201
|
Lee IH, Imanaka MY, Modahl EH, Torres-Ocampo AP. Lipid Raft Phase Modulation by Membrane-Anchored Proteins with Inherent Phase Separation Properties. ACS OMEGA 2019; 4:6551-6559. [PMID: 31179407 PMCID: PMC6547621 DOI: 10.1021/acsomega.9b00327] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 05/11/2023]
Abstract
Cell plasma membranes are a heterogeneous mixture of lipids and membrane proteins. The importance of heterogeneous lipid domains (also called lipid rafts) as a molecular sorting platform has been implicated in many physiological processes. Cell plasma membranes that are detached from the cytoskeletal structure spontaneously phase separate into distinct domains at equilibrium, which show their inherent demixing properties. Recently, researchers have discovered that proteins with strong interprotein interactions also spontaneously phase separate into distinct protein domains, thus enabling the maintenance of many membraneless organelles. Protein phase separation may also take place on the lipid membranes via lipid-anchored proteins, which suggests another potential molecular sorting platform for physiological processes on the cell membrane. When two-phase separation properties coexist physiologically, they may change the resulting phase behavior or serve as independent sorting platforms. In this paper, we used in vitro reconstitution and fluorescence imaging to systematically quantify the phase behavior that arises when proteins with inherent phase separation properties interact with raft mixture lipid membranes. Our observations and simulations show both that the proteins may enhance lipid phase separation and that this is a general property of phase-separating protein systems with a diverse number of components involved. This suggests that we should consider the overall effect of the properties of both membrane-anchored proteins and lipids when interpreting molecular sorting phenomena on the membranes.
Collapse
Affiliation(s)
- Il-Hyung Lee
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
- E-mail:
| | - Matthew Y. Imanaka
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
| | - Emmi H. Modahl
- Department
of Chemistry and Department of Biology, University of Puget
Sound, Tacoma, Washington 98416, United States
| | - Ana P. Torres-Ocampo
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts at Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
202
|
Abstract
Interferometric scattering microscopy (iSCAT) is an extremely sensitive imaging method based on the efficient detection of light scattered by nanoscopic objects. The ability to, at least in principle, maintain high imaging contrast independent of the exposure time or the scattering cross section of the object allows for unique applications in single-particle tracking, label-free imaging of nanoscopic (dis)assembly, and quantitative single-molecule characterization. We illustrate these capabilities in areas as diverse as mechanistic studies of motor protein function, viral capsid assembly, and single-molecule mass measurement in solution. We anticipate that iSCAT will become a widely used approach to unravel previously hidden details of biomolecular dynamics and interactions.
Collapse
Affiliation(s)
- Gavin Young
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom; ,
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom; ,
| |
Collapse
|
203
|
Abstract
Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| |
Collapse
|
204
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
205
|
A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nat Cell Biol 2019; 21:452-461. [PMID: 30936472 DOI: 10.1038/s41556-019-0300-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022]
Abstract
Particles that bud off from the cell surface, including viruses and microvesicles, typically have a unique membrane protein composition distinct from that of the originating plasma membrane. This selective protein composition enables viruses to evade the immune response and infect other cells. But how membrane proteins sort into budding viruses such as human immunodeficiency virus (HIV) remains unclear. Proteins could passively distribute into HIV-assembly-site membranes producing compositions resembling pre-existing plasma-membrane domains. Here, we demonstrate that proteins instead sort actively into HIV-assembly-site membranes, generating compositions enriched in cholesterol and sphingolipids that undergo continuous remodelling. Proteins are recruited into and removed from the HIV assembly site through lipid-based partitioning, initiated by oligomerization of the HIV structural protein Gag. Changes in membrane curvature at the assembly site further amplify this sorting process. Thus, a lipid-based sorting mechanism, aided by increasing membrane curvature, generates the unique membrane composition of the HIV surface.
Collapse
|
206
|
Yushutin V, Quaini A, Majd S, Olshanskii M. A computational study of lateral phase separation in biological membranes. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3181. [PMID: 30694617 DOI: 10.1002/cnm.3181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/25/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Conservative and non-conservative phase-field models are considered for the numerical simulation of lateral phase separation and coarsening in biological membranes. An unfitted finite element method is proposed to allow for a flexible treatment of complex shapes in the absence of an explicit surface parametrization. For a set of biologically relevant shapes and parameter values, the paper compares the dynamic coarsening produced by conservative and non-conservative numerical models, its dependence on certain geometric characteristics and convergence to the final equilibrium.
Collapse
Affiliation(s)
| | - Annalisa Quaini
- Department of Mathematics, University of Houston, Houston, Texas
| | - Sheereen Majd
- Biomedical Engineering, University of Houston, Houston, Texas
| | - Maxim Olshanskii
- Department of Mathematics, University of Houston, Houston, Texas
| |
Collapse
|
207
|
Jansen C, Tobita C, Umemoto EU, Starkus J, Rysavy NM, Shimoda LMN, Sung C, Stokes AJ, Turner H. Calcium-dependent, non-apoptotic, large plasma membrane bleb formation in physiologically stimulated mast cells and basophils. J Extracell Vesicles 2019; 8:1578589. [PMID: 30815238 PMCID: PMC6383620 DOI: 10.1080/20013078.2019.1578589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Abstract
Large membrane derangements in the form of non-detaching blebs or membrane protrusions occur in a variety of cell stress and physiological situations and do not always reflect apoptotic processes. They have been studied in model mast cells under conditions of cell stress, but their potential physiological relevance to mast cell function and formation in primary mast cells or basophils have not been addressed. In the current study, we examine the large, non-detaching, non-apoptotic, membrane structures that form in model and primary mast cells under conditions of stimulation that are relevant to allergy, atopy and Type IV delayed hypersensitivity reactions. We characterized the inflation kinetics, dependency of formation upon external free calcium and striking geometric consistency of formation for large plasma membrane blebs (LPMBs). We describe that immunologically stimulated LPMBs in mast cells are constrained to form in locations where dissociation of the membrane-associated cytoskeleton occurs. Mast cell LPMBs decorate with wheat germ agglutinin, suggesting that they contain plasma membrane (PM) lectins. Electrophysiological capacitance measurements support a model where LPMBs are not being formed from internal membranes newly fused into the PM, but rather arise from stretching of the existing membrane, or inflation and smoothing of a micro-ruffled PM. This study provides new insights into the physiological manifestations of LPMB in response to immunologically relevant stimuli and in the absence of cell stress, death or apoptotic pathways.
