201
|
Kulkarni JA, Chen S, Tam YYC. Scalable Production of Lipid Nanoparticles Containing Amphotericin B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7312-7319. [PMID: 34101472 DOI: 10.1021/acs.langmuir.1c00530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipid-based formulations have been developed to improve stability profiles, tolerability, and toxicity profiles of small molecule drugs. However, manufacture of such formulations involving lipophilic compounds can be labor-intensive and difficult to scale because of solubility and solvent compatibility issues. We have developed a rapid and scalable approach using rapid-mixing techniques to generate homogeneous lipid nanoparticle (LNP) formulations of siRNA, triglycerides, and hydrophilic weak-base drugs. Here, we used this approach to entrap a hydrophobic small molecule, Amphotericin B (AmpB), a hydrophobic drug not soluble in ethanol. The three prototypes presented in this study were derived from LNP-siRNA systems, triglyceride nanoparticles, and liposomal systems. Cryogenic transmission electron microscopy (cryo-TEM) revealed that all three LNP-AmpB formulations retain structural characteristics of the parent (AmpB-free) LNPs, with particles remaining stable for at least 1 month. All formulations showed similar in vitro toxicity profiles in comparison to AmBisome. Importantly, the formulations have a 2.5-fold improved IC50 for fungal growth inhibition as compared to AmBisome in in vitro efficacy studies. These results demonstrate that the rapid-mixing technology combined with dimethyl sulfoxide (DMSO) for drugs insoluble in other organic solvents can be a powerful manufacturing method for the generation of stable LNP drug formulations.
Collapse
Affiliation(s)
- Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- NanoVation Therapeutics, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3 Canada
| | - Sam Chen
- Integrated Nanotherapeutics Inc., 205-4475 Wayburne Drive, Burnaby, British Columbia V5G 4X4, Canada
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Integrated Nanotherapeutics Inc., 205-4475 Wayburne Drive, Burnaby, British Columbia V5G 4X4, Canada
| |
Collapse
|
202
|
Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, Crommelin DJA. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm 2021; 601:120586. [PMID: 33839230 PMCID: PMC8032477 DOI: 10.1016/j.ijpharm.2021.120586] [Citation(s) in RCA: 782] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
A drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability. Analysis of mRNA-LNP structures reveals that mRNA, the ionizable cationic lipid and water are present in the LNP core. The neutral helper lipids are mainly positioned in the outer, encapsulating, wall. mRNA hydrolysis is the determining factor for mRNA-LNP instability. It is currently unclear how water in the LNP core interacts with the mRNA and to what extent the degradation prone sites of mRNA are protected through a coat of ionizable cationic lipids. To improve the stability of mRNA-LNP vaccines, optimization of the mRNA nucleotide composition should be prioritized. Secondly, a better understanding of the milieu the mRNA is exposed to in the core of LNPs may help to rationalize adjustments to the LNP structure to preserve mRNA integrity. Moreover, drying techniques, such as lyophilization, are promising options still to be explored.
Collapse
Affiliation(s)
- Linde Schoenmaker
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Gideon Kersten
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands; Coriolis Pharma, Fraunhoferstrasse 18b, 82152 Martinsried, Germany
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands; Coriolis Pharma, Fraunhoferstrasse 18b, 82152 Martinsried, Germany.
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
203
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|
204
|
Sebastiani F, Yanez Arteta M, Lerche M, Porcar L, Lang C, Bragg RA, Elmore CS, Krishnamurthy VR, Russell RA, Darwish T, Pichler H, Waldie S, Moulin M, Haertlein M, Forsyth VT, Lindfors L, Cárdenas M. Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS NANO 2021; 15:6709-6722. [PMID: 33754708 PMCID: PMC8155318 DOI: 10.1021/acsnano.0c10064] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Emerging therapeutic treatments based on the production of proteins by delivering mRNA have become increasingly important in recent times. While lipid nanoparticles (LNPs) are approved vehicles for small interfering RNA delivery, there are still challenges to use this formulation for mRNA delivery. LNPs are typically a mixture of a cationic lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and a PEG-lipid. The structural characterization of mRNA-containing LNPs (mRNA-LNPs) is crucial for a full understanding of the way in which they function, but this information alone is not enough to predict their fate upon entering the bloodstream. The biodistribution and cellular uptake of LNPs are affected by their surface composition as well as by the extracellular proteins present at the site of LNP administration, e.g., apolipoproteinE (ApoE). ApoE, being responsible for fat transport in the body, plays a key role in the LNP's plasma circulation time. In this work, we use small-angle neutron scattering, together with selective lipid, cholesterol, and solvent deuteration, to elucidate the structure of the LNP and the distribution of the lipid components in the absence and the presence of ApoE. While DSPC and cholesterol are found to be enriched at the surface of the LNPs in buffer, binding of ApoE induces a redistribution of the lipids at the shell and the core, which also impacts the LNP internal structure, causing release of mRNA. The rearrangement of LNP components upon ApoE incubation is discussed in terms of potential relevance to LNP endosomal escape.
