201
|
Nelson BE, Roszik J, Janku F, Hong DS, Kato S, Naing A, Piha-Paul S, Fu S, Tsimberidou A, Cabanillas M, Busaidy NL, Javle M, Byers LA, Heymach JV, Meric-Bernstam F, Subbiah V. BRAF v600E-mutant cancers treated with vemurafenib alone or in combination with everolimus, sorafenib, or crizotinib or with paclitaxel and carboplatin (VEM-PLUS) study. NPJ Precis Oncol 2023; 7:19. [PMID: 36801912 PMCID: PMC9938883 DOI: 10.1038/s41698-022-00341-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 02/20/2023] Open
Abstract
Combined BRAF + MEK inhibition is FDA approved for BRAF V600E-mutant solid tumors except for colorectal cancer. However, beyond MAPK mediated resistance several other mechanisms of resistance such as activation of CRAF, ARAF, MET, P13K/AKT/mTOR pathway exist among other complex pathways. In the VEM-PLUS study, we performed a pooled analysis of four phase one studies evaluating the safety and efficacy of vemurafenib monotherapy and vemurafenib combined with targeted therapies (sorafenib, crizotinib, or everolimus) or carboplatin plus paclitaxel in advanced solid tumors harboring BRAF V600 mutations. When vemurafenib monotherapy was compared with the combination regimens, no significant differences in OS or PFS durations were noted, except for inferior OS in the vemurafenib and paclitaxel and carboplatin trial (P = 0.011; HR, 2.4; 95% CI, 1.22-4.7) and in crossover patients (P = 0.0025; HR, 2.089; 95% CI, 1.2-3.4). Patients naïve to prior BRAF inhibitors had statistically significantly improved OS at 12.6 months compared to 10.4 months in the BRAF therapy refractory group (P = 0.024; HR, 1.69; 95% CI 1.07-2.68). The median PFS was statistically significant between both groups, with 7 months in the BRAF therapy naïve group compared to 4.7 months in the BRAF therapy refractory group (P = 0.016; HR, 1.80; 95% CI 1.11-2.91). The confirmed ORR in the vemurafenib monotherapy trial (28%) was higher than that in the combination trials. Our findings suggest that, compared with vemurafenib monotherapy, combinations of vemurafenib with cytotoxic chemotherapy or with RAF- or mTOR-targeting agents do not significantly extend the OS or PFS of patients who have solid tumors with BRAF V600E mutations. Gaining a better understanding of the molecular mechanisms of BRAF inhibitor resistance, balancing toxicity and efficacy with novel trial designs are warranted.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jason Roszik
- grid.240145.60000 0001 2291 4776Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Filip Janku
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David S. Hong
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shumei Kato
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Aung Naing
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sarina Piha-Paul
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Siqing Fu
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Apostolia Tsimberidou
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Maria Cabanillas
- grid.240145.60000 0001 2291 4776Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Naifa Lamki Busaidy
- grid.240145.60000 0001 2291 4776Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Milind Javle
- grid.240145.60000 0001 2291 4776Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lauren Averett Byers
- grid.240145.60000 0001 2291 4776Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - John V. Heymach
- grid.240145.60000 0001 2291 4776Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivek Subbiah
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
202
|
Brajkovic D, Kiralj A, Ilic M, Vuckovic N, Bijelic B, Fejsa Levakov A. Predictive factors for survival and treatment outcomes of patients with minor salivary gland malignancies: a retrospective study. Eur Arch Otorhinolaryngol 2023; 280:2561-2574. [PMID: 36781440 DOI: 10.1007/s00405-023-07862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Aim of this study was to explore the incidence, pathology, clinical behaviour and evaluate factors predictive on survival and treatment outcomes in a cohort of patients with minor salivary gland (MiSG) malignancies treated at a single center over a period of 25 years. MATERIALS AND METHODS Patients who had received primary treatment for MiSG malignancy during 25 years observation period were identified. Outcomes that were evaluated were overall survival (OS), disease specific survival (DSS), recurrence free survival (RFS), locoregional recurrence free survival (LRFS) and distant metastasis free survival (DFS). RESULTS A total of 88 patients with MSG malignancies were included in the study. The most common location for MiSG malignancies was the oral cavity (65 tumors; 77%). Cumulative OS for 5 and 10 year follow up period was 82% and 62% respectively. Cumulative DSS for 5 and 10 year follow up period was 85% and 73% respectively. Twenty one (23%) patients developed distant metastases during follow-up. High-grade pathology and tumor stage were significant variables on multivariate analysis for all survival and treatment outcomes. CONCLUSIONS Minor salivary gland malignancies are minor only by name. Tumor histological grade, AJCC tumor stage and pT stage were the strongest predictive factors for survival and treatment outcomes. The elective neck dissection could be considered therapeutic approach for selected cases of high grade MiSG malignancies. Distant metastases were the main cause of death and treatment failure.
Collapse
Affiliation(s)
- Denis Brajkovic
- Faculty of Medicine, Department for Dentistry and Maxillofacial Surgery, University of Novi Sad, Novi Sad, Serbia. .,Clinic for Maxillofacial Surgery, University Clinical Center of Vojvodina, Novi Sad, Serbia.
| | - Aleksandar Kiralj
- Faculty of Medicine, Department for Dentistry and Maxillofacial Surgery, University of Novi Sad, Novi Sad, Serbia.,Clinic for Maxillofacial Surgery, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Miroslav Ilic
- Faculty of Medicine, Department for Dentistry and Maxillofacial Surgery, University of Novi Sad, Novi Sad, Serbia.,Clinic for Maxillofacial Surgery, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nada Vuckovic
- Faculty of Medicine, Department for Dentistry and Maxillofacial Surgery, University of Novi Sad, Novi Sad, Serbia.,Pathology and Histology Centre, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Borivoj Bijelic
- School of Dental Medicine, University of Belgrade, Belgrade, Serbia, Belgrade, Serbia
| | - Aleksandra Fejsa Levakov
- Faculty of Medicine, Department for Dentistry and Maxillofacial Surgery, University of Novi Sad, Novi Sad, Serbia.,Pathology and Histology Centre, University Clinical Center of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
203
|
Chen J, Zhai J, Li M, Liu S, Gong X, Yu H, Wei H, Chen W. In vitro and in vivo analyses on anti-NSCLC activity of apatinib: rediscovery of a new drug target V600E mutation. Cancer Cell Int 2023; 23:21. [PMID: 36759818 PMCID: PMC9909954 DOI: 10.1186/s12935-022-02723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/21/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Apatinib (YN968D1) is the first small-molecule-targeting drug with anti-tumor activity created in China for the treatment of advanced gastric cancer (GC) and hepatocellular carcinoma (HCC). It showed significant variation in the efficacy for treating cancers, including advanced non-squamous non-small-cell lung cancer (NSCLC). Whether its efficacy could be optimized by subgrouping patients with certain genetic variation remains elusive. METHODS Here, we firstly used kinase screening to identify any possible target of apatinib against 138 kinases. The effects of apatinib on proliferation rates, cell cycle, cell apoptosis, and cell migration on cancer cell lines were analyzed; the in vitro potential pathways of apatinib on cancer cell lines were screened. The effect of apatinib on mouse cancer models in vivo was also analyzed. RESULTS Based on HCC364 cells with BRAF V600E mutation, we have shown that apatinib could inhibit their growth, migration, cell cycle, and induce their apoptosis. Based on mice with transplanted HCC364 cells, we have also shown that apatinib could inhibit the tumor growth. Based on immunohistochemistry, we have demonstrated that apatinib could suppress the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase and extracellular regulated protein kinases. This may account at least part of the apatinib's inhibitory effect on HCC364 cancer cells. CONCLUSIONS BRAF V600E protein kinase is a target of apatinib by kinase screening. We have demonstrated that apatinib can effectively inhibit tumor cells with BRAF V600E mutation by in vitro and in vivo experiments. Our results have demonstrated that targeting BRAF V600E mutation, apatinib appears to be effective and safe for treating NSCLC and possibly other cancers with the same mutation.
Collapse
Affiliation(s)
- Jiani Chen
- grid.73113.370000 0004 0369 1660Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China
| | - Jingwen Zhai
- grid.73113.370000 0004 0369 1660Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China
| | - Mingming Li
- grid.73113.370000 0004 0369 1660Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China
| | - Shiyi Liu
- grid.73113.370000 0004 0369 1660Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China
| | - Xiaobin Gong
- grid.73113.370000 0004 0369 1660Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003 China
| | - Hongyu Yu
- Department of Pathology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Wansheng Chen
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
204
|
Xie J, Liu J, Zhao M, Li X, Wang Y, Zhao Y, Cao H, Ji M, Chen M, Hou P. Disulfiram/Cu Kills and Sensitizes BRAF-Mutant Thyroid Cancer Cells to BRAF Kinase Inhibitor by ROS-Dependently Relieving Feedback Activation of MAPK/ERK and PI3K/AKT Pathways. Int J Mol Sci 2023; 24:ijms24043418. [PMID: 36834830 PMCID: PMC9968072 DOI: 10.3390/ijms24043418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BRAFV600E, the most common genetic alteration, has become a major therapeutic target in thyroid cancer. Vemurafenib (PLX4032), a specific inhibitor of BRAFV600E kinase, exhibits antitumor activity in patients with BRAFV600E-mutated thyroid cancer. However, the clinical benefit of PLX4032 is often limited by short-term response and acquired resistance via heterogeneous feedback mechanisms. Disulfiram (DSF), an alcohol-aversion drug, shows potent antitumor efficacy in a copper (Cu)-dependent way. However, its antitumor activity in thyroid cancer and its effect on cellular response to BRAF kinase inhibitors remain unclear. Antitumor effects of DSF/Cu on BRAFV600E-mutated thyroid cancer cells and its effect on the response of these cells to BRAF kinase inhibitor PLX4032 were systematically assessed by a series of in vitro and in vivo functional experiments. The molecular mechanism underlying the sensitizing effect of DSF/Cu on PLX4032 was explored by Western blot and flow cytometry assays. DSF/Cu exhibited stronger inhibitory effects on the proliferation and colony formation of BRAFV600E-mutated thyroid cancer cells than DSF treatment alone. Further studies revealed that DSF/Cu killed thyroid cancer cells by ROS-dependent suppression of MAPK/ERK and PI3K/AKT signaling pathways. Our data also showed that DSF/Cu strikingly increased the response of BRAFV600E-mutated thyroid cancer cells to PLX4032. Mechanistically, DSF/Cu sensitizes BRAF-mutant thyroid cancer cells to PLX4032 by inhibiting HER3 and AKT in an ROS-dependent way and subsequently relieving feedback activation of MAPK/ERK and PI3K/AKT pathways. This study not only implies potential clinical use of DSF/Cu in cancer therapy but also provides a new therapeutic strategy for BRAFV600E-mutated thyroid cancers.