Collapse
Affiliation(s)
- C Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - C Tobita
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i.,Undergraduate Program in Biology, Chaminade University, Honolulu, Hawai'i
| | - E U Umemoto
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - J Starkus
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - N M Rysavy
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - L M N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - C Sung
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - A J Stokes
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - H Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| |
Collapse
|
208
|
Matsarskaia O, Da Vela S, Mariani A, Fu Z, Zhang F, Schreiber F. Phase-Separation Kinetics in Protein-Salt Mixtures with Compositionally Tuned Interactions. J Phys Chem B 2019; 123:1913-1919. [PMID: 30702291 DOI: 10.1021/acs.jpcb.8b10725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Liquid-liquid phase separation (LLPS) in protein systems is relevant for many phenomena, from protein condensation diseases to subcellular organization to possible pathways toward protein crystallization. Understanding and controlling LLPS in proteins is therefore highly relevant for various areas of (biological) soft matter research. Solutions of the protein bovine serum albumin (BSA) have been shown to have a lower critical solution temperature-LLPS (LCST-LLPS) induceable by multivalent salts. Importantly, the nature of the multivalent cation used influences the LCST-LLPS in such systems. Here, we present a systematic ultrasmall-angle X-ray scattering investigation of the kinetics of LCST-LLPS of BSA in the presence of different mixtures of HoCl3 and LaCl3, resulting in different effective interprotein attraction strengths. We monitor the characteristic length scales ξ( t, Tfin) after inducing LLPS by subjecting the respective systems to temperature jumps in their liquid-liquid coexistence regions. With increasing interprotein attraction and increasing Tfin, we observe an increasing deviation from the growth law of ξ ∼ t1/3 and an increased trend toward arrest. We thus establish a multidimensional method to tune phase transitions in our systems. Our findings help shed light on general questions regarding LLPS and the tunability of its kinetics in both proteins and colloidal systems.
Collapse
Affiliation(s)
- Olga Matsarskaia
- Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Stefano Da Vela
- Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Alessandro Mariani
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38043 Grenoble Cedex 9 , France
| | - Zhendong Fu
- Forschungszentrum Jülich GmbH, JCNS@MLZ , Lichtenbergstrasse 1 , 85747 Garching , Germany
| | - Fajun Zhang
- Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Frank Schreiber
- Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| |
Collapse
|
209
|
Affiliation(s)
- Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
210
|
Falahati H, Haji-Akbari A. Thermodynamically driven assemblies and liquid-liquid phase separations in biology. SOFT MATTER 2019; 15:1135-1154. [PMID: 30672955 DOI: 10.1039/c8sm02285b] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.
Collapse
Affiliation(s)
- Hanieh Falahati
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
211
|
Lin X, Gorfe AA. Understanding Membrane Domain-Partitioning Thermodynamics of Transmembrane Domains with Potential of Mean Force Calculations. J Phys Chem B 2019; 123:1009-1016. [PMID: 30638009 DOI: 10.1021/acs.jpcb.8b10148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transmembrane domain (TMD) of membrane proteins plays an essential role in their dynamics and functions. Certain properties of TMDs, such as raft affinity and orientation, have been studied extensively both experimentally and computationally. However, the extent to which specific physicochemical properties of TMDs determine their membrane domain-partitioning thermodynamics is still far from clear. In this work, we propose an approach based on umbrella sampling molecular dynamics simulations of model membranes and idealized TMDs to quantify the effect of TMD physicochemical properties, namely, length, degree of hydrophobicity, and size of TMDs, on their membrane domain-partitioning thermodynamics. The results, which are fully consistent with previous experimental and simulation data, indicate that the concept of "hydrophobic mismatch" should go beyond differences in hydrophobic thickness to include mismatch in the degree of hydrophobicity between the TMD and the surrounding hydrocarbon lipid chains. Our method provides quantitative insights into the role of specific physicochemical features of TMDs in membrane localization and orientation, which will be broadly useful for predicting the raft affinity and membrane partitioning of any transmembrane protein.
Collapse
Affiliation(s)
- Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100083 , China.,Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering , Beihang University , Beijing 100083 , China.,Department of Integrative Biology and Pharmacology, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| |
Collapse
|
212
|
Delle Bovi RJ, Kim J, Suresh P, London E, Miller WT. Sterol structure dependence of insulin receptor and insulin-like growth factor 1 receptor activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:819-826. [PMID: 30682326 DOI: 10.1016/j.bbamem.2019.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023]
Abstract
The plasma membrane is a dynamic environment with a complex composition of lipids, proteins, and cholesterol. Areas enriched in cholesterol and sphingolipids are believed to form lipid rafts, domains of highly ordered lipids. The unique physical properties of these domains have been proposed to influence many cellular processes. Here, we demonstrate that the activation of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) depends critically on the structures of membrane sterols. IR and IGF1R autophosphorylation in vivo was inhibited by cholesterol depletion, and autophosphorylation was restored by the replacement with exogenous cholesterol. We next screened a variety of sterols for effects on IR activation. The ability of sterols to support IR autophosphorylation was strongly correlated to the propensity of the sterols to form ordered domains. IR autophosphorylation was fully restored by the incorporation of ergosterol, dihydrocholesterol, 7-dehydrocholesterol, lathosterol, desmosterol, and allocholesterol, partially restored by epicholesterol, and not restored by lanosterol, coprostanol, and 4-cholesten-3-one. These data support the hypothesis that the ability to form ordered domains is sufficient for a sterol to support ligand-induced activation of IR and IGF1R in intact mammalian cells.
Collapse
Affiliation(s)
- Richard J Delle Bovi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, United States of America
| | - JiHyun Kim
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, United States of America.
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, United States of America; Department of Veterans Affairs Medical Center, Northport, NY 11768, United States of America.
| |
Collapse
|
213
|
Han TW, Ye W, Bethel NP, Zubia M, Kim A, Li KH, Burlingame AL, Grabe M, Jan YN, Jan LY. Chemically induced vesiculation as a platform for studying TMEM16F activity. Proc Natl Acad Sci U S A 2019; 116:1309-1318. [PMID: 30622179 PMCID: PMC6347726 DOI: 10.1073/pnas.1817498116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Calcium-activated phospholipid scramblase mediates the energy-independent bidirectional translocation of lipids across the bilayer, leading to transient or, in the case of apoptotic scrambling, sustained collapse of membrane asymmetry. Cells lacking TMEM16F-dependent lipid scrambling activity are deficient in generation of extracellular vesicles (EVs) that shed from the plasma membrane in a Ca2+-dependent manner, namely microvesicles. We have adapted chemical induction of giant plasma membrane vesicles (GPMVs), which require both TMEM16F-dependent phospholipid scrambling and calcium influx, as a kinetic assay to investigate the mechanism of TMEM16F activity. Using the GPMV assay, we identify and characterize both inactivating and activating mutants that elucidate the mechanism for TMEM16F activation and facilitate further investigation of TMEM16F-mediated lipid translocation and its role in extracellular vesiculation.