Collapse
Affiliation(s)
- Federica Sebastiani
- Biofilms
- Research Center for Biointerfaces and Department of Biomedical Science,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| | - Marianna Yanez Arteta
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg Sweden
| | - Michael Lerche
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg Sweden
| | - Lionel Porcar
- Large
Scale Structures, Institut Laue Langevin, Grenoble F-38042, France
| | - Christian Lang
- Forschungszentrum
Jülich GmbH, Jülich Centre for Neutron Science JCNS,
Outstation at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Ryan A. Bragg
- Early
Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, SK 10 4TG Cambridge, U.K.
| | - Charles S. Elmore
- Early Chemical
Development, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Venkata R. Krishnamurthy
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, CB2 0AA Boston, Massachusetts 02451, United States
| | - Robert A. Russell
- National
Deuteration Facility (NDF), Australian Nuclear
Science and Technology Organisation (ANSTO), Lucas Heights, 2232 Sydney, NSW, Australia
| | - Tamim Darwish
- National
Deuteration Facility (NDF), Australian Nuclear
Science and Technology Organisation (ANSTO), Lucas Heights, 2232 Sydney, NSW, Australia
| | - Harald Pichler
- Austrian
Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
- Institute
of Molecular Biotechnology, Graz University
of Technology, NAWI Graz,
BioTechMed Graz, Petersgasse 14, 8010, Graz, Austria
| | - Sarah Waldie
- Biofilms
- Research Center for Biointerfaces and Department of Biomedical Science,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
- Life
Sciences Group, Institut Laue Langevin, Grenoble F-38042, France
- Partnership for Structural Biology (PSB), Grenoble F-38042, France
| | - Martine Moulin
- Life
Sciences Group, Institut Laue Langevin, Grenoble F-38042, France
- Partnership for Structural Biology (PSB), Grenoble F-38042, France
| | - Michael Haertlein
- Life
Sciences Group, Institut Laue Langevin, Grenoble F-38042, France
- Partnership for Structural Biology (PSB), Grenoble F-38042, France
| | - V. Trevor Forsyth
- Life
Sciences Group, Institut Laue Langevin, Grenoble F-38042, France
- Partnership for Structural Biology (PSB), Grenoble F-38042, France
- Faculty
of Natural Sciences, Keele University, Staffordshire, ST5 5BG, U.K.
| | - Lennart Lindfors
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg Sweden
| | - Marité Cárdenas
- Biofilms
- Research Center for Biointerfaces and Department of Biomedical Science,
Faculty of Health and Society, Malmö
University, 20506 Malmö, Sweden
| |
Collapse
|
205
|
Ray RM, Hansen AH, Taskova M, Jandl B, Hansen J, Soemardy C, Morris KV, Astakhova K. Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides. Beilstein J Org Chem 2021; 17:891-907. [PMID: 33981364 PMCID: PMC8093553 DOI: 10.3762/bjoc.17.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 01/28/2023] Open
Abstract
Lipid nanoparticles (LNPs) constitute a facile and scalable approach for delivery of payloads to human cells. LNPs are relatively immunologically inert and can be produced in a cost effective and scalable manner. However, targeting and delivery of LNPs across the blood–brain barrier (BBB) has proven challenging. In an effort to target LNPs composed of an ionizable cationic lipid (DLin-MC3-DMA), cholesterol, the phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000 (DMG-PEG 2000) to particular cell types, as well as to generate LNPs that can cross the BBB, we developed and assessed two approaches. The first was centered on the BBB-penetrating trans-activator of transcription (Tat) peptide or the peptide T7, and the other on RNA aptamers targeted to glycoprotein gp160 from human immunodeficiency virus (HIV) or C-C chemokine receptor type 5 (CCR5), a HIV-1 coreceptor. We report herein a CCR5-selective RNA aptamer that acts to facilitate entry through a simplified BBB model and that drives the uptake of LNPs into CCR5-expressing cells, while the gp160 aptamer did not. We further observed that the addition of cell-penetrating peptides, Tat and T7, did not increase BBB penetration above the aptamer-loaded LNPs alone. Moreover, we found that these targeted LNPs exhibit low immunogenic and low toxic profiles and that targeted LNPs can traverse the BBB to potentially deliver drugs into the target tissue. This approach highlights the usefulness of aptamer-loaded LNPs to increase target cell specificity and potentially deliverability of central-nervous-system-active RNAi therapeutics across the BBB.
Collapse
Affiliation(s)
- Roslyn M Ray
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | | | - Maria Taskova
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jonas Hansen
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Citra Soemardy
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America
| | - Kevin V Morris
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA, United States of America.,School of Medical Sciences, Griffith University, Gold Coast, Australia 4222.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
206
|
Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines (Basel) 2021; 9:359. [PMID: 33918072 PMCID: PMC8069344 DOI: 10.3390/vaccines9040359] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Estelle J. A. Suys
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Jung Seok Lee
- Biomedical Engineering, Malone Engineering Center 402A, Yale University, 55 Prospect St., New Haven, CT 06511, USA;
| | - Dai Hai Nguyen
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 100000, Vietnam;
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 TL29 District 12, Ho Chi Minh City 700000, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Nghia P. Truong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| |
Collapse
|
207
|
Lipid nanovesicles for biomedical applications: 'What is in a name'? Prog Lipid Res 2021; 82:101096. [PMID: 33831455 DOI: 10.1016/j.plipres.2021.101096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022]
Abstract
Vesicles, generally defined as self-assembled structures formed by single or multiple concentric bilayers that surround an aqueous core, have been widely used for biomedical applications. They can either occur naturally (e.g. exosomes) or be produced artificially and range from the micrometric scale to the nanoscale. One the most well-known vesicle is the liposome, largely employed as a drug delivery nanocarrier. Liposomes have been modified along the years to improve physicochemical and biological features, resulting in long-circulating, ligand-targeted and stimuli-responsive liposomes, among others. In this process, new nomenclatures were reported in an extensive literature. In many instances, the new names suggest the emergence of a new nanocarrier, which have caused confusion as to whether the vesicles are indeed new entities or could simply be considered modified liposomes. Herein, we discussed the extensive nomenclature of vesicles based on the suffix "some" that are employed for drug delivery and composed of various types and proportions of lipids and others amphiphilic compounds. New names have most often been selected based on changes of vesicle lipid composition, but the payload, structural complexity (e.g. multicompartment) and new/improved proprieties (e.g. elasticity) have also inspired new vesicle names. Based on this discussion, we suggested a rational classification for vesicles.