Collapse
Affiliation(s)
- Jingyi Xie
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Juan Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Man Zhao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinru Li
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yubo Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuelei Zhao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hongxin Cao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence:
| |
Collapse
|
205
|
Li T, Kikuchi O, Zhou J, Wang Y, Pokharel B, Bastl K, Gokhale P, Knott A, Zhang Y, Doench JG, Ho ZV, Catenacci DV, Bass AJ. Developing SHP2-based combination therapy for KRAS-amplified cancer. JCI Insight 2023; 8:152714. [PMID: 36752207 PMCID: PMC9977440 DOI: 10.1172/jci.insight.152714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Gastroesophageal adenocarcinomas (GEAs) harbor recurrent amplification of KRAS, leading to marked overexpression of WT KRAS protein. We previously demonstrated that SHP2 phosphatase, which acts to promote KRAS and downstream MAPK pathway activation, is a target in these tumors when combined with MEK inhibition. We hypothesized that SHP2 inhibitors may serve as a foundation for developing novel combination inhibitor strategies for therapy of KRAS-amplified GEA, including with targets outside the MAPK pathway. Here, we explore potential targets to effectively augment the efficacy of SHP2 inhibition, starting with genome-wide CRISPR screens in KRAS-amplified GEA cell lines with and without SHP2 inhibition. We identify candidate targets within the MAPK pathway and among upstream RTKs that may enhance SHP2 efficacy in KRAS-amplified GEA. Additional in vitro and in vivo experiments demonstrated the potent cytotoxicity of pan-ERBB kinase inhibitions in vitro and in vivo. Furthermore, beyond targets within the MAPK pathway, we demonstrate that inhibition of CDK4/6 combines potently with SHP2 inhibition in KRAS-amplified GEA, with greater efficacy of this combination in KRAS-amplified, compared with KRAS-mutant, tumors. These results suggest therapeutic combinations for clinical study in KRAS-amplified GEAs.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Osamu Kikuchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jin Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yichen Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Babita Pokharel
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| | - Klavdija Bastl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Prafulla Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aine Knott
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yanxi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - John G. Doench
- Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zandra V. Ho
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Daniel V.T. Catenacci
- Department of Medicine, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Adam J. Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA.,Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
206
|
Ducreux M, Tabernero J, Grothey A, Arnold D, O'Dwyer PJ, Gilberg F, Abbas A, Thakur MD, Prizant H, Irahara N, Tahiri A, Schmoll HJ, Van Cutsem E, de Gramont A. Clinical and exploratory biomarker findings from the MODUL trial (Cohorts 1, 3 and 4) of biomarker-driven maintenance therapy for metastatic colorectal cancer. Eur J Cancer 2023; 184:137-150. [PMID: 36921494 DOI: 10.1016/j.ejca.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE MODUL is an adaptable, signal-seeking trial of biomarker-driven maintenance therapy following first-line induction treatment in patients with metastatic colorectal cancer (mCRC). We report findings from Cohorts 1 (BRAFmut), 3 (human epidermal growth factor 2 [HER2]+) and 4 (HER2‒/high microsatellite instability, HER2‒/microsatellite stable [MSS]/BRAFwt or HER2‒/MSS/BRAFmut/RASmut). METHODS Patients with unresectable, previously untreated mCRC without disease progression following standard induction treatment (5-fluorouracil/leucovorin [5-FU/LV] plus oxaliplatin plus bevacizumab) were randomly assigned to control (fluoropyrimidine plus bevacizumab) or cohort-specific experimental maintenance therapy (Cohort 1: vemurafenib plus cetuximab plus 5-FU/LV; Cohort 3: capecitabine plus trastuzumab plus pertuzumab; Cohort 4: cobimetinib plus atezolizumab). The primary efficacy end-point was progression-free survival (PFS). RESULTS Cohorts 1, 3 and 4 did not reach target sample size because of early study closure. In Cohort 1 (n = 60), PFS did not differ between treatment arms (hazard ratio, 0.95; 95% confidence intervals 0.50-1.82; P = 0.872). However, Cohort 1 exploratory biomarker data showed preferential selection for mitogen-activated protein kinase (MAPK) pathway mutations (mainly KRAS, NRAS, MAP2K1 or BRAF) in the experimental arm but not the control arm. In Cohort 3 (n = 5), PFS ranged from 3.6 to 14.7 months versus 4.0 to 5.4 months in the experimental and control arms, respectively. In Cohort 4 (n = 99), PFS was shorter in the experimental arm (hazard ratio, 1.44; 95% confidence intervals 0.90-2.29; P = 0.128). CONCLUSIONS Vemurafenib plus cetuximab plus 5-FU/LV warrants further investigation as first-line maintenance treatment for BRAFmut mCRC. MAPK-pathway emergent genomic alterations may offer novel therapeutic opportunities in BRAFmut mCRC. Cobimetinib plus atezolizumab had an unfavourable benefit:risk ratio in HER2‒/MSS/BRAFwt mCRC. New strategies are required to increase the susceptibility of MSS mCRC to immunotherapy. TRIAL REGISTRATION ClinicalTrials.gov: NCT02291289.
Collapse
Affiliation(s)
- Michel Ducreux
- Université Paris-Saclay, Gustave Roussy, Villejuif, France.
| | - Josep Tabernero
- Vall D'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain.
| | | | - Dirk Arnold
- Asklepios Tumorzentrum Hamburg, AK Altona, Hamburg, Germany.
| | - Peter J O'Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | - Hen Prizant
- F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | | | | | | | - Eric Van Cutsem
- University Hospitals Gasthuisberg, Leuven and KU Leuven, Leuven, Belgium.
| | | |
Collapse
|
207
|
Sullivan J, Chandler J, Lesniak M, Tate M, Sonabend A, Kalapurakal J, Horbinski C, Lukas R, Kumthekar P, Sachdev S. Clinical outcomes for pleomorphic xanthoastrocytoma patients: an institutional experience. RESEARCH SQUARE 2023:rs.3.rs-2535551. [PMID: 36778274 PMCID: PMC9915763 DOI: 10.21203/rs.3.rs-2535551/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purpose Report our institutional experience with pleomorphic xanthoastrocytoma (PXA) to contribute to limited data on optimal management. Methods Patients with pathologically confirmed PXA treated at our institution between 1990 and 2019 were identified. Demographic information, tumor grade, treatment variables, and clinical outcomes were collected from patient charts. Kaplan-Meier estimates were used to summarize two primary outcome measurements: progression-free survival (PFS) and overall survival (OS). Outcomes were stratified by tumor grade and extent of resection. Cox regression and log-rank testing were performed. Results We identified 17 patients with pathologically confirmed PXA. Two patients were excluded due to incomplete treatment information or < 6m of follow-up; 15 patients were analyzed (median follow-up 4.4y). Six patients had grade 2 PXA and 9 had grade 3 anaplastic PXA. The 2-year and 5-year PFS for the cohort was 57% and 33%, respectively; 2-year and 5-year OS was 93% and 75%, respectively. Patients with grade 2 tumors exhibited superior PFS compared to those with grade 3 tumors (2-year PFS: 100% vs. 28%, 5-year PFS: 60% vs. 14%), hazard ratio, 5.09 (95% CI:1.06-24.50), p = 0.02. Undergoing a GTR also yielded improved outcomes (hazard ratio: 0.38, p = 0.15). All but one (89%) of the grade 3 patients underwent RT. Conclusion The poor survival of the cohort, especially with grade 3 tumors, suggests the need for more aggressive treatment, including maximal resection followed by intensive adjuvant therapy. Better prognostics of tumor recurrence are needed to guide the use of adjuvant therapy.
Collapse
Affiliation(s)
| | - James Chandler
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| | - Maciej Lesniak
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| | - Matthew Tate
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| | - Adam Sonabend
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| | - John Kalapurakal
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| | - Craig Horbinski
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| | - Rimas Lukas
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| | - Priya Kumthekar
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| | - Sean Sachdev
- Northwestern University Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
208
|
Seeking therapeutic synergy in BRAF mutant colorectal cancer. Nat Med 2023; 29:307-308. [PMID: 36721074 DOI: 10.1038/s41591-022-02192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
209
|
Tian J, Chen JH, Chao SX, Pelka K, Giannakis M, Hess J, Burke K, Jorgji V, Sindurakar P, Braverman J, Mehta A, Oka T, Huang M, Lieb D, Spurrell M, Allen JN, Abrams TA, Clark JW, Enzinger AC, Enzinger PC, Klempner SJ, McCleary NJ, Meyerhardt JA, Ryan DP, Yurgelun MB, Kanter K, Van Seventer EE, Baiev I, Chi G, Jarnagin J, Bradford WB, Wong E, Michel AG, Fetter IJ, Siravegna G, Gemma AJ, Sharpe A, Demehri S, Leary R, Campbell CD, Yilmaz O, Getz GA, Parikh AR, Hacohen N, Corcoran RB. Combined PD-1, BRAF and MEK inhibition in BRAF V600E colorectal cancer: a phase 2 trial. Nat Med 2023; 29:458-466. [PMID: 36702949 PMCID: PMC9941044 DOI: 10.1038/s41591-022-02181-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
While BRAF inhibitor combinations with EGFR and/or MEK inhibitors have improved clinical efficacy in BRAFV600E colorectal cancer (CRC), response rates remain low and lack durability. Preclinical data suggest that BRAF/MAPK pathway inhibition may augment the tumor immune response. We performed a proof-of-concept single-arm phase 2 clinical trial of combined PD-1, BRAF and MEK inhibition with sparatlizumab (PDR001), dabrafenib and trametinib in 37 patients with BRAFV600E CRC. The primary end point was overall response rate, and the secondary end points were progression-free survival, disease control rate, duration of response and overall survival. The study met its primary end point with a confirmed response rate (24.3% in all patients; 25% in microsatellite stable patients) and durability that were favorable relative to historical controls of BRAF-targeted combinations alone. Single-cell RNA sequencing of 23 paired pretreatment and day 15 on-treatment tumor biopsies revealed greater induction of tumor cell-intrinsic immune programs and more complete MAPK inhibition in patients with better clinical outcome. Immune program induction in matched patient-derived organoids correlated with the degree of MAPK inhibition. These data suggest a potential tumor cell-intrinsic mechanism of cooperativity between MAPK inhibition and immune response, warranting further clinical evaluation of optimized targeted and immune combinations in CRC. ClinicalTrials.gov registration: NCT03668431.