Collapse
Affiliation(s)
- Tina W Han
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Wenlei Ye
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Neville P Bethel
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Mario Zubia
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Andrew Kim
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Kathy H Li
- Mass Spectrometry Facility, University of California, San Francisco, CA 94143
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA 94143
| | - Michael Grabe
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Lily Y Jan
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143;
- Department of Physiology, University of California, San Francisco, CA 94143
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| |
Collapse
|
214
|
McGraw C, Yang L, Levental I, Lyman E, Robinson AS. Membrane cholesterol depletion reduces downstream signaling activity of the adenosine A 2A receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:760-767. [PMID: 30629951 DOI: 10.1016/j.bbamem.2019.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
Cholesterol has been shown to modulate the activity of multiple G Protein-coupled receptors (GPCRs), yet whether cholesterol acts through specific interactions, indirectly via modifications to the membrane, or via both mechanisms is not well understood. High-resolution crystal structures of GPCRs have identified bound cholesterols; based on a β2-adrenergic receptor (β2AR) structure bound to cholesterol and the presence of conserved amino acids in class A receptors, the cholesterol consensus motif (CCM) was identified. Here in mammalian cells expressing the adenosine A2A receptor (A2AR), ligand dependent production of cAMP is reduced following membrane cholesterol depletion with methyl-beta-cyclodextrin (MβCD), indicating that A2AR signaling is dependent on cholesterol. In contrast, ligand binding is not dependent on cholesterol depletion. All-atom molecular simulations suggest that cholesterol interacts specifically with the CCM when the receptor is in an active state, but not when in an inactive state. Taken together, the data support a model of receptor state-dependent binding between cholesterol and the CCM, which could facilitate both G-protein coupling and downstream signaling of A2AR.
Collapse
Affiliation(s)
- Claire McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States
| | - Lewen Yang
- Department of Physics and Astronomy, University of Delaware, Newark, DE, United States
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas- Houston, Houston, TX, United States
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, United States
| | - Anne Skaja Robinson
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA, United States.
| |
Collapse
|
215
|
Klauda JB. Perspective: Computational modeling of accurate cellular membranes with molecular resolution. J Chem Phys 2018; 149:220901. [DOI: 10.1063/1.5055007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
- Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
216
|
Kubánková M, López-Duarte I, Kiryushko D, Kuimova MK. Molecular rotors report on changes in live cell plasma membrane microviscosity upon interaction with beta-amyloid aggregates. SOFT MATTER 2018; 14:9466-9474. [PMID: 30427370 DOI: 10.1039/c8sm01633j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Amyloid deposits of aggregated beta-amyloid Aβ(1-42) peptides are a pathological hallmark of Alzheimer's disease. Aβ(1-42) aggregates are known to induce biophysical alterations in cells, including disruption of plasma membranes. We investigated the microviscosity of plasma membranes upon interaction with oligomeric and fibrillar forms of Aβ(1-42). Viscosity-sensing fluorophores termed molecular rotors were utilised to directly measure the microviscosities of giant plasma membrane vesicles (GPMVs) and plasma membranes of live SH-SY5Y and HeLa cells. The fluorescence lifetimes of membrane-inserting BODIPY-based molecular rotors revealed a decrease in bilayer microviscosity upon incubation with Aβ(1-42) oligomers, while fibrillar Aβ(1-42) did not significantly affect the microviscosity of the bilayer. In addition, we demonstrate that the neuroprotective peptide H3 counteracts the microviscosity change induced by Aβ(1-42) oligomers, suggesting the utility of H3 as a neuroprotective therapeutic agent in neurodegenerative disorders and indicating that ligand-induced membrane stabilisation may be a possible mechanism of neuroprotection during neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Markéta Kubánková
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
217
|
Kimchi O, Veatch SL, Machta BB. Ion channels can be allosterically regulated by membrane domains near a de-mixing critical point. J Gen Physiol 2018; 150:1769-1777. [PMID: 30455180 PMCID: PMC6279359 DOI: 10.1085/jgp.201711900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 08/24/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Ion channels are embedded in the plasma membrane, a compositionally diverse two-dimensional liquid that has the potential to exert profound influence on their function. Recent experiments suggest that this membrane is poised close to an Ising critical point, below which cell-derived plasma membrane vesicles phase separate into coexisting liquid phases. Related critical points have long been the focus of study in simplified physical systems, but their potential roles in biological function have been underexplored. Here we apply both exact and stochastic techniques to the lattice Ising model to study several ramifications of proximity to criticality for idealized lattice channels, whose function is coupled through boundary interactions to critical fluctuations of membrane composition. Because of diverging susceptibilities of system properties to thermodynamic parameters near a critical point, such a lattice channel's activity becomes strongly influenced by perturbations that affect the critical temperature of the underlying Ising model. In addition, its kinetics acquire a range of time scales from its surrounding membrane, naturally leading to non-Markovian dynamics. Our model may help to unify existing experimental results relating the effects of small-molecule perturbations on membrane properties and ion channel function. We also suggest ways in which the role of this mechanism in regulating real ion channels and other membrane-bound proteins could be tested in the future.