Collapse
|
208
|
Mildner R, Hak S, Parot J, Hyldbakk A, Borgos SE, Some D, Johann C, Caputo F. Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery. Eur J Pharm Biopharm 2021; 163:252-265. [PMID: 33745980 DOI: 10.1016/j.ejpb.2021.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022]
Abstract
Lipid-based nanoparticles for RNA delivery (LNP-RNA) are revolutionizing the nanomedicine field, with one approved gene therapy formulation and two approved vaccines against COVID-19, as well as multiple ongoing clinical trials. As for other innovative nanopharmaceuticals (NPhs), the advancement of robust methods to assess their quality and safety profiles-in line with regulatory needs-is critical for facilitating their development and clinical translation. Asymmetric-flow field-flow fractionation coupled to multiple online optical detectors (MD-AF4) is considered a very versatile and robust approach for the physical characterisation of nanocarriers, and has been used successfully for measuring particle size, polydispersity and physical stability of lipid-based systems, including liposomes and solid lipid nanoparticles. However, the unique core structure of LNP-RNA, composed of ionizable lipids electrostatically complexed with RNA, and the relatively labile lipid-monolayer coating, is more prone to destabilization during focusing in MD-AF4 than previously characterised nanoparticles, resulting in particle aggregation and sample loss. Hence characterisation of LNP-RNA by MD-AF4 needs significant adaptation of the methods developed for liposomes. To improve the performance of MD-AF4 applied to LNP-RNA in a systematic and comprehensive manner, we have explored the use of the frit-inlet channel where, differently from the standard AF4 channel, the particles are relaxed hydrodynamically as they are injected. The absence of a focusing step minimizes contact between the particle and the membrane, reducing artefacts (e.g. sample loss, particle aggregation). Separation in a frit-inlet channel enables satisfactory reproducibility and acceptable sample recovery in the commercially available MD-AF4 instruments. In addition to slice-by-slice measurements of particle size, MD-AF4 also allows to determine particle concentration and the particle size distribution, demonstrating enhanced versatility beyond standard sizing measurements.
Collapse
Affiliation(s)
- R Mildner
- Wyatt Technology, Hochstrasse 12a, 56307 Dernbach, Germany
| | - S Hak
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - J Parot
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - A Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - S E Borgos
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - D Some
- Wyatt Technology, 6330 Hollister Ave., Santa Barbara, CA 93117, USA
| | - C Johann
- Wyatt Technology, Hochstrasse 12a, 56307 Dernbach, Germany
| | - F Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
| |
Collapse
|
209
|
Hall R, Alasmari A, Mozaffari S, Mahdipoor P, Parang K, Montazeri Aliabadi H. Peptide/Lipid-Associated Nucleic Acids (PLANAs) as a Multicomponent siRNA Delivery System. Mol Pharm 2021; 18:986-1002. [PMID: 33496597 DOI: 10.1021/acs.molpharmaceut.0c00969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNAi is a biological process that utilizes small interfering RNA (siRNA) to prevent the translation of mRNA to protein. This mechanism could be beneficial in preventing the overexpression of proteins in cancer. However, the cellular delivery of siRNA has proven to be challenging due to its inherent negative charge and relative instability. Here, we designed a multicomponent delivery system composed of a specifically designed peptide (linear or cyclic fatty acyl peptide conjugates and hybrid cyclic/linear peptides) and several lipids (DOTAP, DOPE, cholesterol, and phosphatidylcholine) to form a nanoparticle, which we have termed as peptide lipid-associated nucleic acids (PLANAs). Five formulations were prepared (a formulation with no peptide, which was named lipid-associated nucleic acid or LANA, and PLANA formulations A-D) using a mini extruder to form uniform nanoparticles around 100 nm in size with a slightly positive charge (less than +10 mv). Formulations were evaluated for peptide incorporation, siRNA encapsulation efficiency, release profile, toxicity, cellular uptake, and protein silencing. Our experiments showed effective encapsulation of siRNA (>95%), a controlled release profile, and negligible toxicity in formulations that did not contain a positively charged lipid. The results also revealed that PLANAs C and D exhibited optimum cellular uptake (with 80-90% siRNA-positive cells for most of the formulations). PLANA D formulation was selected to silence two model proteins (Src and RPS6KA5) in the triple-negative human breast cancer cell line MDA-MB-231, with promising silencing efficiency, which diminished the expression of RPS6KA5 and Src to approximately 29 and 38% compared to naïve cells, respectively. Many approaches have been investigated for safe and efficient delivery of nucleic acids in the last 20 years; however, many have failed due to the multifaceted challenges to overcome. Our results show a promising potential for a multicomponent design that incorporates different components for a variety of delivery tasks, which warrants further investigation of PLANAs in vivo.