Collapse
Affiliation(s)
- Jun Tian
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sherry X Chao
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karin Pelka
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Marios Giannakis
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Julian Hess
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kelly Burke
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Vjola Jorgji
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Princy Sindurakar
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan Braverman
- The Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnav Mehta
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Tomonori Oka
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Mei Huang
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - David Lieb
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Maxwell Spurrell
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jill N Allen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Thomas A Abrams
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Clark
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Andrea C Enzinger
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter C Enzinger
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Samuel J Klempner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Nadine J McCleary
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - David P Ryan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Matthew B Yurgelun
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Katie Kanter
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Emily E Van Seventer
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Islam Baiev
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Gary Chi
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Joy Jarnagin
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - William B Bradford
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Alexa G Michel
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Isobel J Fetter
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Giulia Siravegna
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Angelo J Gemma
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Arlene Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Rebecca Leary
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Omer Yilmaz
- The Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gad A Getz
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Aparna R Parikh
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
210
|
Chen C, Hsiao CF. Bayesian hierarchical models for adaptive basket trial designs. Pharm Stat 2023; 22:531-546. [PMID: 36625301 DOI: 10.1002/pst.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/12/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
Basket trials evaluate a single drug targeting a single genetic variant in multiple cancer cohorts. Empirical findings suggest that treatment efficacy across baskets may be heterogeneous. Most modern basket trial designs use Bayesian methods. These methods require the prior specification of at least one parameter that permits information sharing across baskets. In this study, we provide recommendations for selecting a prior for scale parameters for adaptive basket trials by using Bayesian hierarchical modeling. Heterogeneity among baskets attracts much attention in basket trial research, and substantial heterogeneity challenges the basic assumption of exchangeability of Bayesian hierarchical approach. Thus, we also allowed each stratum-specific parameter to be exchangeable or nonexchangeable with similar strata by using data observed in an interim analysis. Through a simulation study, we evaluated the overall performance of our design based on statistical power and type I error rates. Our research contributes to the understanding of the properties of Bayesian basket trial designs.
Collapse
Affiliation(s)
- Chian Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
211
|
Moon I, LoPiccolo J, Baca SC, Sholl LM, Kehl KL, Hassett MJ, Liu D, Schrag D, Gusev A. Utilizing Electronic Health Records (EHR) and Tumor Panel Sequencing to Demystify Prognosis of Cancer of Unknown Primary (CUP) patients. RESEARCH SQUARE 2023:rs.3.rs-2450090. [PMID: 36711812 PMCID: PMC9882677 DOI: 10.21203/rs.3.rs-2450090/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cancer of unknown primary (CUP) is a type of cancer that cannot be traced back to its original site and accounts for 3-5% of all cancers. It does not have established targeted therapies, leading to poor outcomes. We developed OncoNPC, a machine learning classifier trained on targeted next-generation sequencing data from 34,567 tumors from three institutions. OncoNPC achieved a weighted F1 score of 0.94 for high confidence predictions on known cancer types (65% of held-out samples). When applied to 971 CUP tumors from patients treated at the Dana-Farber Cancer Institute, OncoNPC identified actionable molecular alterations in 23% of the tumors. Furthermore, OncoNPC identified CUP subtypes with significantly higher polygenic germline risk for the predicted cancer type and significantly different survival outcomes, supporting its validity. Importantly, CUP patients who received first palliative intent treatments concordant with their OncoNPC-predicted cancer sites had significantly better outcomes (H.R. 0.348, 95% C.I. 0.210 - 0.570, p-value 2.32 × 10-5). OncoNPC thus provides evidence of distinct CUP subtypes and offers the potential for clinical decision support for managing patients with CUP.
Collapse
Affiliation(s)
- Intae Moon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sylvan C. Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth L. Kehl
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Michael J. Hassett
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Deborah Schrag
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
212
|
da Silva TN, Rodrigues R, Saramago A, Pires C, Rito M, Horta M, Martins C, Leite V, Cavaco BM. Target therapy for BRAF mutated anaplastic thyroid cancer: a clinical and molecular study. Eur J Endocrinol 2023; 188:6979712. [PMID: 36651156 DOI: 10.1093/ejendo/lvac011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Anaplastic thyroid carcinoma (ATC) has a poor survival. The combination of Dabrafenib plus Trametinib (DT) had a significant impact in survival of BRAF p.V600E patients. However, durable responses may be compromised by resistance. We aim to present our experience with DT in BRAF positive ATC patients and compare the outcomes with usual therapy, and to study tumor molecular alterations in the DT group. METHODS Patients treated between May 2018 and April 2022 in a tertiary referral center, assessed for BRAF status were included. Patients were divided in three groups: BRAF p.V600E treated with DT, BRAF wild type (WT) under multimodal therapy (MT), and BRAF WT under compassionate care (CC). Response was assessed monthly in the first 6 months and every 3 months afterwards, by RECIST 1.1. Overall survival (OS) and progression-free survival (PFS) were estimated with the Kaplan-Meier method and compared with the log-rank test. RESULTS Twenty-seven ATC patients were included (DT = 9, MT = 8, and CC = 10). Median OS was 475 days for DT, 156 days for MT, and 39 days for CC (P < .001). At 12 months, only patients in the DT group were alive (71%). Median PFS was 270 days, in the DT group, compared with less than 32 days in BRAF WT (P < .001). No severe adverse events were reported. Molecular profiling showed that in one of the four clinical progressions, a pathogenic NRAS mutation was found. CONCLUSIONS Our results show a significant real-world efficacy of Dabrafenib plus Trametinib in both survival and recurrence compared with standard treatment, with a good safety profile.
Collapse
Affiliation(s)
- Tiago Nunes da Silva
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Ricardo Rodrigues
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Ana Saramago
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Carolina Pires
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Miguel Rito
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Mariana Horta
- Serviço de Radiologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Carmo Martins
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| | - Valeriano Leite
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
- NOVA Medical School-Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisboa, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, Lisboa 1099-023, Portugal
| |
Collapse
|
213
|
Di Nunno V, Gatto L, Tosoni A, Bartolini S, Franceschi E. Implications of BRAF V600E mutation in gliomas: Molecular considerations, prognostic value and treatment evolution. Front Oncol 2023; 12:1067252. [PMID: 36686797 PMCID: PMC9846085 DOI: 10.3389/fonc.2022.1067252] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Gliomas are molecularly heterogeneous brain tumors responsible for the most years of life lost by any cancer. High-grade gliomas have a poor prognosis and despite multimodal treatment including surgery, radiotherapy, and chemotherapy, exhibit a high recurrence rate. There is a need for new therapeutic approaches based on precision medicine informed by biomarker assessment and BRAF, a key regulator of MAPK signaling pathway, influencing cell differentiation, proliferation, migration and pro-tumorigenic activity, is emerging as a promising molecular target. V600E, is the most frequent BRAF alteration in gliomas, especially in pediatric low-grade astrocytomas, pleomorphic xanthoastrocytoma, papillary craniopharyngioma, epithelioid glioblastoma and ganglioglioma. The possible application of BRAF-targeted therapy in gliomas is continuously growing and there is preliminary evidence of prolonged disease control obtained by BRAF inhibitors in tumors harboring BRAF V600E mutation. The possibility of introducing targeted therapies into the treatment algorithm represents a paradigm shift for patients with BRAF V600E mutant recurrent high-grade and low-grade glioma and BRAF routine testing should be considered in clinical practice. The focus of this review is to summarize the molecular landscape of BRAF across glioma subtypes and the novel therapeutic strategies for BRAF V600E mutated tumors.
Collapse
Affiliation(s)
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy,*Correspondence: Lidia Gatto,
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
214
|
Badve SS, Gökmen-Polar Y. Targeting the Tumor-Tumor Microenvironment Crosstalk. Expert Opin Ther Targets 2023; 27:447-457. [PMID: 37395003 DOI: 10.1080/14728222.2023.2230362] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Cancer development and progression is a complex process influenced by co-evolution of the cancer cells and their microenvironment. However, traditional anti-cancer therapy is mostly targeted toward cancer cells. To improve the efficacy of cancer drugs, the complex interactions between the tumor (T) and the tumor microenvironment (TME) should be considered while developing therapeutics. AREAS COVERED The present review article will discuss the components of T-TME as well as the potential to co-target these two distinct elements. We document that these approaches have resulted in success in preventing tumor progression and metastasis, albeit in animal models in some cases. Lastly, it is important to consider the tissue context and tumor type as these could significantly modify the role of these molecules/pathways and hence the overall likelihood of response. Furthermore, we discuss the potential strategies to target the components of tumor microenvironment in anti-cancer therapy. PubMed and ClinicalTrials.gov was searched through May 2023. EXPERT OPINION The tumor-tumor microenvironment cross talk and heterogeneity are major mechanisms conferring resistance to standard of care. Better understanding of the tissue specific T-TME interactions and dual targeting has the promise of improving cancer control and clinical outcomes.
Collapse
Affiliation(s)
- Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
215
|
BRAF/MEK inhibition in NSCLC: mechanisms of resistance and how to overcome it. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:10-20. [PMID: 35729451 DOI: 10.1007/s12094-022-02849-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023]
Abstract
Targeted therapy for oncogenic genetic alterations has changed the treatment paradigm of advanced non-small cell lung cancer (NSCLC). Mutations in the BRAF gene are detected in approximately 4% of patients and result in hyper-activation of the MAPK pathway, leading to uncontrolled cellular proliferation. Inhibition of BRAF and its downstream effector MEK constitutes a therapeutic strategy for a subset of patients with NSCLC and is associated with clinical benefit. Unfortunately, the majority of patients will develop disease progression within 1 year. Preclinical and clinical evidence suggests that resistance mechanisms involve the restoration of MAPK signaling which becomes inhibition-independent due to upstream or downstream alterations, and the activation of bypass pathways, such as the PI3/AKT/mTOR pathway. Future research should be directed to deciphering the mechanisms of cancer cells' oncogenic dependence, understanding the tissue-specific mechanisms of BRAF-mutant tumors, and optimizing treatment strategies after progression on BRAF and MEK inhibition.