Collapse
Affiliation(s)
- Ofer Kimchi
- Department of Physics, Princeton University, Princeton, NJ.,Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Benjamin B Machta
- Department of Physics, Princeton University, Princeton, NJ .,Lewis-Sigler Institute, Princeton University, Princeton, NJ.,Department of Physics, Yale University, New Haven, CT.,Systems Biology Institute, Yale University, West Haven, CT
| |
Collapse
|
218
|
Luo Y, Maibaum L. Phase diagrams of multicomponent lipid vesicles: Effects of finite size and spherical geometry. J Chem Phys 2018; 149:174901. [DOI: 10.1063/1.5045499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongtian Luo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
219
|
Yagi T, Sato H. A simple model of planar membrane: An integral equation investigation. J Comput Chem 2018; 39:2576-2581. [PMID: 30394542 DOI: 10.1002/jcc.25638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 11/08/2022]
Abstract
A simple model of a lipid membrane, a binary mixture of saturated lipids and unsaturated lipids, was studied using an integral equation theory. The planar membrane is modeled as mixture of linear and bent molecules in two-dimensional space, and site-site radial distribution function, Kirkwood-Buff (KB) integral and related quantities were computed over the whole range of the molar fraction to understand their mixing behavior. We found that a close packing of linear molecules is enhanced as the fraction of bent molecules increases, but a long range correlation between the linear molecules is weakened. A high concentration of linear molecules promotes the demixing of linear molecules and bent molecules, and enhances the long range correlation between molecules. This implies that, the higher the concentration of linear molecules, the larger clusters tend to be formed. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomoaki Yagi
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
220
|
De Santis A, Varela Y, Sot J, D'Errico G, Goñi FM, Alonso A. Omega-3 polyunsaturated fatty acids do not fluidify bilayers in the liquid-crystalline state. Sci Rep 2018; 8:16240. [PMID: 30389959 PMCID: PMC6214938 DOI: 10.1038/s41598-018-34264-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022] Open
Abstract
This work reports on the effects of two omega-3 fatty acids, namely docosahexaenoic (C22:64,7,10,13,16,19) acid (DHA), and eicosapentaenoic (C20:55,8,11,14,17) acid (EPA), with oleic (C18:19) acid (OA) as a control, on the gel-liquid crystalline phase transition of dipalmitoyl phosphatidylcholine (DPPC). Mainly differential scanning calorimetry has been used, together with Laurdan fluorescence, and confocal fluorescence microscopy. All three fatty acids DHA, EPA and OA exhibited fluidifying properties when added to the DPPC bilayers, decreasing the main transition temperature. DHA and EPA were somewhat more effective than OA in this respect, but the effects of all three were of the same order of magnitude, thus the long-chain omega-3 fatty acids failed to exhibit any peculiar fluidifying potency. The same was true when the omega-3 fatty acids were esterified in the sn-2 position of a phosphatidylcholine. Moreover the omega-3 fatty acids had very small or no effects on the fluidity of bilayers in the liquid-crystalline, or fluid disordered state (egg phosphatidylcholine and others), or in the fluid ordered state (phospholipid: cholesterol mixtures). The hypothesis that some physiological effects of long-chain omega-3 fatty acids could be related to their special fluidifying properties is not supported by these data.
Collapse
Affiliation(s)
- Augusta De Santis
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain.,Department of Chemical Sciences, University of Naples "Federico II", Complesso di Monte S. Angelo, Via Cinthia, I-80126, Naples, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Yaiza Varela
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Complesso di Monte S. Angelo, Via Cinthia, I-80126, Naples, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain. .,Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain.
| |
Collapse
|
221
|
Pace HP, Hannestad JK, Armonious A, Adamo M, Agnarsson B, Gunnarsson A, Micciulla S, Sjövall P, Gerelli Y, Höök F. Structure and Composition of Native Membrane Derived Polymer-Supported Lipid Bilayers. Anal Chem 2018; 90:13065-13072. [PMID: 30350611 DOI: 10.1021/acs.analchem.8b04110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last two decades, supported lipid bilayers (SLBs) have been extensively used as model systems to study cell membrane structure and function. While SLBs have been traditionally produced from simple lipid mixtures, there has been a recent surge in compositional complexity to better mimic cellular membranes and thereby bridge the gap between classic biophysical approaches and cell experiments. To this end, native cellular membrane derived SLBs (nSLBs) have emerged as a new category of SLBs. As a new type of biomimetic material, an analytical workflow must be designed to characterize its molecular composition and structure. Herein, we demonstrate how a combination of fluorescence microscopy, neutron reflectometry, and secondary ion mass spectrometry offers new insights on structure, composition, and quality of nSLB systems formed using so-called hybrid vesicles, which are a mixture of native membrane material and synthetic lipids. With this approach, we demonstrate that the nSLB formed a continuous structure with complete mixing of the synthetic and native membrane components and a molecular stoichiometry that essentially mirrors that of the hybrid vesicles. Furthermore, structural investigation of the nSLB revealed that PEGylated lipids do not significantly thicken the hydration layer between the bilayer and substrate when on silicon substrates; however, nSLBs do have more topology than their simpler, purely synthetic counterparts. Beyond new insights regarding the structure and composition of nSLB systems, this work also serves to guide future researchers in producing and characterizing nSLBs from their cellular membrane of choice.
Collapse
Affiliation(s)
- Hudson P Pace
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| | - Jonas K Hannestad
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden.,Biosciences and Materials , Research Institutes of Sweden , SE-501 15 Borås , Sweden
| | - Antonious Armonious
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| | - Marco Adamo
- Institute Laue-Langevin , 38000 Grenoble , France.,Department of Chemical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Bjorn Agnarsson
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| | - Anders Gunnarsson
- Discovery Sciences, IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| | - Samantha Micciulla
- Institute Laue-Langevin , 38000 Grenoble , France.,Max Planck Institute of Colloids and Interfaces , 14476 Potsdam , Germany
| | - Peter Sjövall
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden.,Biosciences and Materials , Research Institutes of Sweden , SE-501 15 Borås , Sweden
| | - Yuri Gerelli
- Institute Laue-Langevin , 38000 Grenoble , France
| | - Fredrik Höök
- Department of Physics , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| |
Collapse
|
222
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
223
|
Emami S, Su WC, Purushothaman S, Ngassam VN, Parikh AN. Permeability and Line-Tension-Dependent Response of Polyunsaturated Membranes to Osmotic Stresses. Biophys J 2018; 115:1942-1955. [PMID: 30366629 DOI: 10.1016/j.bpj.2018.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The lipidome of plant plasma membranes-enriched in cellular phospholipids containing at least one polyunsaturated fatty acid tail and a variety of phytosterols and phytosphingolipids-is adapted to significant abiotic stresses. But how mesoscale membrane properties of these membranes such as permeability and deformability, which arise from their unique molecular compositions and corresponding lateral organization, facilitate response to global mechanical stresses is largely unknown. Here, using giant vesicles reconstituting mixtures of polyunsaturated lipids (soy phosphatidylcholine), glucosylceramide, and sitosterol common to plant membranes, we find that the membranes adopt "janus-like" domain morphologies and display anomalous solute permeabilities. The former textures the membrane with a single sterol-glucosylceramide-enriched, liquid-ordered domain separated from a liquid-disordered phase consisting primarily of soy phosphatidylcholine. When subject to osmotic downshifts, the giant unilamellar vesicles (GUVs) respond by transiently producing well-known swell-burst cycles. In each cycle, the influx of water swells the GUV, rendering the membrane tense. Subsequent rupture of the membrane through transient poration, which localizes in the liquid-disordered phase or at the domain boundaries, reduces the osmotic stress by expelling some of the excess osmolytes (and solvent) before sealing. When subject to abrupt hypertonic stress, they deform by nucleating buds at the domain phase boundaries. Remarkably, this incipient vesiculation is reversed in a statistically significant fraction of GUVs because of the interplay with solute permeation timescales, which render osmotic stresses short-lived. This, then, suggests a novel control mechanism in which an interplay of permeability and deformability regulates osmotically induced membrane deformation and limits vesiculation-induced loss of membrane material. Interestingly, recapitulation of such dynamic morphological reconfigurability-switching between budded and nonbudded morphologies-due to the interplay of membrane permeability, which temporally reverses the osmotic gradient, and domain boundaries, which select modes of deformations, might prove valuable in endowing synthetic cells with novel morphological responsiveness.
