A interaction strengths in the D-A pairs, their Eb can be systematically regulated with minimum Eb in TAPT-OMe. Guided by these results, the corresponding D-A COFs are synthesized, where TAPT-OMe-COF possesses the best activity in photocatalytic H2 production and the activity trend of other COFs is associated with that of calculated Eb for the D-A pairs. In addition, further alkyne cycloaddition for the imine linkage in the COFs greatly improves the stability and the resulting TAPT-OMe-alkyne-COF with a substantially smaller Eb exhibits ~20 times higher activity than the parent COF.
Collapse
Affiliation(s)
- Yunyang Qian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yulan Han
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiyuan Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ge Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guozhen Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
244
|
Wang S, Reddy VA, Ang MCY, Cui J, Khong DT, Han Y, Loh SI, Cheerlavancha R, Singh GP, Rajani S, Strano MS. Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology. J Am Chem Soc 2023. [PMID: 37230942 DOI: 10.1021/jacs.3c01783] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecules chemically synthesized as periodic two-dimensional (2D) frameworks via covalent bonds can form some of the highest-surface area and -charge density particles possible. There is significant potential for applications such as nanocarriers in life sciences if biocompatibility can be achieved; however, significant synthetic challenges remain in avoiding kinetic traps from disordered linking during 2D polymerization of compatible monomers, resulting in isotropic polycrystals without a long-range order. Here, we establish thermodynamic control over dynamic control on the 2D polymerization process of biocompatible imine monomers by minimizing the surface energy of nuclei. As a result, polycrystal, mesocrystal, and single-crystal 2D covalent organic frameworks (COFs) are obtained. We achieve COF single crystals by exfoliation and minification methods, forming high-surface area nanoflakes that can be dispersed in aqueous medium with biocompatible cationic polymers. We find that these 2D COF nanoflakes with high surface area are excellent plant cell nanocarriers that can load bioactive cargos, such as the plant hormone abscisic acid (ABA) via electrostatic attraction, and deliver them into the cytoplasm of intact living plants, traversing through the cell wall and cell membrane due to their 2D geometry. This synthetic route to high-surface area COF nanoflakes has promise for life science applications including plant biotechnology.
Collapse
Affiliation(s)
- Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | | | - Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yangyang Han
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Raju Cheerlavancha
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Sarojam Rajani
- Temasek Life Sciences Laboratory Limited, Singapore 117604, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
245
|
Cheng Q, Ma Q, Pei H, He S, Wang R, Guo R, Liu N, Mo Z. Enantioseparation Membranes: Research Status, Challenges, and Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300376. [PMID: 36794289 DOI: 10.1002/smll.202300376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The purity of enantiomers plays a critical role in human health and safety. Enantioseparation is an effective way and necessary process to obtain pure chiral compounds. Enantiomer membrane separation is a new chiral resolution technique, which has the potential for industrialization. This paper mainly summarizes the research status of enantioseparation membranes including membrane materials, preparation methods, factors affecting membrane properties, and separation mechanisms. In addition, the key problems and challenges to be solved in the research of enantioseparation membranes are analyzed. Last but not least, the future development trend of the chiral membrane is expected.
Collapse
Affiliation(s)
- Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Qian Ma
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Rui Wang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
246
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
247
|
Long H, Jiang Y, Liu Y, Zhang Y, Chen W, Tang S. Chromatographic separation performance of silica microspheres surface-modified with triazine-containing imine-linked covalent organic frameworks. Talanta 2023; 260:124589. [PMID: 37126925 DOI: 10.1016/j.talanta.2023.124589] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
In this work, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 1,3,5-tris(4-formylphenyl)benzene (TFPB) were used as monomers to construct a triazine-containing imine-linked covalent organic framework (COF), which was then bonded onto the surface of aldehydized silica (SiO2-CHO), and finally a COF@silica composite material (TAPT-TFPB COF@SiO2) was successfully prepared. The chromatographic separation performance of SiO2-CHO, TAPT-TFPB COF@SiO2 and TAPT-TFPB COF@SiO2/SiO2-CHO (80/20, mass ratio) was evaluated and compared. It was found that separation efficiency was obviously enhanced by adding an appropriate amount of SiO2-CHO into TAPT-TFPB COF@SiO2. The obtained TAPT-TFPB COF@SiO2/SiO2-CHO showed more favorable separation ability than SiO2-CHO and TAPT-TFPB COF@SiO2. Various aromatic compounds including alkylbenzenes, polycyclic aromatic hydrocarbons, environmental endocrine disruptors, foodborne stimulants and phenyl ketones were effectively separated on the TAPT-TFPB COF@SiO2/SiO2-CHO column in reversed phase chromatography mode. The silica microspheres surface-modified with triazine-containing imine-linked COFs proved to be a new type of promising chromatographic packing materials.