Collapse
|
216
|
Guaitoli G, Zullo L, Tiseo M, Dankner M, Rose AAN, Facchinetti F. Non-small-cell lung cancer: how to manage BRAF-mutated disease. Drugs Context 2023; 12:dic-2022-11-3. [PMID: 37168877 PMCID: PMC10166262 DOI: 10.7573/dic.2022-11-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023] Open
Abstract
BRAF mutations are reported in about 3-5% of non-small-cell lung cancer (NSCLC), almost exclusively in adenocarcinoma histology, and are classified into three different classes. The segmentation of BRAF mutations into V600 (class 1) and non-V600 (classes 2 and 3) relies on their biological characteristics and is of interest for predicting the therapeutic benefit of targeted therapies and immunotherapy. Given the relative rarity of this molecular subset of disease, evidence supporting treatment choices is limited. This review aims to offer a comprehensive update about available therapeutic options for patients with NSCLC harbouring BRAF mutations to guide the physician in the choice of treatment strategies. We collected the most relevant available data, from single-arm phase II studies and retrospective analyses conducted in advanced NSCLC, regarding the efficacy of BRAF and MEK inhibitors in both V600 and non-V600 BRAF mutations. We included case reports and smaller experiences that could provide information on specific alterations. With respect to immunotherapy, we reviewed retrospective evidence on immune-checkpoint inhibitors in this molecular subset, whereas data about chemo-immunotherapy in this molecular subgroup are lacking. Moreover, we included the available, though limited, retrospective evidence of immunotherapy as consolidation after chemo-radiation for unresectable stage III BRAF-mutant NSCLC, and an overview of ongoing clinical trials in the peri-operative setting that could open new perspectives in the future.
Collapse
Affiliation(s)
- Giorgia Guaitoli
- Université Paris-Saclay, Gustave Roussy, INSERM U981, Villejuif, France
- PhD Program Clinical & Experimental Medicine, University of Modena & Reggio Emilia, Modena, Italy
| | - Lodovica Zullo
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marcello Tiseo
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Matthew Dankner
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - April AN Rose
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Francesco Facchinetti
- Université Paris-Saclay, Gustave Roussy, INSERM U981, Villejuif, France
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
217
|
Aly AA, Alshammari MB, Ahmad A, A. M. Gomaa H, G. M. Youssif B, Bräse S, A. A. Ibrahim M, Mohamed AH. Design, synthesis, docking, and mechanistic studies of new thiazolyl/thiazolidinylpyrimidine-2,4-dione antiproliferative agents. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
218
|
Abstract
Cancers contain a plethora of mutations, few of which are critical to maintaining a state of malignancy. With our ever-expanding understanding of the genomic complexity of cancer, potentially actionable biomarkers whose inhibition could cripple cancer growth are increasingly being elucidated. Modern cancer drug development has largely switched from cytotoxic agents to targeted therapies and immunotherapy, with noteworthy success in several cancer types including non-small-cell lung cancer (NSCLC), breast cancer and melanoma. Next-generation sequencing offers high-throughput, widescale genomic interrogation in a far more efficient and affordable manner than previous sequencing methods. This facilitates detection of potentially actionable mutations and fusions for individual patients and contributes to the identification of novel predictive and prognostic biomarkers in a population. Challenges in the technical aspects of biopsy and sequencing, interpretation, and development of targeted therapies against common genomic aberrations will need to be addressed for personalised medicine to become a reality for more patients with cancer.
Collapse
Affiliation(s)
- Cienne Morton
- Medical Oncology Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Debashis Sarker
- Guy's and St Thomas' NHS Foundation Trust, London, UK, reader in experimental oncology, King's College London, UK, and cancer lead, NHSE South East England Genomic Medicine Service and Laboratory Hub
| | - Paul Ross
- Guy's and St Thomas' NHS Foundation Trust, London, UK, and honorary senior lecturer, King's College London
| |
Collapse
|
219
|
Kang JJ, Ko A, Kil SH, Mallen-St Clair J, Shin DS, Wang MB, Srivatsan ES. EGFR pathway targeting drugs in head and neck cancer in the era of immunotherapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188827. [PMID: 36309124 DOI: 10.1016/j.bbcan.2022.188827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors that bind growth factor ligands and initiate cellular signaling. Of the 20 classes of RTKs, 7 classes, I-V, VIII, and X, are linked to head and neck cancers (HNCs). We focus on the first class of RTK, epidermal growth factor receptor (EGFR), as it is the most thoroughly studied class. EGFR overexpression is observed in 20% of tumors, and expression of EGFR variant III is seen in 15% of aggressive chemoradiotherapy resistant HNCs. Currently, the EGFR monoclonal antibody (mAb) cetuximab is the only FDA approved RTK-targeting drug for the treatment of HNCs. Clinical trials have also included EGFR mAbs, with tyrosine kinase inhibitors, and small molecule inhibitors targeting the EGFR, MAPK, and mTOR pathways. Additionally, Immunotherapy has been found to be effective in 15 to 20% of patients with recurrent or metastatic HNC as a monotherapy. Thus, attempts are underway for the combinatorial treatment of immunotherapy and EGFR mAbs to determine if the recruitment of immune cells in the tumor microenvironment can overcome EGFR resistance.
Collapse
Affiliation(s)
- James J Kang
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Albert Ko
- Department of Surgery, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sang Hoon Kil
- Department of Surgery, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jon Mallen-St Clair
- Department of Otolaryngology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Sanghoon Shin
- Department of Medicine, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Marilene B Wang
- Department of Surgery, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Department of Head and Neck Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Eri S Srivatsan
- Department of Surgery, VA Greater Los Angeles Healthcare System/UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
220
|
Yuan J, Guo Y. Targeted Therapy for Anaplastic Thyroid Carcinoma: Advances and Management. Cancers (Basel) 2022; 15:cancers15010179. [PMID: 36612173 PMCID: PMC9818071 DOI: 10.3390/cancers15010179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and highly fatal cancer with the worst prognosis of all thyroid carcinoma (TC) histological subtypes and no standard treatment. In recent years, the explosion of investigations on ATC-targeted agents has provided a new treatment strategy for this malignant condition, and a review of these studies is warranted. We conducted a comprehensive literature search for ATC-targeted drug studies and compiled a summary of their efficacy and adverse effects (AEs) to provide new insights. Multiple clinical trials have demonstrated the efficacy and safety of dabrafenib in combination with trametinib for the treatment of ATC, but vemurafenib and NTRK inhibitors showed limited clinical responses. We found that the previously valued therapeutic effect of lenvatinib may be unsatisfactory; combining tyrosine kinase (TK) inhibitors (TKIs) with other agents results in a higher rate of clinical benefit. In addition, specific medications, including RET inhibitors, mTOR inhibitors, CDK4/6 inhibitors, and Combretastatin A4-phosphate (CA4P), offer tremendous therapeutic potential. The AEs reported for all agents are relatively numerous but largely manageable clinically. More clinical trials are expected to further confirm the effectiveness and safety of these targeted drugs for ATC.
Collapse
Affiliation(s)
- Jiaqian Yuan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310001, China
- Correspondence:
| |
Collapse
|
221
|
Garutti M, Bergnach M, Polesel J, Palmero L, Pizzichetta MA, Puglisi F. BRAF and MEK Inhibitors and Their Toxicities: A Meta-Analysis. Cancers (Basel) 2022; 15:cancers15010141. [PMID: 36612138 PMCID: PMC9818023 DOI: 10.3390/cancers15010141] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This meta-analysis summarizes the incidence of treatment-related adverse events (AE) of BRAFi and MEKi. METHODS A systematic search of Medline/PubMed was conducted to identify suitable articles published in English up to 31 December 2021. The primary outcomes were profiles for all-grade and grade 3 or higher treatment-related AEs, and the analysis of single side effects belonging to both categories. RESULTS The overall incidence of treatment-related all-grade Aes was 99% for Encorafenib (95% CI: 0.97-1.00) and 97% for Trametinib (95% CI: 0.92-0.99; I2 = 66%) and Binimetinib (95% CI: 0.94-0.99; I2 = 0%). In combined therapies, the rate was 98% for both Vemurafenib + Cobimetinib (95% CI: 0.96-0.99; I2 = 77%) and Encorafenib + Binimetinib (95% CI: 0.96-1.00). Grade 3 or higher adverse events were reported in 69% of cases for Binimetinib (95% CI: 0.50-0.84; I2 = 71%), 68% for Encorafenib (95% CI: 0.61-0.74), and 72% for Vemurafenib + Cobimetinib (95% CI: 0.65-0.79; I2 = 84%). The most common grade 1-2 AEs were pyrexia (43%) and fatigue (28%) for Dabrafenib + Trametinib and diarrhea for both Vemurafenib + Cobimetinib (52%) and Encorafenib + Binimetinib (34%). The most common AEs of grade 3 or higher were pyrexia, rash, and hypertension for Dabrafenib + Trametinib (6%), rash and hypertension for Encorafenib + Binimetinib (6%), and increased AST and ALT for Vemurafenib + Cobimetinib (10%). CONCLUSIONS Our study provides comprehensive data on treatment-related adverse events of BRAFi and MEKi combination therapies, showing related toxicity profiles to offer a helpful tool for clinicians in the choice of therapy.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Correspondence: ; Tel.: +39-04-3465-9092
| | | | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Lorenza Palmero
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Maria Antonietta Pizzichetta
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
222
|
Li H, Zhang Y, Xu Y, Huang Z, Cheng G, Xie M, Zhou Z, Yu Y, Xi W, Fan Y. Tumor immune microenvironment and immunotherapy efficacy in BRAF mutation non-small-cell lung cancer. Cell Death Dis 2022; 13:1064. [PMID: 36543792 PMCID: PMC9772302 DOI: 10.1038/s41419-022-05510-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Previous small-size studies reported BRAF-mutated NSCLC patients have comparable sensitivity to immune checkpoint inhibitors (ICIs). However, how BRAF mutation affects the tumor immune microenvironment (TIME) is unknown. We performed Nanostring-panel RNA sequencing to evaluate TIME in 57 BRAF mutated and wild-type (WT) NSCLC specimens (cohort A). The efficacy of ICI monotherapy or combined therapies was determined in 417 patients with WT and BRAF mutated NSCLC (cohort B). We found that BRAF-mutant tumors had similar ratios of CD8+ T cells to Tregs, the balance of cytotoxicity gene expression signatures and immune suppressive features, and similar ICI-response-related biomarkers to WT NSCLC. A similar TIME pattern was observed between the BRAF V600E and Non-V600E subgroups of NSCLC. The further retrospective study confirmed that treatment with ICI monotherapy or combined therapies resulted in similar overall survival (OS) (HR: 0.85; 95% CI, 0.56 to 1.30; p = 0.47) and progress-free survival (PFS) (HR: 1.02; 95% CI, 0.72 to 1.44; p = 0.91) of patients with WT (n = 358) and BRAF mutant (n = 59) NSCLC. Similarly, both patients with BRAF V600E or Non-V600E NSCLC had similar responses to immunotherapy. Our findings support that BRAF mutation did not modulate TIME in NSCLC and therapeutic responses to ICIs. Patients with NSCLC harboring BRAF mutation should not be denied treatment with ICIs.