Collapse
Affiliation(s)
- Shiva Emami
- Departments of Biomedical Engineering, University of California, Davis, California; Chemical Engineering, University of California, Davis, California
| | - Wan-Chih Su
- Chemistry, University of California, Davis, California
| | - Sowmya Purushothaman
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Viviane N Ngassam
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Atul N Parikh
- Departments of Biomedical Engineering, University of California, Davis, California; Chemistry, University of California, Davis, California; Chemical Engineering, University of California, Davis, California; Materials Science & Engineering, University of California, Davis, California.
| |
Collapse
|
224
|
Knorr RL, Steinkühler J, Dimova R. Micron-sized domains in quasi single-component giant vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1957-1964. [DOI: 10.1016/j.bbamem.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
|
225
|
Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2012-2017. [DOI: 10.1016/j.bbamem.2018.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/19/2022]
|
226
|
Holowka D, Thanapuasuwan K, Baird B. Short chain ceramides disrupt immunoreceptor signaling by inhibiting segregation of Lo from Ld Plasma membrane components. Biol Open 2018; 7:bio.034702. [PMID: 30097519 PMCID: PMC6176950 DOI: 10.1242/bio.034702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid phase heterogeneity in plasma membranes is thought to play a key role in targeting cellular signaling, but efforts to test lipid raft and related hypotheses are limited by the spatially dynamic nature of these phase-based structures in cells and by experimental characterization tools. We suggest that perturbation of plasma membrane structure by lipid derivatives offers a general method for assessing functional roles for ordered lipid regions in membrane and cell biology. We previously reported that short chain ceramides with either C2 or C6 acyl chains inhibit antigen-stimulated Ca2+ mobilization (Gidwani et al., 2003). We now show that these short chain ceramides inhibit liquid order (Lo)-liquid disorder (Ld) phase separation in giant plasma membrane vesicles that normally occurs at low temperatures. Furthermore, they are effective inhibitors of tyrosine phosphorylation stimulated by antigen, as well as store-operated Ca2+ entry. In Jurkat T cells, C6-ceramide is also effective at inhibiting Ca2+ mobilization stimulated by either anti-TCR or thapsigargin, consistent with the view that these short chain ceramides effectively interfere with functional responses that depend on ordered lipid regions in the plasma membrane. Summary: Our manuscript describes how perturbation of plasma membrane structure by short chain ceramides offers a general method for assessing functional roles for ordered lipid regions in membrane and cell biology.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Kankanit Thanapuasuwan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
227
|
Lipids and lipid domains of the yeast vacuole. Biochem Soc Trans 2018; 46:1047-1054. [PMID: 30242116 DOI: 10.1042/bst20180120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
The membrane raft has been a focus of intensive research for the past two decades. Liquid-ordered domains form in artificial liposomes containing sterol and saturated lipids, but their presence in living cell membranes has been controversial. The yeast vacuole is exceptional in that micron-sized raft-like domains form in the stationary phase and under several other conditions. The sterol content of the vacuole in the log phase is much lower than that of liposomes showing liquid-ordered domains, suggesting that sterols may need to be supplied to the vacuole for the raft-like domain formation. We will discuss how lipids and lipid domains are organized in the vacuolar membrane and examine whether evidence is strong enough to conclude that the observed micron-sized domains are rafts.
Collapse
|
228
|
Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? Biomolecules 2018; 8:E94. [PMID: 30223513 PMCID: PMC6164003 DOI: 10.3390/biom8030094] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Louise Conrard
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Anne-Sophie Cloos
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
229
|
Osella S, Di Meo F, Murugan NA, Fabre G, Ameloot M, Trouillas P, Knippenberg S. Combining (Non)linear Optical and Fluorescence Analysis of DiD To Enhance Lipid Phase Recognition. J Chem Theory Comput 2018; 14:5350-5359. [DOI: 10.1021/acs.jctc.8b00553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvio Osella
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Florent Di Meo
- Faculty of Pharmacy, UMR 1248 INSERM, Limoges University, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - N. Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Gabin Fabre
- LCSN-EA1069, Faculty of Pharmacy, Limoges University, 2, rue du Dr. Marcland, 87025 Limoges Cedex, France
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Patrick Trouillas
- Faculty of Pharmacy, UMR 1248 INSERM, Limoges University, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
- Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Stefan Knippenberg
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Biomedical Research Institute, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
230
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
231
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
232
|
Entropic forces drive clustering and spatial localization of influenza A M2 during viral budding. Proc Natl Acad Sci U S A 2018; 115:E8595-E8603. [PMID: 30150411 DOI: 10.1073/pnas.1805443115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses. Conditions under which these protein assemblies will cause the lipid membrane to curve are explored, and we predict that a critical cluster size is required for this to happen. We go on to demonstrate that under the stress conditions taking place in the cellular membrane as it undergoes large-scale membrane remodeling, the M2 protein will, in principle, be able to both contribute to curvature induction and sense curvature to line up in manifolds where local membrane line tension is high. M2 is found to exhibit linactant behavior in liquid-disordered-liquid-ordered phase-separated lipid mixtures and to be excluded from the liquid-ordered phase, in near-quantitative agreement with experimental observations. Our findings support a role for M2 in membrane remodeling during influenza viral budding both as an inducer and a sensor of membrane curvature, and they suggest a mechanism by which localization of M2 can occur as the virion assembles and releases from the host cell, independent of how the membrane curvature is produced.