Collapse
Affiliation(s)
- Ryley Hall
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Abdulaziz Alasmari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Parvin Mahdipoor
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
210
|
Lu Z, Laney VEA, Hall R, Ayat N. Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy. Adv Healthc Mater 2021; 10:e2001294. [PMID: 33615743 DOI: 10.1002/adhm.202001294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a promising technology to regulate oncogenes for treating cancer. The primary limitation of siRNA for clinical application is the safe and efficacious delivery of therapeutic siRNA into target cells. Lipid-based delivery systems are developed to protect siRNA during the delivery process and to facilitate intracellular uptake. There is a significant progress in lipid nanoparticle systems that utilize cationic and protonatable amino lipid systems to deliver siRNA to tumors. Among these lipids, environment-responsive lipids are a class of novel lipid delivery systems that are capable of responding to the environment changes during the delivery process and demonstrate great promise for clinical translation for siRNA therapeutics. Protonatable or ionizable amino lipids and switchable lipids as well as pH-sensitive multifunctional amino lipids are the presentative environment-responsive lipids for siRNA delivery. These lipids are able to respond to environmental changes during the delivery process to facilitate efficient cytosolic siRNA delivery. Environment-responsive lipid/siRNA nanoparticles (ERLNP) are developed with the lipids and are tested for efficient delivery of therapeutic siRNA into the cytoplasm of cancer cells to silence target genes for cancer treatment in preclinical development. This review summarizes the recent developments in environment-response lipids and nanoparticles for siRNA delivery in cancer therapy.
Collapse
Affiliation(s)
- Zheng‐Rong Lu
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Victoria E. A. Laney
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Ryan Hall
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Nadia Ayat
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
211
|
Van Lysebetten D, Malfanti A, Deswarte K, Koynov K, Golba B, Ye T, Zhong Z, Kasmi S, Lamoot A, Chen Y, Van Herck S, Lambrecht BN, Sanders NN, Lienenklaus S, David SA, Vicent MJ, De Koker S, De Geest BG. Lipid-Polyglutamate Nanoparticle Vaccine Platform. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6011-6022. [PMID: 33507728 PMCID: PMC7116839 DOI: 10.1021/acsami.0c20607] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Peptide-based subunit vaccines are attractive in view of personalized cancer vaccination with neo-antigens, as well as for the design of the newest generation of vaccines against infectious diseases. Key to mounting robust antigen-specific immunity is delivery of antigen to antigen-presenting (innate immune) cells in lymphoid tissue with concomitant innate immune activation to promote antigen presentation to T cells and to shape the amplitude and nature of the immune response. Nanoparticles that co-deliver both peptide antigen and molecular adjuvants are well suited for this task. However, in the context of peptide-based antigen, an unmet need exists for a generic strategy that allows for co-encapsulation of peptide and molecular adjuvants due to the stark variation in physicochemical properties based on the amino acid sequence of the peptide. These properties also strongly differ from those of many molecular adjuvants. Here, we devise a lipid nanoparticle (LNP) platform that addresses these issues. Key in our concept is poly(l-glutamic acid) (PGA), which serves as a hydrophilic backbone for conjugation of, respectively, peptide antigen (Ag) and an imidazoquinoline (IMDQ) TLR7/8 agonist as a molecular adjuvant. Making use of the PGA's polyanionic nature, we condensate PGA-Ag and PGA-IMDQ into LNP by electrostatic interaction with an ionizable lipid. We show in vitro and in vivo in mouse models that LNP encapsulation favors uptake by innate immune cells in lymphoid tissue and promotes the induction of Ag-specific T cells responses both after subcutaneous and intravenous administration.
Collapse
Affiliation(s)
| | - Alessio Malfanti
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bianka Golba
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Tingting Ye
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Sabah Kasmi
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Ghent University, Ghent 9820, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | | | - María J. Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | | |
Collapse
|
212
|
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20:101-124. [PMID: 33277608 PMCID: PMC7717100 DOI: 10.1038/s41573-020-0090-8] [Citation(s) in RCA: 3629] [Impact Index Per Article: 907.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, The University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA.