Collapse
Affiliation(s)
- Hui Li
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Yongchang Zhang
- grid.216417.70000 0001 0379 7164Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410022 China
| | - Yanjun Xu
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Zhiyu Huang
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Guoping Cheng
- grid.9227.e0000000119573309Department of Pathology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Mingyin Xie
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Zichao Zhou
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| | - Yangyang Yu
- grid.495450.90000 0004 0632 5172The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu 210042 China
| | - Wenjing Xi
- grid.495450.90000 0004 0632 5172The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu 210042 China
| | - Yun Fan
- grid.9227.e0000000119573309Department of Medical Oncology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022 China
| |
Collapse
|
223
|
Gao XM, Li J, Cao XX. Signaling pathways, microenvironment, and targeted treatments in Langerhans cell histiocytosis. Cell Commun Signal 2022; 20:195. [PMID: 36536400 PMCID: PMC9764551 DOI: 10.1186/s12964-022-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/11/2022] [Indexed: 12/23/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid malignancy in the "L-group" histiocytosis. Mitogen-activated protein kinase (MAPK) pathway activating mutations are detectable in nearly all LCH lesions. However, the pathogenic roles of MAPK pathway activation in the development of histiocytosis are still elusive. This review will summarize research concerning the landscape and pathogenic roles of MAPK pathway mutations and related treatment opportunities in Langerhans cell histiocytosis. Video abstract.
Collapse
Affiliation(s)
- Xue-min Gao
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Li
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-xin Cao
- grid.506261.60000 0001 0706 7839Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
224
|
Recent and Future Strategies to Overcome Resistance to Targeted Therapies and Immunotherapies in Metastatic Colorectal Cancer. J Clin Med 2022; 11:jcm11247523. [PMID: 36556139 PMCID: PMC9783354 DOI: 10.3390/jcm11247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.
Collapse
|
225
|
Neagu M, Constantin C, Jugulete G, Cauni V, Dubrac S, Szöllősi AG, Zurac S. Langerhans Cells-Revising Their Role in Skin Pathologies. J Pers Med 2022; 12:2072. [PMID: 36556292 PMCID: PMC9782496 DOI: 10.3390/jpm12122072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Langerhans cells (LCs) constitute a cellular immune network across the epidermis. Because they are located at the skin barrier, they are considered immune sentinels of the skin. These antigen-presenting cells are capable of migrating to skin draining lymph nodes to prime adaptive immune cells, namely T- and B-lymphocytes, which will ultimately lead to a broad range of immune responses. Moreover, LCs have been shown to possess important roles in the anti-cancer immune responses. Indeed, the literature nicely highlights the role of LCs in melanoma. In line with this, LCs have been found in melanoma tissues where they contribute to the local immune response. Moreover, the immunogenic properties of LCs render them attractive targets for designing vaccines to treat melanoma and autoimmune diseases. Overall, future studies will help to enlarge the portfolio of immune properties of LCs, and aid the prognosis and development of novel therapeutic approaches to treating skin pathologies, including cancers.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Gheorghita Jugulete
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinical Section IX—Pediatrics, “Prof. Dr. Matei Balş” National Institute for Infectious Diseases, 050474 Bucharest, Romania
| | - Victor Cauni
- Department of Urology, Colentina University Hospital, 050474 Bucharest, Romania
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
226
|
Guerrero RM, Labajos VA, Ballena SL, Macha CA, Lezama MS, Roman CP, Beltran PM, Torrejon AF. Targeting BRAF V600E in metastatic colorectal cancer: where are we today? Ecancermedicalscience 2022; 16:1489. [PMID: 36819812 PMCID: PMC9934973 DOI: 10.3332/ecancer.2022.1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the second most frequent cause of direct cancer death worldwide. The study of the molecular state of oncogenes has predictive and prognostic value in metastatic CRC (mCRC). The B-raf proto-oncogene (BRAF) gene mutation represents the 8%-12% of all mutations in mCRC. The BRAF V600E mutation, considered the most common alteration of BRAF, corresponds to a constitutive kinase with a high activating capacity of the RAS/RAF/MEK/ERK pathway after a cascade of successive phosphorylations in the transcription of genes. BRAF V600E mutation is more prevalent in women, elderly, right-sided colon cancer and Caucasian population. Unfortunately, it is considered a poor predictive and prognosis biomarker. Patients with mCRC BRAF V600E mutated (BRAFm) are generally associated with poor response to chemotherapy and short progression-free survival and overall survival. Recently, randomised clinical trials have studied the combination of different chemotherapy regimens with angiogenic inhibitors in mCRC BRAFm. In addition, new anti-BRAF and immunotherapy agents have also been studied in this population, with positive results. The objective of this review is to acknowledge the biology and molecular pathway of BRAF, critically analyse the clinical trials and the therapy options published until today and evaluate the options of treatment according to the patient's clinical presentation.
Collapse
Affiliation(s)
- Rodrigo Motta Guerrero
- Instituto Nacional de Enfermedades Neoplásicas, Surquillo 15038, Peru
- https://orcid.org/0000-0002-8086-3513
| | - Veronica Arnao Labajos
- Instituto Nacional de Enfermedades Neoplásicas, Surquillo 15038, Peru
- https://orcid.org/0000-0001-7079-1010
| | - Sophia Lozano Ballena
- Hospital Almanzor Aguinaga Asenjo, Chiclayo 14001, Peru
- https://orcid.org/0000-0002-7868-6802
| | - Carlos Aliaga Macha
- Centro Oncológico ALIADA, San Isidro 15036, Peru
- https://orcid.org/0000-0003-0237-7058
| | - Miguel Sotelo Lezama
- Centro Oncológico ALIADA, San Isidro 15036, Peru
- https://orcid.org/0000-0002-8861-9355
| | - Cristian Pacheco Roman
- Instituto Nacional de Enfermedades Neoplásicas, Surquillo 15038, Peru
- https://orcid.org/0000-0003-2359-5126
| | - Paola Montenegro Beltran
- Instituto Nacional de Enfermedades Neoplásicas, Surquillo 15038, Peru
- https://orcid.org/0000-0002-1484-9537
| | | |
Collapse
|
227
|
Weng S, Zhang D, Yang M, Wang L, Yuan Y. Vemurafenib effectively controlled Chemotherapy-refractory Intrahepatic Cholangiocarcinoma with BRAF V600E Mutation: a case report and literature review. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:1787-1791. [PMID: 35584781 DOI: 10.1055/a-1826-2814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HINTERGRUND Die Chemotherapie ist die erste Behandlungsoption für das lokal fortgeschrittene oder metastasierte intrahepatische Cholangiokarzinom (ICC). Nach einer Erstlinien-Chemotherapie gibt es jedoch keine Standardzweitlinienbehandlung oder zielgerichtete Wirkstoffe für diese Patienten. FALLPRäSENTATION: Hier stellen wir einen fortgeschrittenen ICC-Patienten vor, der eine radikale Entfernung und eine adjuvante Chemotherapie (Gemcitabin + Cisplatin) erhalten hat. Aber der Patient bleibt nur 6 Monate frei von Krankheitsanzeichen (No Evidence of Disease) nach dem Ende der Chemotherapie. Dann erhielt er eine palliative Operation, Strahlentherapie und systemische Chemotherapie (Tegafur+Oxaliplatin (SOX) und Nab-Paclitaxel+Gemcitabin (AG)). Leider war die Krankheit immer noch nicht unter Kontrolle. Als eine BRAF-V600E-Mutation im Tumorgewebe durch eine Next Generation Sequencing Analyse (NGS) gezeigt wurde, begann dieser Patient mit der Einnahme von Vemurafenib in einer Dosierung von 720-960 mg zweimal täglich und erreichte ein progressionsfreies Überleben von 7 Monaten mit signifikanter Remission der klinischen Symptome. SCHLüSSELWöRTER: Die BRAF V600E Mutation ist bei ICC ziemlich selten, daher wird sie in der Klinik nicht routinemäßig untersucht. Allerdings kann Präzisionsmedizin durch die NGS-Technologie verwirklicht werden, sodass die Ärzte bei der Behandlung der auf Chemotherapie-refraktären ICC die personalisierten genomischen Informationen nutzen können.
Collapse
Affiliation(s)
- Shanshan Weng
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Ding Zhang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Mengyuan Yang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Liuhong Wang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Ying Yuan
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| |
Collapse
|
228
|
Wu J, Lin Z. Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. Int J Mol Sci 2022; 23:ijms232315056. [PMID: 36499382 PMCID: PMC9738331 DOI: 10.3390/ijms232315056] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of precision medicine has brought light to the treatment of non-small cell lung cancer (NSCLC), expanding the options for patients with advanced NSCLC by targeting therapy through genetic and epigenetic cues. Tumor driver genes in NSCLC patients have been uncovered one by one, including epidermal growth factor receptor (EGFR), mesenchymal lymphoma kinase (ALK), and receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) mutants. Antibodies and inhibitors that target the critical gene-mediated signaling pathways that regulate tumor growth and development are anticipated to increase patient survival and quality of life. Targeted drugs continue to emerge, with as many as two dozen approved by the FDA, and chemotherapy and targeted therapy have significantly improved patient prognosis. However, resistance due to cancer drivers' genetic alterations has given rise to significant challenges in treating patients with metastatic NSCLC. Here, we summarized the main targeted therapeutic sites of NSCLC drugs and discussed their resistance mechanisms, aiming to provide new ideas for follow-up research and clues for the improvement of targeted drugs.