Collapse
|
233
|
Gireud-Goss M, Reyes S, Wilson M, Farley M, Memarzadeh K, Srinivasan S, Sirisaengtaksin N, Yamashita S, Tsunoda S, Lang FF, Waxham MN, Bean AJ. Distinct mechanisms enable inward or outward budding from late endosomes/multivesicular bodies. Exp Cell Res 2018; 372:1-15. [PMID: 30144444 DOI: 10.1016/j.yexcr.2018.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Regulating the residence time of membrane proteins on the cell surface can modify their response to extracellular cues and allow for cellular adaptation in response to changing environmental conditions. The fate of membrane proteins that are internalized from the plasma membrane and arrive at the limiting membrane of the late endosome/multivesicular body (MVB) is dictated by whether they remain on the limiting membrane, bud into internal MVB vesicles, or bud outwardly from the membrane. The molecular details underlying the disposition of membrane proteins that transit this pathway and the mechanisms regulating these trafficking events are unclear. We established a cell-free system that reconstitutes budding of membrane protein cargo into internal MVB vesicles and onto vesicles that bud outwardly from the MVB membrane. Both budding reactions are cytosol-dependent and supported by Saccharomyces cerevisiae (yeast) cytosol. We observed that inward and outward budding from the MVB membrane are mechanistically distinct but may be linked, such that inhibition of inward budding triggers a re-routing of cargo from inward to outward budding vesicles, without affecting the number of vesicles that bud outwardly from MVBs.
Collapse
Affiliation(s)
- Monica Gireud-Goss
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Sahily Reyes
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Marenda Wilson
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Madeline Farley
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Kimiya Memarzadeh
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | | | - Natalie Sirisaengtaksin
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| | - Shinji Yamashita
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Andrew J Bean
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA; Department of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
234
|
Lyman E, Hsieh CL, Eggeling C. From Dynamics to Membrane Organization: Experimental Breakthroughs Occasion a "Modeling Manifesto". Biophys J 2018; 115:595-604. [PMID: 30075850 PMCID: PMC6103736 DOI: 10.1016/j.bpj.2018.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022] Open
Abstract
New experimental techniques, especially in the context of observing molecular dynamics, reveal the plasma membrane to be heterogeneous and "scale rich," from nanometers to microns and from microseconds to seconds. This is critical information, which shows that scale-dependent transport governs the molecular encounters that underlie cellular signaling. The data are rich and reaffirm the importance of the cortical cytoskeleton, protein aggregates, and lipidomic complexity on the statistics of molecular encounters. Moreover, the data demand simulation approaches with a particular set of features, hence the "manifesto." Together with the experimental data, simulations that satisfy these requirements hold the promise of a deeper understanding of membrane spatiotemporal organization. Several experimental breakthroughs in measuring molecular membrane dynamics are reviewed, the constraints that they place on simulations are discussed, and the status of simulation approaches that aim to meet them are detailed.
Collapse
Affiliation(s)
- Edward Lyman
- Department of Physics and Astrophysics, University of Delaware, Newark, Delaware; Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Institute of Applied Optics, Friedrich-Schiller-University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany
| |
Collapse
|
235
|
Gaur D, Yogalakshmi Y, Kulanthaivel S, Agarwal T, Mukherjee D, Prince A, Tiwari A, Maiti TK, Pal K, Giri S, Saleem M, Banerjee I. Osteoblast-Derived Giant Plasma Membrane Vesicles Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Deepanjali Gaur
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Yamini Yogalakshmi
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Senthilguru Kulanthaivel
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Tarun Agarwal
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Devdeep Mukherjee
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Ashutosh Prince
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Anuj Tiwari
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Tapas K. Maiti
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Supratim Giri
- Department of Chemistry; National Institute of Technology Rourkela; Odisha 769008 India
| | - Mohammed Saleem
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Indranil Banerjee
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| |
Collapse
|
236
|
Steinkühler J, Różycki B, Alvey C, Lipowsky R, Weikl TR, Dimova R, Discher DE. Membrane fluctuations and acidosis regulate cooperative binding of 'marker of self' protein CD47 with the macrophage checkpoint receptor SIRPα. J Cell Sci 2018; 132:jcs.216770. [PMID: 29777034 DOI: 10.1242/jcs.216770] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
Cell-cell interactions that result from membrane proteins binding weakly in trans can cause accumulations in cis that suggest cooperativity and thereby an acute sensitivity to environmental factors. The ubiquitous 'marker of self' protein CD47 binds weakly to SIRPα on macrophages, which leads to accumulation of SIRPα (also known as SHPS-1, CD172A and SIRPA) at phagocytic synapses and ultimately to inhibition of engulfment of 'self' cells - including cancer cells. We reconstituted this macrophage checkpoint with GFP-tagged CD47 on giant vesicles generated from plasma membranes and then imaged vesicles adhering to SIRPα immobilized on a surface. CD47 diffusion is impeded near the surface, and the binding-unbinding events reveal cooperative interactions as a concentration-dependent two-dimensional affinity. Membrane fluctuations out-of-plane link cooperativity to membrane flexibility with suppressed fluctuations in the vicinity of bound complexes. Slight acidity (pH 6) stiffens membranes, diminishes cooperative interactions and also reduces 'self' signaling of cancer cells in phagocytosis. Sensitivity of cell-cell interactions to microenvironmental factors - such as the acidity of tumors and other diseased or inflamed sites - can thus arise from the collective cooperative properties of flexible membranes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jan Steinkühler
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, 19104 PA, USA.,Theory and Bio-Systems, Max Planck Institut of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Cory Alvey
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, 19104 PA, USA
| | - Reinhard Lipowsky
- Theory and Bio-Systems, Max Planck Institut of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Thomas R Weikl
- Theory and Bio-Systems, Max Planck Institut of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Theory and Bio-Systems, Max Planck Institut of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, 19104 PA, USA
| |
Collapse
|
237
|
Cornell CE, Skinkle AD, He S, Levental I, Levental KR, Keller SL. Tuning Length Scales of Small Domains in Cell-Derived Membranes and Synthetic Model Membranes. Biophys J 2018; 115:690-701. [PMID: 30049406 DOI: 10.1016/j.bpj.2018.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/10/2023] Open
Abstract
Micron-scale, coexisting liquid-ordered (Lo) and liquid-disordered (Ld) phases are straightforward to observe in giant unilamellar vesicles (GUVs) composed of ternary lipid mixtures. Experimentally, uniform membranes undergo demixing when temperature is decreased: domains subsequently nucleate, diffuse, collide, and coalesce until only one domain of each phase remains. The sizes of these two domains are limited only by the size of the system. Under different conditions, vesicles exhibit smaller-scale domains of fixed sizes, leading to the question of what sets the length scale. In membranes with excess area, small domains are expected when coarsening is hindered or when a microemulsion or modulated phase arises. Here, we test predictions of how the size, morphology, and fluorescence levels of small domains vary with the membrane's temperature, tension, and composition. Using GUVs and cell-derived giant plasma membrane vesicles, we find that 1) the characteristic size of domains decreases when temperature is increased or membrane tension is decreased, 2) stripes are favored over circular domains for lipid compositions with low energy per unit interface, 3) fluorescence levels are consistent with domain registration across both monolayer leaflets of the bilayer, and 4) small domains form in GUVs composed of lipids both with and without ester-linked lipids. Our experimental results are consistent with several elements of current theories for microemulsions and modulated phases and inconsistent with others, suggesting a motivation to modify or enhance current theories.