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
213
|
Ge X, Chen L, Zhao B, Yuan W. Rationale and Application of PEGylated Lipid-Based System for Advanced Target Delivery of siRNA. Front Pharmacol 2021; 11:598175. [PMID: 33716725 PMCID: PMC7944141 DOI: 10.3389/fphar.2020.598175] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
RNA interference (RNAi) technology has become a powerful tool in application of unraveling the mechanism of disease and may hold the potential to be developed for clinical uses. Small interfering RNA (siRNA) can bind to target mRNA with high specificity and efficacy and thus inhibit the expression of related protein for the purpose of treatment of diseases. The major challenge for RNAi application is how to improve its stability and bioactivity and therefore deliver therapeutic agents to the target sites with high efficiency and accuracy. PEGylated lipid-based delivery system has been widely used for development of various medicines due to its long circulating half-life time, low toxicity, biocompatibility, and easiness to be scaled up. The PEGylated lipid-based delivery system may also provide platform for targeting delivery of nucleic acids, and some of the research works have moved to the phases for clinical trials. In this review, we introduced the mechanism, major challenges, and strategies to overcome technical barriers of PEGylated lipid-based delivery systems for advanced target delivery of siRNA in vivo. We also summarized recent advance of PEGylated lipid-based siRNA delivery systems and included some successful research works in this field.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weien Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
214
|
Ermilova I, Swenson J. DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA. Phys Chem Chem Phys 2020; 22:28256-28268. [PMID: 33295352 DOI: 10.1039/d0cp05111j] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ionizable lipids are important compounds of modern therapeutic lipid nano-particles (LNPs). One of the most promising ionizable lipids (or amine lipids) is DLin-MC3-DMA. Depending on their pharmaceutical application these LNPs can also contain various helper lipids, such as phospho- and pegylated lipids, cholesterol and nucleic acids as a cargo. Due to their complex compositions the structures of these therapeutics have not been refined properly. Therefore, the role of each lipid in the pharmacological properties of LNPs has not been determined. In this work an atomistic model for the neutral form of DLin-MC3-DMA was derived and all-atom molecular dynamics (MD) simulations were carried out in order to investigate the effect of the phospholipid headgroup on the possible properties of the shell-membranes of LNPs. Bilayers containing either DOPC or DOPE lipids at two different ratios of DLin-MC3-DMA (5 mol% and 15 mol%) were constructed and simulated at neutral pH 7.4. The results from the analysis of MD trajectories revealed that DOPE lipid headgroups associated strongly with lipid tails and carbonyl oxygens of DLin-MC3-DMA, while for DOPC lipid headgroups no significant associations were observed. Furthermore, the strong associations between DOPE and DLin-MC3-DMA result in the positioning of DLin-MC3-DMA at the surface of the membrane. Such an interplay between the lipids slows down the lateral diffusion of all simulated bilayers, where a more dramatic decrease of the diffusion rate is observed in membranes with DOPE. This can explain the low water penetration of lipid bilayers with phosphatidylethanolamines and, probably, can relate to the bad transfection properties of LNPs with DOPE and DLin-MC3-DMA.
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | | |
Collapse
|
215
|
Kulkarni JA, Thomson SB, Zaifman J, Leung J, Wagner PK, Hill A, Tam YYC, Cullis PR, Petkau TL, Leavitt BR. Spontaneous, solvent-free entrapment of siRNA within lipid nanoparticles. NANOSCALE 2020; 12:23959-23966. [PMID: 33241838 DOI: 10.1039/d0nr06816k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipid nanoparticle (LNP) formulations of nucleic acid are leading vaccine candidates for COVID-19, and enabled the first approved RNAi therapeutic, Onpattro. LNPs are composed of ionizable cationic lipids, phosphatidylcholine, cholesterol, and polyethylene glycol (PEG)-lipids, and are produced using rapid-mixing techniques. These procedures involve dissolution of the lipid components in an organic phase and the nucleic acid in an acidic aqueous buffer (pH 4). These solutions are then combined using a continuous mixing device such as a T-mixer or microfluidic device. In this mixing step, particle formation and nucleic acid entrapment occur. Previous work from our group has shown that, in the absence of nucleic acid, the particles formed at pH 4 are vesicular in structure, a portion of these particles are converted to electron-dense structures in the presence of nucleic acid, and the proportion of electron-dense structures increases with nucleic acid content. What remained unclear from previous work was the mechanism by which vesicles form electron-dense structures. In this study, we use cryogenic transmission electron microscopy and dynamic light scattering to show that efficient siRNA entrapment occurs in the absence of ethanol (contrary to the established paradigm), and suggest that nucleic acid entrapment occurs through inversion of preformed vesicles. We also leverage this phenomenon to show that specialized mixers are not required for siRNA entrapment, and that preformed particles at pH 4 can be used for in vitro transfection.
Collapse
Affiliation(s)
- Jayesh A Kulkarni
- NanoMedicines Innovation Network, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Roces CB, Lou G, Jain N, Abraham S, Thomas A, Halbert GW, Perrie Y. Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics. Pharmaceutics 2020; 12:E1095. [PMID: 33203082 PMCID: PMC7697682 DOI: 10.3390/pharmaceutics12111095] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
In the recent of years, the use of lipid nanoparticles (LNPs) for RNA delivery has gained considerable attention, with a large number in the clinical pipeline as vaccine candidates or to treat a wide range of diseases. Microfluidics offers considerable advantages for their manufacture due to its scalability, reproducibility and fast preparation. Thus, in this study, we have evaluated operating and formulation parameters to be considered when developing LNPs. Among them, the flow rate ratio (FRR) and the total flow rate (TFR) have been shown to significantly influence the physicochemical characteristics of the produced particles. In particular, increasing the TFR or increasing the FRR decreased the particle size. The amino lipid choice (cationic-DOTAP and DDAB; ionisable-MC3), buffer choice (citrate buffer pH 6 or TRIS pH 7.4) and type of nucleic acid payload (PolyA, ssDNA or mRNA) have also been shown to have an impact on the characteristics of these LNPs. LNPs were shown to have a high (>90%) loading in all cases and were below 100 nm with a low polydispersity index (≤0.25). The results within this paper could be used as a guide for the development and scalable manufacture of LNP systems using microfluidics.
Collapse
Affiliation(s)
- Carla B. Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.B.R.); (G.L.); (G.W.H.)
| | - Gustavo Lou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.B.R.); (G.L.); (G.W.H.)
| | - Nikita Jain
- Precision NanoSystems Inc., #50 655 W Kent Ave N, Vancouver, BC V6P 6T7, Canada; (N.J.); (S.A.); (A.T.)
| | - Suraj Abraham
- Precision NanoSystems Inc., #50 655 W Kent Ave N, Vancouver, BC V6P 6T7, Canada; (N.J.); (S.A.); (A.T.)
| | - Anitha Thomas
- Precision NanoSystems Inc., #50 655 W Kent Ave N, Vancouver, BC V6P 6T7, Canada; (N.J.); (S.A.); (A.T.)
| | - Gavin W. Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.B.R.); (G.L.); (G.W.H.)