Collapse
|
229
|
Capuozzo M, Santorsola M, Landi L, Granata V, Perri F, Celotto V, Gualillo O, Nasti G, Ottaiano A. Evolution of Treatment in Advanced Cholangiocarcinoma: Old and New towards Precision Oncology. Int J Mol Sci 2022; 23:15124. [PMID: 36499450 PMCID: PMC9740631 DOI: 10.3390/ijms232315124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant neoplasm arising in the epithelium of the biliary tract. It represents the second most common primary liver cancer in the world, after hepatocellular carcinoma, and it constitutes 10-15% of hepatobiliary neoplasms and 3% of all gastrointestinal tumors. As in other types of cancers, recent studies have revealed genetic alterations underlying the establishment and progression of CCA. The most frequently involved genes are APC, ARID1A, AXIN1, BAP1, EGFR, FGFRs, IDH1/2, RAS, SMAD4, and TP53. Actionable targets include alterations of FGFRs, IDH1/2, BRAF, NTRK, and HER2. "Precision oncology" is emerging as a promising approach for CCA, and it is possible to inhibit the altered function of these genes with molecularly oriented drugs (pemigatinib, ivosidenib, vemurafenib, larotrectinib, and trastuzumab). In this review, we provide an overview of new biologic drugs (their structures, mechanisms of action, and toxicities) to treat metastatic CCA, providing readers with panoramic information on the trajectory from "old" chemotherapies to "new" target-oriented drugs.
Collapse
Affiliation(s)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Loris Landi
- Sanitary District, Ds. 58 ASL-Naples-3, 80056 Ercolano, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Venere Celotto
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
230
|
Harrer DC, Jakob M, Vogelhuber M, Lüke F, Utpatel K, Corbacioglu S, Herr W, Reichle A, Heudobler D. Biomodulatory therapy induces durable remissions in multi-system Langerhans cell histiocytosis. Leuk Lymphoma 2022; 63:2858-2868. [PMID: 35819881 DOI: 10.1080/10428194.2022.2095627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Langerhans cell histiocytosis (LCH) is rare hematological neoplasia originating from the aberrant proliferation of CD207-positive dendritic cells. Refractory multi-system LCH is difficult to treat necessitating the continuous development of different salvage therapies. At our medical center, eleven patients (age 11 months to 77 years) with multi-system LCH were treated on a compassionate use basis with metronomic biomodulation therapy (MBT) involving the daily oral application of low-dose trofosfamide, etoricoxib, pioglitazone and low-dose dexamethasone. Overall, four patients including two heavily pretreated pediatric patients achieved ongoing complete remission. Moreover, partial disease remission was observed in three patients, and four patients attained stable disease. MBT demonstrated high activity against multi-system LCH even in patients, refractory to multiple systemic chemotherapies. Further confirmation of efficacy should be systematically evaluated in prospective trials.
Collapse
Affiliation(s)
- Dennis C Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Jakob
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
231
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
232
|
Dai Y, Yang L, Sakandar A, Zhang D, Du F, Zhang X, Zou L, Zhao Y, Wang J, Zhang Z, Wu X, Li M, Ling X, Yu L, Dong L, Shen J, Xiao Z, Wen Q. Vemurafenib inhibits immune escape biomarker BCL2A1 by targeting PI3K/AKT signaling pathway to suppress breast cancer. Front Oncol 2022; 12:906197. [PMID: 36524001 PMCID: PMC9745811 DOI: 10.3389/fonc.2022.906197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/07/2022] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES To investigate the role of immune escape encoding genes on the prognosis of BC, and to predict the novel targeting agents. METHODS Human immune genes and immune escape encoding genes were obtained from the IMMPORT database and the previous study. Sample information and clinical data on BC were obtained from the TCGA and GTEX databases. Obtaining differentially expressed protein data from cBioportal database. To construct a risk score model by lasso analysis, and nomogram was used to predict score core. GSCA, TIMER and CELLMINER databases were used for immune and drug susceptibility correlation analyses. Cell experiments were verified by MTT, Western blotting, and RT-qPCR. RESULTS We found prognostic models consisting of eleven immune escape related protein-coding genes with ROC curves that performed well in the ontology data (AUC for TCGA is 0.672) and the external data (AUC for GSE20685 is 0.663 and for GES42568 is 0.706). Five core prognostic models are related to survival (EIF4EBP1, BCL2A1, NDRG1, ERRFI1 and BRD4) were summarized, and a nomogram was constructed to validate a C-index of 0.695, which was superior to other prognostic models. Relevant drugs targeting core genes were identified based on drug sensitivity analysis, and found that Vemurafenib downregulates the PI3K-AKT pathway and BCL2A1 protein in BC, as confirmed by external data and cellular assays. CONCLUSIONS Briefly, our work establishes and validates an 11-immune escape risk model, and five core prognostic factors that are mined deeply from this model, and elucidates in detail that Vemurafenib suppresses breast cancer by targeting the PI3K/AKT signaling pathway to inhibit the immune escape biomarker BCL2A1, confirms the validity of the prognostic model, and provides corresponding targeted agents to guide individualized treatment of BC patients.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
| | - Abass Sakandar
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Xinyi Zhang
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Linglin Zou
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Jigang Wang
- Shenzhen Municipal People’s Hospital, Shenzhen, China
| | - Zhenhua Zhang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs, Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
233
|
Ho J, Fiocco C, Spencer K. Treating Biliary Tract Cancers: New Targets and Therapies. Drugs 2022; 82:1629-1647. [DOI: 10.1007/s40265-022-01808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
|
234
|
Melichar B. Biomarkers in the management of lung cancer: changing the practice of thoracic oncology. Clin Chem Lab Med 2022; 61:906-920. [PMID: 36384005 DOI: 10.1515/cclm-2022-1108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Lung cancer currently represents a leading cause of cancer death. Substantial progress achieved in the medical therapy of lung cancer during the last decade has been associated with the advent of targeted therapy, including immunotherapy. The targeted therapy has gradually shifted from drugs suppressing general mechanisms of tumor growth and progression to agents aiming at transforming mechanisms like driver mutations in a particular tumor. Knowledge of the molecular characteristics of a tumor has become an essential component of the more targeted therapeutic approach. There are specific challenges for biomarker determination in lung cancer, in particular a commonly limited size of tumor sample. Liquid biopsy is therefore of particular importance in the management of lung cancer. Laboratory medicine is an indispensable part of multidisciplinary management of lung cancer. Clinical
Chemistry and Laboratory Medicine (CCLM) has played and will continue playing a major role in updating and spreading the knowledge in the field.
Collapse
Affiliation(s)
- Bohuslav Melichar
- Department of Oncology , Palacký University Medical School and Teaching Hospital , Olomouc , Czech Republic
- Department of Oncology and Radiotherapy and Fourth Department of Medicine , Charles University Medical School and Teaching Hospital , Hradec Králové , Czech Republic
| |
Collapse
|
235
|
Colic E, Patel PU, Kent OA. Aberrant MAPK Signaling Offers Therapeutic Potential for Treatment of Ovarian Carcinoma. Onco Targets Ther 2022; 15:1331-1346. [PMID: 36388156 PMCID: PMC9645123 DOI: 10.2147/ott.s361512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/01/2022] [Indexed: 08/22/2023] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy worldwide due to lack of effective screening, vague early symptoms, poor description of biomarkers, and absence of effective treatment regimes. Epithelial ovarian carcinoma (EOC) is categorized into five distinct disease subtypes which collectively account for ~90% of ovarian carcinomas. Most women present at advanced stages contributing to a poor overall 5-year survival rate. Standard treatment for EOC is cytoreductive surgery and platinum-based chemotherapy; however, most patients suffer from recurrence and platinum-resistant disease, which highlights an urgent need for targeted therapy. The high frequency of molecular alterations affecting gain-of-function signaling through the RAS mitogen-activated protein kinase (MAPK) pathway in EOC has prompted pre-clinical and clinical efforts toward research into the effectiveness of MAPK pathway inhibition as a second-line treatment. The RAS/MAPK pathway is a highly conserved signal transduction cascade, often disrupted in cancer, that regulates tumorigenic phenotypes including cellular proliferation, survival, migration, apoptosis, and differentiation. Herein, the role of the MAPK pathway in EOC with emphasis on targetability of the pathway is described. Pre-clinical and clinical efforts to target MAPK signaling in EOC have identified several MAPK pathway inhibitors that offer efficacious potential for monotherapy and in combination with other compounds. Thus, inhibition of the RAS/MAPK pathway is emerging as a tractable strategy for treatment of ovarian cancer that may permit development of personalized therapy and improved prognosis for women challenged by this disease.
Collapse
Affiliation(s)
- Eva Colic
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Preya U Patel
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Oliver A Kent
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| |
Collapse
|
236
|
Ouma LO, Grayling MJ, Wason JMS, Zheng H. Bayesian modelling strategies for borrowing of information in randomised basket trials. J R Stat Soc Ser C Appl Stat 2022; 71:2014-2037. [PMID: 36636028 PMCID: PMC9827857 DOI: 10.1111/rssc.12602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/01/2022] [Indexed: 02/01/2023]
Abstract
Basket trials are an innovative precision medicine clinical trial design evaluating a single targeted therapy across multiple diseases that share a common characteristic. To date, most basket trials have been conducted in early-phase oncology settings, for which several Bayesian methods permitting information sharing across subtrials have been proposed. With the increasing interest of implementing randomised basket trials, information borrowing could be exploited in two ways; considering the commensurability of either the treatment effects or the outcomes specific to each of the treatment groups between the subtrials. In this article, we extend a previous analysis model based on distributional discrepancy for borrowing over the subtrial treatment effects ('treatment effect borrowing', TEB) to borrowing over the subtrial groupwise responses ('treatment response borrowing', TRB). Simulation results demonstrate that both modelling strategies provide substantial gains over an approach with no borrowing. TRB outperforms TEB especially when subtrial sample sizes are small on all operational characteristics, while the latter has considerable gains in performance over TRB when subtrial sample sizes are large, or the treatment effects and groupwise mean responses are noticeably heterogeneous across subtrials. Further, we notice that TRB, and TEB can potentially lead to different conclusions in the analysis of real data.