Collapse
Affiliation(s)
- Haoyu Long
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanhao Jiang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- School of Pharmacy, Linyi University, Shuangling Road, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
248
|
Ranasinghe Arachchige NR, Xiong NW, Bowden NB. Separation of C18 Fatty Acid Esters and Fatty Acids Derived from Vegetable Oils Using Nanometer-Sized Covalent Organic Frameworks Incorporated in Polyepoxy Membranes. ACS APPLIED NANO MATERIALS 2023; 6:6715-6725. [PMID: 37152919 PMCID: PMC10153466 DOI: 10.1021/acsanm.3c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Fatty acids (FAs) and FA methyl esters (FAMEs) are easily isolated from vegetable oil and are important starting materials for the chemical industry to produce commercial products that are green, biorenewable, and nontoxic. A challenge in these applications is that mixtures of five or more FAs and FAMEs are isolated from a vegetable oil source, and methods to separate these mixtures are decades old and have increasingly high costs associated with the production of high-purity single-component FAs or FAMEs. We developed a method to separate these mixtures using mixed matrix membranes containing nanometer-sized covalent organic frameworks. The 2D, crystalline COFs possessed narrow distributions of pore sizes of 1.3, 1.8, 2.3, and 3.4 nm that separated FAs and FAMEs based on their degrees of unsaturation. The COFs were synthesized, characterized, and then encapsulated at 10 or 20% by weight into a prepolymer of epoxy that was then fully cured. For all mixed matrix membranes, as the degree of unsaturation increased, the FAs or FAMEs had a slower flux. The largest difference in flux was obtained for a COF/epoxy membrane with a pore size of 1.8 nm, and methyl stearate had a 5.9× faster flux than methyl linolenate. These are the first membranes that can separate the important C18 FAs and FAMEs found in vegetable oil.
Collapse
|
249
|
Wu B, Song X, Zheng D, Tan Q, Yao Y, Liu FQ. Wood-Inspired Ultrafast High-Performance Adsorbents for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20325-20333. [PMID: 37043634 DOI: 10.1021/acsami.3c02597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Under favorable regeneration conditions (120 °C, 100% CO2), ultrafast adsorption kinetics and excellent long-term cycle stability are still the biggest obstacles for amine-based solid CO2 adsorbents. Inspired by natural wood, a biochar with a highly ordered pore structure and excellent thermal conductivity was prepared and used as a carrier of organic amines to prepare ideal CO2 adsorbents. The results showed that the prepared adsorbent has a very high adsorption working capacity (4.23 mmol CO2·g-1), and its performance remains stable even after 30 adsorption-desorption cycles in the harsh desorption environment (120 °C, 100% CO2). Due to the existence of the hierarchical structure, the adsorbent exhibited ultra-fast adsorption kinetics, and the reaction rate constant is 37 times higher than that of traditional silica. This adsorbent also showed a very low regeneration heat of 1.64 MJ·kg-1 (CO2), which is especially important for the practical application. Therefore, these biochar-based adsorbents derived from natural wood make the CO2 capture process promising.
Collapse
Affiliation(s)
- Bozhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xuejiao Song
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dongchen Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Qianyun Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yong Yao
- Guangdong Energy Group Science and Technology Research Institute CO., Ltd., Guangzhou 510630, China
| | - Fa-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
250
|
Fan H, Wang H, Peng M, Meng H, Mundstock A, Knebel A, Caro J. Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation. ACS NANO 2023; 17:7584-7594. [PMID: 37026681 PMCID: PMC10134499 DOI: 10.1021/acsnano.2c12774] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic framework (COF) membranes have emerged as a promising candidate for energy-efficient separations, but the angstrom-precision control of the channel size in the subnanometer region remains a challenge that has so far restricted their potential for gas separation. Herein, we report an ultramicropore-in-nanopore concept of engineering matreshka-like pore-channels inside a COF membrane. In this concept, α-cyclodextrin (α-CD) is in situ encapsulated during the interfacial polymerization which presumably results in a linear assembly (LA) of α-CDs in the 1D nanochannels of COF. The LA-α-CD-in-TpPa-1 membrane shows a high H2 permeance (∼3000 GPU) together with an enhanced selectivity (>30) of H2 over CO2 and CH4 due to the formation of fast and selective H2-transport pathways. The overall performance for H2/CO2 and H2/CH4 separation transcends the Robeson upper bounds and ranks among the most powerful H2-selective membranes. The versatility of this strategy is demonstrated by synthesizing different types of LA-α-CD-in-COF membranes.
Collapse
Affiliation(s)
- Hongwei Fan
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Haoran Wang
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
| | - Manhua Peng
- Key
Laboratory of Power Station Energy Transfer Conversion and System,
Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hong Meng
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
| | - Alexander Mundstock
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Alexander Knebel
- Otto Schott
Institute of Materials Research, Friedrich
Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Jürgen Caro
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| |
Collapse
|