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (C.B.R.); (G.L.); (G.W.H.)
| |
Collapse
|
217
|
Zhang H, Leal J, Soto MR, Smyth HDC, Ghosh D. Aerosolizable Lipid Nanoparticles for Pulmonary Delivery of mRNA through Design of Experiments. Pharmaceutics 2020; 12:E1042. [PMID: 33143328 PMCID: PMC7692784 DOI: 10.3390/pharmaceutics12111042] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Messenger RNA is a class of promising nucleic acid therapeutics to treat a variety of diseases, including genetic diseases. The development of a stable and efficacious mRNA pulmonary delivery system would enable high therapeutic concentrations locally in the lungs to improve efficacy and limit potential toxicities. In this study, we employed a Design of Experiments (DOE) strategy to screen a library of lipid nanoparticle compositions to identify formulations possessing high potency both before and after aerosolization. Lipid nanoparticles (LNPs) showed stable physicochemical properties for at least 14 days of storage at 4 °C, and most formulations exhibited high encapsulation efficiencies greater than 80%. Generally, upon nebulization, LNP formulations showed increased particle size and decreased encapsulation efficiencies. An increasing molar ratio of poly-(ethylene) glycol (PEG)-lipid significantly decreased size but also intracellular protein expression of mRNA. We identified four formulations possessing higher intracellular protein expression ability in vitro even after aerosolization which were then assessed in in vivo studies. It was found that luciferase protein was predominately expressed in the mouse lung for the four lead formulations before and after nebulization. This study demonstrated that LNPs hold promise to be applied for aerosolization-mediated pulmonary mRNA delivery.
Collapse
Affiliation(s)
| | | | | | | | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (H.Z.); (J.L.); (M.R.S.); (H.D.C.S.)
| |
Collapse
|
218
|
Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules 2020; 25:molecules25215006. [PMID: 33126767 PMCID: PMC7662579 DOI: 10.3390/molecules25215006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is an extremely complex disease, typically caused by mutations in cancer-critical genes. By delivering therapeutic nucleic acids (NAs) to patients, gene therapy offers the possibility to supplement, repair or silence such faulty genes or to stimulate their immune system to fight the disease. While the challenges of gene therapy for cancer are significant, the latter approach (a type of immunotherapy) starts showing promising results in early-stage clinical trials. One important advantage of NA-based cancer therapies over synthetic drugs and protein treatments is the prospect of a more universal approach to designing therapies. Designing NAs with different sequences, for different targets, can be achieved by using the same technologies. This versatility and scalability of NA drug design and production on demand open the way for more efficient, affordable and personalized cancer treatments in the future. However, the delivery of exogenous therapeutic NAs into the patients’ targeted cells is also challenging. Membrane-type lipids exhibiting permanent or transient cationic character have been shown to associate with NAs (anionic), forming nanosized lipid-NA complexes. These complexes form a wide variety of nanostructures, depending on the global formulation composition and properties of the lipids and NAs. Importantly, these different lipid-NA nanostructures interact with cells via different mechanisms and their therapeutic potential can be optimized to promising levels in vitro. The complexes are also highly customizable in terms of surface charge and functionalization to allow a wide range of targeting and smart-release properties. Most importantly, these synthetic particles offer possibilities for scaling-up and affordability for the population at large. Hence, the versatility and scalability of these particles seem ideal to accommodate the versatility that NA therapies offer. While in vivo efficiency of lipid-NA complexes is still poor in most cases, the advances achieved in the last three decades are significant and very recently a lipid-based gene therapy medicine was approved for the first time (for treatment of hereditary transthyretin amyloidosis). Although the path to achieve efficient NA-delivery in cancer therapy is still long and tenuous, these advances set a new hope for more treatments in the future. In this review, we attempt to cover the most important biophysical and physicochemical aspects of non-viral lipid-based gene therapy formulations, with a perspective on future cancer treatments in mind.
Collapse
|
219
|
Aburai K, Hatanaka K, Takano S, Fujii S, Sakurai K. Characterizing an siRNA-Containing Lipid-Nanoparticle Prepared by a Microfluidic Reactor: Small-Angle X-ray Scattering and Cryotransmission Electron Microscopic Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12545-12554. [PMID: 32988200 DOI: 10.1021/acs.langmuir.0c01079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A new cationic-lipid/siRNA particle that was designed to deliver siRNA was investigated by the combination of small-angle X-ray scattering (SAXS), asymmetric field flow fractionation coupled with multiangle light scattering, and cryotransmission electron microscopy (cryo-TEM). The particle was prepared through two-step mixing using a microfluidic technique. In the first step, siRNA was premixed with a cationic lipid in an EtOH-rich solution. In the second step, the premixed solution was mixed with other lipids, followed by solvent exchange with water. SAXS showed formation of a siRNA/cationic lipid pair in the first step, and this pair consisted of the major part of the core in the final particle. The relationship between the hydrodynamic radius and the radius of gyration indicated the formation of a densely packed core and PEG-rich shell, confirming a well-known core-shell model. SAXS and cryo-TEM showed that the ordering of the core structure enhanced as the siRNA content increased.