Collapse
Affiliation(s)
- Luke O. Ouma
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Michael J. Grayling
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James M. S. Wason
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Haiyan Zheng
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
237
|
Kata K, Rodriguez-Quintero JC, Arevalo OD, Zhang JJ, Bhattacharjee MB, Ware C, Dono A, Riascos-Castaneda R, Tandon N, Blanco A, Esquenazi Y, Ballester LY, Amsbaugh M, Day AL, Zhu JJ. BRAF/MEK Dual Inhibitors Therapy in Progressive and Anaplastic Pleomorphic Xanthoastrocytoma: Case Series and Literature Review. J Natl Compr Canc Netw 2022; 20:1193-1202.e6. [PMID: 36351333 DOI: 10.6004/jnccn.2022.7046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
Recurrent and anaplastic pleomorphic xanthoastrocytoma (r&aPXA) is a rare primary brain tumor that is challenging to treat. Two-thirds of PXA tumors harbor a BRAF gene mutation. BRAF inhibitors have been shown to improve tumor control. However, resistance to BRAF inhibition develops in most cases. Concurrent therapy with MEK inhibitors may improve tumor control and patient survival. In this study, we identified 5 patients diagnosed with BRAF-mutated PXA who received BRAF and MEK inhibitors over a 10-year interval at our institution. Patient records were evaluated, including treatments, adverse effects (AEs), outcomes, pathology, next-generation sequencing, and MRI. The median age was 22 years (range, 14-66 years), 60% male, and 60% anaplastic PXA. Median overall survival was 72 months (range, 19-112 months); 1 patient died of tumor-related hemorrhage while off therapy, and the other 4 experienced long-term disease control (21, 72, 98, and 112 months, respectively). Dual BRAF/MEK inhibitors were well tolerated, with only grade 1-2 AEs, including rash, neutropenia, fatigue, abdominal discomfort, and diarrhea. No grade 3-5 AEs were detected. A literature review was also performed of patients diagnosed with BRAF-mutated PXA and treated with BRAF and/or MEK inhibitors through August 2021, with a total of 32 cases identified. The median age was 29 years (range, 8-57 years) and the median PFS and OS were 8.5 months (range, 2-35 months) and 35 months (range, 10-80 months), respectively. The most common AEs were grade 1-2 fatigue and skin rash. Results of this case series and literature review indicate that dual-drug therapy with BRAF and MEK inhibitors for r&aPXA with BRAF V600E mutation may delay tumor progression without unexpected AEs.
Collapse
Affiliation(s)
- Karolina Kata
- 1St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
- 2Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas
| | - Juan C Rodriguez-Quintero
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 4Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Octavio D Arevalo
- 5Department of Radiology, Louisiana State University Health Shreveport, Shreveport, Louisiana
| | - Jackie J Zhang
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 6Chicago Medical School, Rosalind Franklin University of Medicine and Science, Chicago, Illinois
| | - Meenakshi Bidwai Bhattacharjee
- 7Department of Pathology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Cornelius Ware
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Antonio Dono
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Roy Riascos-Castaneda
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
- 9Department of Radiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Nitin Tandon
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Angel Blanco
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Yoshua Esquenazi
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Leomar Y Ballester
- 7Department of Pathology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 10Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Amsbaugh
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Arthur L Day
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Jay-Jiguang Zhu
- 3Vivian L. Smith Department of Neurosurgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 4Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
- 8Memorial Hermann-Texas Medical Center, Houston, Texas
| |
Collapse
|
238
|
Mutations de l'ADN dans les cholangiocarcinomes : cibler IDH1 et autres mutations. Bull Cancer 2022; 109:11S21-11S27. [DOI: 10.1016/s0007-4551(22)00465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
239
|
Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev Clin Oncol 2022; 19:733-743. [PMID: 36131011 DOI: 10.1038/s41571-022-00679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma evolution is facilitated by intratumour heterogeneity, which poses a major hurdle to effective treatment. Evidence indicates a key role for oncogene amplification on extrachromosomal DNA (ecDNA) in accelerating tumour evolution and thus resistance to treatment, particularly in glioblastomas. Oncogenes contained within ecDNA can reach high copy numbers and expression levels, and their unequal segregation can result in more rapid copy number changes in response to therapy than is possible through natural selection of intrachromosomal genomic loci. Notably, targeted therapies inhibiting oncogenic pathways have failed to improve glioblastoma outcomes. In this Perspective, we outline reasons for this disappointing lack of clinical translation and present the emerging evidence implicating ecDNA as an important driver of tumour evolution. Furthermore, we suggest that through detection of ecDNA, patient selection for clinical trials of novel agents can be optimized to include those most likely to benefit based on current understanding of resistance mechanisms. We discuss the challenges to successful translation of this approach, including accurate detection of ecDNA in tumour tissue with novel technologies, development of faithful preclinical models for predicting the efficacy of novel agents in the presence of ecDNA oncogenes, and understanding the mechanisms of ecDNA formation during cancer evolution and how they could be attenuated therapeutically. Finally, we evaluate the feasibility of routine ecDNA characterization in the clinic and how this process could be integrated with other methods of molecular stratification to maximize the potential for clinical translation of precision medicines.
Collapse
Affiliation(s)
- Imran Noorani
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
240
|
Poulikakos PI, Sullivan RJ, Yaeger R. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clin Cancer Res 2022; 28:4618-4628. [PMID: 35486097 PMCID: PMC9616966 DOI: 10.1158/1078-0432.ccr-21-2138] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
With the identification of activating mutations in BRAF across a wide variety of malignancies, substantial effort was placed in designing safe and effective therapeutic strategies to target BRAF. These efforts have led to the development and regulatory approval of three BRAF inhibitors as well as five combinations of a BRAF inhibitor plus an additional agent(s) to manage cancer such as melanoma, non-small cell lung cancer, anaplastic thyroid cancer, and colorectal cancer. To date, each regimen is effective only in patients with tumors harboring BRAFV600 mutations and the duration of benefit is often short-lived. Further limitations preventing optimal management of BRAF-mutant malignancies are that treatments of non-V600 BRAF mutations have been less profound and combination therapy is likely necessary to overcome resistance mechanisms, but multi-drug regimens are often too toxic. With the emergence of a deeper understanding of how BRAF mutations signal through the RAS/MAPK pathway, newer RAF inhibitors are being developed that may be more effective and potentially safer and more rational combination therapies are being tested in the clinic. In this review, we identify the mechanics of RAF signaling through the RAS/MAPK pathway, present existing data on single-agent and combination RAF targeting efforts, describe emerging combinations, summarize the toxicity of the various agents in clinical testing, and speculate as to where the field may be headed.
Collapse
Affiliation(s)
- Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
241
|
Szklener K, Mazurek M, Wieteska M, Wacławska M, Bilski M, Mańdziuk S. New Directions in the Therapy of Glioblastoma. Cancers (Basel) 2022; 14:5377. [PMID: 36358795 PMCID: PMC9655599 DOI: 10.3390/cancers14215377] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the most common histologic type of all gliomas and contributes to 57.3% of all cases. Despite the standard management based on surgical resection and radiotherapy, it is related to poor outcome, with a 5-year relative survival rate below 6.9%. In order to improve the overall outcome for patients, the new therapeutic strategies are needed. Herein, we describe the current state of knowledge on novel targeted therapies in glioblastoma. Based on recent studies, we compared treatment efficacy measured by overall survival and progression-free survival in patients treated with selected potential antitumor drugs. The results of the application of the analyzed inhibitors are highly variable despite the encouraging conclusions of previous preclinical studies. This paper focused on drugs that target major glioblastoma kinases. As far, the results of some BRAF inhibitors are favorable. Vemurafenib demonstrated a long-term efficacy in clinical trials while the combination of dabrafenib and trametinib improves PFS compared with both vemurafenib and dabrafenib alone. There is no evidence that any MEK inhibitor is effective in monotherapy. According to the current state of knowledge, BRAF and MEK inhibition are more advantageous than BRAF inhibitor monotherapy. Moreover, mTOR inhibitors (especially paxalisib) may be considered a particularly important group. Everolimus demonstrated a partial response in a significant proportion of patients when combined with bevacizumab, however its actual role in the treatment is unclear. Neither nintedanib nor pemigatinib were efficient in treatment of GBM. Among the anti-VEGF drugs, bevacizumab monotherapy was a well-tolerated option, significantly associated with anti-GBM activity in patients with recurrent GBM. The efficacy of aflibercept and pazopanib in monotherapy has not been demonstrated. Apatinib has been proven to be effective and tolerable by a single clinical trial, but more research is needed. Lenvatinib is under trial. Finally, promising results from a study with regorafenib may be confirmed by the ongoing randomized AGILE trial. The studies conducted so far have provided a relatively wide range of drugs, which are at least well tolerated and demonstrated some efficacy in the randomized clinical trials. The comprehensive understanding of the molecular biology of gliomas promises to further improve the treatment outcomes of patients.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Marek Mazurek
- Department of Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Wieteska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Monika Wacławska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| | - Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| |
Collapse
|
242
|
Wang H, Wang J, Wang X, Zhu Y, Sun Y, Zhang X, Hou X, Zheng K, Liu S, Lin Y, Lin Y. Comments on National guidelines for diagnosis and treatment of thyroid cancer 2022 in China (English version). Chin J Cancer Res 2022; 34:447-450. [PMID: 36398124 PMCID: PMC9646462 DOI: 10.21147/j.issn.1000-9604.2022.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hao Wang
- Department of Clinical Oncology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266012, China
| | - Jian Wang
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiang Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yiming Zhu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuqing Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Xin Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Xiaorong Hou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Kun Zheng
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Shaoyan Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China,Shaoyan Liu. Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yansong Lin
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China,Yansong Lin. Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Hobbs BP, Pestana RC, Zabor EC, Kaizer AM, Hong DS. Basket Trials: Review of Current Practice and Innovations for Future Trials. J Clin Oncol 2022; 40:3520-3528. [PMID: 35537102 PMCID: PMC10476732 DOI: 10.1200/jco.21.02285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in biology and immunology have elucidated genetic and immunologic origins of cancer. Innovations in sequencing technologies revealed that distinct cancer histologies shared common genetic and immune phenotypic traits. Pharmacologic developments made it possible to target these alterations, yielding novel classes of targeted agents whose therapeutic potential span multiple tumor types. Basket trials, one type of master protocol, emerged as a tool for evaluating biomarker-targeted therapies among multiple tumor histologies. Conventionally conducted within the phase II setting and designed to estimate high and durable objective responses, basket trials pose challenges to statistical design and interpretation of results. This article reviews basket trials implemented in oncology studies and discusses issues related to their statistical design and analysis.