Collapse
Affiliation(s)
- Caitlin E Cornell
- Department of Chemistry, University of Washington, Seattle, Washington
| | | | - Shushan He
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
238
|
Courtney K, Pezeshkian W, Raghupathy R, Zhang C, Darbyson A, Ipsen J, Ford D, Khandelia H, Presley J, Zha X. C24 Sphingolipids Govern the Transbilayer Asymmetry of Cholesterol and Lateral Organization of Model and Live-Cell Plasma Membranes. Cell Rep 2018; 24:1037-1049. [DOI: 10.1016/j.celrep.2018.06.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022] Open
|
239
|
Grosjean K, Der C, Robert F, Thomas D, Mongrand S, Simon-Plas F, Gerbeau-Pissot P. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3545-3557. [PMID: 29722895 PMCID: PMC6022670 DOI: 10.1093/jxb/ery152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/16/2018] [Indexed: 05/20/2023]
Abstract
The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ). Four experimental models were compared to identify mechanisms and cell components involved in short-term (1 h) maintenance of the ordered domain organization in steady-state cell PMs: modulation of the cytoskeleton or the cell wall integrity of tobacco BY-2 cells; and formation of giant vesicles using either a lipid mixture of tobacco BY-2 cell PMs or the original lipid and protein combinations of the tobacco BY-2 cell PM. Whilst inhibiting phosphorylation or disrupting either the cytoskeleton or the cell wall had no observable effects, we found that lipids and proteins significantly modified both the abundance and spatial distribution of ordered domains. This indicates the involvement of intrinsic membrane components in the local physical state of the plant PM. Our findings support a major role for the 'lipid raft' model, defined as the sterol-dependent ordered assemblies of specific lipids and proteins in plant PM organization.
Collapse
Affiliation(s)
- Kevin Grosjean
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Christophe Der
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Franck Robert
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Dominique Thomas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR, CNRS, Université de Bordeaux, Bordeaux, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | | |
Collapse
|
240
|
Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment. Int J Mol Sci 2018; 19:ijms19061811. [PMID: 29921831 PMCID: PMC6032236 DOI: 10.3390/ijms19061811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol, a major component of the plasma membrane, determines the physical properties of biological membranes and plays a critical role in the assembly of membrane microdomains. Enrichment or deprivation of membrane cholesterol affects the activities of many signaling molecules at the plasma membrane. Cell detachment changes the structure of the plasma membrane and influences the localizations of lipids, including cholesterol. Recent studies showed that cell detachment changes the activities of a variety of signaling molecules. We previously reported that the localization and the function of the Src-family kinase Lyn are critically regulated by its membrane anchorage through lipid modifications. More recently, we found that the localization and the activity of Lyn were changed upon cell detachment, although the manners of which vary between cell types. In this review, we highlight the changes in the localization of Lyn and a role of cholesterol in the regulation of Lyn’s activation following cell detachment.
Collapse
|
241
|
Sadeghi M, Weikl TR, Noé F. Particle-based membrane model for mesoscopic simulation of cellular dynamics. J Chem Phys 2018; 148:044901. [PMID: 29390800 DOI: 10.1063/1.5009107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas R Weikl
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
242
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
243
|
Sedgwick AE, D'Souza-Schorey C. The biology of extracellular microvesicles. Traffic 2018; 19:319-327. [PMID: 29479795 PMCID: PMC6922305 DOI: 10.1111/tra.12558] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
The study of extracellular vesicles (EVs) is a rapidly evolving field, owing in large part to recent advances in the realization of their significant contributions to normal physiology and disease. Once discredited as cell debris, these membrane vesicles have now emerged as mediators of intercellular communication by interaction with target cells, drug and gene delivery, and as potentially versatile platforms of clinical biomarkers as a result of their distinctive protein, nucleic acid and lipid cargoes. While there are multiple classes of EVs released from almost all cell types, here we focus primarily on the biogenesis, fate and functional cargoes of microvesicles (MVs). MVs regulate many important cellular processes including facilitating cell invasion, cell growth, evasion of immune response, stimulating angiogenesis, drug resistance and many others.
Collapse
Affiliation(s)
- Alanna E Sedgwick
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | | |
Collapse
|
244
|
Impact of membrane curvature on amyloid aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1741-1764. [PMID: 29709613 DOI: 10.1016/j.bbamem.2018.04.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed.
Collapse
|
245
|
Abstract
Helicobacter pylori, a Gram-negative bacterium, is a well-known risk factor for gastric cancer. H. pylori vacuolating cytotoxin A (VacA) is a secreted pore-forming toxin that induces a wide range of cellular responses. Like many other bacterial toxins, VacA has been hypothesized to utilize lipid rafts to gain entry into host cells. Here, we used giant plasma membrane vesicles (GPMVs) as a model system to understand the preferential partitioning of VacA into lipid rafts. We show that a wild-type (WT) toxin predominantly associates with the raft phase. Acid activation of VacA enhances binding of the toxin to GPMVs but is not required for raft partitioning. VacA mutant proteins with alterations at the amino terminus (resulting in impaired membrane channel formation) and a nonoligomerizing VacA mutant protein retain the ability to preferentially associate with lipid rafts. Consistent with these results, the isolated VacA p55 domain was capable of binding to lipid rafts. We conclude that the affinity of VacA for rafts is independent of its capacity to oligomerize or form membrane channels.