Collapse
Affiliation(s)
- Kenichi Aburai
- Research Function Units, R&D Division, Kyowa Kirin Company, Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Kentaro Hatanaka
- Research Function Units, R&D Division, Kyowa Kirin Company, Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Shin Takano
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| |
Collapse
|
220
|
Gene Delivery to the Skin - How Far Have We Come? Trends Biotechnol 2020; 39:474-487. [PMID: 32873394 PMCID: PMC7456264 DOI: 10.1016/j.tibtech.2020.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Gene therapies are powerful tools to prevent, treat, and cure human diseases. The application of gene therapies for skin diseases received little attention so far, despite the easy accessibility of skin and the urgent medical need. A major obstacle is the unique barrier properties of human skin, which significantly limits the absorption of biomacromolecules, and thus hampers the efficient delivery of nucleic acid payloads. In this review, we discuss current approaches, successes, and failures of cutaneous gene therapy and provide guidance toward the development of next-generation concepts. We specifically allude to the delivery strategies as the major obstacle that prevents the full potential of gene therapies – not only for skin disorders but also for almost any other human disease. Gene therapies are powerful tools for the treatment of inflammatory, genetic, and cancer-related skin diseases. The skin barrier function and the low number of cells that get transfected are the main hurdles for cutaneous gene therapy and contribute to the fact that gene therapies for skin diseases are an underexplored area. Gene editing provides an approach to cure rare and severe genodermatoses-like epidermolysis bullosa. First studies demonstrate the potential and invaluable impact these treatments may have even if only a small percentage of the gene function can be restored. Recent advancements demonstrate the power of non-viral delivery systems for the delivery of gene therapeutics to the skin. They may prove superior to viral vectors, the current gold standard, because their use is not limited by packaging size, serious safety concerns, or manufacturing issues.
Collapse
|
221
|
Xiong H, Liu S, Wei T, Cheng Q, Siegwart DJ. Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo. J Control Release 2020; 325:198-205. [PMID: 32629133 DOI: 10.1016/j.jconrel.2020.06.030] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022]
Abstract
mRNA-based therapeutics have emerged as a promising approach to treat cancer. However, creation of theranostic strategies to both deliver mRNA and simultaneously detect cancer is an important unmet goal. Here, we report the development of theranostic dendrimer-based lipid nanoparticle (DLNP) system containing PEGylated BODIPY dyes (PBD) for mRNA delivery and near-infrared (NIR) imaging in vitro and in vivo. DLNPs formulated with a pH-responsive PBD-lipid produced 5- to 35-fold more functional protein than control DLNPs formulated with traditional PEG-lipid in vitro and enabled higher mRNA delivery potency in vivo at a low dose of 0.1 mg kg-1 when formulated with a PBD-lipid containing a BODIPY core, indole linker, and PEG length between 1000 and 5000 g/mol. Moreover, we found the intensity of mRNA expression in the liver correlated with the pKa of DLNPs, indicating that DLNPs with a pKa close to 6.3 could generally produce more protein in livers. Notably, 4A3-SC8&PEG2k5d formulated DLNPs successfully mediated mRNA expression in tumors and simultaneously illuminated tumors via pH-responsive NIR imaging. The described theranostic lipid nanoparticles that combine mRNA delivery and NIR imaging hold promise as an applicable future approach to simultaneously detect and treat cancer.
Collapse
Affiliation(s)
- Hu Xiong
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Simmons Comprehensive Cancer Center, Dallas, TX 75390, United States; Nankai University, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Tianjin 300071, China
| | - Shuai Liu
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Simmons Comprehensive Cancer Center, Dallas, TX 75390, United States
| | - Tuo Wei
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Simmons Comprehensive Cancer Center, Dallas, TX 75390, United States
| | - Qiang Cheng
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Simmons Comprehensive Cancer Center, Dallas, TX 75390, United States
| | - Daniel J Siegwart
- The University of Texas Southwestern Medical Center, Department of Biochemistry, Simmons Comprehensive Cancer Center, Dallas, TX 75390, United States.
| |
Collapse
|
222
|
Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 2020; 159:344-363. [PMID: 32622021 PMCID: PMC7329694 DOI: 10.1016/j.addr.2020.06.026] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Hereditary genetic disorders, cancer, and infectious diseases of the liver affect millions of people around the globe and are a major public health burden. Most contemporary treatments offer limited relief as they generally aim to alleviate disease symptoms. Targeting the root cause of diseases originating in the liver by regulating malfunctioning genes with nucleic acid-based drugs holds great promise as a therapeutic approach. However, employing nucleic acid therapeutics in vivo is challenging due to their unfavorable characteristics. Lipid nanoparticle (LNP) delivery technology is a revolutionary development that has enabled clinical translation of gene therapies. LNPs can deliver siRNA, mRNA, DNA, or gene-editing complexes, providing opportunities to treat hepatic diseases by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Here we discuss the state-of-the-art LNP technology for hepatic gene therapy including formulation design parameters, production methods, preclinical development and clinical translation.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada; Evonik Canada, Vancouver, BC, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Integrated Nanotherapeutics, Vancouver, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada.