Collapse
Affiliation(s)
- Brian P. Hobbs
- Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Roberto Carmagnani Pestana
- Centro de Oncologia e Hematologia Einstein Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Emily C. Zabor
- Quantitative Health Sciences & Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Alexander M. Kaizer
- Biostatistics and Informatics, University of Colorado-Anschutz Medical Campus, Aurora, CO
| | - David S. Hong
- Investigational Cancer Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
244
|
Guo H, Zhang J, Qin C, Yan H, Liu T, Hu H, Tang S, Tang S, Zhou H. Biomarker-Targeted Therapies in Non-Small Cell Lung Cancer: Current Status and Perspectives. Cells 2022; 11:3200. [PMID: 36291069 PMCID: PMC9600447 DOI: 10.3390/cells11203200] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 07/25/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most common malignancies and the leading causes of cancer-related death worldwide. Despite many therapeutic advances in the past decade, NSCLC remains an incurable disease for the majority of patients. Molecular targeted therapies and immunotherapies have significantly improved the prognosis of NSCLC. However, the vast majority of advanced NSCLC develop resistance to current therapies and eventually progress. In this review, we discuss current and potential therapies for NSCLC, focusing on targeted therapies and immunotherapies. We highlight the future role of metabolic therapies and combination therapies in NSCLC.
Collapse
Affiliation(s)
- Haiyang Guo
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Chengdu University of TCM, Chengdu 610075, China
| | - Jun Zhang
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Chao Qin
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Hang Yan
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Tao Liu
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Haiyang Hu
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
| | - Shoujun Tang
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, Suining 629099, China
- Institute of Surgery, Graduate School, Chengdu University of TCM, Chengdu 610075, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
245
|
Skovlund E. Paraply, kurv eller plattform – fremtidens kliniske studier i onkologi? TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2022; 142:22-0347. [DOI: 10.4045/tidsskr.22.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
246
|
BRAF Inhibitors in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14194863. [PMID: 36230797 PMCID: PMC9562258 DOI: 10.3390/cancers14194863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
RAF family proteins are serine–threonine kinases that play a central role in the MAPK pathway which is involved in embryogenesis, cell differentiation, cell proliferation and death. Deregulation of this pathway is found in up to 30% of all human cancers and BRAF mutations can be identified in 1.5–3.5% of NSCLC patients. Following the positive results obtained through the combination of BRAF and MEK inhibitors in BRAF-mutant melanoma, the same combination was prospectively assessed in BRAF-mutant NSCLC. In cohort B of the BRF113928 trial, 57 pretreated NSCLC patients were treated with dabrafenib plus trametinib: an ORR of 68.4%, a disease control rate of 80.7%, a median PFS of 10.2 months and a median OS of 18.2 months were observed. Similar results were reported in the first-line setting (cohort C), with an ORR of 63.9%, a DCR of 75% and a median PFS and OS of 10.2 and 17.3 months, respectively. The combination was well tolerated: the main adverse events were pyrexia (64%), nausea (56%), diarrhoea (56%), fatigue (36%), oedema (36%) and vomiting (33%). These positive results led to the approval of the combination of dabrafenib and trametinib for the treatment of BRAF V600E metastatic NSCLC patients regardless of previous therapy. Ongoing research should better define the role of new generation RAF inhibitors for patients with acquired resistance, the activity of chemo-immunotherapy or the combination of TKIs with chemotherapy or with immunotherapy in patients with BRAF-mutated cancers.
Collapse
|
247
|
Sartore-Bianchi A, Agostara AG, Patelli G, Mauri G, Pizzutilo EG, Siena S. Application of histology-agnostic treatments in metastatic colorectal cancer. Dig Liver Dis 2022; 54:1291-1303. [PMID: 35701319 DOI: 10.1016/j.dld.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Cancer treatment is increasingly focused on targeting molecular alterations identified across different tumor histologies. While some oncogenic drivers such as microsatellite instability (MSI) and NTRK fusions are actionable with the very same approach regardless of tumor type ("histology-agnostic"), others require histology-specific therapeutic adjustment ("histology-tuned") by means of adopting specific inhibitors and ad hoc combinations. Among histology-agnostic therapies, pembrolizumab or dostarlimab demonstrated comparable activity in MSI metastatic colorectal cancer (mCRC) as in other tumors with MSI status (ORR 38% vs 40% and 36% vs 39%, respectively), while entrectinib or larotrectinib proved effective in NTRK rearranged mCRC even though less dramatically than in the overall population (ORR 20% vs 57%, and 50% vs 78%, respectively). Histology-tuned approaches in mCRC are those targeting BRAFV600E mutations and ERBB2 amplification, highlighting the need of simultaneous anti-EGFR blockade or careful choice of companion inhibitors in this tumor type. Anti-RET and anti-ALK therapies emerged as a potential histology-agnostic indications, while anti-KRASG12C strategies could develop as future histology-tuned therapies. Targeting of ERBB2 mutations and NRG1 fusion provided discrepant results. In conclusion, agnostic targets such as MSI and NTRK fusions are already exploitable in mCRC, while the plethora of emerging histology-tuned targets represent a challenging opportunity requiring concurrent evolution of molecular diagnostic tools.
Collapse
Affiliation(s)
- Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Giuseppe Agostara
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Giorgio Patelli
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Gianluca Mauri
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Elio Gregory Pizzutilo
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Milano, Università degli Studi di Milano Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy.
| |
Collapse
|
248
|
Saraf A, Trippa L, Rahman R. Novel Clinical Trial Designs in Neuro-Oncology. Neurotherapeutics 2022; 19:1844-1854. [PMID: 35969361 PMCID: PMC9723049 DOI: 10.1007/s13311-022-01284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Scientific and technologic advances have led to a boon of candidate therapeutics for patients with malignancies of the central nervous system. The path from drug development to clinical use has generally followed a regimented order of sequential clinical trial phases. The recent increase in novel therapies, however, has strained the regulatory process and unearthed limitations of the current system, including significant cost, prolonged development time, and difficulties in testing therapies for rarer tumors. Novel clinical trial designs have emerged to increase efficiencies in clinical trial conduct to better evaluate and bring impactful drugs to patients in a timely manner. In order to better capture meaningful benefits for brain tumor patients, new endpoints to complement or replace traditional endpoints are also an increasingly important consideration. This review will explore the current challenges in the current clinical trial landscape and discuss novel clinical trial concepts, including consideration of limitations and risks of novel trial designs, within the context of neuro-oncology.
Collapse
Affiliation(s)
- Anurag Saraf
- Harvard Radiation Oncology Program, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Lorenzo Trippa
- Department of Data Sciences, Dana-Farber Cancer Institute, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| |
Collapse
|
249
|
Lu Y, Li X, Zhao K, Shi Y, Deng Z, Yao W, Wang J. Proteomic and Phosphoproteomic Profiling Reveals the Oncogenic Role of Protein Kinase D Family Kinases in Cholangiocarcinoma. Cells 2022; 11:cells11193088. [PMID: 36231050 PMCID: PMC9562908 DOI: 10.3390/cells11193088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal malignancy in the hepatobiliary system, with dysregulated protein expression and phosphorylation signaling. However, the protein and phosphorylation signatures of CCAs are little-known. Here, we performed the proteomic and phosphoproteomic profiling of tumors and normal adjacent tissues (NATs) from patients with CCA and predicted eleven PKs high-potentially related to CCA with a comprehensive inference of the functional protein kinases (PKs) (CifPK) pipeline. Besides the two known CCA-associated PKs, we screened the remaining candidates and uncovered five PKs as novel regulators in CCA. Specifically, the protein kinase D (PKD) family members, including PRKD1, PRKD2, and PRKD3, were identified as critical regulators in CCA. Moreover, the pan-inhibitor of the PKD family, 1-naphthyl PP1 (1-NA-PP1), was validated as a potent agent for inhibiting the proliferation, migration, and invasion ability of CCA cells. This study reveals new PKs associated with CCA and suggests PRKD kinases as novel treatment targets for CCA.
Collapse
Affiliation(s)
- Yun Lu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanxin Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (W.Y.); (J.W.); Tel./Fax: +86-27-8366-5395 (J.W.)
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Affiliated Tianyou Hospital, University of Science & Technology, Wuhan 430064, China
- Correspondence: (W.Y.); (J.W.); Tel./Fax: +86-27-8366-5395 (J.W.)
| |
Collapse
|
250
|
Chen M, Wu GB, Xie ZW, Shi DL, Luo M. A novel diagnostic four-gene signature for hepatocellular carcinoma based on artificial neural network: Development, validation, and drug screening. Front Genet 2022; 13:942166. [PMID: 36246599 PMCID: PMC9554094 DOI: 10.3389/fgene.2022.942166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common cancers with high mortality in the world. HCC screening and diagnostic models are becoming effective strategies to reduce mortality and improve the overall survival (OS) of patients. Here, we expected to establish an effective novel diagnostic model based on new genes and explore potential drugs for HCC therapy. Methods: The gene expression data of HCC and normal samples (GSE14811, GSE60502, GSE84402, GSE101685, GSE102079, GSE113996, and GSE45436) were downloaded from the Gene Expression Omnibus (GEO) dataset. Bioinformatics analysis was performed to distinguish two differentially expressed genes (DEGs), diagnostic candidate genes, and functional enrichment pathways. QRT-PCR was used to validate the expression of diagnostic candidate genes. A diagnostic model based on candidate genes was established by an artificial neural network (ANN). Drug sensitivity analysis was used to explore potential drugs for HCC. CCK-8 assay was used to detect the viability of HepG2 under various presentative chemotherapy drugs. Results: There were 82 DEGs in cancer tissues compared to normal tissue. Protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses and infiltrating immune cell analysis were administered and analyzed. Diagnostic-related genes of MT1M, SPINK1, AKR1B10, and SLCO1B3 were selected from DEGs and used to construct a diagnostic model. The receiver operating characteristic (ROC) curves were 0.910 and 0.953 in the training and testing cohorts, respectively. Potential drugs, including vemurafenib, LOXO-101, dabrafenib, selumetinib, Arry-162, and NMS-E628, were found as well. Vemurafenib, dabrafenib, and selumetinib were observed to significantly affect HepG2 cell viability. Conclusion: The diagnostic model based on the four diagnostic-related genes by the ANN could provide predictive significance for diagnosis of HCC patients, which would be worthy of clinical application. Also, potential chemotherapy drugs might be effective for HCC therapy.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Wen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan-Li Shi
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dan-Li Shi, ; Meng Luo,
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Dan-Li Shi, ; Meng Luo,
| |
Collapse
|