Collapse
|
246
|
He S, Maibaum L. Identifying the Onset of Phase Separation in Quaternary Lipid Bilayer Systems from Coarse-Grained Simulations. J Phys Chem B 2018; 122:3961-3973. [DOI: 10.1021/acs.jpcb.8b00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shushan He
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| |
Collapse
|
247
|
Gerstle Z, Desai R, Veatch SL. Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability. Methods Enzymol 2018; 603:129-150. [PMID: 29673522 DOI: 10.1016/bs.mie.2018.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Giant plasma membrane vesicles (GPMVs) are isolated directly from living cells and provide an alternative to vesicles constructed of synthetic or purified lipids as an experimental model system for use in a wide range of assays. GPMVs capture much of the compositional protein and lipid complexity of intact cell plasma membranes, are filled with cytoplasm, and are free from contamination with membranes from internal organelles. GPMVs often exhibit a miscibility transition below the growth temperature of their parent cells. GPMVs labeled with a fluorescent protein or lipid analog appear uniform on the micron-scale when imaged above the miscibility transition temperature, and separate into coexisting liquid domains with differing membrane compositions and physical properties below this temperature. The presence of this miscibility transition in isolated GPMVs suggests that a similar phase-like heterogeneity occurs in intact plasma membranes under growth conditions, albeit on smaller length scales. In this context, GPMVs provide a simple and controlled experimental system to explore how drugs and other environmental conditions alter the composition and stability of phase-like domains in intact cell membranes. This chapter describes methods to generate and isolate GPMVs from adherent mammalian cells and to interrogate their miscibility transition temperatures using fluorescence microscopy.
Collapse
Affiliation(s)
- Zoe Gerstle
- University of Michigan, Ann Arbor, MI, United States
| | - Rohan Desai
- University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
248
|
Sedgwick A, Olivia Balmert M, D'Souza-Schorey C. The formation of giant plasma membrane vesicles enable new insights into the regulation of cholesterol efflux. Exp Cell Res 2018. [PMID: 29522754 DOI: 10.1016/j.yexcr.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aberrant cellular cholesterol accumulation contributes to the pathophysiology of many diseases including neurodegenerative disorders such as Niemann-Pick Type C (NPC) and Alzheimer's Disease1-4. Many aspects of cholesterol efflux from cells remain elusive. Here we describe the utility of cholesterol-rich giant plasma membrane vesicles (GPMVs) as a means to monitor cholesterol that is translocated to the plasma membrane for secretion. We demonstrate that small molecules known to enhance lipid efflux, including those in clinical trials for lipid storage disorders, enhance this GPMV formation. Conversely, pharmacological inhibition of cholesterol efflux blocks GPMV formation. We show that microtubule stabilization via paclitaxel treatment and increased tubulin acetylation via HDAC6 inhibition promotes the formation of GPMVs with concomitant reduction in cellular cholesterol in a cell model of NPC disease. The pan-deacetylase inhibitor panobinostat, which has been shown to reduce the severity of cholesterol storage in NPC, elicited a similar response. Further, the disruption of actin polymerization inhibits the formation of GPMVs, whereas the small GTP-binding protein Arl4c promotes actin remodeling at sites overlapping with GPMV formation. Thus, monitoring the formation of GPMVs provides a new avenue to better understand diseases whose pathology may be sensitive to alterations in cellular cholesterol.
Collapse
Affiliation(s)
- Alanna Sedgwick
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | - M Olivia Balmert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | - Crislyn D'Souza-Schorey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA.
| |
Collapse
|
249
|
Johannes L, Pezeshkian W, Ipsen JH, Shillcock JC. Clustering on Membranes: Fluctuations and More. Trends Cell Biol 2018; 28:405-415. [PMID: 29502867 DOI: 10.1016/j.tcb.2018.01.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, INSERM U 1143, CNRS UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Weria Pezeshkian
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - John H Ipsen
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Julian C Shillcock
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
250
|
Goronzy I, Rawle RJ, Boxer SG, Kasson PM. Cholesterol enhances influenza binding avidity by controlling nanoscale receptor clustering. Chem Sci 2018; 9:2340-2347. [PMID: 29520318 PMCID: PMC5839467 DOI: 10.1039/c7sc03236f] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Influenza virus infects cells by binding to sialylated glycans on the cell surface. While the chemical structure of these glycans determines hemagglutinin-glycan binding affinity, bimolecular affinities are weak, so binding is avidity-dominated and driven by multivalent interactions. Here, we show that membrane spatial organization can control viral binding. Using single-virus fluorescence microscopy, we demonstrate that the sterol composition of the target membrane enhances viral binding avidity in a dose-dependent manner. Binding shows a cooperative dependence on concentration of receptors for influenza virus, as would be expected for a multivalent interaction. Surprisingly, the ability of sterols to promote viral binding is independent of their ability to support liquid-liquid phase separation in model systems. We develop a molecular explanation for this observation via molecular dynamics simulations, where we find that cholesterol promotes small-scale clusters of glycosphingolipid receptors. We propose a model whereby cholesterol orders the monomeric state of glycosphingolipid receptors, reducing the entropic penalty of receptor association and thus favoring multimeric complexes without phase separation. This model explains how cholesterol and other sterols control the spatial organization of membrane receptors for influenza and increase viral binding avidity. A natural consequence of this finding is that local cholesterol concentration in the plasma membrane of cells may alter the binding avidity of influenza virions. Furthermore, our results demonstrate a form of cholesterol-dependent membrane organization that does not involve lipid rafts, suggesting that cholesterol's effect on cell membrane heterogeneity is likely the interplay of several different factors.
Collapse
Affiliation(s)
- I. N. Goronzy
- Department of Chemistry , Stanford University , Stanford CA 94305 , USA .
| | - R. J. Rawle
- Department of Molecular Physiology and Biomedical Engineering , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - S. G. Boxer
- Department of Chemistry , Stanford University , Stanford CA 94305 , USA .
| | - P. M. Kasson
- Department of Molecular Physiology and Biomedical Engineering , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
- Science for Life Laboratory , Department of Cell and Molecular Biology , Uppsala University , Sweden
| |
Collapse
|