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
223
|
Eygeris Y, Patel S, Jozic A, Sahay G. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery. NANO LETTERS 2020; 20:4543-4549. [PMID: 32375002 PMCID: PMC7228479 DOI: 10.1021/acs.nanolett.0c01386] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Indexed: 05/19/2023]
Abstract
Lipid nanoparticle (LNP) packaged mRNA vaccines have been deployed against infectious diseases such as COVID-19, yet their structural features remain unclear. Cholesterol, a major constituent within LNPs, contributes to their morphology that influences gene delivery. Herein, we examine the structure of LNPs containing cholesterol derivatives using electron microscopy, differential scanning calorimetry, and membrane fluidity assays. LNPs formulated with C24 alkyl derivatives of cholesterol show a polymorphic shape and various degrees of multilamellarity and lipid partitioning, likely due to phase separation. The addition of methyl and ethyl groups to the C24 alkyl tail of the cholesterol backbone induces multilamellarity (>50% increase compared to cholesterol), while the addition of a double bond induces lipid partitioning (>90% increase compared to cholesterol). LNPs with multilamellar and faceted structures, as well as a lamellar lipid phase, showed higher gene transfection. Unraveling the structure of mRNA-LNPs can enable their rational design toward enhanced gene delivery.
Collapse
Affiliation(s)
- Yulia Eygeris
- Department of Pharmaceutical Sciences, College of
Pharmacy, Oregon State University, Portland, Oregon 97201,
United States
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of
Pharmacy, Oregon State University, Portland, Oregon 97201,
United States
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of
Pharmacy, Oregon State University, Portland, Oregon 97201,
United States
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of
Pharmacy, Oregon State University, Portland, Oregon 97201,
United States
- Department of Biomedical Engineering,
Oregon Health & Science University, Portland, Oregon
97201, United States
| |
Collapse
|
224
|
Eygeris Y, Patel S, Jozic A, Sahay G. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery. NANO LETTERS 2020. [PMID: 32375002 DOI: 10.1021/acs.nanolett.0c0138610.1021/acs.nanolett.0c01386.s001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lipid nanoparticle (LNP) packaged mRNA vaccines have been deployed against infectious diseases such as COVID-19, yet their structural features remain unclear. Cholesterol, a major constituent within LNPs, contributes to their morphology that influences gene delivery. Herein, we examine the structure of LNPs containing cholesterol derivatives using electron microscopy, differential scanning calorimetry, and membrane fluidity assays. LNPs formulated with C24 alkyl derivatives of cholesterol show a polymorphic shape and various degrees of multilamellarity and lipid partitioning, likely due to phase separation. The addition of methyl and ethyl groups to the C24 alkyl tail of the cholesterol backbone induces multilamellarity (>50% increase compared to cholesterol), while the addition of a double bond induces lipid partitioning (>90% increase compared to cholesterol). LNPs with multilamellar and faceted structures, as well as a lamellar lipid phase, showed higher gene transfection. Unraveling the structure of mRNA-LNPs can enable their rational design toward enhanced gene delivery.
Collapse
Affiliation(s)
- Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97201, United States
| |
Collapse
|
225
|
Zhao D, Yang G, Liu Q, Liu W, Weng Y, Zhao Y, Qu F, Li L, Huang Y. A photo-triggerable aptamer nanoswitch for spatiotemporal controllable siRNA delivery. NANOSCALE 2020; 12:10939-10943. [PMID: 32207496 DOI: 10.1039/d0nr00301h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A photo-triggerable aptamer nanoswitch was proposed for spatiotemporal regulation of siRNA delivery. Recognition between AS1411 and nucleolin was effectively blocked by a photo-labile complementary oligonucleotide, which could be reactivated with photo-irradiation, resulting in efficient tumor-targeted siRNA internalization and gene silencing in vitro and in vivo.
Collapse
Affiliation(s)
- Deyao Zhao
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China
| | - Ge Yang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenjing Liu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Yi Zhao
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Feng Qu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
226
|
Kim J, Jozic A, Sahay G. Naturally Derived Membrane Lipids Impact Nanoparticle-Based Messenger RNA Delivery. Cell Mol Bioeng 2020; 13:463-474. [PMID: 32837581 PMCID: PMC7250267 DOI: 10.1007/s12195-020-00619-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Lipid based nanoparticles (LNPs) are clinically successful vectors for hepatic delivery of nucleic acids. These systems are being developed for non-hepatic delivery of mRNA for the treatment of diseases like cystic fibrosis or retinal degeneration as well as infectious diseases. Localized delivery to the lungs requires aerosolization. We hypothesized that structural lipids within LNPs would provide features of integrity which can be tuned for attributes required for efficient hepatic and non-hepatic gene delivery. Herein, we explored whether naturally occurring lipids that originate from the cell membrane of plants and microorganisms enhance mRNA-based gene transfection in vitro and in vivo and whether they assist in maintaining mRNA activity after nebulization. Methods We substituted DSPC, a structural lipid used in a conventional LNP formulation, to a series of naturally occurring membrane lipids. We measured the effect of these membrane lipids on size, encapsulation efficiency and their impact on transfection efficiency. We further characterized LNPs after nebulization and measured whether they retained their transfection efficiency. Results One plant-derived structural lipid, DGTS, led to a significant improvement in liver transfection of mRNA. DGTS LNPs had similar transfection ability when administered in the nasal cavity to conventional LNPs. In contrast, we found that DGTS LNPs had reduced transfection efficiency in cells pre-and post-nebulization while maintaining size and encapsulation similar to DSPC LNPs. Conclusions We found that structural lipids provide differential mRNA-based activities in vitro and in vivo which also depend on the mode of administration. Understanding influence of structural lipids on nanoparticle morphology and structure can lead to engineering potent materials for mRNA-based gene therapy applications.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA.,Department of Biomedical Engineering, Oregon Health Science University, Robertson Life Sciences Building, Portland, OR USA
| |
Collapse
|